JP4263052B2 - Temperature control device for electric double layer capacitor - Google Patents

Temperature control device for electric double layer capacitor Download PDF

Info

Publication number
JP4263052B2
JP4263052B2 JP2003285180A JP2003285180A JP4263052B2 JP 4263052 B2 JP4263052 B2 JP 4263052B2 JP 2003285180 A JP2003285180 A JP 2003285180A JP 2003285180 A JP2003285180 A JP 2003285180A JP 4263052 B2 JP4263052 B2 JP 4263052B2
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
cooling element
thermoelectric cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003285180A
Other languages
Japanese (ja)
Other versions
JP2005057006A (en
Inventor
裕司 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003285180A priority Critical patent/JP4263052B2/en
Publication of JP2005057006A publication Critical patent/JP2005057006A/en
Application granted granted Critical
Publication of JP4263052B2 publication Critical patent/JP4263052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、電気二重層キャパシタの温度を適正レベルに維持するための温度管理装置に関する。   The present invention relates to a temperature management device for maintaining the temperature of an electric double layer capacitor at an appropriate level.

近年、各種の蓄電装置(例えば、ハイブリッド電気自動車の駆動電源など)、急速充電が可能で充放電サイクル寿命が長い、電気二重層キャパシタの適用技術が注目される。   2. Description of the Related Art In recent years, attention has been focused on various power storage devices (for example, a drive power source of a hybrid electric vehicle) and an electric double layer capacitor that can be rapidly charged and has a long charge / discharge cycle life.

特許文献1の場合、電気二重層キャパシタは、正極体と負極体とこれらの間に介在するセパレータとから積層体に組成される。積層体(キャパシタ本体)は電解液に浸され、容器に収容される。容器は、1対の端子(一方は正極体、もう一方は負極体、に接合される)の一部が外部へ突き出る状態に密封されるのである。   In the case of Patent Document 1, the electric double layer capacitor is composed of a positive electrode body, a negative electrode body, and a separator interposed between them to form a laminate. The multilayer body (capacitor body) is immersed in an electrolytic solution and accommodated in a container. The container is sealed so that a part of a pair of terminals (one joined to the positive electrode body and the other to the negative electrode body) protrudes to the outside.

特許文献2においては、所要容量の蓄電装置を構成するため、複数の電気二重層キャパシタを直列または並列に接続するのに好適な電極構造が開示される。特許文献3においては、ハイブリッド電気自動車の駆動電源として車両に搭載されるキャパシタの水冷装置が開示される。
特開昭2002−289487号 特開2000−313233号 特開平11−273983号
Patent Document 2 discloses an electrode structure suitable for connecting a plurality of electric double layer capacitors in series or in parallel to constitute a power storage device having a required capacity. Patent Document 3 discloses a water cooling device for a capacitor mounted on a vehicle as a drive power source for a hybrid electric vehicle.
JP 2002-289487 A JP 2000-313233 A JP-A-11-273984

この発明は、このような従来技術を踏まえつつ、電気二重層キャパシタの熱的な性能劣化を効果的に防止しえる手段の提供を目的とする。特許文献3の水冷装置は、発電機を駆動するエンジンの冷却水を利用するものであり、所定数のキャパシタを囲むように冷却ジャケットが形成されるが、そのため格納に大きな空間が必要となり、適用しえる車両の範囲が制限されてしまう。この発明は、このような不具合を解決するための有効な手段の提供も目的とするものである。   An object of this invention is to provide the means which can prevent effectively the thermal performance deterioration of an electric double layer capacitor based on such a prior art. The water cooling device of Patent Document 3 uses cooling water of an engine that drives a generator, and a cooling jacket is formed so as to surround a predetermined number of capacitors. This limits the range of vehicles that can be used. Another object of the present invention is to provide an effective means for solving such problems.

第1の発明は、電気二重層キャパシタの温度管理装置において、電気二重層キャパシタを冷却または加熱するための熱電冷却素子と、電気二重層キャパシタの温度を適正レベルに維持するように熱電冷却素子への電力量および電流の流れ方向を制御する手段と、を備え、熱電冷却素子は、電気二重層キャパシタの外部電極またはこれらの間を直列接続する連結電極に配置され、熱電冷却素子への電力量および電流の流れ方向を制御する手段は、電気二重層キャパシタの温度および充放電電力に応じて熱電冷却素子への電力量を決定する手段と、電気二重層キャパシタの温度に応じて熱電冷却素子への電流の流れ方向を決定する手段と、を備えたことを特徴とする。 According to a first aspect of the present invention, there is provided a thermoelectric cooling element for cooling or heating the electric double layer capacitor and a thermoelectric cooling element so as to maintain the temperature of the electric double layer capacitor at an appropriate level in the temperature management device for the electric double layer capacitor. And the thermoelectric cooling element is disposed on the external electrode of the electric double layer capacitor or a connecting electrode connecting them in series, and the electric energy to the thermoelectric cooling element And means for controlling the current flow direction are means for determining the amount of electric power to the thermoelectric cooling element according to the temperature and charge / discharge power of the electric double layer capacitor, and to the thermoelectric cooling element according to the temperature of the electric double layer capacitor. Means for determining the current flow direction .

第2の発明は、第1の発明に係る電気二重層キャパシタの温度管理装置において、熱電冷却素子と電気二重層キャパシタの外部電極またはこれらの間を接続する連結電極との間に絶縁伝熱シートを介装したことを特徴とする。 2nd invention is the temperature management apparatus of the electric double layer capacitor which concerns on 1st invention, Insulation heat-transfer sheet | seat between the thermoelectric cooling element and the external electrode of an electric double layer capacitor, or the connection electrode which connects between these It is characterized by interposing.

第3の発明は、電気二重層キャパシタの温度管理装置において、液体の循環路と、循環路の液体と電気二重層キャパシタとの間で熱交換を積極的に行う手段と、循環路の液体を冷却または加熱するための熱電冷却素子と、循環路の液体を強制的に循環させるポンプと、電気二重層キャパシタの温度を適正レベルに維持するように熱電冷却素子への電力量およびその流れ方向をポンプと共に制御する手段と、を備える一方、循環路の液体と電気二重層キャパシタとの間で熱交換を積極的に行う手段は、複数の電気二重層キャパシタを接続する連結電極に沿う管路と、管路どうしを直列的に連結する接続管と、を備えるものにあって、前記管路は連結電極に一体形成され、循環路を流れる液体に絶縁性のもの、管路どうしを連結する接続管に絶縁性のもの、を用いたことを特徴とする電気二重層キャパシタの温度管理装置。 According to a third aspect of the present invention, in the temperature management device for an electric double layer capacitor , a liquid circulation path, means for actively exchanging heat between the liquid in the circulation path and the electric double layer capacitor, and a liquid in the circulation path A thermoelectric cooling element for cooling or heating, a pump for forcibly circulating the liquid in the circuit, and the amount of electric power to the thermoelectric cooling element and its flow direction so as to maintain the temperature of the electric double layer capacitor at an appropriate level. Means for controlling together with the pump, and means for positively exchanging heat between the liquid in the circulation path and the electric double layer capacitor, the pipe line along the connecting electrode connecting the plurality of electric double layer capacitors, A connecting pipe for connecting the pipes in series, wherein the pipe is formed integrally with the connecting electrode and is insulative to the liquid flowing through the circulation path, and the connection for connecting the pipes together. Insulate to tube Ones, temperature control device for the electric double layer capacitor characterized by using the.

第4の発明は、第3の発明に係る電気二重層キャパシタの温度管理装置において、熱電冷却素子への電力量およびその流れ方向をポンプと共に制御する手段は、電気二重層キャパシタの温度および充放電電力に応じて熱電冷却素子への電力量を決定する手段と、電気二重層キャパシタの温度に応じて熱電冷却素子への電流の流れ方向を決定する手段と、を備えたことを特徴とする。 According to a fourth aspect of the invention, in the temperature management device for the electric double layer capacitor according to the third aspect of the invention , the means for controlling the amount of electric power to the thermoelectric cooling element and its flow direction together with the pump is the temperature and charge / discharge of the electric double layer capacitor It is characterized by comprising means for determining the amount of electric power to the thermoelectric cooling element according to the electric power, and means for determining the direction of current flow to the thermoelectric cooling element according to the temperature of the electric double layer capacitor.

第1の発明においては、熱電冷却素子への電力量およびその流れ方向を電気二重層キャパシタの温度に応じて制御することにより、電気二重層キャパシタは、熱電冷却素子から温度に応じた吸熱(冷却)量または放熱(加熱)量を受けるため、適正な温度レベルに維持される。このため、電気二重層キャパシタの熱的な性能劣化(充放電効率の悪化など)を効果的に防止できる。 In the first aspect of the invention , the electric double layer capacitor controls the heat absorption (cooling) from the thermoelectric cooling element by controlling the electric energy to the thermoelectric cooling element and the flow direction thereof according to the temperature of the electric double layer capacitor. ) Or heat dissipation (heating) amount, it is maintained at an appropriate temperature level. For this reason, the thermal performance deterioration (deterioration of charge / discharge efficiency, etc.) of the electric double layer capacitor can be effectively prevented.

この場合、熱電冷却素子への電力量は、パラメータに電気二重層キャパシタの充放電電力を加えて決定されるので、電気二重層キャパシタは、負荷状態に過不足なく適合する吸熱(冷却)量または放熱(加熱)量を受けるため、適正な温度レベルに応答よく効果的に維持しえるのである In this case, since the electric energy to the thermoelectric cooling element is determined by adding the charging / discharging power of the electric double layer capacitor to the parameter, the electric double layer capacitor has an endothermic (cooling) amount that fits the load state without excess or deficiency. Because it receives the amount of heat released (heated), it can be effectively maintained at an appropriate temperature level with good response .

第2の発明においては、絶縁伝熱シートにより、電気二重層キャパシタの外部電極と熱電冷却素子との間の熱伝導度を良好に確保しつつ、外部電極を流れる充放電電流と熱電冷却素子を流れる直流電流との干渉を簡便に防止できる。 In the second aspect of the invention, the insulating heat transfer sheet secures the thermal conductivity between the external electrode of the electric double layer capacitor and the thermoelectric cooling element, while maintaining the charge / discharge current and the thermoelectric cooling element flowing through the external electrode. Interference with the flowing direct current can be easily prevented.

第3の発明においては、ポンプの駆動により、循環路の液体は強制的に循環され、熱電冷却素子の作動により、電気二重層キャパシタの温度に応じた吸熱量または放熱量を受ける一方、電気二重層キャパシタとの間で積極的に行われる熱交換により、放熱量または吸熱量を受ける。つまり、電気二重層キャパシタの温度に応じて熱電冷却素子への電力量およびその流れ方向をポンプと共に制御することにより、電気二重層キャパシタは、熱電冷却素子との間で循環路の液体を介して温度に応じた吸熱量または放熱量を受けるため、適正な温度レベルに維持される。このため、電気二重層キャパシタの熱的な性能劣化(充放電効率の悪化など)を効果的に防止できる In the third aspect of the invention, the liquid in the circulation path is forcibly circulated by driving the pump, and the thermoelectric cooling element is operated to receive the heat absorption amount or the heat dissipation amount according to the temperature of the electric double layer capacitor. A heat exchange actively performed with the multilayer capacitor receives a heat release amount or a heat absorption amount. In other words, by controlling the amount of power to the thermoelectric cooling element and the flow direction thereof together with the pump according to the temperature of the electric double layer capacitor, the electric double layer capacitor is connected to the thermoelectric cooling element via the liquid in the circulation path. In order to receive the amount of heat absorbed or radiated according to the temperature, it is maintained at an appropriate temperature level. For this reason, the thermal performance deterioration (deterioration of charge / discharge efficiency, etc.) of the electric double layer capacitor can be effectively prevented .

この場合、管路が連結電極に一体形成のため、管路への熱伝導度が高められ、管路と絶縁性の液体との間で熱量を効率よく授受しえる。絶縁性の接続管により、管路が一体形成の連結電極間の短絡も回避されるのである In this case, since the pipe line is integrally formed with the connecting electrode, the thermal conductivity to the pipe line is increased, and the amount of heat can be efficiently transferred between the pipe line and the insulating liquid. The insulating connecting pipe also avoids a short circuit between the connecting electrodes in which the pipes are integrally formed .

第4の発明においては、熱電冷却素子への電力量は、パラメータに電気二重層キャパシタの充放電電力を加えて決定されるので、電気二重層キャパシタは、負荷状態に過不足なく適合する吸熱(冷却)量または放熱(加熱)量を受けるため、適正な温度レベルに応答よく効果的に維持しえるのである In the fourth aspect of the invention, the electric energy to the thermoelectric cooling element is determined by adding the charge / discharge power of the electric double layer capacitor to the parameter. Because it receives the amount of cooling or heat dissipation (heating), it can effectively maintain the appropriate temperature level with good response .

第1の発明〜第4の発明においては、電気二重層キャパシタの外部電極または連結電極に熱電冷却素子の吸熱または放熱が直接的に作用するので、電気二重層キャパシタの内部を応答よく効率的に冷却または加熱しえる。第5の発明〜第7の発明においては、電気二重層キャパシタに対する熱電冷却素子の吸熱または放熱は循環路の液体を介して間接的に作用するので、第1の発明〜第4の発明の方が電気二重層キャパシタを応答よく効率的に冷却または加熱しえるものの、外部電極または連結電極に取る付けるのと異なり、電気二重層キャパシタ周囲の設置空間にレイアウト的な規制を受けないため、熱電冷却素子の設計に係る自由度を大きく取れるのである。 In the first to fourth inventions , the heat absorption or heat dissipation of the thermoelectric cooling element directly acts on the external electrode or connection electrode of the electric double layer capacitor, so that the inside of the electric double layer capacitor can be efficiently and efficiently responsive. Can be cooled or heated. In the fifth to seventh inventions , the heat absorption or heat dissipation of the thermoelectric cooling element with respect to the electric double layer capacitor indirectly acts via the liquid in the circuit, so the first to fourth inventions. Can cool or heat the electric double layer capacitor responsively and efficiently, but unlike mounting to the external electrode or connecting electrode, the installation space around the electric double layer capacitor is not subject to layout restrictions, so thermoelectric cooling This allows a large degree of freedom related to element design.

図1〜図3は、この発明の実施形態を表すものであり、複数の電気二重層キャパシタ10が1対の連結電極11を介して並列に接続される。連結電極11は、電気二重層キャパシタ10の外部電極12と同じく電気伝導度および熱伝導度の良好な材質(例えば、アルミニウム)から矩形の板状に形成される。連結電極11の矩形平面に絶縁伝熱シート13を重ね、その上から熱電冷却素子14が配置される。   1 to 3 show an embodiment of the present invention, in which a plurality of electric double layer capacitors 10 are connected in parallel via a pair of connecting electrodes 11. The connection electrode 11 is formed in a rectangular plate shape from a material (for example, aluminum) having good electrical conductivity and thermal conductivity, like the external electrode 12 of the electric double layer capacitor 10. An insulating heat transfer sheet 13 is stacked on the rectangular plane of the connection electrode 11, and a thermoelectric cooling element 14 is disposed thereon.

熱電冷却素子14は、P形の半導体とN形の半導体との接合対になり、複数の素子を電気的には直列に接続、熱的には並列に接続、のユニットに構成される。熱電冷却素子14(熱電冷却ユニット)は、直流(DC)電流が流れると、素子の両面における、片側に加熱(放熱)作用、その反対側に冷却(吸熱)作用、が生じる。DC電流の流れ方向を変えると、素子の加熱面と冷却面とが逆転するのである。熱電冷却素子14において、フィン15が絶縁伝熱シート13と反対側に配設される。   The thermoelectric cooling element 14 is a junction pair of a P-type semiconductor and an N-type semiconductor, and is configured in a unit in which a plurality of elements are electrically connected in series and thermally connected in parallel. When a direct current (DC) current flows in the thermoelectric cooling element 14 (thermoelectric cooling unit), a heating (heat dissipation) action occurs on one side and a cooling (heat absorption) action on the opposite side occurs on both sides of the element. Changing the direction of DC current flow reverses the heating and cooling surfaces of the element. In the thermoelectric cooling element 14, the fin 15 is disposed on the side opposite to the insulating heat transfer sheet 13.

電気二重層キャパシタ10は、容器にキャパシタ本体が電解液と共に収容され、容器の一側から1対の外部電極12a,12bを構成する端子(電極リード)が引き出される。図示しないが、キャパシタ本体については、矩形の正極体および負極体とこれらの間に介在するセパレータ(紙製など多孔質膜)とから所定の積層体に組成される。正極体および負極体は、集電極とその両面に形成の分極性電極(活性炭電極)とから構成される。これら集電極は、矩形状の金属箔(例えば、アルミニウム箔)からなり、その矩形平面の一辺に片側へ寄せて帯状のリード部が一体に成形される。各リード部の同極どうしが1つに束ねられ、その結束部に極性の対応する端子が接合される。   In the electric double layer capacitor 10, the capacitor main body is accommodated in the container together with the electrolytic solution, and terminals (electrode leads) constituting the pair of external electrodes 12 a and 12 b are drawn from one side of the container. Although not shown, the capacitor body is composed of a rectangular positive electrode body and negative electrode body and a separator (a porous film such as paper) interposed therebetween to form a predetermined laminate. The positive electrode body and the negative electrode body are composed of a collecting electrode and polarizable electrodes (activated carbon electrodes) formed on both surfaces thereof. These collector electrodes are made of a rectangular metal foil (for example, an aluminum foil), and a strip-shaped lead portion is formed integrally with one side of the rectangular plane. The same polarity of each lead part is bundled together, and the terminal corresponding to polarity is joined to the binding part.

キャパシタ本体は、電解液に浸され、容器に収容する。容器は、金属の中間層を持つ樹脂の積層フィルム(例えば、アルミラミネート)から一側が開口する袋状に構成され、その開口部から端子の一部が容器の外部へ引き出される。容器の内部は、真空引きにより、余分な電解液と共に空気や水分が除去され、真空状態に袋の開口部が1対の端子を挟む形に密封されるのである。   The capacitor body is immersed in the electrolytic solution and accommodated in a container. The container is formed in a bag shape having one side opened from a resin laminated film (for example, aluminum laminate) having a metal intermediate layer, and a part of the terminal is drawn out of the container from the opening. The inside of the container is vacuum-evacuated to remove excess electrolyte and air and moisture, and the bag is sealed in a vacuum state with the pair of terminals sandwiching the pair of terminals.

図3において、熱電冷却素子14への電力量および電流の流れ方向を制御するのがECU15(キャパシタ温度管理用の電子制御ユニット)であり、電気二重層キャパシタ10の内部温度を最もよく反映する部位(例えば、熱伝導度も良好な外部電極12)の温度を検出する温度センサ16が備えられる。17は複数の電気二重層キャパシタを蓄電装置として接続される負荷であり、この例においては、車両走行用の回転電機およびその出力(力行トルクおよび回生トルク)を調整する整流器(例えば、インバータ)を含む駆動回路が設定され、負荷に対する蓄電装置の充放電を制御するECU18(充放電制御用の電子制御ユニット)が設けられる。   In FIG. 3, the ECU 15 (electronic control unit for capacitor temperature management) controls the amount of electric power and current flow to the thermoelectric cooling element 14, and the part that best reflects the internal temperature of the electric double layer capacitor 10. A temperature sensor 16 that detects the temperature of the external electrode 12 (for example, the external electrode 12 having good thermal conductivity) is provided. Reference numeral 17 denotes a load to which a plurality of electric double layer capacitors are connected as a power storage device. In this example, a rotating electric machine for traveling a vehicle and a rectifier (for example, an inverter) for adjusting its output (power running torque and regenerative torque) are provided. An ECU 18 (electronic control unit for charge / discharge control) that controls charge / discharge of the power storage device with respect to the load is provided.

キャパシタ温度管理用の電子制御ユニット15は、温度センサ16の検出信号および充放電制御用の電子制御ユニット18からの充放電情報に基づいて、熱電冷却素子14への電力量および電流の流れ方向を制御する。この電子制御ユニット15においては、温度センサ16の検出信号および充放電制御用の電子制御ユニット18からの充放電情報に応じて熱電冷却素子14への電力量を決定する手段と、温度センサ16の検出信号に応じて熱電冷却素子14への電流の流れ方向を決定する手段と、が備えられるのである。   The electronic control unit 15 for capacitor temperature management determines the amount of electric power and the flow direction of current to the thermoelectric cooling element 14 based on the detection signal of the temperature sensor 16 and the charge / discharge information from the electronic control unit 18 for charge / discharge control. Control. In this electronic control unit 15, means for determining the amount of electric power to the thermoelectric cooling element 14 according to the detection signal of the temperature sensor 16 and the charge / discharge information from the electronic control unit 18 for charge / discharge control, Means for determining the direction of current flow to the thermoelectric cooling element 14 in response to the detection signal.

図6は、キャパシタ温度管理用の電子制御ユニット15に係るその制御内容を説明するものであり、所定の制御周期毎に行われる。S1においては、充放電制御用の電子制御ユニット18からの充放電情報に基づいて、蓄電装置が充放電(稼働)中かどうかを判定する。S1の判定がyesのときは、S2へ進む一方、S1の判定がnoのときは、S6において、熱電冷却素子14への供給電力を遮断(OFF)するか、その遮断状態を保持する。   FIG. 6 explains the contents of control related to the electronic control unit 15 for managing the capacitor temperature, and is performed every predetermined control cycle. In S1, it is determined whether or not the power storage device is being charged / discharged (operated) based on the charge / discharge information from the electronic control unit 18 for charge / discharge control. When the determination of S1 is yes, the process proceeds to S2, while when the determination of S1 is no, the power supplied to the thermoelectric cooling element 14 is cut off (OFF) or the cut off state is maintained in S6.

S2においては、温度センサ16の検出信号について、電気二重層キャパシタ10の温度が適正範囲(適正レベル)かどうかを判定する。S2の判定により、電気二重層キャパシタの温度が適正範囲の上限値を上回るときは、S3へ進み一方、電気二重層キャパシタ10の温度が適正範囲の下限値を下回るときは、S4へ進む。S2の判定により、電気二重層キャパシタ10の温度が適正範囲にあるときは、S5へ進むのである。   In S2, it is determined whether the temperature of the electric double layer capacitor 10 is within an appropriate range (appropriate level) for the detection signal of the temperature sensor 16. If it is determined in S2 that the temperature of the electric double layer capacitor exceeds the upper limit value of the appropriate range, the process proceeds to S3. If the temperature of the electric double layer capacitor 10 is lower than the lower limit value of the appropriate range, the process proceeds to S4. If it is determined in S2 that the temperature of the electric double layer capacitor 10 is within an appropriate range, the process proceeds to S5.

S3においては、図4の制御マップに基づいて温度センサ16の検出信号(電気二重層キャパシタ10の温度)に応じた電力量Ptを求め、図5の制御マップに基づいて充放電制御用の電子制御ユニット18からの充放電情報に応じた電力量Ppを求め、これらの電力量(Pt+Pp)が熱電冷却素子14の冷却方向(連結電極11側が吸熱面となる電流方向)へ流れるよう、熱電冷却素子14への通電を制御する。S4においては、予め設定の電力量(一定値)が熱電冷却素子14の放熱方向(連結電極11側が加熱面となる電流方向)へ流れるよう、熱電冷却素子14への通電を制御する。S5においては、熱電冷却素子14への供給電力を遮断(OFF)するか、その遮断状態を保持する。   In S3, the electric energy Pt corresponding to the detection signal of the temperature sensor 16 (temperature of the electric double layer capacitor 10) is obtained based on the control map of FIG. 4, and the charge / discharge control electrons are calculated based on the control map of FIG. Thermoelectric cooling is performed so that the amount of power Pp corresponding to the charge / discharge information from the control unit 18 is obtained and the amount of power (Pt + Pp) flows in the cooling direction of the thermoelectric cooling element 14 (current direction in which the connecting electrode 11 side becomes the heat absorption surface). The energization to the element 14 is controlled. In S4, energization to the thermoelectric cooling element 14 is controlled so that a preset amount of power (a constant value) flows in the heat radiation direction of the thermoelectric cooling element 14 (the current direction in which the connecting electrode 11 side becomes the heating surface). In S5, the power supplied to the thermoelectric cooling element 14 is cut off (OFF) or the cut off state is maintained.

このような構成により、電気伝導度および熱伝導度の良好な連結電極11に熱電冷却素子14の吸熱または放熱が直接的に作用するので、電気二重層キャパシタ10の内部を応答よく効率的に冷却または加熱しえる。熱電冷却素子14への電力量は、電気二重層キャパシタ10の充放電電力を加えて決定されるので、電気二重層キャパシタ10は、負荷状態に過不足なく適合する吸熱(冷却)量または放熱(加熱)量を受けるため、適正な温度レベルに応答よく効果的に維持しえる。その結果、電気二重層キャパシタ10の熱的な性能劣化が防止され、充放電効率も良好に確保できるのである。   With such a configuration, since the heat absorption or heat dissipation of the thermoelectric cooling element 14 directly acts on the connecting electrode 11 having good electrical conductivity and thermal conductivity, the inside of the electric double layer capacitor 10 is efficiently cooled with good response. Or it can be heated. Since the electric energy to the thermoelectric cooling element 14 is determined by adding the charging / discharging electric power of the electric double layer capacitor 10, the electric double layer capacitor 10 has a heat absorption (cooling) amount or heat dissipation (radiation) suitable for the load state without excess or deficiency. Because it receives the amount of (heating), it can maintain the appropriate temperature level responsively and effectively. As a result, the thermal performance deterioration of the electric double layer capacitor 10 is prevented, and good charge / discharge efficiency can be secured.

熱電冷却素子14の放熱方向への電力量は、図6のS4において、既定値(一定値)に制御されるが、電気二重層キャパシタ10の温度に応じた制御マップおよび充放電電力に応じた制御マップを設定することにより、図6のS3と同様に処理することも考えられる。   The amount of electric power in the heat dissipation direction of the thermoelectric cooling element 14 is controlled to a predetermined value (constant value) in S4 of FIG. 6, but according to the control map corresponding to the temperature of the electric double layer capacitor 10 and the charge / discharge power. By setting a control map, processing similar to S3 in FIG. 6 may be considered.

図7〜図9は、蓄電装置の変形例を表すものであり、複数の電気二重層キャパシタ10は、複数の連結電極11を介して直並列に接続される。具体的には、4個の電気二重層キャパシタは、3本の連結電極11により、1組2個ずつ並列のもの2組が直接に接続される。連結電極11は、電気二重層キャパシタ10の外部電極と同じく電気伝導度の良好な材質から短尺状に形成され、その側面に電気二重層キャパシタ10の外部電極が接合される。   7 to 9 show modifications of the power storage device, and a plurality of electric double layer capacitors 10 are connected in series and parallel via a plurality of connecting electrodes 11. Specifically, two sets of four electric double layer capacitors are connected in parallel, one by two by three connecting electrodes 11. Similarly to the external electrode of the electric double layer capacitor 10, the connecting electrode 11 is formed in a short shape from a material having good electric conductivity, and the external electrode of the electric double layer capacitor 10 is joined to the side surface thereof.

図示の場合、連結電極11b,11cに熱伝導度の良好な材質から載置盤19が形成され、各盤面19に熱電冷却素子14(熱電冷却ユニット)が設置される。連結電極11b,11cは、電気伝導度および熱伝導度の良好な材質(例えば、アルミニウム)から載置盤19と一体に成形され、載置盤19と熱電冷却素子14との間に絶縁伝熱シート13が介装される。連結電極11aは、載置盤19を持たない矩形の板状に形成される。   In the case of illustration, the mounting board 19 is formed from the material with favorable thermal conductivity in the connection electrodes 11b and 11c, and the thermoelectric cooling element 14 (thermoelectric cooling unit) is installed on each board surface 19. The connection electrodes 11 b and 11 c are formed integrally with the mounting board 19 from a material having good electrical conductivity and thermal conductivity (for example, aluminum), and insulation heat transfer is performed between the mounting board 19 and the thermoelectric cooling element 14. A sheet 13 is interposed. The connection electrode 11 a is formed in a rectangular plate shape that does not have the mounting board 19.

熱電冷却素子14は、直流(DC)電流が流れると、素子の両面における、片側に加熱(放熱)作用、その反対側に冷却(吸熱)作用、が生じる。DC電流の流れ方向を変えると、素子の加熱面と冷却面とが逆転するのである。熱電冷却素子14において、フィン15が絶縁伝熱シート13と反対側に配設される。   When a direct current (DC) current flows, the thermoelectric cooling element 14 has a heating (heat dissipation) action on one side and a cooling (endothermic) action on the opposite side on both sides of the element. Changing the direction of DC current flow reverses the heating and cooling surfaces of the element. In the thermoelectric cooling element 14, the fin 15 is disposed on the side opposite to the insulating heat transfer sheet 13.

図示しないが、熱電冷却素子14への電力量および電流の流れ方向を制御するECU(キャパシタ温度管理用の電子制御ユニット)と、負荷に対する蓄電装置の充放電を制御するECU(充放電制御用の電子制御ユニット)と、が設けられる。キャパシタ温度管理用の電子制御ユニットは、図6のフローチャートと同じく、温度センサの検出信号および充放電制御用の電子制御ユニットからの充放電情報に基づいて、熱電冷却素子14への電力量および電流の流れ方向を制御するのである。   Although not shown, an ECU (electronic control unit for capacitor temperature management) that controls the amount of electric power and current flow to the thermoelectric cooling element 14 and an ECU (for charge / discharge control) that controls charging / discharging of the power storage device with respect to the load. Electronic control unit). The electronic control unit for managing the capacitor temperature is similar to the flowchart of FIG. 6, based on the detection signal of the temperature sensor and the charge / discharge information from the electronic control unit for charge / discharge control, the electric energy and current to the thermoelectric cooling element 14. It controls the flow direction.

図1〜図3の場合および図7〜図9の場合、熱電冷却素子14は、複数の電気二重層キャパシタ10を接続する連結電極11を対象に付加されるが、設置空間が確保しえるようであれば、電気二重層キャパシタ10の外部電極12a,12bに取り付けても良い。   In the case of FIGS. 1 to 3 and FIGS. 7 to 9, the thermoelectric cooling element 14 is added to the connection electrode 11 that connects the plurality of electric double layer capacitors 10, but the installation space can be secured. If so, it may be attached to the external electrodes 12 a and 12 b of the electric double layer capacitor 10.

図10は、別の実施形態を説明するものであり、4個の電気二重層キャパシタ10は、3本の連結電極11により、1組2個ずつ並列のもの2組が直接に接続される。電気二重層キャパシタ11の温度を適正レベルに維持するため、熱交換器20を経由する液体の循環路25と、循環路25の一部を連結電極11に沿って形成する管路22と、これら管路22を直列的に連結する接続管23と、循環路25の液体を強制的に循環させるポンプ21と、が設けられる。   FIG. 10 illustrates another embodiment, and two sets of four electric double layer capacitors 10 in parallel are directly connected to each other by three connecting electrodes 11. In order to maintain the temperature of the electric double layer capacitor 11 at an appropriate level, a liquid circulation path 25 that passes through the heat exchanger 20, a pipe line 22 that forms a part of the circulation path 25 along the connection electrode 11, and these A connection pipe 23 that connects the pipe lines 22 in series and a pump 21 that forcibly circulates the liquid in the circulation path 25 are provided.

連結電極11は、図11のように電気二重層キャパシタ10の外部電極12と同じく電気伝導度および熱伝導度の良好な材質から、矩形の一側に沿う管路22を含めて一体に成形されるのである。循環路25を流れる液体は、連結電極11との絶縁性を確保するため、絶縁油が用いられる。管路22を直列的に連結する接続管23については、連結電極11間の短絡を回避するため、全部または一部が絶縁性の材質から形成される。   As shown in FIG. 11, the connection electrode 11 is formed integrally from a material having good electrical conductivity and thermal conductivity, like the external electrode 12 of the electric double layer capacitor 10, including the pipe line 22 along one side of the rectangle. It is. Insulating oil is used for the liquid flowing through the circulation path 25 in order to ensure insulation with the connection electrode 11. About the connection pipe 23 which connects the pipe line 22 in series, in order to avoid the short circuit between the connection electrodes 11, all or one part is formed from an insulating material.

熱交換器20は、図12〜図14のようにボックス型の器体32に形成され、その内部に液体の蛇行路33を形成する複数の案内板34が備えられる。複数の案内板34を含むボックス型の器体32は、熱伝導度の良好な材質から形成され、器体32の外面に蛇行路33を流れる液体を積極的に冷却または加熱する熱電冷却素子14(熱電冷却ユニット)が設置される。   The heat exchanger 20 is formed in a box-shaped vessel 32 as shown in FIGS. 12 to 14, and is provided with a plurality of guide plates 34 that form liquid meandering paths 33 therein. A box-shaped vessel 32 including a plurality of guide plates 34 is formed of a material having good thermal conductivity, and the thermoelectric cooling element 14 that actively cools or heats the liquid flowing through the meandering path 33 on the outer surface of the vessel 32. (Thermoelectric cooling unit) is installed.

熱電冷却素子14は、直流(DC)電流が流れると、素子の片面に加熱(放熱)作用、その反対側の片面に冷却(吸熱)作用、が生じる。DC電流の流れ方向を変えると、素子の加熱面と冷却面とが逆転するのである。熱電冷却素子14において、フィン15が絶縁伝熱シートと反対側に配設される。   When a direct current (DC) current flows, the thermoelectric cooling element 14 has a heating (heat dissipation) action on one side of the element and a cooling (endothermic) action on the opposite side. Changing the direction of DC current flow reverses the heating and cooling surfaces of the element. In the thermoelectric cooling element 14, the fin 15 is arrange | positioned on the opposite side to an insulated heat transfer sheet.

循環路25の液体は、ポンプ21の駆動により、熱交換器20と連結電極11に沿う管路22およびその接続管23との間を流れる。熱交換器20の蛇行路33を流れる液体は、熱電冷却素子14の作動により、管路22および接続管23への供給側の温度が好適に維持され、連結電極11に沿う管路23を通過する際に熱量の授受が行われるため、電気二重層キャパシタ10の温度を適正レベルに維持しえるのである。   The liquid in the circulation path 25 flows between the heat exchanger 20 and the pipe line 22 along the connection electrode 11 and the connection pipe 23 by driving the pump 21. The liquid flowing through the meandering path 33 of the heat exchanger 20 is suitably maintained at the supply side temperature to the pipe line 22 and the connecting pipe 23 by the operation of the thermoelectric cooling element 14, and passes through the pipe line 23 along the connecting electrode 11. In doing so, since the amount of heat is exchanged, the temperature of the electric double layer capacitor 10 can be maintained at an appropriate level.

図10において、30は熱電冷却素子14への電力量および電流の流れ方向をポンプと共に制御するのがECU(キャパシタ温度管理用の電子制御ユニット)であり、電気二重層キャパシタ10の内部温度を最もよく反映する部位(例えば、熱伝導度も良好な外部電極12)の温度を検出する温度センサ16が備えられる。図示しないが、複数の電気二重層キャパシタ10から構成される蓄電装置を電源とする負荷が設けられ、負荷に対する蓄電装置の充放電を制御するECU(充放電制御用の電子制御ユニット)が設けられる。 In FIG. 10, 30 is an ECU (Electronic Control Unit for Capacitor Temperature Management) that controls the amount of electric power to the thermoelectric cooling element 14 and the direction of current flow together with the pump. A temperature sensor 16 that detects the temperature of a part that reflects well (for example, the external electrode 12 having good thermal conductivity) is provided. Although not shown, a load that uses a power storage device including a plurality of electric double layer capacitors 10 as a power source is provided, and an ECU (electronic control unit for charge / discharge control) that controls charging / discharging of the power storage device with respect to the load is provided. .

キャパシタ温度管理用の電子制御ユニット30は、温度センサ16の検出信号および充放電制御用の電子制御ユニットからの充放電情報に基づいて、熱電冷却素子14への電力量および電流の流れ方向をポンプ21と共に制御する。この電子制御ユニット30においては、温度センサ16の検出信号および充放電制御用の電子制御ユニットからの充放電情報に応じて熱電冷却素子14への電力量を決定する手段と、温度センサ16の検出信号に応じて熱電冷却素子14への電流の流れ方向を決定する手段と、が備えられるのである。 The electronic control unit 30 for managing the capacitor temperature pumps the amount of electric power and the flow direction of the current to the thermoelectric cooling element 14 based on the detection signal of the temperature sensor 16 and the charge / discharge information from the electronic control unit for charge / discharge control. 21 and control. In this electronic control unit 30 , means for determining the amount of electric power to the thermoelectric cooling element 14 according to the detection signal of the temperature sensor 16 and the charge / discharge information from the electronic control unit for charge / discharge control, and the detection of the temperature sensor 16 Means for determining the direction of current flow to the thermoelectric cooling element 14 in response to the signal.

図15は、キャパシタ温度管理用の電子制御ユニット30に係るその制御内容を説明するものであり、所定の制御周期毎に行われる。S1においては、充放電制御用の電子制御ユニットからの充放電情報に基づいて、蓄電装置が充放電(稼働)中かどうかを判定する。S1の判定がyesのときは、S2へ進む一方、S1の判定がnoのときは、S6において、熱電冷却素子14およびポンプ21をOFF(停止)するか、これらをOFF状態に保持する。 FIG. 15 illustrates the contents of control related to the electronic control unit 30 for managing the capacitor temperature, and is performed at predetermined control cycles. In S1, it is determined whether or not the power storage device is being charged / discharged (operated) based on charge / discharge information from the electronic control unit for charge / discharge control. If the determination of S1 is yes, the process proceeds to S2, while if the determination of S1 is no, in S6, the thermoelectric cooling element 14 and the pump 21 are turned off (stopped), or they are kept in the OFF state.

S2においては、温度センサ16の検出信号について、電気二重層キャパシタ10の温度が適正範囲(適正レベル)かどうかを判定する。S2の判定により、電気二重層キャパシタ10の温度が適正範囲の上限値を上回るときは、S3へ進み一方、電気二重層キャパシタ10の温度が適正範囲の下限値を下回るときは、S4へ進む。S2の判定により、電気二重層キャパシタ10の温度が適正範囲にあるときは、S5へ進むのである。   In S2, it is determined whether the temperature of the electric double layer capacitor 10 is within an appropriate range (appropriate level) for the detection signal of the temperature sensor 16. If it is determined in S2 that the temperature of the electric double layer capacitor 10 exceeds the upper limit value of the appropriate range, the process proceeds to S3. If the temperature of the electric double layer capacitor 10 is lower than the lower limit value of the appropriate range, the process proceeds to S4. If it is determined in S2 that the temperature of the electric double layer capacitor 10 is within an appropriate range, the process proceeds to S5.

S3においては、ポンプ21をONする一方、制御マップ(図4、参照)に基づいて温度センサ16の検出信号(電気二重層キャパシタ10の温度)に応じた電力量Ptを求め、制御マップ(図5、参照)に基づいて充放電制御用の電子制御ユニットからの充放電情報に応じた電力量Ppを求め、これらの電力量(Pt+Pp)が熱電冷却素子14の冷却方向(連結電極11側が吸熱面となる電流方向)へ流れるよう、熱電冷却素子14への通電を制御する。S4においては、ポンプ21をONする一方、予め設定の電力量(一定値)が熱電冷却素子14の放熱方向(連結電極11側が加熱面となる電流方向)へ流れるよう、熱電冷却素子14への通電を制御する。S5においては、熱電冷却素子14およびポンプ21をOFF(停止)するか、これらをOFF状態に保持する。   In S3, while the pump 21 is turned on, the electric energy Pt corresponding to the detection signal of the temperature sensor 16 (temperature of the electric double layer capacitor 10) is obtained based on the control map (see FIG. 4), and the control map (FIG. 5), the electric energy Pp corresponding to the charge / discharge information from the electronic control unit for charge / discharge control is obtained, and these electric energy (Pt + Pp) is the cooling direction of the thermoelectric cooling element 14 (the connecting electrode 11 side absorbs heat). The energization of the thermoelectric cooling element 14 is controlled so as to flow in the direction of the current that becomes the surface). In S4, while the pump 21 is turned on, the preset amount of electric power (a constant value) is supplied to the thermoelectric cooling element 14 so as to flow in the heat dissipation direction of the thermoelectric cooling element 14 (current direction in which the connecting electrode 11 side becomes the heating surface). Control energization. In S5, the thermoelectric cooling element 14 and the pump 21 are turned off (stopped), or they are kept in the OFF state.

このような構成により、熱電冷却素子14の作動により、熱交換器20の作用が積極的に促進される。熱電冷却素子14の吸熱または放熱は、電気二重層キャパシタ10へ循環路の液体を介して間接的に作用するため、図1〜図6,図7〜図9の実施形態の方が電気二重層キャパシタ10を応答よく効率的に冷却または加熱しえるものの、連結電極11または外部電極12に取る付けるのと異なり、電気二重層キャパシタ10周囲の設置空間にレイアウト的な規制を受けないので、熱電冷却素子14の設計に係る自由度を大きく取れるのである。   With such a configuration, the operation of the heat exchanger 20 is actively promoted by the operation of the thermoelectric cooling element 14. Since the heat absorption or heat dissipation of the thermoelectric cooling element 14 indirectly acts on the electric double layer capacitor 10 via the liquid in the circulation path, the embodiment of FIGS. 1 to 6 and FIGS. Although the capacitor 10 can be cooled or heated in a responsive and efficient manner, it is not subject to layout restrictions in the installation space around the electric double layer capacitor 10 unlike the case where the capacitor 10 is attached to the connection electrode 11 or the external electrode 12. The degree of freedom related to the design of the element 14 can be greatly increased.

電気二重層キャパシタに係る蓄電装置の説明図である。It is explanatory drawing of the electrical storage apparatus which concerns on an electric double layer capacitor. 図1の断面Aを示す説明図である。It is explanatory drawing which shows the cross section A of FIG. 電気二重層キャパシタに係る温度管理装置の概要図である。It is a schematic diagram of the temperature management apparatus which concerns on an electric double layer capacitor. 制御を説明する特性図である。It is a characteristic view explaining control. 制御を説明する特性図である。It is a characteristic view explaining control. 制御内容を説明するフローチャートである。It is a flowchart explaining the control content. 電気二重層キャパシタに係る蓄電装置の説明図である。It is explanatory drawing of the electrical storage apparatus which concerns on an electric double layer capacitor. 図7の断面Bを示す説明図である。It is explanatory drawing which shows the cross section B of FIG. 図7の断面Cを示す説明図である。It is explanatory drawing which shows the cross section C of FIG. 電気二重層キャパシタに係る温度管理装置の概要図である。It is a schematic diagram of the temperature management apparatus which concerns on an electric double layer capacitor. 図10の断面Dを示す説明図である。FIG. 11 is an explanatory diagram showing a cross section D of FIG. 10. 熱交換器および熱電冷却素子の構成に係る説明図である。It is explanatory drawing which concerns on the structure of a heat exchanger and a thermoelectric cooling element. 図12の断面Eを示す説明図である。FIG. 13 is an explanatory view showing a cross section E of FIG. 12. 図12の断面Fを示す説明図である。It is explanatory drawing which shows the cross section F of FIG. 制御内容を説明するフローチャートである。It is a flowchart explaining the control content.

符号の説明Explanation of symbols

10 電気二重層キャパシタ
11 11a〜11c 連結電極
12,12a,12b 外部電極
13 絶縁伝熱シート
14 熱電冷却素子(熱電冷却ユニット)
15,30 キャパシタ温度管理用の電子制御ユニット
16 温度センサ
17 負荷
18 充放電制御用の電子制御ユニット
20 熱交換器
21 ポンプ
22 管路
23 接続管
25 循環路
32 器体
33 蛇行路
34 案内板
DESCRIPTION OF SYMBOLS 10 Electric double layer capacitor 11 11a-11c Connection electrode 12, 12a, 12b External electrode 13 Insulation heat transfer sheet 14 Thermoelectric cooling element (thermoelectric cooling unit)
DESCRIPTION OF SYMBOLS 15,30 Electronic control unit for capacitor temperature management 16 Temperature sensor 17 Load 18 Electronic control unit for charge / discharge control 20 Heat exchanger 21 Pump 22 Pipe line 23 Connection pipe 25 Circulation path 32 Body 33 Meander path 34 Guide plate

Claims (4)

電気二重層キャパシタを冷却または加熱するための熱電冷却素子と、電気二重層キャパシタの温度を適正レベルに維持するように熱電冷却素子への電力量および電流の流れ方向を制御する手段と、を備え、熱電冷却素子は、電気二重層キャパシタの外部電極またはこれらの間を直列接続する連結電極に配置され、熱電冷却素子への電力量および電流の流れ方向を制御する手段は、電気二重層キャパシタの温度および充放電電力に応じて熱電冷却素子への電力量を決定する手段と、電気二重層キャパシタの温度に応じて熱電冷却素子への電流の流れ方向を決定する手段と、を備えたことを特徴とする電気二重層キャパシタの温度管理装置。 Comprising a thermoelectric cooling element for cooling or heating an electric double layer capacitor, and means for controlling the electric energy and the direction of flow of current to the thermoelectric cooling element to maintain the temperature of the electric double layer capacitor to the proper level, the The thermoelectric cooling element is disposed on an external electrode of the electric double layer capacitor or a connecting electrode that is connected in series between them, and means for controlling the amount of electric power and the direction of current flow to the thermoelectric cooling element are the same as those of the electric double layer capacitor. Means for determining the amount of power to the thermoelectric cooling element according to the temperature and charge / discharge power, and means for determining the direction of current flow to the thermoelectric cooling element according to the temperature of the electric double layer capacitor. An electrical double layer capacitor temperature management device. 熱電冷却素子と電気二重層キャパシタの外部電極またはこれらの間を接続する連結電極との間に絶縁伝熱シートを介装したことを特徴とする請求項1の記載に係る電気二重層キャパシタの温度管理装置。 The temperature of the electric double layer capacitor according to claim 1, wherein an insulating heat transfer sheet is interposed between the thermoelectric cooling element and an external electrode of the electric double layer capacitor or a connecting electrode connecting them. Management device. 液体の循環路と、循環路の液体と電気二重層キャパシタとの間で熱交換を積極的に行う手段と、循環路の液体を冷却または加熱するための熱電冷却素子と、循環路の液体を強制的に循環させるポンプと、電気二重層キャパシタの温度を適正レベルに維持するように熱電冷却素子への電力量およびその流れ方向をポンプと共に制御する手段と、を備える一方、循環路の液体と電気二重層キャパシタとの間で熱交換を積極的に行う手段は、複数の電気二重層キャパシタを接続する連結電極に沿う管路と、管路どうしを直列的に連結する接続管と、を備えるものにあって、前記管路は連結電極に一体形成され、循環路を流れる液体に絶縁性のもの、管路どうしを連結する接続管に絶縁性のもの、を用いたことを特徴とする電気二重層キャパシタの温度管理装置。 A liquid circulation path, a means for actively exchanging heat between the circulation path liquid and the electric double layer capacitor, a thermoelectric cooling element for cooling or heating the circulation path liquid, and a circulation path liquid. A pump forcibly circulating, and means for controlling together with the pump the amount of power to the thermoelectric cooling element and its flow direction so as to maintain the temperature of the electric double layer capacitor at an appropriate level, Means for actively exchanging heat with the electric double layer capacitor includes a pipe line along a connecting electrode for connecting a plurality of electric double layer capacitors, and a connecting pipe for connecting the pipes in series. The electrical connection is characterized in that the conduit is formed integrally with the connecting electrode, and an insulating material is used for the liquid flowing through the circulation channel, and an insulating material is used for the connecting tube connecting the conduits. Double layer capacitor temperature Management device. 熱電冷却素子への電力量およびその流れ方向をポンプと共に制御する手段は、電気二重層キャパシタの温度および充放電電力に応じて熱電冷却素子への電力量を決定する手段と、電気二重層キャパシタの温度に応じて熱電冷却素子への電流の流れ方向を決定する手段と、を備えたことを特徴とする請求項3の記載に係る電気二重層キャパシタの温度管理装置。 The means for controlling the electric energy to the thermoelectric cooling element and the flow direction thereof together with the pump includes means for determining the electric energy to the thermoelectric cooling element according to the temperature and charge / discharge power of the electric double layer capacitor, The temperature management device for an electric double layer capacitor according to claim 3 , further comprising means for determining a flow direction of current to the thermoelectric cooling element according to temperature.
JP2003285180A 2003-08-01 2003-08-01 Temperature control device for electric double layer capacitor Expired - Fee Related JP4263052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285180A JP4263052B2 (en) 2003-08-01 2003-08-01 Temperature control device for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285180A JP4263052B2 (en) 2003-08-01 2003-08-01 Temperature control device for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2005057006A JP2005057006A (en) 2005-03-03
JP4263052B2 true JP4263052B2 (en) 2009-05-13

Family

ID=34364894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285180A Expired - Fee Related JP4263052B2 (en) 2003-08-01 2003-08-01 Temperature control device for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4263052B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20061296A1 (en) 2006-07-04 2008-01-05 Campagnolo Srl METHOD OF CONTROL AND SYSTEM OF CHARGING A BATTERY POWER UNIT
JP2008028066A (en) * 2006-07-20 2008-02-07 Meidensha Corp Electric double-layer capacitor for addressing instantaneous voltage drop
JP5320960B2 (en) * 2007-10-10 2013-10-23 パナソニック株式会社 Case mold type capacitor
JP2010087268A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Capacitor module
WO2010135371A2 (en) 2009-05-18 2010-11-25 Bsst Llc Battery thermal management system
DE112012002935T5 (en) 2011-07-11 2014-05-15 Gentherm Inc. Thermoelectric based thermal management of electrical devices
DE112014000419T5 (en) 2013-01-14 2015-10-15 Gentherm Incorporated Thermoelectric based thermal management of electrical devices
CN108400410A (en) 2013-01-30 2018-08-14 詹思姆公司 Heat management system based on thermoelectricity
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
JP6668335B2 (en) 2014-09-12 2020-03-18 ジェンサーム インコーポレイテッドGentherm Incorporated Graphite thermoelectric and / or resistive thermal management systems and methods
DE112019005983T5 (en) 2018-11-30 2021-09-09 Gentherm Incorporated THERMOELECTRIC CONDITIONING SYSTEM AND PROCEDURE
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
KR102453307B1 (en) 2019-10-10 2022-10-07 주식회사 엘지에너지솔루션 Battery module and battery pack including the same

Also Published As

Publication number Publication date
JP2005057006A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP5659554B2 (en) Battery pack
JP4164212B2 (en) Battery module and power supply device
JP5137480B2 (en) Power supply for vehicle
JP4325721B2 (en) Temperature control mechanism
JP4263052B2 (en) Temperature control device for electric double layer capacitor
JP6693480B2 (en) Terminal cooling device
JP2009170370A (en) Temperature adjusting mechanism
JP6697332B2 (en) Battery system and electric vehicle including battery system
KR20140144802A (en) Thermal management system of battery for electric vehicle
JP2010015955A (en) Power storage device
JP2014093240A (en) Battery module
JP2014093239A (en) Battery module
JP2013051848A (en) Electric power conversion apparatus for electric vehicle and electric vehicle
CN111355005B (en) Assembly for electrical connection and battery pack or vehicle
JP2013038001A (en) Battery module
JP2019192381A (en) Power storage device for vehicle
JP4072476B2 (en) Power storage device
JP2009289610A (en) Temperature adjusting mechanism
JP2010277948A (en) Battery pack device
JP2010146883A (en) Power storage device
JP6696394B2 (en) Power supply
WO2020022087A1 (en) Battery temperature adjustment device
JP7371657B2 (en) vehicle
JP2014093241A (en) Battery module
JP7562244B2 (en) Techniques for heating traction energy storage devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees