JP4226063B1 - Production method of hot dip galvanized products - Google Patents
Production method of hot dip galvanized products Download PDFInfo
- Publication number
- JP4226063B1 JP4226063B1 JP2008042414A JP2008042414A JP4226063B1 JP 4226063 B1 JP4226063 B1 JP 4226063B1 JP 2008042414 A JP2008042414 A JP 2008042414A JP 2008042414 A JP2008042414 A JP 2008042414A JP 4226063 B1 JP4226063 B1 JP 4226063B1
- Authority
- JP
- Japan
- Prior art keywords
- hot dip
- coupling agent
- silane coupling
- test
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/20—Use of solutions containing silanes
Landscapes
- Chemical Treatment Of Metals (AREA)
- Coating With Molten Metal (AREA)
Abstract
【課題】 本発明は、処理工程数が少なく、クロメート処理に代わる、一次防錆に優れた溶融亜鉛めっき処理品の生産方法の提供を目的とする。
【解決手段】被処理品を溶融亜鉛めっき浴に浸漬し、次に当該被処理品を溶融亜鉛めっき浴から上昇させ表面が活性な状態から、シランカップリング剤を含有する冷却水に浸漬し冷却することで得られることを特徴とする溶融亜鉛めっき処理品の生産方法。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a production method of a hot dip galvanized product excellent in primary rust prevention, which has a small number of treatment steps and replaces chromate treatment.
An article to be treated is immersed in a hot dip galvanizing bath, and then the article to be treated is lifted from the hot dip galvanizing bath and the surface is activated, and then immersed in cooling water containing a silane coupling agent and cooled. A method for producing a hot dip galvanized product, characterized in that
[Selection] Figure 1
Description
この発明は、一次防錆に優れた溶融亜鉛めっき処理品の生産方法に関する。 The present invention relates to a method for producing a hot dip galvanized product excellent in primary rust prevention.
鉄や鋼製品においては溶融亜鉛めっき処理が広く普及している。
溶融亜鉛めっきは金属光沢が高いものの、白錆が発生しやすく、例えば特開2002−356786号に示すようにクロメート処理を施す場合が多い。
しかし、クロメート処理液には6価クロムが含まれているので環境負荷低減の観点からクロメート処理に代替できる表面処理が必要であった。
また、溶融亜鉛めっき製品に塗装処理する場合にあっては、塗装の密着性を確保すべく、リン酸塩処理等の化成皮膜処理や、表面研削を施しているのが現状であり、生産性向上の観点から塗装前処理の省力化が要求されていた。
Hot dip galvanizing is widely used in iron and steel products.
Although hot dip galvanization has a high metallic luster, white rust is likely to occur, and for example, as shown in JP-A-2002-356786, chromate treatment is often performed.
However, since the chromate treatment solution contains hexavalent chromium, a surface treatment that can be substituted for the chromate treatment is necessary from the viewpoint of reducing the environmental load.
In addition, when coating hot dip galvanized products, chemical film treatment such as phosphate treatment and surface grinding are currently performed to ensure the adhesion of the coating, and productivity From the viewpoint of improvement, labor saving of the pretreatment for painting has been demanded.
クロメート処理に代わる表面処理方法としてタンニン酸を使用する表面処理方法もあるが、タンニン酸を溶解した水溶液では、液中に溶解した鉄イオン、亜鉛イオン等と反応して溶液が黒っぽく変色し、それが溶融亜鉛めっき表面に付着し、外観不良になる場合もあった。 There is a surface treatment method that uses tannic acid as an alternative to chromate treatment. May adhere to the hot dip galvanized surface, resulting in poor appearance.
特許文献2〜5には、亜鉛めっきの表面処理方法として、シランカップリング剤を含むコーティング剤や表面処理剤について開示するが、いずれもシランカップリング剤の他に樹脂成分や有機ケイ素成分等を必要とするものである。
また、表面処理の工程も複雑であり生産性に問題がある。
Patent Documents 2 to 5 disclose a coating agent or a surface treatment agent containing a silane coupling agent as a surface treatment method for galvanization. It is what you need.
In addition, the surface treatment process is complicated and there is a problem in productivity.
本発明は、処理工程数が少なく、クロメート処理に代わる、一次防錆に優れた溶融亜鉛めっき処理品の生産方法の提供を目的とする。 An object of the present invention is to provide a method for producing a hot dip galvanized product excellent in primary rust prevention, which has a small number of processing steps and replaces chromate treatment.
本発明に係る溶融亜鉛めっき処理品の生産方法は、被処理品を溶融亜鉛めっき浴に浸漬し、次に当該被処理品を溶融亜鉛めっき浴から上昇させ表面が活性な状態から、シランカップリング剤1〜95%,無機酸0.001〜1.0%含有し、残部が水からなる冷却水に浸漬し冷却することで得られることを特徴とする。
溶融亜鉛めっきは、鉄製品や鋼製品を、亜鉛又は亜鉛合金を溶解しためっき釜に浸漬してめっき処理する方法である。
一般的に使用される溶融亜鉛めっき浴は430〜470℃に加温されていて、被処理品をめっき浴に浸漬後にめっき浴から上昇させた状態では、めっき表面が非常に活性な状態になっている。
そこで、被処理品をめっき浴から上昇引き上げ後に冷却水に浸漬して冷却処理をしている。
本発明は、この冷却工程に着目し、冷却水にシランカップリング剤を添加したものである。
従来は、溶融亜鉛めっき及びその後の冷却工程と亜鉛めっき表面の防錆処理は、別の異なる工程であると考えられていた。
しかし、これでは溶融亜鉛めっきの冷却工程と表面処理工程の2つの工程が必要であった。
これに対して本発明は、冷却水に水溶性のシランカップリング剤を添加することで一つの処理槽にて冷却と表面処理を同時に行うことができた。
従って、表面処理を兼ねた冷却水に、被処理品をめっき浴から上昇させた直後の高温の表面活性な状態から、そのまま冷却水に浸漬することになるので、冷却水に添加する表面処理剤は水溶性のものがよい。
The method for producing a hot dip galvanized product according to the present invention includes immersing the product to be treated in a hot dip galvanizing bath and then raising the product to be treated from the hot dip galvanizing bath so that the surface is active. It is characterized by containing 1 to 95 % of an agent and 0.001 to 1.0% of an inorganic acid, and the rest is immersed in cooling water made of water and cooled.
The hot dip galvanizing is a method in which an iron product or a steel product is immersed in a plating kettle in which zinc or a zinc alloy is dissolved and is plated.
Generally used hot dip galvanizing baths are heated to 430 to 470 ° C., and the plating surface is in a very active state when the article to be treated is raised from the plating bath after being immersed in the plating bath. ing.
Therefore, the article to be treated is raised from the plating bath and then immersed in cooling water for cooling treatment.
The present invention focuses on this cooling step and adds a silane coupling agent to cooling water.
Conventionally, hot dip galvanizing and the subsequent cooling process and rust prevention treatment of the galvanized surface were considered to be different processes.
However, this requires two processes, a cooling process for hot dip galvanizing and a surface treatment process.
In contrast, the present invention was able to simultaneously perform cooling and surface treatment in one treatment tank by adding a water-soluble silane coupling agent to the cooling water.
Therefore, the surface treatment agent to be added to the cooling water is immersed in the cooling water as it is from the high-temperature surface active state immediately after raising the article to be treated from the plating bath in the cooling water also serving as a surface treatment. Should be water-soluble.
冷却水に添加するシランカップリング剤は、無色水溶性で質量にて1〜95%の範囲が好ましく、必要に応じてリン酸や硫酸等の無機酸を添加するとよい。
シランカップリング剤は、水溶性で、水に溶かすと概ね透明なものがよい。
The silane coupling agent to be added to the cooling water is colorless and water-soluble and preferably in the range of 1 to 95% by mass, and an inorganic acid such as phosphoric acid or sulfuric acid may be added as necessary.
The silane coupling agent should be water-soluble and generally transparent when dissolved in water.
本発明は、溶融亜鉛めっき後の冷却水に水溶性で無色系のシランカップリング剤を添加することで、めっき浴から上昇させた表面活性な状態を利用した表面処理が可能になり、従来の冷却工程と表面処理工程を1つの工程で実施することができるために工程が少ない分だけ生産性が向上し、省エネルギーにも寄与する。 In the present invention, by adding a water-soluble and colorless silane coupling agent to the cooling water after hot dip galvanization, surface treatment utilizing the surface active state raised from the plating bath becomes possible, Since the cooling process and the surface treatment process can be carried out in one process, the productivity is improved by the small number of processes, which contributes to energy saving.
本発明の内容を試験サンプルに基づいて以下説明する。 The contents of the present invention will be described below based on test samples.
大きさ100mm×75mm、板厚3.2mmの鉄製の試験サンプルを、亜鉛を溶解させた450〜460℃のめっき浴に約90秒間浸漬した後に、めっき浴から上昇引き上げて、冷却水に約10秒間浸漬し冷却した。
冷却水としては、No.1:水のみ,No.2:タンニン酸5%溶解,No.4:シランカップリング剤10%添加したものを用いた。
シランカップリング剤は、東レ・ダウコーニング社製の商品名Z−6040(3−グリシドキシプロピルトリメトキシシラン)を用いた。
比較例としてNo.3は、試験片をNo.1と同様に水を用いて冷却した後に別工程で市販のクロメート処理をした。
上記にて処理した試験サンプルNo.1〜No.4を用いて、硫酸ナトリウム0.01%,塩化ナトリウム0.01%添加した腐食水溶液を上記サンプルNo.1〜No.4に噴霧し、50℃,湿度100%の中に24時間保持した。
試験後のサンプルNo.1〜No.4の評価結果を図1に示し、その外観写真を図2に示す。
本試験により、水のみの冷却水よりも冷却水にシランカップリング剤,タンニン酸を添加したものの方が耐食性がよく、さらには、シランカップリング剤を用いたものの方がタンニン酸を用いたものよりも耐食性に優れていることが明らかになった。
A steel test sample having a size of 100 mm × 75 mm and a plate thickness of 3.2 mm was immersed in a plating bath at 450 to 460 ° C. in which zinc was dissolved for about 90 seconds, then lifted up from the plating bath and about 10 in cooling water. It was immersed and cooled for 2 seconds.
As the cooling water, no. 1: Water only, no. 2: 5% tannic acid dissolved, No. 4: What added 10% of silane coupling agents was used.
As the silane coupling agent, trade name Z-6040 (3-glycidoxypropyltrimethoxysilane) manufactured by Toray Dow Corning was used.
As a comparative example, no. No. 3 is a test piece No. 3. After cooling with water in the same manner as in No. 1, a commercial chromate treatment was performed in a separate step.
Test sample No. processed above. 1-No. 4, a corrosive aqueous solution to which 0.01% sodium sulfate and 0.01% sodium chloride were added was added to the sample No. 4 above. 1-No. 4 and sprayed at 50 ° C. and 100% humidity for 24 hours.
Sample No. after the test 1-No. The evaluation result of 4 is shown in FIG. 1, and the appearance photograph is shown in FIG.
According to this test, the addition of silane coupling agent and tannic acid to cooling water is better than water-only cooling water, and the one using silane coupling agent uses tannic acid. It became clear that it was superior in corrosion resistance.
実施例1と同様に溶融亜鉛めっき後に冷却水にシランカップリング剤の他に無機酸としてリン酸を添加した場合を比較評価した。
サンプル作成条件を図3の表に示す。
表中、シラン含有量(%)はシランカップリング剤の質量での含有量(%)を示す。
このサンプルに実施例1と同じ腐食液を噴霧し、50℃×湿度100%中に24時間保持した。
その耐食性の評価結果を評価方法とともに図4に示し、その外観写真を図5に示す。
ここでブランクとは冷却水として水のみを用いたものをいう。
冷却水にリン酸のみを添加したNo.1−2及び冷却水にシランカップリング剤のみを添加したNo.1−3もブランクより耐食性が向上するが、冷却水にシッランカップリング剤とリン酸を添加したNo.1−4が最も耐食性に優れていた。
In the same manner as in Example 1, the case where phosphoric acid was added as an inorganic acid in addition to the silane coupling agent to the cooling water after hot dip galvanization was comparatively evaluated.
Sample preparation conditions are shown in the table of FIG.
In the table, the silane content (%) indicates the content (%) in terms of the mass of the silane coupling agent.
This sample was sprayed with the same corrosive solution as in Example 1 and kept at 50 ° C. × 100% humidity for 24 hours.
The evaluation results of the corrosion resistance are shown in FIG. 4 together with the evaluation method, and the appearance photograph is shown in FIG.
Here, the blank means that using only water as cooling water.
No. in which only phosphoric acid was added to the cooling water. No. 1-2 and cooling water containing only a silane coupling agent. Although 1-3 also has better corrosion resistance than the blank, No. 1-3 in which a sillant coupling agent and phosphoric acid were added to the cooling water. 1-4 was most excellent in corrosion resistance.
実施例1と同様の溶融亜鉛めっき後に冷却する冷却水に添加したシランカップリング剤の量の影響を評価した。
その結果を図6の表に示す。
これによりシランカップリング剤の添加量が15%以上になると表面がベタ付き、常温乾燥が困難になり、乾燥工程が必要であった。
The influence of the amount of the silane coupling agent added to the cooling water cooled after the hot dip galvanizing similar to Example 1 was evaluated.
The results are shown in the table of FIG.
As a result, when the addition amount of the silane coupling agent was 15% or more, the surface became sticky, and room temperature drying became difficult, and a drying step was required.
シランカップリング剤の添加量と耐腐食性の関係を調査すべく、図7の表に示した冷却水を用いた試験サンプルを作成し、実施例2と同様の耐食性評価を実施した。
評価結果を評価方法とともに図8に示し、腐食試験前の外観写真を図9、腐食試験後の外観写真を図10にそれぞれ示す。
これにより冷却水として水にシランカップリング剤10%,リン酸0.004%添加したサンプルNo.3−4が最も耐食性に優れていた。
In order to investigate the relationship between the addition amount of the silane coupling agent and the corrosion resistance, a test sample using the cooling water shown in the table of FIG. 7 was prepared, and the same corrosion resistance evaluation as in Example 2 was performed.
The evaluation results are shown in FIG. 8 together with the evaluation method, the appearance photograph before the corrosion test is shown in FIG. 9, and the appearance photograph after the corrosion test is shown in FIG.
As a result, sample No. 1 was prepared by adding 10% silane coupling agent and 0.004% phosphoric acid to the water as cooling water. 3-4 was most excellent in corrosion resistance.
次に、冷却水に添加するシランカップリング剤の量を10%一定にし、リン酸の含有量を図11の表に示すように変化させた。
このサンプルに対して、腐食液(0.01%)を噴霧した後に50℃×湿度100%中に48時間保持した。
その評価結果を評価方法とともに図12に示し、試験前の外観写真を図13に腐食試験後の外観写真を図14に示す。
この結果、シランカップリング剤10%の他にリン酸0.1%添加したサンプルNo.4−5は表面処理後の外観に僅かではあるが白い変色が認められた。
また、シランカップリング剤10%の他にリン酸0.5%を添加したサンプルNo.4−6は耐食性においてサンプルNO.4−5よりも低下した。
また、サンプルNo.4−5は表面にクラックが生じ塗装の密着性も低下した。
この結果からシランカップリング剤の濃度が10%の場合には、リン酸の濃度は0.5%以下がよく、好ましくは0.1%以下である。
Next, the amount of the silane coupling agent added to the cooling water was kept constant at 10%, and the phosphoric acid content was changed as shown in the table of FIG.
The sample was sprayed with a corrosive liquid (0.01%) and then kept at 50 ° C. × 100% humidity for 48 hours.
The evaluation results are shown in FIG. 12 together with the evaluation method, the appearance photograph before the test is shown in FIG. 13, and the appearance photograph after the corrosion test is shown in FIG.
As a result, sample No. 10 containing 10% silane coupling agent and 0.1% phosphoric acid was added. In 4-5, white discoloration was recognized although the appearance after the surface treatment was slight.
In addition, sample No. 1 containing 0.5% phosphoric acid in addition to 10% silane coupling agent was added. 4-6 is sample No. in corrosion resistance. It was lower than 4-5.
Sample No. In 4-5, cracks occurred on the surface, and the adhesion of the coating also decreased.
From this result, when the concentration of the silane coupling agent is 10%, the concentration of phosphoric acid is preferably 0.5% or less, and preferably 0.1% or less.
シランカップリング剤の濃度を濃くすると、冷却水に浸漬して表面処理した後の乾燥がやや遅いことは実施例3にて明らかになったが今度は耐食性について評価した。
実施例1と同様に溶融亜鉛めっき浴に浸漬後、上昇引き上げて図15に示す濃度の冷却水に浸漬した。
このようにして表面処理したサンプルを腐食液(0.01%)を噴霧後に50℃×湿度100%中に120時間保持した。
その結果を評価方法とともに図16に示し、試験前のサンプル写真を図17に示し、試験後のサンプル写真を図18に示す。
この結果、シランカップリング剤は1%以上で耐食性向上の効果が認められ、好ましくは15%以上がよいことも明らかになった。
なお、シランカップリング剤の濃度を濃くするとそれに応じてリン酸の濃度も高い方がよい。
It was revealed in Example 3 that when the concentration of the silane coupling agent was increased, the drying after the surface treatment by immersing in cooling water was somewhat slow, but this time the corrosion resistance was evaluated.
In the same manner as in Example 1, after being immersed in a hot dip galvanizing bath, it was lifted up and immersed in cooling water having a concentration shown in FIG.
The sample thus surface-treated was kept at 50 ° C. × 100% humidity for 120 hours after spraying the corrosive liquid (0.01%).
The results are shown in FIG. 16 together with the evaluation method, a sample photograph before the test is shown in FIG. 17, and a sample photograph after the test is shown in FIG.
As a result, the silane coupling agent was found to have an effect of improving corrosion resistance at 1% or more, and preferably 15% or more.
When the concentration of the silane coupling agent is increased, the concentration of phosphoric acid is preferably increased accordingly.
次にシランカップリング剤及びリン酸の下限レベルを確認するために冷却水として図19の表に示すもので試験評価した。
この場合には腐食液を噴霧した後に12時間保持したものを評価した。
その評価結果を図20に示し、試験後の写真を図21に示す。
この結果、シランカップリング剤1%、リン酸0.001%でも耐食性が向上していた。
Next, in order to confirm the lower limit levels of the silane coupling agent and phosphoric acid, the test was evaluated with the cooling water shown in the table of FIG.
In this case, what was kept for 12 hours after spraying the corrosive liquid was evaluated.
The evaluation result is shown in FIG. 20, and the photograph after the test is shown in FIG.
As a result, the corrosion resistance was improved even with 1% silane coupling agent and 0.001% phosphoric acid.
次にシランカップリング剤の上限レベルの確認をするために、冷却水として図2の表に示すようにシランカップリング剤95%を添加し、その上でリン酸濃度を0.1〜0.8%に高くした。
このサンプルの耐食性評価をしたが、差が明らかになるように腐食液を噴霧後の保持時間を72時間とした。
その結果を図23に示し、試験後の写真を図24に示す。
これにより、シランカップリング剤の濃度95%ではリン酸濃度は0.1%よりも濃い方がよく、0.4%で最も耐食性が良い結果になった。
Next, in order to confirm the upper limit level of the silane coupling agent, 95% of the silane coupling agent is added as cooling water as shown in the table of FIG. Increased to 8%.
Although the corrosion resistance of this sample was evaluated, the retention time after spraying the corrosive solution was set to 72 hours so that the difference became clear.
The result is shown in FIG. 23, and the photograph after the test is shown in FIG.
Thus, the phosphoric acid concentration should be higher than 0.1% at a silane coupling agent concentration of 95%, and the corrosion resistance was the best at 0.4%.
次にリン酸以外の酸の効果を確認すべく、冷却水として図23に示すようにシランカップリング剤10%のときで、塩酸、硝酸、酢酸、硫酸がそれぞれ0.01%添加したものを評価した。
その結果を図26に示し、試験後の写真を図27に示す。
この結果リン酸以外の酸でも耐食性が向上することが明らかになった。
Next, in order to confirm the effect of an acid other than phosphoric acid, as cooling water, when the silane coupling agent is 10% as shown in FIG. 23, hydrochloric acid, nitric acid, acetic acid, and sulfuric acid are each added at 0.01%. evaluated.
The result is shown in FIG. 26, and the photograph after the test is shown in FIG.
As a result, it has been clarified that the corrosion resistance is improved even with acids other than phosphoric acid.
以上の評価結果から溶融亜鉛めっき後の冷却水にシランカップリング剤を1〜95%の範囲にて含有させると溶融亜鉛めっきの耐食性が向上し、シランカップリング剤単独よりもリン酸等の無機酸を少量添加する方がさらに耐食性が向上し、酸の濃度は0.001%以上で効果があり、好ましくは0.004〜1.0%の範囲であることが明らかになった。 From the above evaluation results, when the silane coupling agent is contained in the cooling water after hot dip galvanization in the range of 1 to 95%, the corrosion resistance of hot dip galvanization is improved, and inorganic such as phosphoric acid than the silane coupling agent alone. It was revealed that the addition of a small amount of acid further improved the corrosion resistance, and the acid concentration was effective at 0.001% or more, and preferably in the range of 0.004 to 1.0%.
Claims (1)
次に当該被処理品を溶融亜鉛めっき浴から上昇させ表面が活性な状態から、シランカップリング剤1〜95%,無機酸0.001〜1.0%含有し、残部が水からなる冷却水に浸漬し冷却することで得られることを特徴とする溶融亜鉛めっき処理品の生産方法。 Immerse the workpiece in a hot dip galvanizing bath,
Next, the treated product is raised from the hot dip galvanizing bath and the surface is active, so that the silane coupling agent is contained in an amount of 1 to 95 %, the inorganic acid is contained in an amount of 0.001 to 1.0%, and the balance is water. A method for producing a hot dip galvanized product obtained by being immersed in and cooled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042414A JP4226063B1 (en) | 2008-02-25 | 2008-02-25 | Production method of hot dip galvanized products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042414A JP4226063B1 (en) | 2008-02-25 | 2008-02-25 | Production method of hot dip galvanized products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4226063B1 true JP4226063B1 (en) | 2009-02-18 |
JP2009197297A JP2009197297A (en) | 2009-09-03 |
Family
ID=40445092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008042414A Expired - Fee Related JP4226063B1 (en) | 2008-02-25 | 2008-02-25 | Production method of hot dip galvanized products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4226063B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014083713A1 (en) * | 2012-11-27 | 2014-06-05 | 日新製鋼株式会社 | Method for manufacturing hot-dip zn alloy-plated steel sheet |
-
2008
- 2008-02-25 JP JP2008042414A patent/JP4226063B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014083713A1 (en) * | 2012-11-27 | 2014-06-05 | 日新製鋼株式会社 | Method for manufacturing hot-dip zn alloy-plated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2009197297A (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3385405B1 (en) | Chromium-free surface-treated tinplate, production method and surface treating agent therefor | |
JP5322000B2 (en) | Surface treatment aqueous solution and treatment method for forming a corrosion-resistant film on zinc or zinc alloy plating | |
CN104711502B (en) | A kind of anti-corrosion zinc-aluminium magnesium-rare earth alloy coating and its preparation and hot dip coating method | |
JP5594732B2 (en) | Chemical conversion composition and method for producing member having antirust coating | |
JP5130226B2 (en) | Aqueous reaction solution and method for passivating workpieces with zinc or zinc alloy surfaces | |
WO2012137680A1 (en) | Finishing agent for trivalent chromium chemical conversion coating film, and method for finishing black trivalent chromium chemical conversion coating film | |
CN101476099B (en) | Method for steel product batch hot dip galvanizing | |
CN109576624B (en) | Continuous production method for flexibly controlling crystal flower size of zinc-aluminum-magnesium-silicon composite coating | |
JP4226063B1 (en) | Production method of hot dip galvanized products | |
US5318640A (en) | Surface treatment method and composition for zinc coated steel sheet | |
JP5423215B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
CN113699475A (en) | Hot-dip galvanizing method for steel | |
JP4072971B1 (en) | Surface treatment method for hot dip galvanizing | |
CN103924228A (en) | Metal material with excellent corrosion resistance | |
JPS5824510B2 (en) | Manufacturing method of tin-plated steel sheet | |
CN110923600B (en) | Steel plate with zinc-manganese-magnesium-silicon alloy hot-dip coating and production method thereof | |
KR20180072847A (en) | Dryinplace corrosionresistant coating for zinc or zincalloy coated substrates | |
CN115896667A (en) | Method for hot dip galvanizing of low-alloy high-strength structural steel | |
JPH04224666A (en) | Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance | |
JPH042758A (en) | Production of hot-dip zinc alloy coated steel sheet excellent in press formability and corrosion resistance after coating | |
JPH04221053A (en) | Production of galvanized stainless steel material | |
CN110923603A (en) | High-heat-resistance hot-dip aluminum-zinc plated steel plate and production method thereof | |
CN110760832A (en) | Trivalent chromium cobalt-free color passivator with high corrosion resistance for electro-galvanized layer | |
JP5678817B2 (en) | Method for producing tin-plated steel sheet | |
CN112500792A (en) | Surface treatment liquid for hot-dip aluminum-zinc plate and preparation method of hot-dip aluminum-zinc plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141205 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |