JP4216152B2 - Desulfurization decarboxylation method and apparatus - Google Patents

Desulfurization decarboxylation method and apparatus Download PDF

Info

Publication number
JP4216152B2
JP4216152B2 JP2003322849A JP2003322849A JP4216152B2 JP 4216152 B2 JP4216152 B2 JP 4216152B2 JP 2003322849 A JP2003322849 A JP 2003322849A JP 2003322849 A JP2003322849 A JP 2003322849A JP 4216152 B2 JP4216152 B2 JP 4216152B2
Authority
JP
Japan
Prior art keywords
gas
desulfurization
basic
cooling
advanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003322849A
Other languages
Japanese (ja)
Other versions
JP2005087828A (en
Inventor
富雄 三村
貴司 野条
裕士 田中
徹 高品
琢也 平田
一男 石田
正樹 飯嶋
雅和 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003322849A priority Critical patent/JP4216152B2/en
Publication of JP2005087828A publication Critical patent/JP2005087828A/en
Application granted granted Critical
Publication of JP4216152B2 publication Critical patent/JP4216152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は、硫黄酸化物及び二酸化炭素を含有するガス中から硫黄酸化物と二酸化炭素を除去する脱硫脱炭酸方法及びその装置に関する。   The present invention relates to a desulfurization decarbonation method and apparatus for removing sulfur oxide and carbon dioxide from a gas containing sulfur oxide and carbon dioxide.

近年、火力発電設備やボイラ設備では、多量の石炭、重油あるいは超重質油を燃料に用いており、大気汚染防止及び地球環境の清浄化の見地から、二酸化硫黄を主とする硫黄酸化物、窒素酸化物、二酸化炭素等の放出に関する量的、濃度的抑制が問題になっている。この中で、硫黄酸化物に関しては、酸性雨を引き起こし、人体、動植物等に被害を与える恐れがある。このため、従来から、乾式や湿式による処理方法が提案され、既に実施されている。例えば、前記の処理設備である排煙脱硫装置では、石灰石を吸収剤に用いて石膏を副生する湿式石灰石膏法が主流となっている。一方、二酸化炭素については、フロンガスやメタンガスと共に地球温暖化防止の見地から、例えば、PSA(圧力スウィング)法、膜分離法、及び塩基性化合物を用いた反応吸収法等の適用による排出の抑制が検討されている。   In recent years, thermal power generation facilities and boiler facilities use a large amount of coal, heavy oil or ultra-heavy oil as fuel, and from the viewpoint of air pollution prevention and cleaning of the global environment, sulfur oxides mainly composed of sulfur dioxide, nitrogen There is a problem of quantitative and concentration suppression regarding the release of oxides, carbon dioxide and the like. Of these, sulfur oxides cause acid rain and may cause damage to human bodies, animals and plants. For this reason, conventionally, dry and wet processing methods have been proposed and implemented. For example, in the flue gas desulfurization apparatus which is the above-described processing facility, a wet lime gypsum method in which gypsum is by-produced using limestone as an absorbent has become mainstream. On the other hand, with regard to carbon dioxide, from the standpoint of preventing global warming together with chlorofluorocarbon and methane gas, for example, suppression of emissions by applying the PSA (pressure swing) method, membrane separation method, reaction absorption method using basic compounds, etc. It is being considered.

また、脱硫と脱炭酸を二段で行う技術が開発されている(特許文献1参照)。この技術では、湿式石灰−石膏法脱硫工程においてガス中の硫黄酸化物濃度が5〜10ppmの範囲内になるように脱硫処理した後、脱硫処理後ガスを脱炭酸工程によりアルカノールアミン水溶液と接触させて二酸化炭素を除去すると共に、脱炭酸後ガス中の硫黄酸化物濃度が1ppm以下になるように硫黄酸化物を除去することができる。
特許第3305001号公報
In addition, a technique for performing desulfurization and decarboxylation in two stages has been developed (see Patent Document 1). In this technique, in the wet lime-gypsum desulfurization process, after desulfurization treatment so that the sulfur oxide concentration in the gas is within the range of 5 to 10 ppm, the desulfurized gas is brought into contact with the alkanolamine aqueous solution by the decarbonation process. In addition to removing carbon dioxide, sulfur oxide can be removed so that the concentration of sulfur oxide in the gas after decarboxylation is 1 ppm or less.
Japanese Patent No. 3305001

しかしながら、特許文献1に記載の技術では、脱炭酸吸収液に硫黄酸化物が蓄積されるため、脱炭酸吸収液のリクレーミング頻度が高いという問題がある。また、脱炭酸工程で排出されるガスに同伴して吸収液中のアミン化合物も多量に放出されるため、運転コストが高いなどの問題がある。   However, the technique described in Patent Document 1 has a problem that sulfur dioxide is accumulated in the decarboxylation absorbent, and therefore the reclaiming frequency of the decarboxylation absorbent is high. Moreover, since a large amount of the amine compound in the absorbent is also released along with the gas discharged in the decarboxylation step, there is a problem that the operation cost is high.

そこで、本発明は、前記の問題点に鑑み、脱炭酸吸収液への硫黄酸化物の蓄積を抑制することができるとともに、脱炭酸工程で排出されるガスに同伴する吸収液中のアミン化合物の量を低減することができる脱硫脱炭酸方法及びその装置を提供することを目的とする。   Therefore, in view of the above-mentioned problems, the present invention can suppress the accumulation of sulfur oxides in the decarboxylation absorbent, and the amine compound in the absorbent accompanying the gas discharged in the decarboxylation process. It is an object of the present invention to provide a desulfurization decarboxylation method and apparatus capable of reducing the amount.

上記の目的を達成するために、本発明に係る脱硫脱炭酸方法は、硫黄酸化物及び二酸化炭素を含有するガスを塩基性カルシウム化合物を含む吸収液に接触させて、前記ガス中から硫黄酸化物を除去する脱硫工程と、前記脱硫工程で脱硫処理されたガスを塩基性吸収液に接触させてガス中の硫黄酸化物濃度が5ppm以下になるようにさらに硫黄酸化物を除去し、またガスの温度を50℃以下に冷却する高度脱硫ガス冷却工程と、前記高度脱硫ガス冷却工程で高度脱硫ガス冷却処理されたガスを塩基性アミン化合物を含む吸収液を接触させて、前記ガス中から二酸化炭素を除去する脱炭酸工程とを含んでなる脱硫脱炭酸方法であって、前記高度脱硫ガス冷却工程が、前記脱硫工程で脱硫処理されたガスを塩基性吸収液に接触させる高度脱硫工程と、この高度脱硫工程で高度脱硫処理されたガスを冷却するガス冷却工程とを含み、前記ガス冷却工程で得られる凝縮水を、前記高度脱硫工程の前記塩基性吸収液に混合することを特徴とする。 In order to achieve the above object, a desulfurization and decarboxylation method according to the present invention comprises bringing a gas containing sulfur oxide and carbon dioxide into contact with an absorbing solution containing a basic calcium compound, and sulfur oxide from the gas. A desulfurization step for removing the sulfur, and the gas desulfurized in the desulfurization step is brought into contact with a basic absorbent to further remove sulfur oxide so that the concentration of sulfur oxide in the gas is 5 ppm or less. Advanced desulfurization gas cooling step for cooling the temperature to 50 ° C. or lower, and gas subjected to the advanced desulfurization gas cooling treatment in the advanced desulfurization gas cooling step with an absorbing liquid containing a basic amine compound, and carbon dioxide from the gas the a and decarboxylation step comprising at desulfurization decarboxylation process for removing the highly desulfurized gas cooling step, highly desulfurization step of contacting the desulfurization step desulfurization process gas in a basic absorption liquid And characterized in that the high desulfurization and a step in gas cooling the highly desulfurized gas cooling step, the condensed water obtained by the gas cooling step, mixing said basic absorbent liquid of the high desulfurization step To do.

前記塩基性吸収液としては、塩基性ナトリウム化合物を含む吸収液が好ましい。また、前記塩基性吸収液を接触させたガス中から、ガスに同伴する前記塩基性吸収液を除去することが好ましい。   As the basic absorbent, an absorbent containing a basic sodium compound is preferable. Moreover, it is preferable to remove the basic absorption liquid accompanying the gas from the gas in contact with the basic absorption liquid.

また、前記ガス冷却工程で得られる凝縮水は、ガス冷却液として使用することができる。さらに、前記ガス冷却液を接触させたガス中から、ガスに同伴する前記ガス冷却液を除去することが好ましい。 The condensed water obtained in the gas cooling step can also be used as a gas coolant . Furthermore, it is preferable to remove the gas coolant accompanying the gas from the gas in contact with the gas coolant.

また、本発明に係る脱硫脱炭酸方法は、別の態様として、硫黄酸化物及び二酸化炭素を含有するガスを塩基性カルシウム化合物を含む吸収液に接触させて、前記ガス中から硫黄酸化物を除去する脱硫工程と、前記脱硫工程で脱硫処理されたガスを塩基性吸収液に接触させてガス中の硫黄酸化物濃度が5ppm以下になるようにさらに硫黄酸化物を除去し、またガスの温度を50℃以下に冷却する高度脱硫ガス冷却工程と、前記高度脱硫ガス冷却工程で高度脱硫ガス冷却処理されたガスを塩基性アミン化合物を含む吸収液を接触させて、前記ガス中から二酸化炭素を除去する脱炭酸工程とを含んでなる脱硫脱炭酸方法であって、前記高度脱硫ガス冷却工程は、前記塩基性吸収液を冷却してから前記ガスに接触させることにより、硫黄酸化物の除去とガスの冷却を同時に行うことを特徴とする。 Moreover, the desulfurization decarboxylation method according to the present invention , as another aspect , removes sulfur oxide from the gas by bringing a gas containing sulfur oxide and carbon dioxide into contact with an absorbent containing a basic calcium compound. Desulfurization step, contacting the gas desulfurized in the desulfurization step with the basic absorbent to further remove sulfur oxide so that the concentration of sulfur oxide in the gas is 5 ppm or less, and adjust the gas temperature. The advanced desulfurization gas cooling step for cooling to 50 ° C. or lower, and the gas subjected to the advanced desulfurization gas cooling treatment in the advanced desulfurization gas cooling step are brought into contact with an absorbent containing a basic amine compound to remove carbon dioxide from the gas. to a comprising at desulfurization decarboxylation method and decarboxylation step, the altitude desulfurization gas cooling step, by contacting the gas from cooling the basic absorbent liquid, removing sulfur oxides And performing the cooling of the gas at the same time.

また、本発明は、別の側面として、脱硫脱炭酸装置であって、ガスに塩基性カルシウム化合物を含む吸収液を接触させる脱硫手段と、ガスに塩基性吸収液を接触させ、またガスを冷却する高度脱硫ガス冷却手段と、ガスに塩基性アミン化合物を含む吸収液を接触させる脱炭酸手段と、前記脱硫手段の脱硫処理後ガスを前記高度脱硫ガス冷却手段に導入する配管と、前記高度脱硫ガス冷却手段で冷却したガスを前記脱炭酸手段に導入する配管とを含んでなる脱硫脱炭酸装置において、前記高度脱硫ガス冷却手段が、ガスに塩基性吸収液を接触させる高度脱硫部と、前記塩基性吸収液を接触させたガスを冷却するガス冷却部とを含んでなり、前記高度脱硫ガス冷却手段が、前記ガス冷却部で得られる凝縮水を前記塩基性吸収液に混合する配管を含むことを特徴とする。 In another aspect, the present invention provides a desulfurization and decarbonation apparatus, a desulfurization means for contacting an absorption liquid containing a basic calcium compound with a gas, contacting the basic absorption liquid with the gas, and cooling the gas. Advanced desulfurization gas cooling means, decarbonation means for contacting the gas with an absorbent containing a basic amine compound, piping for introducing the desulfurized gas of the desulfurization means into the advanced desulfurization gas cooling means, and the advanced desulfurization gas In the desulfurization decarbonation apparatus comprising a pipe for introducing the gas cooled by the gas cooling means to the decarbonation means, the advanced desulfurization gas cooling means includes an advanced desulfurization section for bringing a basic absorbent into contact with the gas, A gas cooling section for cooling the gas brought into contact with the basic absorbent, and the advanced desulfurization gas cooling means includes a pipe for mixing the condensed water obtained in the gas cooling section with the basic absorbent. It is characterized in.

前記塩基性吸収液としては、塩基性ナトリウム化合物を含む吸収液が好ましい。前記高度脱硫ガス冷却手段は、ガスに同伴する前記塩基性吸収液をガス中から除去するデミスタを含むことが好ましい。   As the basic absorbent, an absorbent containing a basic sodium compound is preferable. The advanced desulfurization gas cooling means preferably includes a demister that removes the basic absorbent accompanying the gas from the gas.

また、前記高度脱硫ガス冷却手段は、前記ガス冷却部で得られる凝縮水を前記ガス冷却部にガス冷却液として供給する配管含むことができる。さらに、前記高度脱硫ガス冷却手段は、ガスに同伴する前記ガス冷却液をガス中から除去するデミスタを含むことが好ましい。 The advanced desulfurization gas cooling means may also include a pipe for supplying condensed water obtained in the gas cooling unit to the gas cooling unit as a gas coolant . Furthermore, the advanced desulfurization gas cooling means preferably includes a demister that removes the gas coolant accompanying the gas from the gas.

また、本発明に係る脱硫脱炭酸装置は、別の態様として、ガスに塩基性カルシウム化合物を含む吸収液を接触させる脱硫手段と、ガスに塩基性吸収液を接触させ、またガスを冷却する高度脱硫ガス冷却手段と、ガスに塩基性アミン化合物を含む吸収液を接触させる脱炭酸手段と、前記脱硫手段の脱硫処理後ガスを前記高度脱硫ガス冷却手段に導入する配管と、前記高度脱硫ガス冷却手段で冷却したガスを前記脱炭酸手段に導入する配管とを含んでなる脱硫脱炭酸装置において、前記高度脱硫ガス冷却手段、前記塩基性吸収液を冷却する吸収液冷却手段を含むことを特徴とする。吸収液冷却手段としては、熱交換器などを用いることができる。 Further, the desulfurization decarboxylation apparatus according to the present invention includes, as another aspect, a desulfurization means for bringing an absorption liquid containing a basic calcium compound into contact with a gas, an advanced degree of bringing the basic absorption liquid into contact with the gas, and cooling the gas. A desulfurization gas cooling means, a decarbonation means for contacting an absorption liquid containing a basic amine compound with the gas, a pipe for introducing the desulfurized gas of the desulfurization means into the advanced desulfurization gas cooling means, and the advanced desulfurization gas cooling in the desulfurization decarboxylation apparatus comprising a pipe for introducing a gas cooled by means to the decarboxylation means, the highly desulfurized gas cooling means, comprising the absorption liquid cooling means for cooling the basic absorption liquid And A heat exchanger or the like can be used as the absorbing liquid cooling means.

上述してきたように、本発明によれば、脱硫処理後のガスに含まれる硫黄酸化物を除去して、脱炭酸吸収液への硫黄酸化物の蓄積を抑制するとともに、脱炭酸工程における排ガスに同伴する吸収液のアミン化合物の量を低減する脱硫脱炭酸方法及びその装置を提供することができる。   As described above, according to the present invention, sulfur oxides contained in the gas after the desulfurization treatment are removed to suppress the accumulation of sulfur oxides in the decarboxylation absorbent, and to the exhaust gas in the decarbonation process. It is possible to provide a desulfurization and decarboxylation method and apparatus for reducing the amount of the amine compound in the accompanying absorption liquid.

以下に、添付図面を参照して、本発明の実施の形態を説明する。図1は、本発明に係る脱硫脱炭酸装置の概要を示す模式図である。図1に示すように、本装置は、脱硫手段10と、その後流側に設けた高度脱硫ガス冷却手段20と、さらにその後流側に設けられた脱炭酸手段50とで主に構成される。脱硫手段10は、処理対象のガスに塩基性カルシウム化合物を含む吸収液を接触させて、ガス中の硫黄酸化物を除去する公知の排煙脱硫装置を採用することができる。また、高度脱硫ガス冷却手段20及び脱炭酸手段50は、処理対象のガスに吸収液を接触させる湿式の吸収装置であって、特に、後述する図2もしくは図3及び図4に示す装置をそれぞれ採用することが好ましい。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic view showing an outline of a desulfurization decarboxylation apparatus according to the present invention. As shown in FIG. 1, this apparatus is mainly composed of a desulfurization means 10, an advanced desulfurization gas cooling means 20 provided on the downstream side, and a decarbonation means 50 provided on the downstream side. The desulfurization means 10 can employ a known flue gas desulfurization apparatus that brings an absorbing liquid containing a basic calcium compound into contact with a gas to be treated to remove sulfur oxides in the gas. Further, the advanced desulfurization gas cooling means 20 and the decarbonation means 50 are wet-type absorption devices that bring the absorbent into contact with the gas to be treated, and in particular, the devices shown in FIG. 2 or FIG. 3 and FIG. It is preferable to adopt.

このような構成によれば、先ず、脱硫手段10に、硫黄酸化物と二酸化炭素を含有する燃焼排ガス1を導入する。なお、処理対象となるガスは、燃焼排ガス1に限られず、燃料用のガスであってもよく、その他様々なガスも適用できる。対象となるガスは水分、酸素、その他の成分を含んでいてもよい。ガスの圧力は加圧であっても、常圧であってもよく、温度は低温であっても高温であってもよく、特に制限はない。好ましくは、常圧の燃焼排ガスである。   According to such a configuration, first, the combustion exhaust gas 1 containing sulfur oxide and carbon dioxide is introduced into the desulfurization means 10. The gas to be treated is not limited to the combustion exhaust gas 1 but may be a fuel gas, and various other gases can be applied. The target gas may contain moisture, oxygen, and other components. The pressure of the gas may be pressurized or normal pressure, and the temperature may be low or high, and is not particularly limited. Preferably, it is an atmospheric pressure combustion exhaust gas.

脱硫手段10では、導入した燃焼排ガス1と塩基性カルシウム化合物を含む脱硫吸収液2とを接触させて、硫黄酸化物の大部分を除去する。塩基性カルシウム化合物としては、例えば、炭酸カルシウム、水酸化カルシウム、酸化カルシウムを使用することができる。脱硫吸収液2は、これらのうちの1つの化合物又は2以上の混合物を含むことができ、通常、懸濁液として使用する。燃焼排ガス1と接触後の吸収液2は、固液分離装置(図示省略)に送り、吸収液2に吸収された硫黄酸化物を石膏として分離回収する。   In the desulfurization means 10, the introduced combustion exhaust gas 1 and the desulfurization absorption liquid 2 containing a basic calcium compound are brought into contact with each other to remove most of the sulfur oxides. As the basic calcium compound, for example, calcium carbonate, calcium hydroxide, and calcium oxide can be used. The desulfurization absorption liquid 2 can contain one of these compounds or a mixture of two or more, and is usually used as a suspension. The absorbent 2 after contact with the combustion exhaust gas 1 is sent to a solid-liquid separator (not shown), and the sulfur oxide absorbed in the absorbent 2 is separated and recovered as gypsum.

脱硫手段10により硫黄酸化物の大部分が除去された脱硫処理後ガス3は、後流側に設置した高度脱硫ガス冷却手段20に導入する。高度脱硫ガス冷却手段20では、脱硫処理後ガス3と塩基性吸収液4とを接触させて、脱硫処理後ガス3中の硫黄酸化物濃度が5ppm以下、好ましくは1ppm以下になるように高度脱硫処理する。硫黄酸化物濃度が5ppmを超えると、後述する脱炭酸吸収液に硫黄酸化物が蓄積し、脱炭酸吸収液をリクレーミングする頻度が増加する。   The desulfurized gas 3 from which most of the sulfur oxide has been removed by the desulfurization means 10 is introduced into the advanced desulfurization gas cooling means 20 installed on the downstream side. In the advanced desulfurization gas cooling means 20, the advanced desulfurization gas 3 and the basic absorbent 4 are brought into contact with each other so that the sulfur oxide concentration in the post-desulfurization gas 3 is 5 ppm or less, preferably 1 ppm or less. To process. When the sulfur oxide concentration exceeds 5 ppm, sulfur oxide accumulates in the decarboxylation absorbent described later, and the frequency of reclaiming the decarboxylation absorbent increases.

塩基性吸収液4としては、例えば、炭酸カルシウム、水酸化カルシウム、水酸化マグネシウム、水酸化ナトリウム、炭酸ナトリウムなどのうちの1つの塩基性化合物又は2以上の混合物を含む吸収液を使用することができる。この中でも特に、脱硫性能の観点から、水酸化ナトリウム、炭酸ナトリウムなどの塩基性ナトリウム化合物を含む吸収液を使用することが好ましい。また、塩基性化合物は、通常0.1〜30重量%の水溶液として使用する。   As the basic absorbent 4, for example, an absorbent containing one basic compound or a mixture of two or more of calcium carbonate, calcium hydroxide, magnesium hydroxide, sodium hydroxide, sodium carbonate and the like can be used. it can. Among these, from the viewpoint of desulfurization performance, it is preferable to use an absorbing solution containing a basic sodium compound such as sodium hydroxide or sodium carbonate. The basic compound is usually used as an aqueous solution of 0.1 to 30% by weight.

また、高度脱硫ガス冷却手段20では、脱硫処理後ガス3又は高度脱硫処理されたガスを50℃以下、好ましくは45℃以下、より好ましくは30〜45℃の範囲に冷却する。ガスの温度が50℃を超えると、後述する脱炭酸工程における排ガスに同伴する吸収液のアミン化合物の量が増加し、アミン化合物が無駄に消費されて運転コスト等が増大する。一方、温度が30℃未満では、コスト増大のため好ましくない。このように高度脱硫され、また冷却された高度脱硫ガス冷却処理後ガス5は、さらに後流側に設置した脱炭酸手段50に導入する。   Further, the advanced desulfurization gas cooling means 20 cools the gas 3 after the desulfurization treatment or the gas subjected to the advanced desulfurization treatment to 50 ° C. or less, preferably 45 ° C. or less, more preferably 30 to 45 ° C. When the temperature of the gas exceeds 50 ° C., the amount of the amine compound in the absorbing liquid accompanying the exhaust gas in the decarbonation step described later increases, and the amine compound is consumed wastefully, resulting in an increase in operating costs. On the other hand, if the temperature is less than 30 ° C., it is not preferable because of an increase in cost. The highly desulfurized and cooled advanced desulfurized gas 5 is introduced into decarbonation means 50 installed on the downstream side.

脱炭酸手段50では、導入した高度脱硫ガス冷却処理後ガス5と塩基性アミン化合物を含む脱炭酸吸収液6とを接触させ、ガス5中の二酸化炭素及び残存する硫黄酸化物を脱炭酸吸収液6に吸収してガス中から除去する。塩基性アミン化合物としては、例えば、モノエタノールアミン、2−アミノ−2−メチル−1−プロパノールなどのアルコール性水酸基含有1級アミン類、ジエタノールアミン、2−メチルアミノエタノール、2−エチルアミノエタノールなどのアルコール性水酸基含有2級アミン類、トリエタノールアミン、N−メチルジエタノールアミン、2−ジメチルアミノエタノール、2−ジエチルアミノエタノールなどのアルコール性水酸基含有3級アミン類、エチレンジアミン、トリエチレンジアミン、ジエチレントリアミンなどのポリエチレンポリアミン類、ピペラジン類、ピペリジン類、ピロリジン類などの環状アミン類、キシリレンジアミンなどのポリアミン類、メチルアミノカルボン酸などのアミノ酸類が使用できる。   In the decarbonation means 50, the introduced desulfurized gas 5 after the cooling treatment is brought into contact with the decarboxylated absorbent 6 containing a basic amine compound, and the carbon dioxide in the gas 5 and the remaining sulfur oxide are removed from the decarboxylated absorbent. 6 is absorbed and removed from the gas. Examples of basic amine compounds include monoethanolamine, alcoholic hydroxyl group-containing primary amines such as 2-amino-2-methyl-1-propanol, diethanolamine, 2-methylaminoethanol, 2-ethylaminoethanol, and the like. Alcoholic hydroxyl group-containing secondary amines, triethanolamine, N-methyldiethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol and other alcoholic hydroxyl group-containing tertiary amines, polyethylenediamines such as ethylenediamine, triethylenediamine and diethylenetriamine Further, cyclic amines such as piperazines, piperidines and pyrrolidines, polyamines such as xylylenediamine, and amino acids such as methylaminocarboxylic acid can be used.

脱炭酸吸収液6は、これらのうちの1つの化合物又は2以上の混合物を含むことができる。塩基性アミン化合物は、通常10〜70重量%の水溶液として使用される。また、吸収液6には、二酸化炭素吸収促進剤や腐食防止剤を加えることができるし、その他の媒体としてメタノール、ポリエチレングリコール、スルフォラン等を加えることもできる。脱炭酸手段50により二酸化炭素と残存する硫黄酸化物が除去された脱炭酸処理後ガス7は、脱炭酸手段50から排出して、放出又は次の必要な工程(図示省略)に送る。   The decarboxylation absorbent 6 can contain one of these compounds or a mixture of two or more. The basic amine compound is usually used as a 10 to 70% by weight aqueous solution. In addition, a carbon dioxide absorption accelerator and a corrosion inhibitor can be added to the absorbing liquid 6, and methanol, polyethylene glycol, sulfolane, and the like can be added as other media. The decarbonation-treated gas 7 from which carbon dioxide and remaining sulfur oxides have been removed by the decarbonation means 50 is discharged from the decarbonation means 50 and released or sent to the next necessary step (not shown).

このように、脱炭酸吸収液6は二酸化炭素に加えて硫黄酸化物も吸収するので、脱硫処理後ガス3を脱炭酸手段50に導入する前に、予め高度脱硫ガス冷却手段20において塩基性吸収液4と接触させて、硫黄酸化物濃度を5ppm以下に高度脱硫処理しておくことで、脱炭酸吸収液6への硫黄酸化物の蓄積を抑制することができる。これにより、脱炭酸吸収液6のリクレーミング頻度を減少させることができる。また、本実施の形態では、脱炭酸手段50入口のガス温度に応じて脱炭酸処理後ガス7の温度を設定している。すなわち、脱硫処理後ガス3を脱炭酸手段50に導入する前に、予め高度脱硫ガス冷却手段20においてガス3の温度を50℃以下に冷却することにより、脱炭酸手段50から排出される脱炭酸処理後ガス7に同伴する吸収液6中のアミン化合物の量を著しく抑えることができる。よって、運転コストを低減することができる。   As described above, since the decarboxylation absorbing liquid 6 absorbs sulfur oxide in addition to carbon dioxide, the basic desorption gas cooling means 20 performs basic absorption in advance before introducing the desulfurized gas 3 into the decarbonation means 50. By making it contact with the liquid 4 and performing a high desulfurization treatment so that the sulfur oxide concentration is 5 ppm or less, accumulation of sulfur oxide in the decarbonized absorbent 6 can be suppressed. Thereby, the reclaiming frequency of the decarboxylation absorbent 6 can be reduced. In the present embodiment, the temperature of the decarbonation-treated gas 7 is set according to the gas temperature at the inlet of the decarbonation means 50. That is, before introducing the desulfurized gas 3 into the decarbonation means 50, the temperature of the gas 3 is cooled to 50 ° C. or less in advance in the advanced desulfurization gas cooling means 20, thereby decarbonation discharged from the decarbonation means 50. The amount of the amine compound in the absorbent 6 accompanying the gas 7 after the treatment can be remarkably suppressed. Therefore, the operation cost can be reduced.

図2は、本発明における高度脱硫ガス冷却手段の一実施の形態の概要を示す模式図である。図2に示すように、高度脱硫ガス冷却塔21は、塔の底部から順に、高度脱硫部22、高度脱硫部デミスタ23、ガス冷却部24、ガス冷却部デミスタ25を備えている。高度脱硫ガス冷却塔21には、高度脱硫ガス冷却塔21の底部に脱硫処理後ガス3を導入するガス導入ライン31、高度脱硫ガス冷却塔21の頂上部から高度脱硫ガス冷却処理後ガス5を脱炭酸手段(図示省略)に送るガス排出ライン32、高度脱硫部22の底部から上部に塩基性吸収液4を送る吸収液循環ライン33、ガス冷却部24の底部から上部にガス冷却液8を送る冷却液循環ライン34、冷却液循環ライン34からガス冷却液8の一部を抜き出して吸収液循環ライン33に供給する冷却液抜出ライン35、吸収液循環ライン33に塩基性化合物を含む供給液9を供給する供給液添加ライン36が設けられている。また、冷却液循環ライン34には、ガス冷却液8を冷却する熱交換器26が設けられている。   FIG. 2 is a schematic diagram showing an outline of an embodiment of the advanced desulfurization gas cooling means in the present invention. As shown in FIG. 2, the advanced desulfurization gas cooling tower 21 includes an advanced desulfurization section 22, an advanced desulfurization section demister 23, a gas cooling section 24, and a gas cooling section demister 25 in order from the bottom of the tower. In the advanced desulfurization gas cooling tower 21, a gas introduction line 31 for introducing the desulfurized gas 3 to the bottom of the advanced desulfurization gas cooling tower 21, and the advanced desulfurization gas cooling treatment gas 5 from the top of the advanced desulfurization gas cooling tower 21. A gas discharge line 32 for sending to a decarbonation means (not shown), an absorption liquid circulation line 33 for sending the basic absorbent 4 from the bottom to the top of the advanced desulfurization section 22, and a gas coolant 8 from the bottom to the top of the gas cooling section 24. Coolant extraction line 35 for extracting a part of the gas coolant 8 from the coolant circulation line 34 to be sent and the coolant circulation line 34 and supplying it to the absorption liquid circulation line 33, and supply containing a basic compound to the absorption liquid circulation line 33 A supply liquid addition line 36 for supplying the liquid 9 is provided. The coolant circulation line 34 is provided with a heat exchanger 26 that cools the gas coolant 8.

このような構成によれば、先ず、脱硫処理後ガス3をガス導入ライン31から高度脱硫ガス冷却塔21内に導入する。ガス3は、高度脱硫部22を循環している塩基性吸収液4と接触することにより、ガス中の硫黄酸化物は高度に除去され、ガス中の硫黄酸化物濃度は5ppm以下となる。ガスに同伴する塩基性吸収液4のミストは、高度脱硫部デミスタ23により除去回収する。回収された塩基性吸収液8は、吸収液循環ライン33により再び高度脱硫部23に供給する。なお、塩基性吸収液4中の塩基性化合物の濃度は高度脱硫処理により次第に低下する。よって、硫黄酸化物の除去量に見合う塩基性化合物を添加するため、供給液添加ライン36から塩基性化合物を高濃度に含む供給液9を添加する。   According to such a configuration, first, the desulfurized gas 3 is introduced from the gas introduction line 31 into the advanced desulfurization gas cooling tower 21. When the gas 3 comes into contact with the basic absorbent 4 circulating in the advanced desulfurization section 22, sulfur oxide in the gas is highly removed, and the concentration of sulfur oxide in the gas becomes 5 ppm or less. The mist of the basic absorbent 4 accompanying the gas is removed and recovered by the advanced desulfurization section demister 23. The recovered basic absorbent 8 is supplied again to the advanced desulfurization section 23 through the absorbent circulation line 33. In addition, the density | concentration of the basic compound in the basic absorption liquid 4 falls gradually by a high desulfurization process. Therefore, in order to add a basic compound that matches the amount of sulfur oxide removed, the supply liquid 9 containing the basic compound at a high concentration is added from the supply liquid addition line 36.

さらに、高度脱硫処理後のガスは、ガス冷却部24を循環しているガス冷却液8と接触することにより冷却され、ガスの温度は50℃以下となる。ガスに同伴するガス冷却液8のミストはガス冷却部デミスタ25により除去回収する。回収されるガス冷却液の量は、接触させるガス冷却液の量と比べて、ガスから凝縮する水分の量が増加する。よって、この増加分に相当する量を抜き出して、冷却液抜出ライン36を介して吸収液循環ライン33の塩基性吸収液8に添加する。残りのガス冷却液8は、熱交換器26により冷却した後、冷却液循環ライン34を介して再びガス冷却部24に供給する。高度脱硫ガス冷却処理後ガス5は、ガス排出ライン32を介して後流の脱炭酸手段(図示省略)に送る。   Further, the gas after the advanced desulfurization treatment is cooled by coming into contact with the gas coolant 8 circulating in the gas cooling unit 24, and the temperature of the gas becomes 50 ° C. or less. The mist of the gas coolant 8 accompanying the gas is removed and collected by the gas cooling unit demister 25. The amount of the gas coolant to be recovered increases the amount of moisture condensed from the gas as compared with the amount of the gas coolant to be contacted. Therefore, an amount corresponding to this increased amount is extracted and added to the basic absorbent 8 in the absorbent circulation line 33 via the coolant withdrawal line 36. The remaining gas coolant 8 is cooled by the heat exchanger 26 and then supplied again to the gas cooler 24 via the coolant circulation line 34. The gas 5 after the advanced desulfurization gas cooling treatment is sent to the downstream decarbonation means (not shown) via the gas discharge line 32.

このように、高度脱硫部22でガスを高度脱硫処理した後、ガス冷却部24でガス冷却処理することにより、塩基性吸収液等の飛散を高度に防止できるという利点がある。   As described above, after the gas is highly desulfurized by the advanced desulfurization unit 22, the gas cooling process is performed by the gas cooling unit 24, thereby advantageously preventing scattering of the basic absorbent and the like.

図3は、本発明における高度脱硫ガス冷却手段の別の実施の形態の概要を示す模式図である。図3に示すように、高度脱硫ガス冷却塔41は、塔の底部から順に、高度脱硫ガス冷却部42、高度脱硫ガス冷却部デミスタ43を備えている。高度脱硫ガス冷却塔41には、高度脱硫ガス冷却塔41の底部に脱硫処理後ガス3を導入するガス導入ライン46、高度脱硫ガス冷却塔41の頂上部から高度脱硫ガス冷却処理後ガス5を脱炭酸手段(図示省略)に送るガス排出ライン47、高度脱硫ガス冷却部42の底部から上部に塩基性吸収液4を送る吸収液循環ライン48、吸収液循環ライン48に塩基性化合物を含む供給液9を供給する吸収液添加ライン49が設けられている。また、吸収液循環ライン48には、塩基性吸収液8を冷却する熱交換器44が設けられている。   FIG. 3 is a schematic view showing an outline of another embodiment of the advanced desulfurization gas cooling means in the present invention. As shown in FIG. 3, the advanced desulfurization gas cooling tower 41 includes an advanced desulfurization gas cooling section 42 and an advanced desulfurization gas cooling section demister 43 in order from the bottom of the tower. In the advanced desulfurization gas cooling tower 41, a gas introduction line 46 for introducing the gas 3 after desulfurization treatment to the bottom of the advanced desulfurization gas cooling tower 41, and the gas 5 after the advanced desulfurization gas cooling treatment from the top of the advanced desulfurization gas cooling tower 41. A gas discharge line 47 for sending to a decarbonation means (not shown), an absorption liquid circulation line 48 for sending the basic absorbent 4 from the bottom to the top of the advanced desulfurization gas cooling section 42, and a supply containing a basic compound in the absorption liquid circulation line 48 An absorption liquid addition line 49 for supplying the liquid 9 is provided. The absorption liquid circulation line 48 is provided with a heat exchanger 44 for cooling the basic absorption liquid 8.

このような構成によれば、先ず、脱硫処理後ガス3をガス導入ライン46から高度脱硫ガス冷却塔41内に導入する。一方、塩基性吸収液4は、熱交換器44により冷却された後、吸収液循環ライン48を介して高度脱硫ガス冷却部42に供給される。高度脱硫ガス冷却部42では、導入されたガス3と冷却された塩基性吸収液4とが接触することにより、ガス3中の硫黄酸化物が高度に除去され、ガス中の硫黄酸化物濃度が5ppm以下となるとともに、ガスは冷却され、ガスの温度が50℃以下となる。ガスに同伴する塩基性吸収液4のミストは、高度脱硫ガス冷却部デミスタ43により除去回収する。回収された塩基性吸収液8は、熱交換器44にて冷却した後、吸収液循環ライン48を介して再び高度脱硫ガス冷却部43に供給する。なお、塩基性吸収液4中の塩基性化合物の濃度は高度脱硫ガス冷却処理により次第に低下するので、図2と同様に、塩基性化合物を含む供給液9を吸収液添加ライン36から添加する。高度脱硫ガス冷却処理後ガス5は、ガス排出ライン42を介して後流の脱炭酸手段(図示省略)に送る。   According to such a configuration, first, the desulfurized gas 3 is introduced into the advanced desulfurization gas cooling tower 41 from the gas introduction line 46. On the other hand, the basic absorbent 4 is cooled by the heat exchanger 44 and then supplied to the advanced desulfurization gas cooling section 42 via the absorbent circulation line 48. In the advanced desulfurization gas cooling unit 42, the introduced gas 3 and the cooled basic absorbent 4 come into contact with each other, so that sulfur oxide in the gas 3 is highly removed, and the concentration of sulfur oxide in the gas is reduced. While being 5 ppm or less, the gas is cooled and the temperature of the gas is 50 ° C. or less. The mist of the basic absorbent 4 accompanying the gas is removed and recovered by the advanced desulfurization gas cooling section demister 43. The recovered basic absorbent 8 is cooled by the heat exchanger 44 and then supplied again to the advanced desulfurization gas cooling section 43 via the absorbent circulation line 48. Since the concentration of the basic compound in the basic absorbent 4 gradually decreases due to the advanced desulfurization gas cooling treatment, the supply liquid 9 containing the basic compound is added from the absorbent addition line 36 as in FIG. The advanced desulfurization gas cooling-treated gas 5 is sent to a downstream decarbonation means (not shown) via a gas discharge line 42.

このように、高度脱硫ガス冷却部42で、高度脱硫処理とガス冷却処理を同時に行うことにより、機器構成を簡素化できるという利点がある。   As described above, the advanced desulfurization gas cooling section 42 performs the advanced desulfurization process and the gas cooling process at the same time, and thus has an advantage that the device configuration can be simplified.

図4は、本発明における脱炭酸手段の一実施の形態の概要を示す模式図である。図4に示すように、脱炭酸手段は、吸収塔51と再生塔56とから主に構成される。吸収塔51は、塔の底部から順に、二酸化炭素吸収部52、二酸化炭素吸収部デミスタ53、水洗部54、水洗部デミスタ55を備えている。吸収塔51には、二酸素炭素吸収部52と二酸素炭素吸収部デミスタ53の間に塩基性アミン化合物を含む再生吸収液75を供給するライン、二酸素炭素吸収部デミスタ53と水洗部54の間から洗浄液76を取り出し、これを水洗部54と水洗部デミスタ55の間に供給するライン、吸収塔51の底部から高度脱硫ガス冷却処理後ガス5と接触後の負荷吸収液74を再生塔56に送るライン、吸収塔51の頂上部から脱炭酸処理後ガス7を放出又は次の工程(図示省略)に導入するラインが設けられている。上記の再生吸収液75を供給するラインと洗浄水76を供給するラインとには、それぞれ熱交換器66、67が設けられている。   FIG. 4 is a schematic diagram showing an outline of an embodiment of the decarboxylation means in the present invention. As shown in FIG. 4, the decarboxylation means is mainly composed of an absorption tower 51 and a regeneration tower 56. The absorption tower 51 includes, in order from the bottom of the tower, a carbon dioxide absorption section 52, a carbon dioxide absorption section demister 53, a water washing section 54, and a water washing section demister 55. The absorption tower 51 has a line for supplying a regenerated absorbent 75 containing a basic amine compound between the dioxygen carbon absorbing section 52 and the dioxygen carbon absorbing section demister 53, the dioxygen carbon absorbing section demister 53 and the water washing section 54. The cleaning liquid 76 is taken out from between the lines, and this is supplied between the water washing section 54 and the water washing section demister 55. From the bottom of the absorption tower 51, the desorbed gas 5 after contact with the gas 5 after the advanced desulfurization gas cooling treatment is regenerated. And a line for releasing the decarboxylated gas 7 from the top of the absorption tower 51 or introducing it to the next step (not shown). Heat exchangers 66 and 67 are provided on the line supplying the regenerated absorbent 75 and the line supplying the cleaning water 76, respectively.

再生塔56は、塔の底部から順に、回収部57、濃縮部58を備えている。再生塔56には、回収部57と濃縮部58の間に負荷吸収液74を導入するライン、再生塔56の底部から加熱後の負荷吸収液74をリボイラ61及びリクレーマ62に供給するライン、再生塔56の頂上部から加熱により発生する二酸化炭素含有ガス72を二酸化炭素分離器64に供給するラインが設けられている。この二酸化炭素分離器64に二酸化炭素含有ガス72を供給するラインには、コンデンサ63が設けられている。   The regeneration tower 56 includes a recovery unit 57 and a concentration unit 58 in order from the bottom of the tower. In the regeneration tower 56, a line for introducing the load absorbing liquid 74 between the recovery section 57 and the concentrating section 58, a line for supplying the heated load absorbing liquid 74 to the reboiler 61 and the reclaimer 62 from the bottom of the regeneration tower 56, regeneration A line for supplying a carbon dioxide-containing gas 72 generated by heating from the top of the column 56 to the carbon dioxide separator 64 is provided. A capacitor 63 is provided in the line for supplying the carbon dioxide-containing gas 72 to the carbon dioxide separator 64.

リボイラ61には、蒸気71を再生塔56の回収部57下部に供給するラインと、再生吸収液75を吸収塔51に供給するラインが設けられている。この再生吸収液75を供給するラインには、吸収塔51から再生塔56に負荷吸収液74を供給するラインとの間で熱交換を行うための熱交換器65が設けられている。また、リクレーマ62には、リクレーミング操作後の再生吸収液75を再生塔56の回収部57下部に供給するラインが設けられている。さらに、二酸化炭素分離器64には、高純度二酸化炭素73を放出又は次工程(図示省略)に供給するラインと、生成した水を再生塔還流水77として再生塔56の濃縮部58上部及び洗浄水76として吸収塔51に供給するラインが設けられている。   The reboiler 61 is provided with a line for supplying the steam 71 to the lower part of the recovery unit 57 of the regeneration tower 56 and a line for supplying the regenerated absorbent 75 to the absorption tower 51. A heat exchanger 65 for exchanging heat with the line supplying the load absorbing liquid 74 from the absorption tower 51 to the regeneration tower 56 is provided in the line supplying the regeneration absorbing liquid 75. The reclaimer 62 is provided with a line for supplying the regenerated absorbent 75 after the reclaiming operation to the lower part of the recovery unit 57 of the regenerator 56. Further, the carbon dioxide separator 64 has a line for releasing the high-purity carbon dioxide 73 or supplying it to the next step (not shown), and the generated water as the regeneration tower reflux water 77 and the upper part of the concentration section 58 of the regeneration tower 56 and the washing. A line for supplying water 76 to the absorption tower 51 is provided.

このような構成によれば、先ず、脱炭酸手段では、高度脱硫ガス冷却処理後ガス5を吸収塔51に導入し、二酸化炭素吸収部52で塩基性アミン化合物を含む再生吸収液75と接触させ、ガス5中の二酸化炭素と残存する硫黄酸化物を除去する。さらにガスを水洗部54で水洗した後、脱炭酸処理後ガス7として吸収塔51から排出する。一方、接触後の負荷吸収液74は、再生塔56に送り、リボイラ61へ供給されるスチーム(図示省略)により加熱して、二酸化炭素を放散する。一方、負荷吸収液44中の硫黄酸化物の大部分は放散されずに硫酸塩あるいは亜硫酸塩として吸収液中に残存する。   According to such a configuration, first, in the decarbonation means, the gas 5 after the advanced desulfurization gas cooling treatment is introduced into the absorption tower 51 and is brought into contact with the regenerated absorbent 75 containing the basic amine compound in the carbon dioxide absorption section 52. The carbon dioxide and the remaining sulfur oxide in the gas 5 are removed. Further, the gas is washed in the water washing section 54 and then discharged from the absorption tower 51 as the decarboxylated gas 7. On the other hand, the load absorbing liquid 74 after contact is sent to the regeneration tower 56 and heated by steam (not shown) supplied to the reboiler 61 to dissipate carbon dioxide. On the other hand, most of the sulfur oxides in the load absorbing solution 44 are not dissipated and remain in the absorbing solution as sulfates or sulfites.

吸収液中の硫酸塩あるいは亜硫酸塩を取り除く場合には、吸収液をリクレーマ62に送る。リクレーマ62では、塩基性ナトリウム化合物78を添加した後、スチーム(図示省略)により加熱して、アミン化合物を留出して再生塔56に送る。アミン化合物と分離された硫酸塩あるいは亜硫酸塩は、硫酸ナトリウム又は硫酸ナトリウムと亜硫酸ナトリウムの混合物であるスラッジ79としてリクレーマ62から排出する。通常、二酸化炭素を放散した再生吸収液75は、再び高度脱硫ガス冷却処理後ガス5中の二酸化炭素を吸収するために、吸収塔51に供給する。   When removing the sulfate or sulfite from the absorbent, the absorbent is sent to the reclaimer 62. In the reclaimer 62, after adding the basic sodium compound 78, it heats with steam (illustration omitted), distills an amine compound, and sends it to the regeneration tower 56. The sulfate or sulfite separated from the amine compound is discharged from the reclaimer 62 as sludge 79 which is sodium sulfate or a mixture of sodium sulfate and sodium sulfite. Usually, the regenerated absorbent 75 that has diffused carbon dioxide is supplied to the absorption tower 51 in order to absorb carbon dioxide in the gas 5 after the advanced desulfurization gas cooling treatment again.

一方、回収部57で放散された二酸化炭素は、濃縮部58で洗浄した後、再生塔56から排出する。再生塔56から排出された二酸化炭素含有ガス72は、コンデンサ63で冷却した後、二酸化炭素分離器64に導入する。二酸化炭素分離器64では、高純度二酸化炭素73と水とに分離し、水は、洗浄水76として吸収塔51に供給するとともに、再生塔還流水77として再生塔56に供給する。   On the other hand, the carbon dioxide diffused by the recovery unit 57 is discharged from the regeneration tower 56 after being washed by the concentration unit 58. The carbon dioxide-containing gas 72 discharged from the regeneration tower 56 is cooled by the condenser 63 and then introduced into the carbon dioxide separator 64. The carbon dioxide separator 64 separates the water into high-purity carbon dioxide 73 and water, and the water is supplied as washing water 76 to the absorption tower 51 and is supplied as regeneration tower reflux water 77 to the regeneration tower 56.

このように、再生塔56において、吸収液中に吸収された硫黄酸化物は硫酸塩あるいは亜硫酸塩として残存するため、これを取り除くためには、吸収液をリクレーマ62に送り、リクレーミングする必要がある。本発明によれば、塩基性吸収液によって、予めガス中の硫黄酸化物濃度を5ppm以下まで除去しているため、脱炭酸吸収液には硫黄酸化物がほとんど蓄積されないことを後述する実施例等によって検証している。よって、リクレーマ62による脱炭酸吸収液のリクレーミング頻度を減少させることができ、運転コスト等を低減させることができる。   Thus, in the regeneration tower 56, the sulfur oxides absorbed in the absorption liquid remain as sulfates or sulfites, and in order to remove them, it is necessary to send the absorption liquid to the reclaimer 62 and reclaim it. . According to the present invention, since the sulfur oxide concentration in the gas is previously removed to 5 ppm or less by the basic absorbing liquid, the decarbonation absorbing liquid hardly accumulates sulfur oxide in the examples described later. It is verified by. Therefore, the reclaiming frequency of the decarboxylated absorbent by the reclaimer 62 can be reduced, and the operating cost and the like can be reduced.

以下、実施例と比較例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
石炭焚き燃焼排ガス(200m3N/h)を対象に、湿式石灰石膏法による脱硫処理、濃度2重量%の炭酸ナトリウム水溶液による高度脱硫処理、ガスからの凝縮水を冷却してガス冷却液として用いるガス冷却処理、アルカノールアミン水溶液による脱炭酸処理を順次行った。この際、高度脱硫処理とガス冷却処理は図2に示した構成と同様の装置を用いて実施した。そして、脱炭酸手段入口でのガス温度及び硫黄酸化物濃度と、脱炭酸吸収液への硫黄酸化物蓄積量と、脱炭酸手段出口でのガスに同伴するアミン化合物量とを測定した。この結果を表1に示す。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
Example 1
For coal-fired combustion exhaust gas (200m 3 N / h), desulfurization treatment by wet lime gypsum method, advanced desulfurization treatment with 2% by weight sodium carbonate aqueous solution, cooling condensed water from gas and using as gas coolant Gas cooling treatment and decarboxylation treatment with an alkanolamine aqueous solution were sequentially performed. At this time, the advanced desulfurization treatment and the gas cooling treatment were carried out using the same apparatus as that shown in FIG. And the gas temperature and sulfur oxide density | concentration in a decarboxylation means inlet_port | entrance, the amount of sulfur oxide accumulation in a decarboxylation absorption liquid, and the amount of amine compounds accompanying the gas in a decarboxylation means exit were measured. The results are shown in Table 1.

(比較例1)
高度脱硫処理とガス冷却処理を行わなかったことを除いて、実験例1と同様にして、石炭焚き燃焼排ガスの脱硫処理と、脱炭酸処理を順次行った。この結果を実験例1の結果と併せて表1に示す。
(Comparative Example 1)
Except that the advanced desulfurization treatment and the gas cooling treatment were not performed, the desulfurization treatment and the decarboxylation treatment of the coal-fired combustion exhaust gas were sequentially performed in the same manner as in Experimental Example 1. The results are shown in Table 1 together with the results of Experimental Example 1.

Figure 0004216152
Figure 0004216152

表1に示したとおり、高度脱硫ガス冷却処理を行った実験例1では、脱炭酸手段入口でのガス温度が40℃、硫黄酸化物濃度が1ppmであったが、高度脱硫ガス冷却処理をしなかった比較例1では、脱炭酸手段入口でのガス温度が52℃と高温で、また硫黄酸化物濃度も30ppmと高濃度であった。実施例1における脱炭酸吸収液への硫黄酸化物蓄積量は、比較例1に比べて0.03倍であり、また脱炭酸手段出口のガスに同伴するアミン量も、比較例1に比べて0.3倍であった。よって、脱炭酸処理を行う前に予め硫黄酸化物濃度を低下させ、ガス温度を低下させておくことで、脱炭酸吸収液への硫黄酸化物の蓄積と脱炭酸手段からガスに同伴して放出されるアミン量を抑えることができた。   As shown in Table 1, in Experimental Example 1 in which advanced desulfurization gas cooling treatment was performed, the gas temperature at the decarbonation means inlet was 40 ° C. and the sulfur oxide concentration was 1 ppm, but advanced desulfurization gas cooling treatment was performed. In Comparative Example 1 that did not exist, the gas temperature at the decarbonation means inlet was as high as 52 ° C., and the sulfur oxide concentration was as high as 30 ppm. The amount of sulfur oxide accumulated in the decarboxylation absorbent in Example 1 is 0.03 times that in Comparative Example 1, and the amount of amine accompanying the gas at the decarboxylation means outlet is also compared with that in Comparative Example 1. It was 0.3 times. Therefore, by reducing the sulfur oxide concentration and reducing the gas temperature in advance before decarboxylation, sulfur oxide accumulates in the decarboxylation absorbent and is released from the decarboxylation means along with the gas. The amount of amine produced can be suppressed.

本発明に係る脱硫脱炭酸装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the desulfurization decarbonation apparatus which concerns on this invention. 本発明に適用できる高度脱硫ガス冷却手段の一実施の形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the high desulfurization gas cooling means applicable to this invention. 本発明に適用できる高度脱硫ガス冷却手段の他の実施の形態を示す模式図である。It is a schematic diagram which shows other embodiment of the high desulfurization gas cooling means applicable to this invention. 本発明に適用できる脱炭酸手段の一実施の形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the decarboxylation means applicable to this invention.

符号の説明Explanation of symbols

1 燃焼排ガス
2 脱硫吸収液
3 脱硫処理後ガス
4 塩基性吸収液
5 高度脱硫ガス冷却処理後ガス
6 脱炭酸吸収液
7 脱炭酸処理後ガス
10 脱硫手段
20 高度脱硫ガス冷却手段
21、41 高度脱硫ガス冷却塔
22 高度脱硫部
23 高度脱硫部デミスタ
24 ガス冷却部
25 ガス冷却部デミスタ
26、44 熱交換器
31、46 ガス導入ライン
32、47 ガス排出ライン
33、48 吸収液循環ライン
34 冷却液循環ライン
35 冷却液抜出ライン
36、49 供給液添加ライン
37、45 吸収液抜出ライン
42 高度脱硫ガス冷却部
43 高度脱硫ガス冷却部デミスタ
50 脱炭酸手段
51 吸収塔
52 二酸化炭素吸収部
53 二酸化炭素吸収部デミスタ
54 水洗部
55 水洗部デミスタ
56 再生塔
57 回収部
58 濃縮部
61 リボイラ
62 リクレーマ
63 コンデンサ
64 二酸化炭素分離器
65〜67 熱交換器
71 蒸気
72 二酸化炭素含有ガス
73 高純度二酸化炭素
74 負荷吸収液
75 再生吸収液
76 洗浄水
77 再生塔還流水
78 塩基性ナトリウム化合物
79 スラッジ
DESCRIPTION OF SYMBOLS 1 Combustion exhaust gas 2 Desulfurization absorption liquid 3 Gas after desulfurization treatment 4 Basic absorption liquid 5 Gas after advanced desulfurization gas cooling treatment 6 Decarbonation absorption liquid 7 Gas after decarbonation treatment 10 Desulfurization means 20 Advanced desulfurization gas cooling means 21, 41 Advanced desulfurization gas Gas cooling tower 22 Advanced desulfurization section 23 Advanced desulfurization section demister 24 Gas cooling section 25 Gas cooling section demister 26, 44 Heat exchanger 31, 46 Gas introduction line 32, 47 Gas discharge line 33, 48 Absorbing liquid circulation line 34 Cooling liquid circulation Line 35 Coolant extraction line 36, 49 Supply liquid addition line 37, 45 Absorption liquid extraction line 42 Advanced desulfurization gas cooling part 43 Advanced desulfurization gas cooling part demister 50 Decarbonation means 51 Absorption tower 52 Carbon dioxide absorption part 53 Carbon dioxide Absorption section demister 54 Flushing section 55 Flushing section demister 56 Regeneration tower 57 Recovery section 58 Concentration section 61 Boiler 62 Reclaimer 63 Condenser 64 Carbon dioxide separator 65-67 Heat exchanger 71 Steam 72 Carbon dioxide containing gas 73 High purity carbon dioxide 74 Load absorption liquid 75 Regeneration absorption liquid 76 Washing water 77 Regeneration tower reflux water 78 Basic sodium compound 79 Sludge

Claims (12)

硫黄酸化物及び二酸化炭素を含有するガスを塩基性カルシウム化合物を含む吸収液に接触させて、前記ガス中から硫黄酸化物を除去する脱硫工程と、前記脱硫工程で脱硫処理されたガスを塩基性吸収液に接触させてガス中の硫黄酸化物濃度が5ppm以下になるようにさらに硫黄酸化物を除去し、またガスの温度を50℃以下に冷却する高度脱硫ガス冷却工程と、前記高度脱硫ガス冷却工程で高度脱硫ガス冷却処理されたガスを塩基性アミン化合物を含む吸収液を接触させて、前記ガス中から二酸化炭素を除去する脱炭酸工程とを含んでなる脱硫脱炭酸方法であって、前記高度脱硫ガス冷却工程が、前記脱硫工程で脱硫処理されたガスを塩基性吸収液に接触させる高度脱硫工程と、この高度脱硫工程で高度脱硫処理されたガスを冷却するガス冷却工程とを含み、前記ガス冷却工程で得られる凝縮水を、前記高度脱硫工程の前記塩基性吸収液に混合する脱硫脱炭酸方法A desulfurization step for removing sulfur oxide from the gas by bringing a gas containing sulfur oxide and carbon dioxide into contact with an absorbing solution containing a basic calcium compound, and the gas desulfurized in the desulfurization step is made basic An advanced desulfurization gas cooling step in which sulfur oxide is further removed so that the sulfur oxide concentration in the gas is 5 ppm or less by contacting with the absorbing liquid, and the temperature of the gas is cooled to 50 ° C. or less; A desulfurization decarbonation method comprising a decarboxylation step of contacting a gas subjected to a high desulfurization gas cooling treatment in a cooling step with an absorbent containing a basic amine compound to remove carbon dioxide from the gas , The advanced desulfurization gas cooling step includes an advanced desulfurization step in which the gas desulfurized in the desulfurization step is brought into contact with a basic absorbent, and a gas that cools the gas highly desulfurized in the advanced desulfurization step. Retirement and a step, the condensed water obtained by the gas cooling step, said basic absorbent liquid desulfurizing decarboxylation method of mixing the said high desulfurization step. 前記塩基性吸収液が塩基性ナトリウム化合物を含む吸収液である請求項1に記載の脱硫脱炭酸方法。 The desulfurization and decarboxylation method according to claim 1, wherein the basic absorbent is an absorbent containing a basic sodium compound. 前記ガス冷却工程で得られる凝縮水をガス冷却液として使用する請求項1又は2に記載の脱硫脱炭酸方法。 The desulfurization decarboxylation method according to claim 1 or 2 , wherein the condensed water obtained in the gas cooling step is also used as a gas coolant. 前記ガス冷却液を接触させたガス中から、ガスに同伴する前記ガス冷却液を除去する請求項1〜3のいずれかに記載の脱硫脱炭酸方法。 The desulfurization and decarboxylation method according to any one of claims 1 to 3 , wherein the gas coolant accompanying the gas is removed from the gas in contact with the gas coolant. 硫黄酸化物及び二酸化炭素を含有するガスを塩基性カルシウム化合物を含む吸収液に接触させて、前記ガス中から硫黄酸化物を除去する脱硫工程と、前記脱硫工程で脱硫処理されたガスを塩基性吸収液に接触させてガス中の硫黄酸化物濃度が5ppm以下になるようにさらに硫黄酸化物を除去し、またガスの温度を50℃以下に冷却する高度脱硫ガス冷却工程と、前記高度脱硫ガス冷却工程で高度脱硫ガス冷却処理されたガスを塩基性アミン化合物を含む吸収液を接触させて、前記ガス中から二酸化炭素を除去する脱炭酸工程とを含んでなる脱硫脱炭酸方法であって、前記高度脱硫ガス冷却工程が、前記塩基性吸収液を冷却してから前記ガスに接触させることにより、硫黄酸化物の除去とガスの冷却を同時に行う脱硫脱炭酸方法。 A desulfurization step for removing sulfur oxide from the gas by bringing a gas containing sulfur oxide and carbon dioxide into contact with an absorbing solution containing a basic calcium compound, and the gas desulfurized in the desulfurization step is made basic An advanced desulfurization gas cooling step in which sulfur oxide is further removed so that the sulfur oxide concentration in the gas is 5 ppm or less by contacting with the absorbing liquid, and the temperature of the gas is cooled to 50 ° C. or less; A desulfurization decarbonation method comprising a decarboxylation step of contacting a gas subjected to a high desulfurization gas cooling treatment in a cooling step with an absorbent containing a basic amine compound to remove carbon dioxide from the gas, The desulfurization decarbonation method , wherein the advanced desulfurization gas cooling step simultaneously removes sulfur oxides and cools the gas by contacting the gas after cooling the basic absorbent. 前記塩基性吸収液を接触させたガス中から、ガスに同伴する前記塩基性吸収液を除去する請求項1〜のいずれかに記載の脱硫脱炭酸方法。 The desulfurization and decarboxylation method according to any one of claims 1 to 5 , wherein the basic absorption liquid accompanying the gas is removed from the gas in contact with the basic absorption liquid. ガスに塩基性カルシウム化合物を含む吸収液を接触させる脱硫手段と、ガスに塩基性吸収液を接触させ、またガスを冷却する高度脱硫ガス冷却手段と、ガスに塩基性アミン化合物を含む吸収液を接触させる脱炭酸手段と、前記脱硫手段の脱硫処理後ガスを前記高度脱硫ガス冷却手段に導入する配管と、前記高度脱硫ガス冷却手段で冷却したガスを前記脱炭酸手段に導入する配管とを含んでなる脱硫脱炭酸装置であって、前記高度脱硫ガス冷却手段が、ガスに塩基性吸収液を接触させる高度脱硫部と、前記塩基性吸収液を接触させたガスを冷却するガス冷却部とを含んでなり、前記高度脱硫ガス冷却手段が、前記ガス冷却部で得られる凝縮水を前記塩基性吸収液に混合する配管を含む脱硫脱炭酸装置A desulfurization means for contacting an absorption liquid containing a basic calcium compound with a gas, an advanced desulfurization gas cooling means for contacting the basic absorption liquid with a gas and cooling the gas, and an absorption liquid containing a basic amine compound in the gas A decarbonation means to be brought into contact; a pipe for introducing the desulfurized gas of the desulfurization means into the advanced desulfurization gas cooling means; and a pipe for introducing the gas cooled by the advanced desulfurization gas cooling means into the decarbonation means. The advanced desulfurization gas cooling means comprises: an advanced desulfurization unit that brings a basic absorbent into contact with gas; and a gas cooling unit that cools the gas brought into contact with the basic absorbent. A desulfurization and decarbonation apparatus comprising a pipe for mixing the condensed water obtained in the gas cooling section with the basic absorbing liquid . 前記塩基性吸収液が塩基性ナトリウム化合物を含む吸収液である請求項に記載の脱硫脱炭酸装置。 The desulfurization decarboxylation apparatus according to claim 7 , wherein the basic absorption liquid is an absorption liquid containing a basic sodium compound. 前記高度脱硫ガス冷却手段が、前記ガス冷却部で得られる凝縮水を前記ガス冷却部にガス冷却液として供給する配管を含む請求項7又は8に記載の脱硫脱炭酸装置。 The desulfurization decarbonation apparatus according to claim 7 or 8 , wherein the advanced desulfurization gas cooling means includes a pipe for supplying condensed water obtained in the gas cooling unit to the gas cooling unit as a gas coolant. 前記高度脱硫ガス冷却手段が、ガスに同伴する前記ガス冷却液をガス中から除去するデミスタを含む請求項7〜9のいずれかに記載の脱硫脱炭酸装置。 The desulfurization decarboxylation apparatus according to any one of claims 7 to 9, wherein the advanced desulfurization gas cooling means includes a demister that removes the gas coolant accompanying the gas from the gas. ガスに塩基性カルシウム化合物を含む吸収液を接触させる脱硫手段と、ガスに塩基性吸収液を接触させ、またガスを冷却する高度脱硫ガス冷却手段と、ガスに塩基性アミン化合物を含む吸収液を接触させる脱炭酸手段と、前記脱硫手段の脱硫処理後ガスを前記高度脱硫ガス冷却手段に導入する配管と、前記高度脱硫ガス冷却手段で冷却したガスを前記脱炭酸手段に導入する配管とを含んでなる脱硫脱炭酸装置であって、前記高度脱硫ガス冷却手段が、前記塩基性吸収液を冷却する吸収液冷却手段を含む脱硫脱炭酸装置。 A desulfurization means for contacting an absorption liquid containing a basic calcium compound with a gas, an advanced desulfurization gas cooling means for contacting the basic absorption liquid with a gas and cooling the gas, and an absorption liquid containing a basic amine compound in the gas A decarbonation means to be brought into contact; a pipe for introducing the desulfurized gas of the desulfurization means into the advanced desulfurization gas cooling means; and a pipe for introducing the gas cooled by the advanced desulfurization gas cooling means into the decarbonation means. a desulfurization decarboxylation apparatus consisting of the highly desulfurized gas cooling means comprises an absorbent liquid cooling means for cooling the basic absorption liquid desulfurization decarbonation apparatus. 前記高度脱硫ガス冷却手段が、ガスに同伴する前記塩基性吸収液をガス中から除去するデミスタを含む請求項7〜11のいずれかに記載の脱硫脱炭酸装置。 The desulfurization decarboxylation apparatus according to any one of claims 7 to 11 , wherein the advanced desulfurization gas cooling means includes a demister that removes the basic absorbent accompanying the gas from the gas.
JP2003322849A 2003-09-16 2003-09-16 Desulfurization decarboxylation method and apparatus Expired - Lifetime JP4216152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322849A JP4216152B2 (en) 2003-09-16 2003-09-16 Desulfurization decarboxylation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322849A JP4216152B2 (en) 2003-09-16 2003-09-16 Desulfurization decarboxylation method and apparatus

Publications (2)

Publication Number Publication Date
JP2005087828A JP2005087828A (en) 2005-04-07
JP4216152B2 true JP4216152B2 (en) 2009-01-28

Family

ID=34454083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322849A Expired - Lifetime JP4216152B2 (en) 2003-09-16 2003-09-16 Desulfurization decarboxylation method and apparatus

Country Status (1)

Country Link
JP (1) JP4216152B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568193B2 (en) 2012-10-11 2017-02-14 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
WO2017122478A1 (en) 2016-01-14 2017-07-20 三菱重工業株式会社 Co2 recovery device and recovery method
US11433350B2 (en) 2016-10-19 2022-09-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959303B2 (en) * 2006-11-21 2012-06-20 三菱重工業株式会社 Exhaust gas treatment method and treatment apparatus
JP5383339B2 (en) * 2009-06-17 2014-01-08 三菱重工業株式会社 Concentration management method for CO2 absorbent used in CO2 recovery equipment
WO2011152550A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
JPWO2011152551A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
CA2801169C (en) 2010-05-31 2015-02-17 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
AU2011259874B2 (en) * 2010-05-31 2014-08-14 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
US8668889B2 (en) * 2010-05-31 2014-03-11 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
JPWO2011152548A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
JPWO2011152546A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
JP2012143699A (en) * 2011-01-11 2012-08-02 Babcock Hitachi Kk Exhaust gas treating system
JP2012240034A (en) * 2011-05-24 2012-12-10 Mitsubishi Heavy Ind Ltd Flue gas desulfurization equipment provided with flue gas finishing desulfurization device, and exhaust gas treatment system using the same
US9321006B2 (en) 2012-05-11 2016-04-26 Alstom Technology Ltd Oxidation control for improved flue gas desulfurization performance
US9321025B2 (en) 2012-05-11 2016-04-26 Alstom Technology Ltd Oxidation control for improved flue gas desulfurization performance
JP6057545B2 (en) 2012-05-25 2017-01-11 三菱重工業株式会社 Exhaust gas treatment equipment
US8486357B1 (en) * 2012-09-12 2013-07-16 Mitsubishi Heavy Industries, Ltd. Desulfurization apparatus and method of using condensed water produced therein
WO2014148048A1 (en) * 2013-03-18 2014-09-25 川崎重工業株式会社 Cleaning/cooling device, egr unit and engine system
JP2015097982A (en) * 2013-11-18 2015-05-28 三菱日立パワーシステムズ株式会社 Reclaiming method
US10919016B2 (en) 2017-02-15 2021-02-16 General Electric Technology Gmbh Oxidation control for improved flue gas desulfurization performance
JP7085818B2 (en) 2017-10-31 2022-06-17 三菱重工エンジニアリング株式会社 Gas treatment device and gas treatment method, CO2 recovery device and CO2 recovery method
CN113891758A (en) 2019-05-28 2022-01-04 株式会社神户制钢所 Gas processing method and gas processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568193B2 (en) 2012-10-11 2017-02-14 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
WO2017122478A1 (en) 2016-01-14 2017-07-20 三菱重工業株式会社 Co2 recovery device and recovery method
US10953361B2 (en) 2016-01-14 2021-03-23 Mitsubishi Heavy Industries Engineering, Ltd. CO2 recovery device and recovery method
US11433350B2 (en) 2016-10-19 2022-09-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method

Also Published As

Publication number Publication date
JP2005087828A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4216152B2 (en) Desulfurization decarboxylation method and apparatus
JP4959303B2 (en) Exhaust gas treatment method and treatment apparatus
EP1781400B1 (en) Cleaning of combustion gas including the removal of co2
AU2012212630B2 (en) Gas treatment process and system
JP6239519B2 (en) Desulfurization apparatus and method of using condensed water generated there
CA2824740C (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
AU2012279322B2 (en) Chilled ammonia based CO2 capture system with ammonia recovery and processes of use
US9399188B2 (en) Apparatus for removing carbon dioxide in combustion exhaust gas
JP2001025627A (en) Recovery of carbon dioxide using composite amine blend
JP2002126439A (en) Method and apparatus for recovering amine and decarbonator provided with the apparatus
US9216380B1 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
JPH09262432A (en) Method for recovering basic amine compound in waste gas of decarboxylation column
JP2015211969A (en) System and method for processing exhaust gas
KR101937801B1 (en) Method and apparatus for removing carbon dioxide and SOx from flue gas
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
JP4838489B2 (en) Method and apparatus for removing nitrogen dioxide and carbon dioxide
JP4699039B2 (en) Exhaust gas treatment method and treatment apparatus
JP3716195B2 (en) Desulfurization decarboxylation method
JP2016112482A (en) Carbon dioxide collection method and device
JPH0521610B2 (en)
KR101630054B1 (en) System for collecting acid gas and method for collecting the same
JP2015020079A (en) Method for recovering carbon dioxide in processed gas, and apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Ref document number: 4216152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term