JP4216488B2 - Oriented electrical steel sheet and manufacturing method thereof - Google Patents
Oriented electrical steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP4216488B2 JP4216488B2 JP2001139092A JP2001139092A JP4216488B2 JP 4216488 B2 JP4216488 B2 JP 4216488B2 JP 2001139092 A JP2001139092 A JP 2001139092A JP 2001139092 A JP2001139092 A JP 2001139092A JP 4216488 B2 JP4216488 B2 JP 4216488B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- value
- oriented electrical
- grain
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、トランスなどの鉄心に用いられる方向性電磁鋼板に関するものであり、更に詳しく述べると、鉄心の低鉄損化のみならず低騒音化にも寄与する、低鉄損、低騒音の方向性電磁鋼板とその製造方法に関するものである。
【0002】
【従来の技術】
近年、トランスなどの電磁応用機器にも騒音や振動の低減が要請されるようになり、トランスの鉄心に使われる方向性電磁鋼板には、低鉄損と共に、低騒音や低振動に適した材料であることが求められる様になってきた。トランスの騒音や振動に対する素材における原因の一つとして、方向性電磁鋼板の磁歪があるといわれている。ここでいう磁歪とは、方向性電磁鋼板を交流で励磁したときに、鋼板の圧延方向に見られる振動のことで、その大きさは、10-6オーダーの非常に小さなものである。しかし、これまで、どのような磁歪特性がトランスの低騒音化に有効なのか明確ではなかった。
【0003】
これまでの低騒音化への方策は、磁歪を小さくすることであった。磁歪は、二次再結晶粒の{110 }<001 >の方位集積度をあげることにより低減できることが知られているが、これは低鉄損化を狙う場合と同じ一般的な方法である。積極的に磁歪を低減した材料の提案の一つに、特開平8-269562号公報がある。そこでは、焼鈍時の内部残留歪みを故意に残留させることにより磁歪の低減が図られている。しかし、この方法では歪みが残留するためヒステリシス損失が増加し、鉄損の増加を招いてしまう。
【0004】
以上のように、トランスの低騒音化のための鉄心用素材としては、これまで明確な磁歪特性の提示はなく、また、磁歪振動を低減する材料に対してもその提案はほとんどないのが実情である。
【0005】
【発明が解決しようとする課題】
本発明の課題は、トランスの低鉄損と低騒音を両立するために最も適した方向性電磁鋼板、即ち、低鉄損、低騒音の方向性電磁鋼板、及び、その製造方法を提供することにある。
【0006】
【課題を解決するための手段】
発明者らは、方向性電磁鋼板の磁歪とトランス騒音の関係を詳細に調査し、また、磁歪に寄与する種々の材料要因を研究した結果、磁歪を決める因子として、前記の{110 }<001 >方位集積度のほか、絶縁皮膜の張力、レーザー照射による微少歪みの付与が非常に重要であることを見い出し、これらの因子を適切に制御することによって、低騒音のための磁歪特性を持ち、かつ、低鉄損である鋼板を開発することができた。
【0007】
本発明の要旨は以下のとおりである。
(1)方向性電磁鋼板を50Hzの周波数で圧延方向に励磁し、圧延方向の磁歪振動のゼロ- ピーク値(0-p値:消磁状態を基準とした、ある励磁磁束密度の時の伸縮値で、伸びた場合を正、縮んだ場合を負とする)を測定した際、飽和磁束密度まで励磁したときの0-p 値ε0 において、張力皮膜が存在せず、レーザーが照射されていない状態の値を基準として、張力皮膜が形成されたことによって変化した絶対値ε0Cと、皮膜形成後レーザーを照射することによって変化した絶対値ε0Lが、
ε0C < 2.0 × 10-6
ε0L < 0.8 × 10-6
であり、飽和磁束密度における0-p 値から励磁磁束密度1.7Tにおける0-p 値を差し引いた値ε17において、張力皮膜が存在せず、レーザーが照射されていない状態の値を基準として、張力皮膜が形成されたことによって変化した絶対値ε17C と、皮膜形成後レーザーを照射することによって変化した絶対値ε17Lが、
ε17C < 1.0 × 10-6
ε17L < 0.3 × 10-6
であり、更に、励磁磁束密度1.7Tにおける0-p 値λ17が
- 0.5 × 10-6 ≦ λ17 ≦ 0.5 × 10-6
である方向性電磁鋼板。
【0008】
(2)ε0Cとε0Lが、
1.0 × 10-6 ≦ ε0C < 3.0 × 10-6
0.5 × 10-6 ≦ εOL < 1.0 × 10-6
であり、ε17C とε17L が、
0.5 × 10-6 ≦ ε17C < 1.5 × 10-6
ε17L < 0.3 × 10-6
である上記(1)に記載の方向性電磁鋼板。
【0009】
(3)Siを1.0 〜4.0 質量%含有する方向性電磁鋼板の製造方法において、仕上げ焼鈍後に形成される一次皮膜とその後に付与する二次皮膜による合計の鋼板への張力を1MPa以上、8MPa未満とし、鋼板の単位面積当たりの入熱量を1〜2mJ/mm2となるようにレーザー照射し、(1)に記載の磁歪特性を得ることを特徴とする方向性電磁鋼板の製造方法。
【0010】
(4)Siを1.0 〜4.0 質量%含有する方向性電磁鋼板の製造方法において、仕上げ焼鈍後に形成される一次皮膜とその後に付与する二次皮膜による合計の鋼板への張力を14MPa 以上とし、鋼板の単位面積当たりの入熱量を1.5〜3mJ/mm2となるようにレーザー照射し、(1)に記載の磁歪特性を得ることを特徴とする方向性電磁鋼板の製造方法。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。
方向性電磁鋼板には [100]、[010] 及び[001] の三つの磁化容易方向が存在するが、このうち磁場方向と異なる方向に磁化していた領域が、磁場印加と共に磁場方向に向いたり、逆に、磁場方向を向いていた領域が、他の磁化容易方向を向いたりした場合に、磁場印加方向に観測される伸縮、即ち、磁歪が生じる。
【0012】
[110]<001>方位に完全に揃った理想的な方向性電磁鋼板では、その磁区構造は圧延方向だけに磁化した領域からなる構造、即ち、180 °磁区のみで形成される。このため、磁化過程において磁歪は生じない。
しかし、実際には、方位のずれによる静磁エネルギーを低減するため、ランセット磁区とよばれる還流磁区の一種が鋼板中に存在する。また、歪みが導入された領域や、鋼板端部でも還流磁区が存在する。還流磁区内には板厚方向に磁化した領域を持っており、この領域が減少すれば、磁歪は正(伸張)の変化を、増加すれば負(収縮)の変化を示す。
【0013】
フォルステライトや張力絶縁皮膜が形成されていない、また、レーザー照射のされていない方向性電磁鋼板の磁歪0-p 値は、図1の1-(A) に示すように、励磁磁束密度と共に単調に増加する。これは消磁状態において、前述したランセット磁区が方位集積度に依存して存在し、励磁と共にその体積を減少させるためである。
【0014】
鋼板に張力絶縁皮膜を施すと、磁歪は1-(B) に示すように、一旦減少するものの、約1.7T以上の高磁束密度においては、増加に転じる。これは以下の理由による。
磁気弾性効果により、鋼板への張力付与によって、板厚方向に磁化している部分のエネルギーが高まるため、消磁状態のランセット磁区の体積は、張力のない場合に比べて減少する。これに磁場印加すると180 °磁壁の移動が起こるが、これは表面の静磁エネルギーを増加させるので、静磁エネルギーを減ずるようランセット磁区は増加する。従って、この磁場領域では、鋼板は収縮する。更に磁場が強くなり、180 °磁壁移動が終了すると、ランセット磁区が消滅しながら磁化が進行する。このとき鋼板は伸長する。
【0015】
以上の1-(A) と1-(B) の曲線では、磁化飽和状態が圧延方向以外の磁化成分の消滅した同じ状態であるから、この状態を伸縮の基準とすると磁区構造の変化を考えやすい。
図2に、飽和磁化の時の磁歪0-p 値を0 として、磁歪0-p 値の磁束密度依存性を示す。張力被膜のない鋼板の場合は、2-(A) に示すように、磁歪0-p 値は磁束密度の低下と共に単調に減少する。一方、張力被膜を施した鋼板では、2-(B) に示すように、一旦減少するものの、極小をとった後増加する。2-(B) の消磁状態では、2-(A) に対して図に示すε0Cだけ鋼板は伸長していることになる。
【0016】
また、極小については、まず、極小をとる磁束密度は、鋼板の[110]<001>方位への配向度に依存するが、発明者らの調査の結果、通常の方向性電磁鋼板では1. 7T程度であることが分かった。従って、先に定義したε17において、2-(B) の極小値では、2-(A) に対してε17C だけ伸長していることになる。これらのε0C及びε17C は、絶縁被膜の張力を変化させることにより自在に制御できる。
【0017】
また、発明者らは、張力皮膜形成後、更にレーザー照射をすることにより、磁歪特性を自在に制御できることを見い出した。この効果を以下に示す。
図1の皮膜形成後の磁歪0-p 値である1-(B) に対して、レーザーを照射すると、磁歪0-p 値は1-(C) に示すように、単調に増加するように変化する。これは、レーザー照射が鋼板中に歪みを導入するため還流磁区が形成され、励磁と共にこの還流磁区が消滅するためと考えられる。
【0018】
飽和磁化状態を基準とした場合を図2に示す。皮膜形成後レーザー照射した場合の曲線2-(C)は磁束密度低下と共に減少し、消磁状態では、2-(B) に比べて、図中に示すε0Lだけ鋼板は収縮していることになる。また、1.7Tにおいて定義したε17においては、ε17L だけ収縮している。これらのε0L及びε17L は、レーザー照射エネルギーを変化させることによって、自在に制御できる。
【0019】
更に、発明者らは、トランスなどの騒音を低減するために方向性電磁鋼板の磁歪特性がどうあるべきかを鋭意検討した結果、磁歪振幅を小さくすることは重要であるが、特に、励磁磁束密度が、1.7Tにおける磁歪0-p 値λ17を所定の大きさに制御することが、機器の騒音を低減する上で必須となることを知見した。
即ち、
- 0.5 × 10-6 ≦ λ17 ≦ 0.5 × 10-6
と制御することが必須条件となる。
λ17が小さすぎる場合は、磁歪振動波形の高周波成分が増加すること、また、λ17が大きすぎる場合には、磁歪の振幅が大きくなることが、トランスの騒音の増大に寄与していると考えられる。
【0020】
騒音のない材料を得るためには、皮膜張力とレーザー照射エネルギーを適切に制御し、先のε0C、ε0L、ε17C 、及び、ε17L が、
ε0C < 2.0 × 10-6
ε0L < 0.8 × 10-6
ε17C < 1.0 × 10-6
ε17L < 0.3 × 10-6
の範囲であり、更に、励磁磁束密度1.7Tの0-p 値λ17が
- 0.5 × 10-6 ≦ λ17 ≦ 0.5 × 10-6
を満たすことが必要であることを見い出した。
【0021】
皮膜張力を小さくすると、ε0Cやε17C は小さくなるが、小さくしすぎると運搬時やトランスを組立作業時などに鋼板に応力が入ったときの磁歪の劣化が大きくなり、また、鉄損も劣化するので、どちらも、0.1 × 10-6より大きくするのが好ましい。また、それらの値は方位集積度に依存して上限があるので、それぞれ、2.0 × 10-6、 1.0 × 10-6 より小さく規定した。
【0022】
レーザー照射エネルギーを強くするに従いε0Lやε17L は大きくなる。レーザー照射エネルギーが大きすぎると、磁歪振動の振幅が大きくなり、かえってトランスに組んだ時の騒音が大きくなるので、ε0Lは0.8 × 10-6 より小さく、ε17L は0.3 × 10-6 より小さく規定した。
【0023】
皮膜張力は、仕上げ焼鈍後に形成されるフォルステライト皮膜の量や、その上に施す絶縁皮膜の量や成分を調整することによって制御できる。また、レーザー照射は、CO2 レーザーやYAG レーザーを用いて照射できる。鉄損低減の観点からは、レーザーによる歪み導入領域は、鋼板の圧延方向に直角に帯状に伸びており、圧延方向には、その歪み帯が周期的に導入されているのが望ましい。
【0024】
また、機器の設計磁束密度によって、要求される磁歪特性が変ることも分かった。まず、トランスの設計磁束密度が比較的低い場合は、鋼板の磁歪振動の波形をよりなめらかにし、振動の高調波成分を減少させることが、トランスの騒音を低減させる上において重要であり、皮膜張力は比較的弱い方が有効であることが分かった。しかしながら、この手法は、鉄損の劣化をもたらしてしまう。そこでレーザーを適切に照射し、磁区制御を施すことによって、低磁歪と低鉄損を実現することができた。
【0025】
上記の電磁鋼板は、フォルステライト皮膜と絶縁皮膜の合計の張力を1MPa以上、8MPa未満とし、鋼板の単位面積当たりの入熱量を1〜2mJ/mm2となるようにレーザー照射することにより、製造することができる。
【0026】
絶縁皮膜の張力が小さいと、運搬時やトランスを組立作業時などに鋼板に応力が入ったときの磁歪の劣化が大きくなり、鉄損も劣化するので、1MPa以上とした。また、上記張力が強すぎると、磁歪振動の波形に高調波成分が多く含まれる様になるので、8MPa未満とした。
また、設計磁束密度が高いときは、鋼板への張力をなるべく強くし、その皮膜張力に応じてレーザー照射強度を適切に制御することが重要である。これにより、磁歪λ17を先に示した所定の大きさに制御することができ、更に、低磁束密度から高磁束密度まで磁歪振幅を小さく抑えることができる。
【0027】
具体的には、ε0Cとε0Lは、
1.0 × 10-6 ≦ ε0C < 3.0 × 10-6
0.5 × 10-6 ≦ εOL < 1.0 × 10-6
に、ε17C とε17L は、
0.5 × 10-6 ≦ ε17C < 1.5 × 10-6
ε17L < 0.3 × 10-6
とし、更に、
- 0.5 × 10-6 ≦ λ17 ≦ 0.5 × 10-6
であるように制御する。
具体的には、一次、二次皮膜による合計の鋼板への張力を14MPa 以上とし、鋼板の単位面積当たりの入熱量を1.5〜3mJ/mm2となるようにレーザー照射することにより製造することができる。
【0028】
【実施例】
(実施例1 )
定法により仕上げ焼鈍までを行った厚さ0.23mmの方向性電磁鋼板について、フォルステライト皮膜の厚さと絶縁張力皮膜塗布量を制御し、被膜張力を変化させた。更に、圧延方向の照射ピッチを5mm 、圧延直角方向の照射ピッチを0.03mmとして、パルスエネルギーを変化させ、鋼板にレーザー照射した。レーザーにはYAG レーザーを用いた。照射エネルギーは鋼板の面積あたりの導入エネルギーで表す。磁歪の測定には、レーザードップラー方式の磁歪測定装置を用い、各条件10枚を試験に供した。試料作製条件と10枚の平均の磁歪測定結果を表1に示す。
【0029】
更に、それぞれの条件の鋼板で、750mm ×750mm の3相3脚積み鉄心を作製し、騒音の測定を行った。鋼板の幅は150mm 、積み枚数は180 枚とした。被膜張力0 の場合は、張力の発生しない絶縁被膜を塗布した。結果を表2に示す。本発明の鋼板を用いることによって、トランスの低騒音化が実現された。同表には鉄心の鉄損も示すが、本発明においては良好な鉄損が得られている。
【0030】
【表1】
【0031】
【表2】
【0032】
【発明の効果】
本発明の方向性電磁鋼板は、皮膜張力とレーザーの照射エネルギーを、ε0C、ε0L、ε17C 、ε17L とλ17が所定の範囲になるように調整して得られるものであり、トランスの低鉄損と低騒音を同時に達成することができる。
【図面の簡単な説明】
【図1】 消磁状態を基準とした、磁歪振動0-p 値の磁束密度による変化を示す図である。
【図2】 飽和磁束密度状態を基準とした、磁歪振動0-p 値の磁束密度による変化を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grain-oriented electrical steel sheet used for an iron core such as a transformer. More specifically, the present invention contributes not only to lowering iron loss of an iron core but also to lowering noise. The present invention relates to an electrical steel sheet and a method for producing the same.
[0002]
[Prior art]
In recent years, transformers and other electromagnetic application equipment have been required to reduce noise and vibration, and grain oriented electrical steel sheets used for transformer cores are suitable for low noise and low vibration as well as low iron loss. It has come to be required to be. It is said that there is magnetostriction of grain-oriented electrical steel sheets as one of the causes of transformer noise and vibration. Magnetostriction as used herein refers to vibrations observed in the rolling direction of a steel sheet when a grain-oriented electrical steel sheet is excited with an alternating current, and its magnitude is very small on the order of 10 −6 . However, until now, it has not been clear what magnetostriction characteristics are effective in reducing the noise of the transformer.
[0003]
Until now, the strategy for reducing noise has been to reduce magnetostriction. It is known that magnetostriction can be reduced by increasing the degree of {110} <001> orientation of secondary recrystallized grains, but this is the same general method as when aiming at low iron loss. One proposal for a material that actively reduces magnetostriction is disclosed in JP-A-8-269562. Here, magnetostriction is reduced by intentionally leaving internal residual strain during annealing. However, in this method, since distortion remains, hysteresis loss increases and iron loss increases.
[0004]
As described above, no actual magnetostrictive properties have been presented as iron core materials for transformer noise reduction, and there are few proposals for materials that reduce magnetostrictive vibration. It is.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a grain-oriented electrical steel sheet that is most suitable for achieving both low iron loss and low noise of a transformer, that is, a grain-oriented electrical steel sheet having low iron loss and low noise, and a manufacturing method thereof. It is in.
[0006]
[Means for Solving the Problems]
The inventors investigated in detail the relationship between magnetostriction of grain-oriented electrical steel sheet and transformer noise, and as a result of studying various material factors that contribute to magnetostriction, the above-mentioned {110} <001 is determined as a factor that determines magnetostriction. > In addition to the degree of orientation integration, it is found that the tension of the insulating film and the application of minute distortion by laser irradiation are very important, and by appropriately controlling these factors, it has magnetostriction characteristics for low noise, In addition, a steel sheet with low iron loss could be developed.
[0007]
The gist of the present invention is as follows.
(1) Exciting the grain-oriented electrical steel sheet in the rolling direction at a frequency of 50 Hz, and the zero-peak value of the magnetostriction vibration in the rolling direction (0-p value: expansion / contraction value at a certain magnetic flux density based on the demagnetized state In the case of measuring with 0-p value ε 0 when excited to the saturation magnetic flux density, there is no tension film and no laser is irradiated. Based on the value of the state, the absolute value ε 0C changed by the formation of the tension film and the absolute value ε 0L changed by irradiating the laser after the film formation,
ε 0C <2.0 × 10 -6
ε 0L <0.8 × 10 -6
In the value ε 17 obtained by subtracting the 0-p value at the excitation magnetic flux density 1.7T from the 0-p value at the saturation magnetic flux density, the tension film does not exist and the value in the state where the laser is not irradiated is used as a reference. The absolute value ε 17C changed by the formation of the tension film and the absolute value ε 17L changed by irradiating the laser after the film formation,
ε 17C <1.0 × 10 -6
ε 17L <0.3 × 10 -6
Furthermore, the 0-p value λ 17 at excitation magnetic flux density 1.7T is
-0.5 × 10 -6 ≦ λ 17 ≦ 0.5 × 10 -6
Is a grain-oriented electrical steel sheet.
[0008]
(2) ε 0C and ε 0L are
1.0 × 10 -6 ≤ ε 0C <3.0 × 10 -6
0.5 × 10 -6 ≤ ε OL <1.0 × 10 -6
Ε 17C and ε 17L are
0.5 × 10 -6 ≤ ε 17C <1.5 × 10 -6
ε 17L <0.3 × 10 -6
The grain-oriented electrical steel sheet according to (1) above.
[0009]
(3) In the method for producing grain-oriented electrical steel sheets containing 1.0 to 4.0% by mass of Si, the tension on the total steel sheet by the primary film formed after finish annealing and the secondary film applied thereafter is 1 MPa or more and less than 8 MPa. A method for producing a grain-oriented electrical steel sheet, wherein the magnetostriction characteristics described in (1) are obtained by irradiating a laser so that the heat input per unit area of the steel sheet is 1 to 2 mJ / mm 2 .
[0010]
(4) In the method for producing a grain-oriented electrical steel sheet containing 1.0 to 4.0% by mass of Si, the tension on the total steel sheet by the primary film formed after finish annealing and the secondary film applied thereafter is 14 MPa or more, A method for producing a grain-oriented electrical steel sheet, wherein the magnetostriction characteristics described in (1) are obtained by laser irradiation so that the amount of heat input per unit area is 1.5 to 3 mJ / mm 2 .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The grain-oriented electrical steel sheet has three easy magnetization directions [100], [010], and [001]. Of these, the region that has been magnetized in a direction different from the magnetic field direction is oriented in the magnetic field direction when the magnetic field is applied. On the other hand, when the region facing the magnetic field direction faces another easy magnetization direction, expansion or contraction observed in the magnetic field application direction, that is, magnetostriction occurs.
[0012]
[110] In an ideal grain-oriented electrical steel sheet perfectly aligned in the <001> orientation, its magnetic domain structure is formed of a structure composed of a region magnetized only in the rolling direction, that is, only 180 ° magnetic domains. For this reason, magnetostriction does not occur in the magnetization process.
However, in practice, in order to reduce magnetostatic energy due to misalignment, a kind of reflux magnetic domain called a lancet magnetic domain exists in the steel sheet. In addition, a reflux magnetic domain also exists in the region where strain is introduced and in the end portion of the steel plate. The return magnetic domain has a region magnetized in the plate thickness direction. If this region decreases, the magnetostriction shows a positive (extension) change, and if it increases, it shows a negative (contraction) change.
[0013]
The magnetostriction 0-p value of grain-oriented electrical steel sheets that have no forsterite or tension insulation film and are not laser-irradiated is monotonous with the excitation magnetic flux density as shown in Fig. 1- (A). To increase. This is because, in the demagnetized state, the above-described lancet magnetic domains exist depending on the orientation integration degree, and the volume thereof is reduced with excitation.
[0014]
When a tensile insulating film is applied to the steel sheet, the magnetostriction once decreases as shown in 1- (B), but starts to increase at a high magnetic flux density of about 1.7 T or more. This is due to the following reason.
Due to the magnetoelastic effect, by applying tension to the steel sheet, the energy of the portion magnetized in the thickness direction is increased, so that the volume of the demagnetized lancet magnetic domain is reduced compared to the case without tension. When a magnetic field is applied to this, the 180 ° domain wall moves, but this increases the magnetostatic energy of the surface, so that the lancet domain increases to reduce the magnetostatic energy. Therefore, the steel sheet contracts in this magnetic field region. When the magnetic field is further strengthened and the 180 ° domain wall motion is completed, magnetization proceeds while the lancet magnetic domain disappears. At this time, the steel sheet extends.
[0015]
In the curves 1- (A) and 1- (B) above, the magnetization saturation state is the same state in which the magnetization components other than the rolling direction have disappeared. Cheap.
FIG. 2 shows the dependence of the magnetostriction 0-p value on the magnetic flux density, assuming that the magnetostriction 0-p value during saturation magnetization is zero. In the case of a steel plate without a tension coating, as shown in 2- (A), the magnetostriction 0-p value decreases monotonously with a decrease in magnetic flux density. On the other hand, as shown in 2- (B), the steel sheet coated with a tensile film decreases once but increases after taking a minimum. In the demagnetized state of 2- (B), the steel sheet is stretched by ε 0C shown in the figure with respect to 2- (A).
[0016]
As for the minimum, first, the magnetic flux density taking the minimum depends on the orientation degree of the steel sheet in the [110] <001> direction, but as a result of the inventors' investigation, it is 1. It turned out to be about 7T. Therefore, at ε 17 defined above, the minimum value of 2- (B) is extended by ε 17C with respect to 2- (A). These ε 0C and ε 17C can be freely controlled by changing the tension of the insulating coating.
[0017]
The inventors have also found that the magnetostriction characteristics can be freely controlled by further irradiating a laser after the formation of the tension film. This effect is shown below.
When 1- (B), the magnetostriction 0-p value after film formation in Fig. 1, is irradiated with laser, the magnetostriction 0-p value increases monotonously as shown in 1- (C). Change. This is presumably because the reflux magnetic domain is formed because the laser irradiation introduces strain in the steel sheet, and this reflux magnetic domain disappears upon excitation.
[0018]
FIG. 2 shows a case where the saturation magnetization state is used as a reference. Curve 2- (C) when laser irradiation is performed after film formation decreases with decreasing magnetic flux density, and in the degaussed state, the steel sheet contracts by ε 0L as shown in the figure compared to 2- (B). Become. In addition, ε 17 defined in 1.7T contracts by ε 17L . These ε 0L and ε 17L can be freely controlled by changing the laser irradiation energy.
[0019]
Furthermore, as a result of intensive studies on the magnetostriction characteristics of grain-oriented electrical steel sheets in order to reduce noise such as transformers, it is important to reduce the magnetostriction amplitude. It was found that controlling the magnetostriction 0-p value λ 17 at a predetermined density of 1.7 T to a predetermined magnitude is essential for reducing the noise of the device.
That is,
-0.5 × 10 -6 ≦ λ 17 ≦ 0.5 × 10 -6
It is indispensable to control.
If λ 17 is too small, the high-frequency component of the magnetostrictive vibration waveform increases, and if λ 17 is too large, the magnetostriction amplitude increases, which contributes to an increase in transformer noise. Conceivable.
[0020]
In order to obtain a noise-free material, the film tension and laser irradiation energy are appropriately controlled, and the previous ε 0C , ε 0L , ε 17C , and ε 17L are
ε 0C <2.0 × 10 -6
ε 0L <0.8 × 10 -6
ε 17C <1.0 × 10 -6
ε 17L <0.3 × 10 -6
In addition, the 0-p value λ 17 of the excitation magnetic flux density 1.7T is
-0.5 × 10 -6 ≦ λ 17 ≦ 0.5 × 10 -6
I found it necessary to satisfy.
[0021]
If the film tension is reduced, ε 0C and ε 17C will decrease, but if it is too small, the deterioration of magnetostriction will increase when the steel sheet is stressed during transportation or assembly of the transformer, and iron loss will also increase. Since both deteriorate, it is preferable that both be larger than 0.1 × 10 −6 . Moreover, since these values have upper limits depending on the orientation accumulation degree, they are defined to be smaller than 2.0 × 10 −6 and 1.0 × 10 −6 , respectively.
[0022]
As the laser irradiation energy increases, ε 0L and ε 17L increase. If the laser irradiation energy is too large, the magnetostrictive vibration amplitude will increase and the noise when assembled in the transformer will increase, so ε 0L is less than 0.8 × 10 -6 and ε 17L is less than 0.3 × 10 -6 Stipulated.
[0023]
The film tension can be controlled by adjusting the amount of forsterite film formed after finish annealing and the amount and components of the insulating film applied thereon. Laser irradiation can be performed using a CO 2 laser or a YAG laser. From the viewpoint of reducing iron loss, it is desirable that the strain introduction region by the laser extends in a band shape perpendicular to the rolling direction of the steel sheet, and the strain band is introduced periodically in the rolling direction.
[0024]
It was also found that the required magnetostriction characteristics vary depending on the design magnetic flux density of the equipment. First, when the transformer design magnetic flux density is relatively low, it is important to reduce the harmonic noise of the transformer by smoothing the magnetostrictive vibration waveform of the steel sheet and reducing the vibration noise. It was found that the relatively weaker one is more effective. However, this method causes deterioration of iron loss. Therefore, it was possible to realize low magnetostriction and low iron loss by appropriately irradiating laser and performing magnetic domain control.
[0025]
The above electromagnetic steel sheet is manufactured by making the total tension of the forsterite film and insulating
[0026]
If the tension of the insulation film is low, the magnetostriction deteriorates when the steel sheet is stressed during transportation or assembly of the transformer, and the iron loss also deteriorates. Further, if the tension is too strong, the waveform of the magnetostrictive vibration contains a lot of harmonic components, so it was set to less than 8 MPa.
Further, when the design magnetic flux density is high, it is important to increase the tension on the steel sheet as much as possible and to appropriately control the laser irradiation intensity according to the film tension. As a result, the magnetostriction λ 17 can be controlled to the predetermined magnitude shown above, and the magnetostriction amplitude can be kept small from a low magnetic flux density to a high magnetic flux density.
[0027]
Specifically, ε 0C and ε 0L are
1.0 × 10 -6 ≤ ε 0C <3.0 × 10 -6
0.5 × 10 -6 ≤ ε OL <1.0 × 10 -6
And ε 17C and ε 17L are
0.5 × 10 -6 ≤ ε 17C <1.5 × 10 -6
ε 17L <0.3 × 10 -6
And then
-0.5 × 10 -6 ≦ λ 17 ≦ 0.5 × 10 -6
Control to be.
Specifically, it can be manufactured by irradiating laser so that the total steel sheet tension by primary and secondary coatings is 14 MPa or more and the heat input per unit area of the steel sheet is 1.5 to 3 mJ / mm 2. it can.
[0028]
【Example】
(Example 1)
For a grain oriented electrical steel sheet with a thickness of 0.23 mm, which had been subjected to final annealing by a conventional method, the thickness of the forsterite film and the coating amount of the insulating tension film were controlled to change the film tension. Further, the irradiation pitch in the rolling direction was 5 mm, the irradiation pitch in the direction perpendicular to the rolling was 0.03 mm, the pulse energy was changed, and the steel plate was irradiated with laser. A YAG laser was used as the laser. Irradiation energy is expressed as energy introduced per area of the steel sheet. For the measurement of magnetostriction, a laser Doppler type magnetostriction measuring apparatus was used, and 10 sheets of each condition were subjected to the test. Table 1 shows the sample preparation conditions and the average magnetostriction measurement results of 10 sheets.
[0029]
Furthermore, three-phase three-legged iron cores of 750 mm x 750 mm were prepared from the steel plates under the respective conditions, and noise was measured. The width of the steel sheet was 150 mm and the number of stacked sheets was 180 sheets. When the film tension was 0, an insulating film that did not generate tension was applied. The results are shown in Table 2. By using the steel plate of the present invention, the noise reduction of the transformer was realized. Although the iron loss of the iron core is also shown in the table, good iron loss is obtained in the present invention.
[0030]
[Table 1]
[0031]
[Table 2]
[0032]
【The invention's effect】
The grain-oriented electrical steel sheet of the present invention is obtained by adjusting the film tension and laser irradiation energy so that ε 0C , ε 0L , ε 17C , ε 17L and λ 17 are in a predetermined range. Low iron loss and low noise can be achieved at the same time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change in magnetostriction vibration 0-p value with a magnetic flux density based on a demagnetized state.
FIG. 2 is a diagram showing a change in magnetostriction vibration 0-p value with a magnetic flux density based on a saturation magnetic flux density state.
Claims (4)
ε0C < 2.0 × 10-6
ε0L < 0.8 × 10-6
であり、飽和磁束密度における0-p 値から励磁磁束密度1.7Tにおける0-p 値を差し引いた値ε17において、張力皮膜が存在せず、レーザーが照射されていない状態の値を基準として、張力皮膜が形成されたことによって変化した絶対値ε17C と、皮膜形成後レーザーを照射することによって変化した絶対値ε17Lが、
ε17C < 1.0 × 10-6
ε17L < 0.3 × 10-6
であり、更に、励磁磁束密度1.7Tにおける0-p 値λ17が
- 0.5 × 10-6 ≦ λ17 ≦ 0.5 × 10-6
である方向性電磁鋼板。When a grain-oriented electrical steel sheet is excited in the rolling direction at a frequency of 50 Hz and the zero-peak value (0-p value) of magnetostriction vibration in the rolling direction is measured, the 0-p value when excited to the saturation magnetic flux density ε 0 The absolute value ε 0C changed by the formation of the tension film and the absolute value changed by irradiating the laser after the film formation with respect to the value in the state where the tension film does not exist and the laser is not irradiated. The value ε 0L is
ε 0C <2.0 × 10 -6
ε 0L <0.8 × 10 -6
In the value ε 17 obtained by subtracting the 0-p value at the excitation magnetic flux density 1.7T from the 0-p value at the saturation magnetic flux density, the tension film is not present and the value in the state where the laser is not irradiated is used as a reference. The absolute value ε 17C changed by the formation of the tension film and the absolute value ε 17L changed by irradiating the laser after the film formation,
ε 17C <1.0 × 10 -6
ε 17L <0.3 × 10 -6
Furthermore, the 0-p value λ 17 at excitation magnetic flux density 1.7T is
-0.5 × 10 -6 ≦ λ 17 ≦ 0.5 × 10 -6
Is a grain-oriented electrical steel sheet.
1.0 × 10-6 ≦ ε0C < 3.0 × 10-6
0.5 × 10-6 ≦ εOL < 1.0 × 10-6
であり、ε17C とε17L が、
0.5 × 10-6 ≦ ε17C < 1.5 × 10-6
ε17L < 0.3 × 10-6
である請求項1 に記載の方向性電磁鋼板。ε 0C and ε 0L are
1.0 × 10 -6 ≤ ε 0C <3.0 × 10 -6
0.5 × 10 -6 ≤ ε OL <1.0 × 10 -6
Ε 17C and ε 17L are
0.5 × 10 -6 ≤ ε 17C <1.5 × 10 -6
ε 17L <0.3 × 10 -6
The grain-oriented electrical steel sheet according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001139092A JP4216488B2 (en) | 2000-05-12 | 2001-05-09 | Oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000140395 | 2000-05-12 | ||
JP2001093616 | 2001-03-28 | ||
JP2001-93616 | 2001-03-28 | ||
JP2000-140395 | 2001-03-28 | ||
JP2001139092A JP4216488B2 (en) | 2000-05-12 | 2001-05-09 | Oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002356750A JP2002356750A (en) | 2002-12-13 |
JP4216488B2 true JP4216488B2 (en) | 2009-01-28 |
Family
ID=27343362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001139092A Expired - Fee Related JP4216488B2 (en) | 2000-05-12 | 2001-05-09 | Oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4216488B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158732A1 (en) | 2019-01-28 | 2020-08-06 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet, and method of manufacturing same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5927754B2 (en) * | 2010-06-29 | 2016-06-01 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP5923882B2 (en) * | 2010-06-30 | 2016-05-25 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP5853352B2 (en) * | 2010-08-06 | 2016-02-09 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP5754097B2 (en) * | 2010-08-06 | 2015-07-22 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
KR101551782B1 (en) * | 2011-12-22 | 2015-09-09 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for producing same |
US10804015B2 (en) | 2011-12-29 | 2020-10-13 | Posco | Electrical steel sheet and method for manufacturing the same |
KR101370634B1 (en) * | 2011-12-29 | 2014-03-07 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing the same |
JP6315084B2 (en) * | 2014-05-09 | 2018-04-25 | 新日鐵住金株式会社 | Oriented electrical steel sheet with low iron loss and low magnetostriction |
KR101562962B1 (en) * | 2014-08-28 | 2015-10-23 | 주식회사 포스코 | Method and appratus for refining magnetic domains in grain-oriented electrical steel sheet and grain-oriented electrical steel manufactured using the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5328375B2 (en) * | 1971-09-27 | 1978-08-14 | ||
JPS5518566A (en) * | 1978-07-26 | 1980-02-08 | Nippon Steel Corp | Improving method for iron loss characteristic of directional electrical steel sheet |
JPS6249322B2 (en) * | 1983-04-23 | 1987-10-19 | Nippon Steel Corp | |
JPH0222423A (en) * | 1988-07-12 | 1990-01-25 | Kawasaki Steel Corp | Iron loss reduction continuous treating equipment for grain oriented silicon steel sheet |
JPH0617511B2 (en) * | 1984-04-14 | 1994-03-09 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with excellent actual machine characteristics |
JPH0867913A (en) * | 1994-08-24 | 1996-03-12 | Nippon Steel Corp | Silicon steel sheet small in core loss, its production and its using method |
JPH10121259A (en) * | 1996-10-17 | 1998-05-12 | Nippon Steel Corp | Insulated coating agent excellent in coating characteristic and production of grain-oriented silicon steel sheet |
JPH11302859A (en) * | 1998-04-22 | 1999-11-02 | Nippon Steel Corp | Tension increasing method of grain-oriented silicon steel sheet coating film |
-
2001
- 2001-05-09 JP JP2001139092A patent/JP4216488B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5328375B2 (en) * | 1971-09-27 | 1978-08-14 | ||
JPS5518566A (en) * | 1978-07-26 | 1980-02-08 | Nippon Steel Corp | Improving method for iron loss characteristic of directional electrical steel sheet |
JPS6249322B2 (en) * | 1983-04-23 | 1987-10-19 | Nippon Steel Corp | |
JPH0617511B2 (en) * | 1984-04-14 | 1994-03-09 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with excellent actual machine characteristics |
JPH0222423A (en) * | 1988-07-12 | 1990-01-25 | Kawasaki Steel Corp | Iron loss reduction continuous treating equipment for grain oriented silicon steel sheet |
JPH0867913A (en) * | 1994-08-24 | 1996-03-12 | Nippon Steel Corp | Silicon steel sheet small in core loss, its production and its using method |
JPH10121259A (en) * | 1996-10-17 | 1998-05-12 | Nippon Steel Corp | Insulated coating agent excellent in coating characteristic and production of grain-oriented silicon steel sheet |
JPH11302859A (en) * | 1998-04-22 | 1999-11-02 | Nippon Steel Corp | Tension increasing method of grain-oriented silicon steel sheet coating film |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158732A1 (en) | 2019-01-28 | 2020-08-06 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet, and method of manufacturing same |
KR20210107768A (en) | 2019-01-28 | 2021-09-01 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2002356750A (en) | 2002-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101421391B1 (en) | Grain oriented electrical steel sheet | |
JP5761377B2 (en) | Oriented electrical steel sheet | |
CN103069033B (en) | Grain-oriented magnetic steel sheet and process for producing same | |
JP5866850B2 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2013100200A1 (en) | Oriented electromagnetic steel plate and manufacturing method therefor | |
RU2570591C1 (en) | Textured sheet of electrical steel | |
JP7230933B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR100442099B1 (en) | Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same | |
JP4216488B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2013087305A (en) | Grain-oriented electromagnetic steel sheet, method for production thereof, and transformer | |
JPH08269562A (en) | Grain-oriented silicon steel sheet reduced in magnetostriction and its production | |
JP6973369B2 (en) | Directional electromagnetic steel plate and its manufacturing method | |
JP7468677B2 (en) | Grain-oriented electrical steel sheet | |
JP2012057219A (en) | Grain-oriented electromagnetic steel sheet and method of manufacturing the same | |
EP1160340B1 (en) | Grain-oriented electrical steel sheet for low-noise transformer | |
JP3408885B2 (en) | Low-noise grain-oriented electrical steel sheets and laminated cores | |
JP6911631B2 (en) | Transformer noise prediction method | |
JP2002069594A (en) | Silicon steel sheet for low-noise transformer | |
WO2024063163A1 (en) | Grain-oriented electrical steel sheet | |
JP4258853B2 (en) | Low iron loss and low noise core | |
JP4437939B2 (en) | Low iron loss unidirectional electrical steel sheet | |
JP4276618B2 (en) | Low iron loss unidirectional electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081106 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4216488 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |