JP4200422B2 - Glass blank, information recording medium substrate, and information recording medium manufacturing method - Google Patents

Glass blank, information recording medium substrate, and information recording medium manufacturing method Download PDF

Info

Publication number
JP4200422B2
JP4200422B2 JP2002217745A JP2002217745A JP4200422B2 JP 4200422 B2 JP4200422 B2 JP 4200422B2 JP 2002217745 A JP2002217745 A JP 2002217745A JP 2002217745 A JP2002217745 A JP 2002217745A JP 4200422 B2 JP4200422 B2 JP 4200422B2
Authority
JP
Japan
Prior art keywords
glass
glass blank
information recording
blank
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002217745A
Other languages
Japanese (ja)
Other versions
JP2004059355A (en
Inventor
明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2002217745A priority Critical patent/JP4200422B2/en
Publication of JP2004059355A publication Critical patent/JP2004059355A/en
Application granted granted Critical
Publication of JP4200422B2 publication Critical patent/JP4200422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/088Flat discs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスブランク、情報記録媒体用基板および情報記録媒体それぞれの製造方法に関する。さらに詳しくは、本発明は、情報記録媒体用基板の中間成形体として用いられ、かつ安定した外径、肉厚を有し、うねりなどの発生が抑制された精度の良好な薄板状のガラスブランクをダイレクトプレスによって製造する方法、このガラスブランクから情報記録媒体用基板を製造する方法、および該基板を用いて情報記録媒体を製造する方法に関するものである。
【0002】
【従来の技術】
パソコン等に大容量記録手段として利用されているハードディスクの基板として、ガラス製あるいはガラスセラミックス製の基板が高性能かつ高信頼性を有するものとして広く使用されている。パソコンの普及、情報ネットワーク社会の発展に伴い、このようなガラス製あるいはガラスセラミックス製の情報記録媒体用基板及び情報記録媒体の需要は、近年急速に伸びてきており、そして、その需要に対応すべく、高生産性を有する基板製造技術が望まれている。そのような技術のうちで最も有力な方法としては、作製しようとする基板の形状に研削、研磨しろ等、あるいは結晶化時の体積変化等を見込んで基板に近似する形状を有するガラス製中間成形体を、成形型による溶融ガラスのプレス成形により作製する、いわゆるダイレクトプレス法と呼ばれる方法を挙げることができる。
【0003】
情報記録媒体用基板の中間成形体をダイレクトプレスによって生産する方法として、特開平12−53431号公報に開示されている方法が知られている。この方法においては、ハードディスク基板の内孔加工が容易になるよう、中間体成形の段階で内孔を開ける部分にノッチと呼ばれる溝を設けている。そして、供給される溶融ガラスの量が過剰であっても、中間成形体の周縁部が胴型などで規制されず、ガラスの余剰体積を周縁部に逃がすことによって供給されるガラスの体積にばらつきがあっても毎回、安定した厚みの中間成形体を得るようにしている。
【0004】
上記公報に記載されている中間成形体とは別に、ノッチが形成されていない円板状の中間体もオーソドックスなものとして知られている。この場合、中間成形体の周縁部は成形型によって規定されている。
【0005】
ところで、ダイレクトプレス法により成形された中間成形体は、基板を作製する際には研削、研磨加工が必須であるので、スラッジと呼ばれる研削、研磨くずが発生する。省資源、廃棄物削減による環境負荷の軽減、コストの低減などの面から、スラッジ削減の要求は強い。したがって、ダイレクトプレス法においては、基板に近い厚みを有する中間成形体の製造が求められている。
【0006】
このような事情のもとで、本件出願人は、先に、うねりなどの発生が抑制された精度の良好な情報記録媒体用基板の中間成形体であるガラスブランクの製造方法を提案した(特願2001−20379号)。この方法は、プレス成形においてガラスブランクの周縁部がプレス成形型に接触しないようにして、ガラスブランク周縁部から型への熱伝導による放熱を抑え、ガラスブランク面内における温度分布を低減し、ガラスブランクのうねりを低減しようとするものである。
【0007】
上記方法はガラスブランクの周縁部、つまり円板形状の側面部分がプレス成形型によって規定されない。したがって、プレス成形型に供給される軟化状態のガラスの量が微妙に変化すると、それに応じてガラスブランクの外径も変動することになる。ガラスブランクはアニールされた後、周縁部を機械加工して所望の外径に仕上げられる。しかし、プレス成形されたガラスブランクの外径が変動すると、上記外径加工によって加工すべき取り代が個々のブランクによってばらついてしまい、その結果、外径加工時の取り代を一律に設定することができにくいという問題が生じる。
【0008】
【発明が解決しようとする課題】
本発明は、このような状況下で、情報記録媒体用基板の中間成形体として用いられ、かつ安定した外径、肉厚を有し、うねりなどの発生が抑制された精度の良好な薄板状のガラスブランクをダイレクトプレスによって製造する方法、このガラスブランクから情報記録媒体用基板を製造する方法、および該基板を用いて情報記録媒体を製造する方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、上型および下型を備えた成形型を用い、所定量の溶融ガラスを、特定の方法によりプレス成形してガラスブランクを順次製造することにより、所望のうねりがなく、かつ良好な精度を有する薄板状のガラスブランクが得られ、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
【0010】
すなわち、本発明は、
(1)所定量の溶融ガラスを下型上に供給し、該下型および下型と対向する上型を含むプレス成形型を用いてプレス成形する工程を繰り返して、所定の外径を有する情報記録媒体基板用のガラスブランクを順次成形するガラスブランクの製造方法において、
プレス時に前記ガラスの周縁部がプレス成形型に接触しないように、かつ上下型成形面の最小間隔を規制してガラスブランクを成形するとともに、成形されたガラスブランクの外径を前記下型上にて非接触式測定器により測定し、その測定結果に基づき溶融ガラスの供給量を調整することを特徴とするガラスブランクの製造方法、
【0011】
(2)プレス成形時において、上下型成形面の間隔を規制する手段を備えたプレス成形型を用いる上記(1)項に記載のガラスブランクの製造方法、
(3)複数の下型を順次、溶融ガラスを供給する位置、プレス成形する位置、ガラスブランクの外径を測定する位置および下型からガラスブランクを取り出す位置に循環移送してガラスブランクを順次成形する上記(1)または(2)項に記載のガラスブランクの製造方法 、
【0012】
(4)上記(1)、(2)または(3)項に記載の方法によりガラスブランクを作製し、得られたガラスブランクを機械加工して情報記録媒体用基板を作製することを特徴とする情報記録媒体用基板の製造方法、及び
(5)上記(4)項に記載の方法により情報記録媒体用基板を作製し、得られた情報記録媒体用基板上に情報記録層を形成することを特徴とする情報記録媒体の製造方法、
を提供するものである。
【0013】
【発明の実施の形態】
本発明のガラスブランク(以下、単にブランクと略称することがある。)の製造方法においては、該ブランクは、軟化状態のガラス(以下、ゴブと称すことがある。)を、上型および下型を備えた成形型によってプレス成形することにより、製造される。薄板状のガラスブランクの両主表面は上型成形面と下型成形面によってそれぞれ転写成形される。なお、上型、下型とも必要に応じて、一つ又は複数の部材から構成される。
【0014】
本発明においては、ガラスブランクの素材であるゴブは、溶融ガラスの状態で、通常下型の上に供給され、ガラスブランクが所定形状になるよう重量管理されている。下型上へのゴブ供給(以下、キャストという)の際、下型との接触によりゴブが急激に冷却されてプレス成形不能にならないように下型温度は調整されているが、一般的に下型温度はゴブの温度よりも低いので、キャストからプレス成形、そして成形されたガラスがプレス成形型から取り出される(以下、テイクアウトという)まで、ガラスと下型の接触面からゴブ及びガラス成形品のもつ熱量が奪われて行く。さらに、プレス成形時においても、上型温度は調整されているものの、一般にゴブの温度よりも低いので、上型がゴブあるいは成形品に触れている間は、上型によっても、ゴブ及びガラス成形品のもつ熱量が奪われていく。
【0015】
成形品のうねりは、薄板状の成形品が冷却される過程で上下型による加圧方向に垂直な面内にできる大きな放熱の分布によって生じるものと考えられる。ダイレクトプレス法では、冷却過程で成形品内部と成形品表面、成形品の中心部と外周部、厚肉部と薄肉部で放熱分布ができる。この放熱分布をさらに大きくする要因として考えられるものは以下の通りである。
【0016】
(1) ゴブが上型と下型でプレスされ、上下型間のスペースに広がっていき、周縁部が胴型などに触れると、周縁部からの放熱が大きくなり、ガラス外周部の温度が急速に低下して放熱分布が大きくなる。
(2) 従来の技術として紹介した前記公報に記載されているノッチは、成形品の主表面に比べ極めて面積の小さい溝である。このような部分は、加圧方向に垂直な単位面積あたりの型接触面積が大きく、ノッチ周辺部と比較して、局所的にガラスからの放熱が大きくなり、放熱分布を大きくする要因となる。
また、ノッチをプレス成形によって周縁部近傍に形成する場合も、成形型のノッチ形成部との接触によって周縁部からの放熱が大きくなり、(1)に似た結果となる。
【0017】
(3) 上記ノッチは内径加工や外径加工時に利用されるので、ノッチ部分の厚みは前記公報に記載されてはないが、前記加工を行う上から目的とする基板の厚みよりも薄いほうが有利と推察される。その一方で、内径加工を施す場合、当然のことながら前記公報の本体部の厚みは目的とする基板の厚みよりも厚い。このようにノッチ部分の肉厚が目的とする基板の厚みの最大値よりも薄いと、本体部や内孔部からノッチ部分への熱伝導がノッチ部分から型への放熱スピードに追いつかず、上記放熱分布がさらに大きくなる。
【0018】
(4) ガラスブランクが厚肉部と厚さが最も薄い薄肉部を有する場合、薄肉部の面積が厚肉部の面積より小さくなると、薄肉部が上記ノッチと同様、局所的な温度低下部分となり、放熱分布がより大きくなる。
(5) ガラスブランクの厚みを薄くしていくと、上記(1)〜(4)の要因により上記放熱分布が大きくなるとともに、放熱分布によるうねりの影響も大きくなる。
【0019】
このような要因を取り除くために、本発明のブランクの製造方法においては、ゴブを、形成されるブランクの周縁部が成形型に接触しないようにプレス成形し、少なくともノッチ部を有しないブランクを作製するのがよい。この本発明の製造方法においては、好ましい態様として、例えば下記の3種のガラスブランクを作製する方法を挙げることができる。
【0020】
まず、第1の態様は、平坦な表裏面と周縁部からなる表面を有するガラスブランクを作製する方法である。ここで平坦な面とは微小な反りや不可避的に形成される微妙な凹凸などは別にして、意図的な凹凸が設けられていない面を意味する。この場合、ガラスブランクの表裏面、すなわち両主表面は互いに平行であることが望ましい。
【0021】
次に、第2の態様は、ガラスブランクの厚みの最小値、すなわち肉厚の最も薄い箇所の厚みが、目的とするガラス基板の最も厚肉の箇所の厚み(基板の厚みの最大値)よりも厚いガラスブランクを作製する方法である。このような成形として、本件出願人が先に出願した特開平10−194760号公報で開示した平坦性の優れた板状ガラスの作製に好適なガラスブランクのように、厚肉部と薄肉部を有するガラスブランクの成形を例示することができる。
【0022】
さらに、第3の態様としては、厚肉部と厚みの最も薄い薄肉部を有し、かつ上記薄肉部の面積が厚肉部の面積よりも大きなガラスブランクを作製する方法である。このような成形として、上記特開平10−194760号公報で開示した平坦性の優れた板状ガラスの作製に好適なガラスブランクの成形を例示することができる。
【0023】
このようにしてうねりの発生を抑制したダイレクトプレス成形が可能になる。この際、ガラスブランクの周縁部はプレス成形型と接触しない。そのため、ガラスブランク周縁部からプレス成形型への熱伝導による放熱量が低減されるものの、ガラスブランクの外径がプレス成形型によって規定されないので、成形条件の変動がガラスブランク外径の変化として現れることになる。特に、本発明はプレス時の上下型成形面の最小間隔を規制している。つまり、プレス成形型を型締めした際の上下型成形面の間隔が常に一定になるように規制されている。なお、この規制は、上下型成形面の間隔を規制する手段を備えたプレス成形型を用いて行うことができる。このように、上下型成形面の間隔が常に一定になるように規制されているので、下型上に供給される溶融ガラスの量が変動すると、その変動分はガラスブランクの厚みではなく、外径の変動となって現れる。
【0024】
そこで、本発明においては、ガラスブランクの外径を前記下型上に非接触式測定器により測定し、その測定結果が目的とするガラスブランクの外径からズレていれば、そのズレ量に応じて下型上に供給する溶融ガラスの量を制御している機構にフィードバックをかける。つまり、ガラスブランク外径が所要の値よりも大きい場合は溶融ガラスの供給量を減少させる制御を行い、ガラスブランク外径が所要の値より小さい場合は溶融ガラスの供給量を増加させる制御を行う。所要の外径が得られている場合は溶融ガラスの供給量を現状に保つ。なお、この溶融ガラスの供給量は次のようにして制御することができる。
【0025】
〈手法1〉
均質な溶融ガラスを用意し、一定の流出速度でフィーダーと呼ばれるパイプから溶融ガラスを流下させる。この溶融ガラス流を溶融ガラスが融着しない温度に保たれた切断刃を用いて切断し、切断した溶融ガラス流の先端部を下型上に受ける。この際、切断刃による切断の時間間隔を制御することにより、溶融ガラスの供給量を調整することができる。すなわち、上記時間間隔を長くすれば溶融ガラスの供給量が増加し、時間間隔を短くすれば溶融ガラスの供給量が減少する。この際、フィーダーの温度は流出する溶融ガラスの粘度が一定に保たれるよう制御することが望ましい。
【0026】
〈手法2〉
手法1と同様に均質な溶融ガラスをフィーダーから流出し、切断刃によって切断する。この際、切断刃による切断の時間間隔も一定に設定する。また用意する溶融ガラスの粘度も一定に保つ。そして、フィーダーの温度を制御することによって溶融ガラス流の流出速度を変化させる。フィーダーの温度を上昇させることにより、溶融ガラスの粘度が低下して流出速度が増加するから溶融ガラスの供給量が増加する。逆にフィーダーの温度を低下させることにより、溶融ガラスの粘度が上昇して流出速度が減少するから溶融ガラスの供給量が減少する。このようにフィーダーの温度を変化させることにより溶融ガラスの供給量を増減することができる。
具体的な例としては、フィーダーの周囲にヒーターを設け、このヒーターに流す電流値を変化あるいは一定に保つことにより、フィーダーの温度を制御する。
【0027】
〈手法3〉
切断刃の切断時間間隔、フィーダー温度の両方を変化させることにより溶融ガラスの供給量を制御する。(手法1と2の組合せ)
ただし、フィーダーの温度を変化させる場合、流出するガラスに脈理や失透が発生しないよう十分注意する必要がある。
【0028】
また、プレス時の上下型成形面の最小間隔の規制の手法としては、次の手法を例示することができる。好ましい手法は、下型成形面および上型成形面の周囲にプレス時に互いに当接する当接部を設け、型締め状態で前記上下型の当接部が当接して上下型成形面の間隔がこの状態よりも狭くならないよう規制する手段である。この場合、当接部はガラスブランクに接触しない位置に設ける。下型当接部は下型成形面と同じ高さにしてもよいし、下方に設けてもよく、また上方に設けてもよい。ただし、後述するガラスブランクの外径測定の容易性を考慮すると、下型成形面上のガラスブランクが置かれた状態でガラスブランクの周縁部が下型当接部よりも高い位置になるようにすることが望ましい。このようにすることにより、下型当接部によってガラスブランク周縁部が隠れることなく、外径測定を容易することができる。
【0029】
別の手法としては、後述の図2に示されているような構造の成形型を用いて、上下型成形面の間隔を所定の値に制御する方法を挙げることができる。この成形型は、下型3、上型4、胴型5および上部胴型6から構成されており、上型4は上部胴型6の内部で摺動可能となっている。なお、2はゴブである。下型3を収容する胴型5と上型4を収容する胴型6を用い、プレス時に上記2つの胴型を当接する。それから上下型の成形面間隔を狭めて行きゴブをプレスする。この際、上下型のストロークが制御され、上下型成形面の間隔を所定の値に制御する。
【0030】
第1の手法はプレス成形型の形状を設定すれば、成形面の最小間隔は機械的手段によって常に一定に保たれるので、好ましい。
第2の手法では、ガラスブランクの外径測定時、胴型内の下型をガラスブランクとともに上昇させて、胴型の上端よりもガラスブランク周縁部が上になるような操作を行うことが望ましい。
【0031】
次に、ガラスブランクの外径測定法について説明する。成形直後のガラスブランクは高温であり、接触式測定を行うと接触箇所が変形するおそれがある。また接触式測定は測定対象が静止している間に行う必要があるため、溶融ガラスの供給、プレス成形を繰り返す本発明に適用すると生産効率を低下させてしまう。さらに非接触方式の測定は接触方式の測定よりも高速に測定できるので、ガラスブランクの外径変動を速やかに溶融ガラスの供給量調整にフィードバックすることができる。
【0032】
非接触式測定方法としてはレーザビームを用いた光学式測定法が最も好適であるが、その他に金型とガラスの温度差を利用した測定方法などの方法を例示することができる。
【0033】
外径の測定結果を速やかにフィードバックするという観点から、プレス成形直後のガラスブランクの外径を測定することが好ましい。また、複数の下型を溶融ガラスを供給する位置、プレス成形する位置、ガラスブランクの外径を測定する位置および下型からガラスブランクを取り出す位置に循環移送してガラスブランクを順次成形する場合、プレス成形する位置の近くにガラスブランクの外径を測定する位置を設定することが好ましい。特に複数の下型をターンテーブル上に配置し、ターンテーブルをインデックス回転させることによって上記循環移送を行う場合、プレス成形のセクション(停止位置)の次のセクションで外径測定を行うことが好ましい。なお、プレス成形後、ガラスブランクの反りを修正したり、ガラスブランクの冷却を促進するために、下型上のガラスブランク上面を押圧部材で押圧する場合には、前記押圧後にガラスブランクの外径測定を行うことが好ましい。
なおガラスブランクの外径測定は一箇所だけで行ってもよいが、複数の箇所で行ってもよいし、それぞれ異なった場所における測定結果に基づいて上記供給量の制御を行ってもよい。
【0034】
外径の測定データはコンピュータ、シーケンサなどによって処理され、そのデータに基づき上記手法などによって溶融ガラスの供給量を随時調整する。
なお、上記制御はガラスブランクの外径に対し、前記外径の変化が0.05〜0.1%の範囲におさまるように行うことが望ましい。
【0035】
本発明のガラスブランクの製造方法においては、前記したように、プレス成形時に形成されるガラスブランクの周縁部を成形型に接触しないようにする、すなわち前記周縁部を規制しないようにすると、周縁部は自由表面となる。自由表面は成形型の成形面が転写されていないので、成形面に存在する加工痕が転写されることがない。また粉末状離型剤を成形面に塗布して成形を行う場合、自由表面は粉末が塗布された成形面により加圧されないので、離型剤による荒れがこの部分にはできない。
【0036】
また周縁部は、プレス成形過程で従来と比較して比較的低粘度を保つことができ、成形品のヒケが生じる時点でも周縁部の塑性変形は可能である。それに対して、上下型成形面によって転写成形された面は冷却が進んで高粘度化するので、ヒケを周縁部に分散させることができ、ヒケによるブランクの形状精度低下を低減することもできる。
【0037】
ゴブの量を毎回、厳密に等しくしたり、前記公報のように外周から余剰ガラスをはみ出させるだけでは、ヒケによって成形品の最大厚みに相当する全高のばらつきが大きくなる。一方、本発明のように、ヒケを成形品の周縁部に分散させる方法では、成形毎の全高を±5〜10μm以内に収めることができる。
【0038】
ブランクに厚肉部と薄肉部を設ける場合、該厚肉部は、ブランクの両主表面側からの圧力をこの厚肉部が受け止めるように成形することが望ましい。そのためには、ブランク外周部に厚肉部を、外周部に囲まれた部分に薄肉部を形成するか、ブランク中心部に厚肉部を、その周囲に薄肉部を形成するか、又はブランク外周部と中心部に厚肉部を、外周部と中心部の間に薄肉部を形成することが好ましい。そして、薄肉部の肉厚、厚肉部の肉厚をそれぞれ均一にすることが好ましい。
ブランクの形状としては、磁気ディスク用基板のように加圧方向に対称な形状、すなわち円板形状が好ましい。円板状のブランクでは、円板の側面が周縁部となる。
【0039】
本発明は、厚みが0.8〜2.2mmのガラスブランク作製に好適である。厚肉部、薄肉部を有するブランクでもブランクの厚みの最大値と最小値がともに、上記範囲にあるガラスブランクの作製に好適である。
【0040】
図1(a)〜(d)は、本発明の方法で得られる円板状ガラスブランクの形状の異なる例を示す主表面に対する垂直断面概略図であって、符号1はガラスブランクを示す。
【0041】
図1における(a)は、厚肉部、薄肉部がなく、均一な厚みの円板状ガラスブランクを示し、厚みとしては0.8〜1.8mmが好ましく、0.9〜1.7mmが特に好ましい。また上記厚さを有し、かつ外径が60〜100mmのブランクが好適である。(b)は、ガラスブランク1の外周部に厚肉部11を、外周部に囲まれた部分に薄肉部12を有するガラスブランクを示し、(c)は、ガラスブランク1の外周部と中心部に、それぞれ厚肉部11および11′、外周部と中心部の間に薄肉部12を有するガラスブランクを示す。また、(d)ガラスはブランク1の中心部に厚肉部11′を、厚肉部11′の周囲に薄肉部12を有するガラスブランクを示す。このように、厚肉部11および/または11′、薄肉部12を有する円板状ブランクの場合、厚肉部の厚みは1.0〜2.2mm、薄肉部の厚みは0.8〜2.0mmとすることが好ましい。また上記の厚みの範囲にあって、外径が60〜100mmのガラスブランクが好適である。なお、符号13は、周縁部を示す。
【0042】
本発明のガラスブランクの製造方法に従って、プレス成形を行うことにより、ゴブが広がりやすくなり、成形品の薄板化に対してもプレス圧力を過度に高める必要がなくなる。その結果、プレス不良を低減するとともに、粉末状離型剤が不要になり、離型剤による成形品の表面荒れが低減される。また、ノッチ形成部における成形品の損傷を防ぐためにも、ノッチのような局所的な薄肉部を形成しないことが有利である。
本発明のガラスブランクの製造方法は、情報記録媒体用ガラスブランクの作製に適用される。
【0043】
次に、成形型の構造とプレス成形の流れについて説明する。
図2は、前記図1(a)に示される円板状ガラスブランクをプレス成形により作製する様子の1例を示す模式図である。成形型は、下型3、上型4から構成されている。上型4には、成形面を囲むように型締め時に下型3に当接して上下型成形面の間隔を規制するためのストッパーが設けられている。図2のようにキャスト工程では、流出パイプ5から溶融ガラス流6を流出し、下型成形面の中央に供給する。なお、図2に示すように、下型3の成形面が形成されている上面は、平坦になっている(ガラスブランクの肉厚部を成形する部分を除く。)。次の切断工程では、溶融ガラス流を切断刃7で切断し、下型成形面上に所定重量のゴブ2を得る。続いて、このゴブを上型4と下型3でプレスするが、型締め時には上記ストッパーによって上下型成形面の間隔が規制される。ゴブ2は上下型により加圧されて、上下型によって形成されるキャビティ内に押し広げられて、プレス成形品1に成形される。成形品の周縁部は、上型4、下型3のいずれにも接触せず、自由表面として成形品1に残る。プレス成形後、上型4は下型3上のプレス成形品1から離されて上方へ退避する。プレス成形品1の外径は、成形品が上型4から離型され、下型3上にある時点で測定される。図2に成形品の外径測定の一例を示す。この例では、非接触式測定法として光学的手段を用いている。すなわち、プレス成形品1を載せた下型3の移送経路を挟むように、外径測定用センサーの投光側8と受光側9を配置する。投光側8から受光側9へ向けてセンサー光が出射している。下型3が前記投光側8と受光側9の間に停止した時、センサー光の一部はプレス成形品1によって遮られ、受光側9に到達しない。この到達しない幅を測定することにより、プレス成形品1の外径を速やかに測定することができる。外径の測定データは上記のように、流出パイプ5から流出するガラスの流量、ガラスの切断サイクルにフィードバックされる。外径測定後、プレス成形品1が取り出しのための力を加えても変形しない温度まで冷却されてから、下型3からプレス成形品を取り出す(テイクアウト)。
【0044】
図1(b)、(c)、(d)で図示されたガラスブランクの作製も成形型の転写成形面の形状を該ブランクの形状に合わせて変更するだけで、概ね上記と同様に行われ、周縁部13に自由表面を有するガラスブランクが得られる。
【0045】
次に上記成形型を用いたガラスブランクの作製について説明する。
情報記録媒体用基板の材料としては、例えば化学強化可能なアルカリ金属酸化物を含むガラス、高速回転時にたわみの少ない高ヤング率のガラス、結晶化させることによってヤング率を高めることができるとともに、研削、研磨仕上げによって平坦かつ平滑な結晶化ガラス基板表面が得られるガラス、あるいは基板自体又は表面に光学薄膜を設けることにより光学フィルターとなる基板材料に適したガラスなどが用いられる。このようなガラスとしては、アルカリ金属酸化物、特に酸化リチウムを含むアルミノシリケートガラス、さらに酸化ジルコニウムを加えたアルミノシリケートガラス、酸化マグネシウムなどの二価成分を含むアルミノシリケートガラスなどが挙げられる。
【0046】
ガラスブランクの作製は、次に示す方法により、行うことができる。まず、溶解、清澄、攪拌均一化されたこれらガラス材料からなる溶融ガラスを、流出ノズルから一定の流出速度で連続して排出させ、この溶融ガラス流をシアと呼ばれる切断機によって、常に一定重量のゴブが得られるように周期的に切断する。切断されたゴブは流出ノズル直下で待機している下型により受け取られる。流出ノズルから排出される溶融ガラスの粘度は0.3〜100Pa・s程度であり、下型の温度はゴブの温度よりも低温ではあるが、ゴブ温度が急降下してプレス不能とならない温度に加熱調温される。
【0047】
上記キャストが終わってゴブを載置した下型は上型が待機しているプレス位置に移送されて、上型及び下型によりプレス成形される。この際の上下型温度、プレス圧力、プレス時間は、形成される成形品の周縁部が成形型に触れないような条件で適宜設定する。例えば、上型の温度を250〜550℃、下型の温度を350〜650℃とし、上型温度を前記範囲内で下型温度ないし[下型温度−100℃]の範囲に設定することができる。プレス時の加圧力については数GPa程度を目安にできるが、特にこの範囲に限定されるものではなく、適宜調整すればよい。
【0048】
本発明においては、このガラスブランクの成形において、上下型成形面の最小間隔を規制すると共に、成形されたガラスブランクの外径を、前記下型上にて非接触式測定器により測定し、その測定結果に基づき、溶融ガラスの供給量が調整される。
【0049】
プレス成形が終わると成形品上面が上型から離型され、成形品を載置した下型はテイクアウトを行う位置に移送される。なお、プレス位置とテイクアウト位置の間で下型を停留させて、下型上の成形品の上面を押し型で押圧し、成形品の反りを修正してからテイクアウト位置に下型ごとを移送してもよい。成形品はテイクアウト位置に移送されるまでの間にガラス転移温度付近あるいはガラス転移温度より低い温度にまで冷却される。これはテイクアウトの際に加わる力によって、成形品が変形してしまうのを防ぐためである。テイクアウトは成形品の上面を吸着手段で吸着保持して行われる。テイクアウトされた成形品は、大気中で急冷されたのち、アニール炉に入れられてアニールされる。アニールによって除歪されたガラスブランクは、研削工程、あるいは内径外径加工、または結晶化のための熱処理工程へと移される。
【0050】
このようにして作製されたガラスブランクの平行度、平坦度はともに、ディスク状ブランクの最小肉厚が2.2mm以下、外径が100mm程度であっても10μm以内の範囲に入っており、冷却過程における大きなうねりの発生が解消されている。この平行度、平坦度は、外径95mm、厚さ1mmの基板を得るためにブランクの最小肉厚を1.2mm程度にまで低減しても、また外径65mm、厚さ0.63mmの基板を得るためにガラスブランクの最小肉厚を1.0mmにまで低減しても維持されており、本発明の方法がいかに有効であるかが分かる。
【0051】
ガラスブランクが円板状の場合、直径が60〜100mmの範囲のもの、四角形などの多角形の場合においては、一辺の長さが60〜100mmの範囲のものに本発明の方法は好適であるが、加圧方向に対して回転対称な円板状ガラスブランクの作製に対して特に好適である。
【0052】
次に、上記ガラスブランクを用いて情報記録媒体用基板を作製する工程を例に挙げ、ガラス基板の製造方法について説明する。上記ガラスブランクに内径外径加工を施した後、研削、研磨加工を施すことにより、基板形状に整えられるとともに平坦かつ平滑な主表面を付与されて基板となる。アルカリ金属酸化物を含むガラスからなる基板の場合、基板をアルカリ金属溶融塩に浸漬させてイオン交換による化学強化を行ってもよい。上記各工程において、適宜、洗浄などの工程を加えることができる。
【0053】
結晶化ガラス基板を得る場合、適宜、研削や内径外径加工などの加工を施したブランクを熱処理し、結晶相をアモルファス相中に析出させる結晶化を行い、これに研削、研磨加工を施して、あるいは内径外径加工を加えて基板を得る。上記各工程においても、適宜、洗浄などの工程を加えることができる。
【0054】
いずれの場合も、ガラスブランクの厚みを薄くできるとともに、安定した外径、肉厚を有し、うねりの小さなブランクを使用できるので、研削、研磨しろを、ほぼ一律に40%程度低減することができ、省資源、環境負荷の低減、コスト低減、研削、研磨加工時間の短縮化などのメリットが得られる。
【0055】
このようにして得られた情報記録媒体用基板の主表面に、情報記録層、例えば磁気記録層などを形成して磁気記録媒体を得る。磁気記録媒体の他、同様にして記録層を設けて、光磁気記録媒体、光メモリなどの情報記録媒体を得ることもできる。
また、情報記録媒体の他、光学フィルター基板、この基板表面に光学薄膜(多層膜を含む)を設けた光学素子なども得ることができる。
【0056】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
【0057】
実施例1
図2に示す成形型を用いて、酸化リチウム及び酸化ジルコニウムを含むアルミノシリケートガラスからなるゴブをプレス成形し、磁気ディスク用基板のガラスブランクを作製した。
【0058】
ただし、プレス成形後、上型より離型されたガラスブランクが下型成形面上に載置された状態で、ガラスブランク外周が露出するよう、成形面を含む上面が平坦な下型を用いた。下型はインデックス回転するターンテーブル上に配置され、ガラスブランクとともに移送されるが、移送方向に対してガラスブランクの最前部と最後部の距離をガラスブランクの外径とした。最前部と最後部の距離測定はレーザビームを用いた測定装置により対象物に接触せずに行った。外径の測定データ信号に基づき、溶融ガラスの供給量を制御し、以下の結果を得た。
【0059】
すなわち、外径目標値96mm、肉厚目標値1.6mmのガラスブランクを成形するに際し、外径変化が0.05〜0.1%以内になるように上記制御を行った結果、外径96.0mm、肉厚1.6mm、外径変動0.1mm以下のガラスブランクを量産することができた。
【0060】
これらのガラスブランクに中心穴開け加工、外径加工、面取り加工、ラッピング加工、ポリッシング加工などを施し、直径95.0mm、厚さ1.0mmの磁気ディスク用基板を作製した。上記機械加工はガラスブランクの外径、肉厚が揃っているので円滑に行うことができた。なお、このガラス基板には必要に応じて化学強化を施してもよい。
さらに、上記基板の主表面上に磁性薄膜等の情報記録層を含む多層膜を形成して磁気記録媒体を作製した。
【0061】
比較例1
実施例1と同様の目標値のガラスブランクを成形したが、外径測定に基づく溶融ガラスの供給量へのフィードバックは行わなかった。その結果、ガラスブランク外径の変動は0.4mmであった。
【0062】
実施例2
実施例1と同様にして、外径目標値85mm、肉厚目標値1.3mmのガラスブランクを成形するに際し、外径変化が0.05〜0.1%以内になるように制御を行った結果、外径85.0mm、肉厚1.3mm、外径変動0.075mm以下のガラスブランクを量産することができた。
【0063】
これらのガラスブランクに中心穴開け加工、外径加工、面取り加工、ラッピング加工、ポリッシング加工などを施し、磁気ディスク用基板を作製した。上記機械加工はガラスブランクの外径、肉厚が揃っているので円滑に行うことができた。なお、このガラス基板には必要に応じて化学強化を施してもよい。
さらに、上記基板の主表面上に磁性薄膜等の情報記録層を含む多層膜を形成して磁気記録媒体を作製した。
【0064】
比較例2
実施例2と同様の目標値のガラスブランクを成形したが、外径測定に基づく溶融ガラスの供給量へのフィードバックは行わなかった。その結果、ガラスブランク外径の変動は0.4mmであった。
【0065】
実施例3
実施例1と同様にして、外径目標値66mm、肉厚目標値0.9mmのガラスブランクを成形するに際し、外径変化が0.05〜0.1%以内になるように制御を行った結果、外径66.0mm、肉厚0.9mm、外径変動0.05mm以下のガラスブランクを量産することができた。
【0066】
これらのガラスブランクに中心穴開け加工、外径加工、面取り加工、ラッピング加工、ポリッシング加工などを施し、直径65.0mm、厚さ0.635mmの磁気ディスク用基板を作製した。上記機械加工はガラスブランクの外径、肉厚が揃っているので円滑に行うことができた。なお、このガラス基板には必要に応じて化学強化を施してもよい。
さらに、上記基板の主表面上に磁性薄膜等の情報記録層を含む多層膜を形成して磁気記録媒体を作製した。
【0067】
比較例3
実施例3と同様の目標値のガラスブランクを成形したが、外径測定に基づく溶融ガラスの供給量へのフィードバックは行わなかった。その結果、ガラスブランク外径の変動は0.4mmであった。
【0068】
【発明の効果】
本発明によれば、安定した外径、肉厚を有し、うねりなどの発生が抑制された精度の良好な薄板状のガラスブランクをダイレクトプレスによって作製することができる。
したがって、均一な外径を有する良好なガラスブランクを量産できるので、これらのガラスブランクの外径加工を含む機械加工が容易になり、生産性よく情報記録媒体用基板を作製することができ、ひいては情報記録媒体も生産性よく製造することができる。
【図面の簡単な説明】
【図1】円板状ガラスブランクの形状の異なる例を示す主表面に対する垂直断面概略図である。
【図2】円板状ガラスブランクをプレス成形により作製する様子の1例を示す模式図である。
【符号の説明】
1 ガラスブランク(プレス成形品)
2 ゴブ
3 下型
4 上型
5 流出パイプ
6 溶融ガラス流
7 切断刃
8 外径測定用センサーの投光側
9 外径測定用センサーの受光側
11,11′ 肉厚部
12 薄肉部
13 周縁部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass blank, an information recording medium substrate, and an information recording medium manufacturing method. More specifically, the present invention is a thin glass blank that is used as an intermediate molded body of an information recording medium substrate, has a stable outer diameter and thickness, and has excellent accuracy with suppressed occurrence of waviness and the like. In particular, the present invention relates to a method for producing a substrate for information recording medium from the glass blank, and a method for producing an information recording medium using the substrate.
[0002]
[Prior art]
As a hard disk substrate used as a large-capacity recording means in a personal computer or the like, a glass or glass ceramic substrate is widely used as a high performance and high reliability substrate. With the spread of personal computers and the development of an information network society, the demand for such information recording media substrates and information recording media made of glass or glass ceramics has increased rapidly in recent years, and the demand for such information recording media has been increased. Therefore, a substrate manufacturing technique having high productivity is desired. Among these techniques, the most promising method is the intermediate molding made of glass having a shape that approximates to the substrate in anticipation of volume changes during crystallization, etc. There can be mentioned a so-called direct press method in which the body is produced by press molding of molten glass with a mold.
[0003]
As a method for producing an intermediate molded body of an information recording medium substrate by direct pressing, a method disclosed in Japanese Patent Laid-Open No. 12-53431 is known. In this method, a groove called a notch is provided in a portion where the inner hole is opened at the stage of forming the intermediate body so that the inner hole processing of the hard disk substrate is facilitated. And even if the amount of molten glass supplied is excessive, the peripheral part of the intermediate molded body is not regulated by a barrel mold or the like, and the volume of glass supplied varies by letting the excess volume of glass escape to the peripheral part. Even if there is, an intermediate molded body having a stable thickness is obtained every time.
[0004]
Apart from the intermediate molded body described in the above publication, a disk-shaped intermediate body in which notches are not formed is also known as orthodox. In this case, the peripheral edge portion of the intermediate molded body is defined by the molding die.
[0005]
By the way, since the intermediate molded body molded by the direct press method requires grinding and polishing when producing a substrate, grinding and polishing waste called sludge is generated. There are strong demands for sludge reduction from the viewpoints of resource saving, reduction of environmental load by reducing waste, and cost reduction. Therefore, in the direct press method, it is required to produce an intermediate molded body having a thickness close to that of the substrate.
[0006]
Under such circumstances, the present applicant has previously proposed a method for producing a glass blank, which is an intermediate molded body of an information recording medium substrate with good accuracy in which the occurrence of swell and the like is suppressed (special feature). Application No. 2001-20379). This method prevents the peripheral edge of the glass blank from coming into contact with the press mold in press molding, suppresses heat dissipation due to heat conduction from the peripheral edge of the glass blank to the mold, reduces the temperature distribution in the glass blank surface, This is intended to reduce the waviness of the blank.
[0007]
In the above method, the peripheral edge of the glass blank, that is, the disk-shaped side surface is not defined by the press mold. Therefore, if the amount of the softened glass supplied to the press mold is slightly changed, the outer diameter of the glass blank is also changed accordingly. After the glass blank is annealed, the periphery is machined to finish to the desired outer diameter. However, if the outer diameter of the press-molded glass blank fluctuates, the allowance to be processed by the outer diameter processing varies depending on the individual blank, and as a result, the allowance for outer diameter processing should be set uniformly. The problem that it is difficult to do occurs.
[0008]
[Problems to be solved by the invention]
Under such circumstances, the present invention is used as an intermediate molded body of an information recording medium substrate, has a stable outer diameter and thickness, and has a thin plate shape with good accuracy with suppressed occurrence of waviness and the like. It is an object of the present invention to provide a method for producing a glass blank by direct pressing, a method for producing an information recording medium substrate from the glass blank, and a method for producing an information recording medium using the substrate.
[0009]
[Means for Solving the Problems]
As a result of intensive research to achieve the above object, the present inventor has used a molding die having an upper die and a lower die, and press-molded a predetermined amount of molten glass by a specific method to form a glass blank. It has been found that a thin glass blank having no desired undulation and good accuracy can be obtained by manufacturing sequentially, and that the object can be achieved, and the present invention has been completed based on this finding. .
[0010]
That is, the present invention
(1) Information having a predetermined outer diameter by repeating a step of supplying a predetermined amount of molten glass onto the lower mold and press-molding using the press mold including the lower mold and the upper mold facing the lower mold. In the method for producing a glass blank for sequentially forming a glass blank for a recording medium substrate,
A glass blank is formed so that the peripheral edge of the glass does not come into contact with the press mold during pressing and the minimum distance between the upper and lower mold forming surfaces is regulated, and the outer diameter of the molded glass blank is placed on the lower mold. A glass blank manufacturing method, characterized by measuring with a non-contact measuring instrument, and adjusting the amount of molten glass supplied based on the measurement result,
[0011]
(2) At the time of press molding, the method for producing a glass blank according to the above (1), which uses a press mold having a means for regulating the interval between the upper and lower mold surfaces,
(3) Sequentially forming a glass blank by circulating and transferring a plurality of lower molds to a position for supplying molten glass, a position for press molding, a position for measuring the outer diameter of the glass blank, and a position for taking out the glass blank from the lower mold. The method for producing a glass blank according to (1) or (2) above,
[0012]
(4) By the method described in (1), (2) or (3) above Glass blank was made and obtained A method for producing an information recording medium substrate, comprising: machining a glass blank to produce an information recording medium substrate; and
(5) By the method described in (4) above An information recording medium substrate was produced and obtained. An information recording medium manufacturing method comprising forming an information recording layer on an information recording medium substrate;
Is to provide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a glass blank of the present invention (hereinafter sometimes simply referred to as “blank”), the blank is made of softened glass (hereinafter sometimes referred to as “gob”) as an upper mold and a lower mold. It is manufactured by press-molding with a mold equipped with Both main surfaces of the thin glass blank are transferred and molded by the upper mold surface and the lower mold surface, respectively. Note that both the upper mold and the lower mold are constituted by one or a plurality of members as required.
[0014]
In this invention, the gob which is a raw material of a glass blank is normally supplied on a lower mold | type in the state of a molten glass, and weight management is carried out so that a glass blank may become a predetermined shape. When the gob is supplied onto the lower mold (hereinafter referred to as casting), the lower mold temperature is adjusted so that the gob is not cooled rapidly due to contact with the lower mold and cannot be press-molded. Since the mold temperature is lower than the temperature of the gob, the gob and the glass molded product are pressed from the contact surface between the glass and the lower mold until the molded glass is press-molded and the molded glass is removed from the press mold (hereinafter referred to as take-out). The amount of heat is lost. Furthermore, although the upper mold temperature is adjusted even during press molding, it is generally lower than the temperature of the gob. Therefore, while the upper mold is in contact with the gob or the molded product, the gob and the glass molding are also performed by the upper mold. The amount of heat that the product has is deprived.
[0015]
It is considered that the undulation of the molded product is caused by a large distribution of heat radiation generated in a plane perpendicular to the pressing direction by the upper and lower molds in the process of cooling the thin plate-shaped molded product. In the direct press method, heat distribution can be achieved in the inside of the molded product and the surface of the molded product, in the center and outer periphery of the molded product, and in the thick and thin parts during the cooling process. The following factors can be considered as factors that further increase the heat radiation distribution.
[0016]
(1) The gob is pressed by the upper and lower molds and spreads in the space between the upper and lower molds. When the peripheral part touches the body mold, etc., heat dissipation from the peripheral part increases, and the temperature at the outer peripheral part of the glass increases rapidly. The heat dissipation distribution increases.
(2) The notch described in the above-mentioned publication introduced as the prior art is a groove having an extremely small area compared to the main surface of the molded product. Such a portion has a large die contact area per unit area perpendicular to the pressurizing direction, and the heat radiation from the glass is locally increased as compared with the peripheral portion of the notch, which causes a large heat radiation distribution.
Further, when the notch is formed in the vicinity of the peripheral portion by press molding, the heat radiation from the peripheral portion is increased by the contact with the notch forming portion of the mold, and the result is similar to (1).
[0017]
(3) Since the notch is used during inner diameter processing and outer diameter processing, the thickness of the notch portion is not described in the above publication, but it is advantageous that the thickness of the notch is thinner than the target substrate thickness in performing the processing. It is guessed. On the other hand, when performing inner diameter processing, the thickness of the main body of the publication is naturally larger than the thickness of the target substrate. Thus, if the thickness of the notch part is thinner than the maximum value of the target substrate thickness, the heat conduction from the main body part or inner hole part to the notch part cannot catch up with the heat dissipation speed from the notch part to the mold, and the above The heat distribution becomes even larger.
[0018]
(4) When the glass blank has a thick part and a thin part with the thinnest thickness, if the area of the thin part is smaller than the area of the thick part, the thin part becomes a local temperature-decreasing part, similar to the above notch. , The heat dissipation distribution becomes larger.
(5) When the thickness of the glass blank is reduced, the heat dissipation distribution increases due to the factors (1) to (4), and the influence of the undulation due to the heat dissipation distribution also increases.
[0019]
In order to remove such factors, in the blank manufacturing method of the present invention, the gob is press-molded so that the peripheral edge of the blank to be formed does not contact the mold, and a blank having at least a notch is produced. It is good to do. In the production method of the present invention, as a preferred embodiment, for example, the following three types of glass blanks can be produced.
[0020]
First, a 1st aspect is a method of producing the glass blank which has the surface which consists of a flat front and back surface and a peripheral part. Here, the flat surface means a surface on which intentional unevenness is not provided, apart from minute warpage and inevitable formation of uneven unevenness. In this case, it is desirable that the front and back surfaces of the glass blank, that is, both main surfaces are parallel to each other.
[0021]
Next, in the second aspect, the minimum thickness of the glass blank, that is, the thickness of the thinnest portion of the glass blank is greater than the thickness of the thickest portion of the target glass substrate (maximum value of the thickness of the substrate). This is a method for producing a thick glass blank. As such a molding, a thick wall portion and a thin wall portion are formed like a glass blank suitable for producing a flat glass having excellent flatness disclosed in Japanese Patent Application Laid-Open No. 10-194760 previously filed by the present applicant. An example of forming a glass blank is shown.
[0022]
Furthermore, as a third aspect, there is a method of producing a glass blank having a thick part and a thin part having the thinnest thickness, and the area of the thin part is larger than the area of the thick part. As such molding, there can be exemplified molding of a glass blank suitable for production of a sheet glass having excellent flatness disclosed in JP-A-10-194760.
[0023]
In this way, direct press molding with suppressed generation of undulation is possible. At this time, the peripheral edge of the glass blank does not contact the press mold. Therefore, although the amount of heat radiation due to heat conduction from the peripheral edge of the glass blank to the press mold is reduced, the outer diameter of the glass blank is not defined by the press mold, so that variations in molding conditions appear as changes in the outer diameter of the glass blank. It will be. In particular, the present invention regulates the minimum distance between the upper and lower mold forming surfaces during pressing. That is, the interval between the upper and lower mold forming surfaces when the press mold is clamped is regulated to be always constant. This restriction can be performed using a press mold provided with a means for regulating the interval between the upper and lower mold forming surfaces. As described above, the upper and lower mold forming surfaces are regulated so that the interval between them is always constant. Therefore, if the amount of molten glass supplied to the lower mold varies, the variation is not the thickness of the glass blank, but the outside. Appears as a variation in diameter.
[0024]
Therefore, in the present invention, the outer diameter of the glass blank is measured on the lower mold with a non-contact type measuring instrument, and if the measurement result is deviated from the outer diameter of the target glass blank, the amount of deviation is determined. Feedback is applied to the mechanism that controls the amount of molten glass supplied onto the lower mold. That is, when the glass blank outer diameter is larger than the required value, control is performed to decrease the supply amount of the molten glass, and when the glass blank outer diameter is smaller than the required value, control is performed to increase the supply amount of the molten glass. . When the required outer diameter is obtained, the supply amount of the molten glass is maintained as it is. The supply amount of the molten glass can be controlled as follows.
[0025]
<Method 1>
A homogeneous molten glass is prepared, and the molten glass is caused to flow down from a pipe called a feeder at a constant flow rate. The molten glass flow is cut using a cutting blade maintained at a temperature at which the molten glass is not fused, and the tip of the cut molten glass flow is received on the lower mold. At this time, the supply amount of the molten glass can be adjusted by controlling the time interval of cutting with the cutting blade. That is, if the time interval is lengthened, the amount of molten glass supplied increases, and if the time interval is shortened, the amount of molten glass supplied decreases. At this time, it is desirable to control the temperature of the feeder so that the viscosity of the molten glass flowing out is kept constant.
[0026]
<Method 2>
Similar to method 1, homogeneous molten glass flows out of the feeder and is cut by a cutting blade. At this time, the time interval of cutting by the cutting blade is also set to be constant. The viscosity of the molten glass to be prepared is also kept constant. And the outflow rate of a molten glass flow is changed by controlling the temperature of a feeder. By raising the temperature of the feeder, the viscosity of the molten glass is lowered and the outflow rate is increased, so that the supply amount of the molten glass is increased. Conversely, by lowering the temperature of the feeder, the viscosity of the molten glass rises and the outflow rate decreases, so that the amount of molten glass supplied decreases. Thus, the supply amount of molten glass can be increased / decreased by changing the temperature of a feeder.
As a specific example, a heater is provided around the feeder, and the temperature of the feeder is controlled by changing or maintaining the current value flowing through the heater.
[0027]
<Method 3>
The supply amount of molten glass is controlled by changing both the cutting time interval of the cutting blade and the feeder temperature. (Combination of methods 1 and 2)
However, when changing the temperature of the feeder, it is necessary to be careful not to cause striae or devitrification in the flowing glass.
[0028]
Moreover, the following method can be illustrated as a method of regulation of the minimum space | interval of the upper and lower mold forming surfaces at the time of a press. A preferred method is to provide contact portions that contact each other at the time of pressing around the lower mold forming surface and the upper mold forming surface. It is a means to regulate not to become narrower than the state. In this case, a contact part is provided in the position which does not contact a glass blank. The lower mold contact portion may be the same height as the lower mold molding surface, may be provided below, or may be provided above. However, considering the ease of measuring the outer diameter of the glass blank, which will be described later, the peripheral edge of the glass blank is positioned higher than the lower mold contact portion with the glass blank on the lower mold forming surface being placed. It is desirable to do. By doing in this way, an outer diameter measurement can be made easy, without hiding a glass blank peripheral part by a lower mold | type contact part.
[0029]
As another method, a method of controlling the interval between the upper and lower mold surfaces to a predetermined value using a mold having a structure as shown in FIG. The molding die is composed of a lower die 3, an upper die 4, a barrel die 5 and an upper barrel die 6, and the upper die 4 is slidable inside the upper barrel die 6. 2 is a gob. A body mold 5 that accommodates the lower mold 3 and a cylinder mold 6 that accommodates the upper mold 4 are used, and the two cylinder molds are brought into contact with each other during pressing. Then go down the gap between the molding surfaces of the upper and lower molds and press the gob. At this time, the stroke of the upper and lower molds is controlled, and the interval between the upper and lower mold forming surfaces is controlled to a predetermined value.
[0030]
The first method is preferable if the shape of the press mold is set, since the minimum distance between the molding surfaces is always kept constant by mechanical means.
In the second method, when measuring the outer diameter of the glass blank, it is desirable to raise the lower mold in the cylinder mold together with the glass blank and perform an operation such that the peripheral edge of the glass blank is above the upper end of the cylinder mold. .
[0031]
Next, a method for measuring the outer diameter of the glass blank will be described. The glass blank immediately after molding is at a high temperature, and the contact location may be deformed when contact measurement is performed. In addition, since the contact-type measurement needs to be performed while the measurement target is stationary, the production efficiency is lowered when applied to the present invention in which supply of molten glass and press molding are repeated. Furthermore, since non-contact measurement can be performed at higher speed than contact measurement, fluctuations in the outer diameter of the glass blank can be quickly fed back to adjustment of the molten glass supply amount.
[0032]
As the non-contact measurement method, an optical measurement method using a laser beam is most suitable, but other methods such as a measurement method using a temperature difference between a mold and glass can be exemplified.
[0033]
From the viewpoint of promptly feeding back the measurement result of the outer diameter, it is preferable to measure the outer diameter of the glass blank immediately after press molding. In addition, when forming a glass blank sequentially by circulating and transferring a plurality of lower molds to a position for supplying molten glass, a position for press molding, a position for measuring the outer diameter of the glass blank, and a position for taking out the glass blank from the lower mold, It is preferable to set a position for measuring the outer diameter of the glass blank near the position for press molding. In particular, when the above-mentioned circulation transfer is performed by arranging a plurality of lower molds on a turntable and rotating the turntable with an index, it is preferable to measure the outer diameter in the section next to the press molding section (stop position). In addition, in order to correct the curvature of the glass blank after press molding or to accelerate the cooling of the glass blank, when the upper surface of the glass blank on the lower mold is pressed with a pressing member, the outer diameter of the glass blank after the pressing It is preferable to perform the measurement.
In addition, although the outer diameter measurement of a glass blank may be performed only in one place, you may perform in several places and you may control the said supply amount based on the measurement result in a respectively different place.
[0034]
The measurement data of the outer diameter is processed by a computer, a sequencer, etc., and the supply amount of the molten glass is adjusted at any time based on the data by the above method.
In addition, it is desirable to perform the said control so that the change of the said outer diameter may fall within the range of 0.05 to 0.1% with respect to the outer diameter of a glass blank.
[0035]
In the manufacturing method of the glass blank of the present invention, as described above, the peripheral portion of the glass blank formed at the time of press molding is not brought into contact with the mold, that is, the peripheral portion is not restricted. Becomes a free surface. Since the molding surface of the mold is not transferred to the free surface, the processing marks existing on the molding surface are not transferred. In addition, when molding is performed by applying a powder release agent to the molding surface, the free surface is not pressurized by the molding surface to which the powder is applied, so that this portion cannot be roughened by the release agent.
[0036]
In addition, the peripheral portion can maintain a relatively low viscosity in the press molding process as compared with the conventional case, and the peripheral portion can be plastically deformed even when the molded product is sinked. On the other hand, since the surface formed by transfer molding by the upper and lower mold forming surfaces is cooled and becomes highly viscous, sink marks can be dispersed in the peripheral portion, and a decrease in the shape accuracy of the blank due to sink marks can be reduced.
[0037]
If the amount of gob is made exactly the same every time, or the excess glass is protruded from the outer periphery as in the above publication, the variation in the total height corresponding to the maximum thickness of the molded product increases due to the sink. On the other hand, as in the present invention, in the method of dispersing sink marks on the peripheral edge of the molded product, the total height for each molding can be kept within ± 5 to 10 μm.
[0038]
When providing a thick part and a thin part in a blank, it is desirable to shape the thick part so that the thick part receives pressure from both main surface sides of the blank. To do so, either form a thick part on the outer periphery of the blank and a thin part on the part surrounded by the outer periphery, or form a thick part on the center of the blank and a thin part around it, or It is preferable to form a thick part at the center and the central part and a thin part between the outer peripheral part and the central part. And it is preferable to make uniform the thickness of a thin part, and the thickness of a thick part, respectively.
As the shape of the blank, a shape that is symmetrical in the pressurizing direction like a magnetic disk substrate, that is, a disk shape is preferable. In a disk-shaped blank, the side surface of the disk is the peripheral edge.
[0039]
The present invention is suitable for producing a glass blank having a thickness of 0.8 to 2.2 mm. Even a blank having a thick part and a thin part is suitable for producing a glass blank in which both the maximum value and the minimum value of the thickness of the blank are in the above range.
[0040]
Fig.1 (a)-(d) is the vertical cross-sectional schematic with respect to the main surface which shows the example from which the shape of the disk-shaped glass blank obtained by the method of this invention differs, Comprising: The code | symbol 1 shows a glass blank.
[0041]
(A) in FIG. 1 shows a disk-shaped glass blank having a uniform thickness without a thick part and a thin part, and the thickness is preferably 0.8 to 1.8 mm, and 0.9 to 1.7 mm. Particularly preferred. Moreover, the blank which has the said thickness and an outer diameter of 60-100 mm is suitable. (B) shows the glass blank which has the thick part 11 in the outer peripheral part of the glass blank 1, and the thin part 12 in the part enclosed by the outer peripheral part, (c) shows the outer peripheral part and center part of the glass blank 1 The glass blank which has the thick part 11 and 11 'and the thin part 12 between the outer peripheral part and the center part is shown, respectively. Moreover, (d) glass shows the glass blank which has the thick part 11 'in the center part of the blank 1, and has the thin part 12 around the thick part 11'. Thus, in the case of the disc-shaped blank having the thick part 11 and / or 11 ′ and the thin part 12, the thickness of the thick part is 1.0 to 2.2 mm, and the thickness of the thin part is 0.8 to 2. 0.0 mm is preferable. Further, a glass blank having an outer diameter of 60 to 100 mm in the above thickness range is preferable. Reference numeral 13 denotes a peripheral edge.
[0042]
By performing press molding in accordance with the method for producing a glass blank of the present invention, the gob is likely to spread, and it is not necessary to excessively increase the press pressure for thinning the molded product. As a result, the press failure is reduced, and a powdery mold release agent is not required, and the surface roughness of the molded product due to the mold release agent is reduced. Further, in order to prevent damage to the molded product in the notch forming portion, it is advantageous not to form a local thin portion like the notch.
The manufacturing method of the glass blank of this invention is applied to preparation of the glass blank for information recording media.
[0043]
Next, the structure of the mold and the flow of press molding will be described.
FIG. 2 is a schematic view showing an example of a state in which the disk-shaped glass blank shown in FIG. 1A is produced by press molding. The mold is composed of a lower mold 3 and an upper mold 4. The upper mold 4 is provided with a stopper that abuts the lower mold 3 during mold clamping so as to surround the molding surface and regulate the interval between the upper and lower mold molding surfaces. As shown in FIG. 2, in the casting process, the molten glass flow 6 flows out from the outflow pipe 5 and is supplied to the center of the lower mold forming surface. In addition, as shown in FIG. 2, the upper surface where the molding surface of the lower mold | type 3 is formed is flat (except the part which shape | molds the thick part of a glass blank). In the next cutting step, the molten glass flow is cut with the cutting blade 7 to obtain a gob 2 having a predetermined weight on the lower mold surface. Subsequently, the gob is pressed by the upper mold 4 and the lower mold 3, and the distance between the upper and lower mold forming surfaces is regulated by the stopper when the mold is clamped. The gob 2 is pressed by the upper and lower molds, and is expanded into a cavity formed by the upper and lower molds, and is formed into the press-formed product 1. The peripheral edge of the molded product does not contact either the upper mold 4 or the lower mold 3 and remains on the molded product 1 as a free surface. After press molding, the upper die 4 is separated from the press-formed product 1 on the lower die 3 and retracts upward. The outer diameter of the press-formed product 1 is measured when the molded product is released from the upper die 4 and is on the lower die 3. FIG. 2 shows an example of the outer diameter measurement of the molded product. In this example, optical means is used as a non-contact measurement method. That is, the light projecting side 8 and the light receiving side 9 of the outer diameter measuring sensor are arranged so as to sandwich the transfer path of the lower mold 3 on which the press-formed product 1 is placed. Sensor light is emitted from the light projecting side 8 toward the light receiving side 9. When the lower mold 3 stops between the light projecting side 8 and the light receiving side 9, part of the sensor light is blocked by the press-formed product 1 and does not reach the light receiving side 9. By measuring this unreachable width, the outer diameter of the press-formed product 1 can be measured quickly. As described above, the measurement data of the outer diameter is fed back to the flow rate of the glass flowing out from the outflow pipe 5 and the glass cutting cycle. After the outer diameter is measured, the press-formed product 1 is cooled to a temperature at which it does not deform even when a force for taking out is applied, and then the press-formed product is taken out from the lower mold 3 (takeout).
[0044]
The glass blanks shown in FIGS. 1B, 1C, and 1D are manufactured in the same manner as described above only by changing the shape of the transfer molding surface of the mold according to the shape of the blank. A glass blank having a free surface at the peripheral edge 13 is obtained.
[0045]
Next, preparation of the glass blank using the said shaping | molding die is demonstrated.
As a material for the substrate for information recording media, for example, a glass containing an alkali metal oxide that can be chemically strengthened, a glass having a high Young's modulus with little deflection during high-speed rotation, and the Young's modulus can be increased by crystallization and grinding. Glass that can obtain a flat and smooth crystallized glass substrate surface by polishing finish, or glass suitable for a substrate material that becomes an optical filter by providing an optical thin film on the substrate itself or on the surface is used. Examples of such glass include an aluminosilicate glass containing an alkali metal oxide, particularly lithium oxide, an aluminosilicate glass further containing zirconium oxide, and an aluminosilicate glass containing a divalent component such as magnesium oxide.
[0046]
The glass blank can be produced by the following method. First, molten glass made of these glass materials that has been melted, clarified, and stirred and homogenized is continuously discharged from an outflow nozzle at a constant outflow rate, and this molten glass flow is always kept at a constant weight by a cutting machine called shear. Cut periodically to get gob. The cut gob is received by the lower mold waiting just under the outflow nozzle. The viscosity of the molten glass discharged from the outflow nozzle is about 0.3 to 100 Pa · s, and the temperature of the lower mold is lower than the temperature of the gob, but it is heated to a temperature at which the gob temperature suddenly drops so that pressing becomes impossible. The temperature is adjusted.
[0047]
The lower die on which the gob is placed after the casting is finished is transferred to a press position where the upper die is waiting, and is press-formed by the upper die and the lower die. In this case, the upper and lower mold temperatures, the press pressure, and the press time are appropriately set under conditions such that the peripheral portion of the formed product does not touch the mold. For example, the upper mold temperature may be set to 250 to 550 ° C., the lower mold temperature may be set to 350 to 650 ° C., and the upper mold temperature may be set within a range of the lower mold temperature to [lower mold temperature−100 ° C.]. it can. The pressing force at the time of pressing can be about several GPa, but is not particularly limited to this range, and may be adjusted as appropriate.
[0048]
In the present invention, in forming the glass blank, the minimum distance between the upper and lower mold forming surfaces is regulated, and the outer diameter of the molded glass blank is measured on the lower mold with a non-contact type measuring instrument, Based on the measurement result, the supply amount of the molten glass is adjusted.
[0049]
When the press molding is completed, the upper surface of the molded product is released from the upper mold, and the lower mold on which the molded product is placed is transferred to a take-out position. In addition, the lower mold is stopped between the press position and the take-out position, the upper surface of the molded product on the lower mold is pressed with the pressing mold, the warpage of the molded product is corrected, and each lower mold is transferred to the take-out position. May be. The molded product is cooled to near the glass transition temperature or lower than the glass transition temperature before being transferred to the take-out position. This is to prevent the molded product from being deformed by the force applied during take-out. Take-out is performed by adsorbing and holding the upper surface of the molded product with an adsorbing means. The take-out molded product is quenched in the atmosphere and then placed in an annealing furnace for annealing. The glass blank which has been subjected to strain removal by annealing is transferred to a grinding process, an inner diameter outer diameter processing, or a heat treatment process for crystallization.
[0050]
The parallelism and flatness of the glass blank thus produced are both within a range of 10 μm even if the minimum thickness of the disc blank is 2.2 mm or less and the outer diameter is about 100 mm. The generation of large swells in the process has been eliminated. This parallelism and flatness are obtained by reducing the minimum thickness of the blank to about 1.2 mm in order to obtain a substrate having an outer diameter of 95 mm and a thickness of 1 mm, and a substrate having an outer diameter of 65 mm and a thickness of 0.63 mm. Therefore, it can be seen that the minimum thickness of the glass blank is reduced to 1.0 mm so that the method of the present invention is effective.
[0051]
When the glass blank is disk-shaped, the method of the present invention is suitable for one having a diameter in the range of 60 to 100 mm, and in the case of a polygon such as a quadrangle, one having a side length in the range of 60 to 100 mm. However, it is particularly suitable for the production of a disk-shaped glass blank that is rotationally symmetric with respect to the pressing direction.
[0052]
Next, a method for producing a glass substrate will be described by taking as an example a process for producing an information recording medium substrate using the glass blank. After the inner and outer diameters of the glass blank are subjected to grinding and polishing, the substrate is adjusted to a substrate shape and a flat and smooth main surface is provided to form a substrate. In the case of a substrate made of glass containing an alkali metal oxide, chemical strengthening by ion exchange may be performed by immersing the substrate in an alkali metal molten salt. In each of the above steps, a step such as washing can be appropriately added.
[0053]
When obtaining a crystallized glass substrate, heat treatment is performed on a blank that has been subjected to processing such as grinding and inner and outer diameter processing, and crystallization is performed to precipitate the crystal phase in the amorphous phase, which is then ground and polished. Alternatively, the inner and outer diameters are processed to obtain a substrate. In each of the above steps, a step such as washing can be appropriately added.
[0054]
In either case, the thickness of the glass blank can be reduced, and a blank having a stable outer diameter and wall thickness and small waviness can be used. Therefore, the grinding and polishing margins can be reduced by approximately 40% almost uniformly. It is possible to obtain merits such as resource saving, reduction of environmental load, cost reduction, grinding, and shortening of polishing time.
[0055]
An information recording layer, such as a magnetic recording layer, is formed on the main surface of the information recording medium substrate thus obtained to obtain a magnetic recording medium. In addition to the magnetic recording medium, an information recording medium such as a magneto-optical recording medium or an optical memory can be obtained by providing a recording layer in the same manner.
In addition to the information recording medium, an optical filter substrate, an optical element provided with an optical thin film (including a multilayer film) on the substrate surface, and the like can also be obtained.
[0056]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0057]
Example 1
A gob made of aluminosilicate glass containing lithium oxide and zirconium oxide was press-molded using the mold shown in FIG. 2 to produce a glass blank for a magnetic disk substrate.
[0058]
However, after press molding, a lower die having a flat upper surface including the molding surface was used so that the outer periphery of the glass blank was exposed in a state where the glass blank released from the upper die was placed on the lower die molding surface. . The lower mold is arranged on a turntable that rotates with an index and is transferred together with the glass blank. The distance between the frontmost part and the rearmost part of the glass blank with respect to the transfer direction is defined as the outer diameter of the glass blank. The distance between the foremost part and the last part was measured without contacting the object by a measuring device using a laser beam. Based on the measurement data signal of the outer diameter, the supply amount of the molten glass was controlled, and the following results were obtained.
[0059]
That is, when forming a glass blank having an outer diameter target value of 96 mm and a wall thickness target value of 1.6 mm, the above control was performed so that the outer diameter change was within 0.05 to 0.1%. A glass blank having a thickness of 0.0 mm, a thickness of 1.6 mm, and an outer diameter variation of 0.1 mm or less could be mass-produced.
[0060]
These glass blanks were subjected to center drilling, outer diameter processing, chamfering processing, lapping processing, polishing processing, and the like to produce a magnetic disk substrate having a diameter of 95.0 mm and a thickness of 1.0 mm. The above machining could be smoothly performed because the glass blank had the same outer diameter and thickness. In addition, you may chemically strengthen this glass substrate as needed.
Further, a multilayer film including an information recording layer such as a magnetic thin film was formed on the main surface of the substrate to produce a magnetic recording medium.
[0061]
Comparative Example 1
Although the glass blank of the target value similar to Example 1 was shape | molded, the feedback to the supply amount of the molten glass based on an outer diameter measurement was not performed. As a result, the variation of the glass blank outer diameter was 0.4 mm.
[0062]
Example 2
In the same manner as in Example 1, when forming a glass blank having an outer diameter target value of 85 mm and a wall thickness target value of 1.3 mm, the outer diameter change was controlled to be within 0.05 to 0.1%. As a result, a glass blank having an outer diameter of 85.0 mm, a wall thickness of 1.3 mm, and an outer diameter fluctuation of 0.075 mm or less could be mass-produced.
[0063]
These glass blanks were subjected to center drilling, outer diameter processing, chamfering processing, lapping processing, polishing processing, and the like to produce a magnetic disk substrate. The above machining could be smoothly performed because the glass blank had the same outer diameter and thickness. In addition, you may chemically strengthen this glass substrate as needed.
Further, a multilayer film including an information recording layer such as a magnetic thin film was formed on the main surface of the substrate to produce a magnetic recording medium.
[0064]
Comparative Example 2
Although the glass blank of the target value similar to Example 2 was shape | molded, the feedback to the supply amount of the molten glass based on an outer diameter measurement was not performed. As a result, the variation of the glass blank outer diameter was 0.4 mm.
[0065]
Example 3
In the same manner as in Example 1, when forming a glass blank having an outer diameter target value of 66 mm and a wall thickness target value of 0.9 mm, the outer diameter change was controlled to be within 0.05 to 0.1%. As a result, a glass blank having an outer diameter of 66.0 mm, a wall thickness of 0.9 mm, and an outer diameter variation of 0.05 mm or less could be mass-produced.
[0066]
These glass blanks were subjected to center drilling, outer diameter processing, chamfering processing, lapping processing, polishing processing, and the like to produce a magnetic disk substrate having a diameter of 65.0 mm and a thickness of 0.635 mm. The above machining could be smoothly performed because the glass blank had the same outer diameter and thickness. In addition, you may chemically strengthen this glass substrate as needed.
Further, a multilayer film including an information recording layer such as a magnetic thin film was formed on the main surface of the substrate to produce a magnetic recording medium.
[0067]
Comparative Example 3
Although the glass blank of the target value similar to Example 3 was shape | molded, the feedback to the supply amount of the molten glass based on an outer diameter measurement was not performed. As a result, the variation of the glass blank outer diameter was 0.4 mm.
[0068]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it has a stable outer diameter and thickness, and the thin plate-shaped glass blank with a sufficient precision by which generation | occurrence | production of the wave | undulation etc. was suppressed can be produced by direct press.
Therefore, since good glass blanks having a uniform outer diameter can be mass-produced, machining including the outer diameter processing of these glass blanks becomes easy, and a substrate for an information recording medium can be produced with high productivity. An information recording medium can also be manufactured with high productivity.
[Brief description of the drawings]
FIG. 1 is a schematic vertical sectional view with respect to a main surface showing examples of different shapes of a disk-shaped glass blank.
FIG. 2 is a schematic diagram showing an example of a state in which a disk-shaped glass blank is produced by press molding.
[Explanation of symbols]
1 Glass blank (press-molded product)
2 Gob
3 Lower mold
4 Upper mold
5 Outflow pipe
6 Molten glass flow
7 Cutting blade
8 Light emitting side of outer diameter measuring sensor
9 Light receiving side of outer diameter measuring sensor
11, 11 'Thick part
12 Thin section
13 Perimeter

Claims (5)

所定量の溶融ガラスを下型上に供給し、該下型および下型と対向する上型を含むプレス成形型を用いてプレス成形する工程を繰り返して、所定の外径を有する情報記録媒体基板用のガラスブランクを順次成形するガラスブランクの製造方法において、
プレス時に前記ガラスの周縁部がプレス成形型に接触しないように、かつ上下型成形面の最小間隔を規制してガラスブランクを成形するとともに、成形されたガラスブランクの外径を前記下型上にて非接触式測定器により測定し、その測定結果に基づき溶融ガラスの供給量を調整することを特徴とするガラスブランクの製造方法。
An information recording medium substrate having a predetermined outer diameter by repeating a step of supplying a predetermined amount of molten glass onto the lower mold and press-molding using the press mold including the lower mold and the upper mold facing the lower mold In the glass blank manufacturing method of sequentially forming glass blanks for use,
A glass blank is formed so that the peripheral edge of the glass does not come into contact with the press mold during pressing and the minimum distance between the upper and lower mold forming surfaces is regulated, and the outer diameter of the molded glass blank is placed on the lower mold. And measuring with a non-contact type measuring device, and adjusting the supply amount of the molten glass based on the measurement result.
プレス成形時において、上下型成形面の間隔を規制する手段を備えたプレス成形型を用いる請求項1に記載のガラスブランクの製造方法。  The manufacturing method of the glass blank of Claim 1 using the press-molding die provided with the means to regulate the space | interval of an upper-and-lower mold-forming surface at the time of press molding. 複数の下型を順次、溶融ガラスを供給する位置、プレス成形する位置、ガラスブランクの外径を測定する位置および下型からガラスブランクを取り出す位置に循環移送してガラスブランクを順次成形する請求項1または2に記載のガラスブランクの製造方法。  A plurality of lower molds are sequentially formed by sequentially circulating and transferring a glass blank to a position for supplying molten glass, a position for press molding, a position for measuring the outer diameter of the glass blank, and a position for taking out the glass blank from the lower mold. The manufacturing method of the glass blank of 1 or 2. 請求項1、2または3に記載の方法によりガラスブランクを作製し、得られたガラスブランクを機械加工して情報記録媒体用基板を作製することを特徴とする情報記録媒体用基板の製造方法。A method for producing an information recording medium substrate, comprising: producing a glass blank by the method according to claim 1, and machining the obtained glass blank to produce an information recording medium substrate. 請求項4に記載の方法により情報記録媒体用基板を作製し、得られた情報記録媒体用基板上に情報記録層を形成することを特徴とする情報記録媒体の製造方法。A method for producing an information recording medium , comprising producing an information recording medium substrate by the method according to claim 4 and forming an information recording layer on the obtained information recording medium substrate.
JP2002217745A 2002-07-26 2002-07-26 Glass blank, information recording medium substrate, and information recording medium manufacturing method Expired - Fee Related JP4200422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217745A JP4200422B2 (en) 2002-07-26 2002-07-26 Glass blank, information recording medium substrate, and information recording medium manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217745A JP4200422B2 (en) 2002-07-26 2002-07-26 Glass blank, information recording medium substrate, and information recording medium manufacturing method

Publications (2)

Publication Number Publication Date
JP2004059355A JP2004059355A (en) 2004-02-26
JP4200422B2 true JP4200422B2 (en) 2008-12-24

Family

ID=31939123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217745A Expired - Fee Related JP4200422B2 (en) 2002-07-26 2002-07-26 Glass blank, information recording medium substrate, and information recording medium manufacturing method

Country Status (1)

Country Link
JP (1) JP4200422B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926898B2 (en) * 2007-09-14 2012-05-09 Hoya株式会社 Disc glass, information recording medium substrate, and information recording medium manufacturing method
JP5085383B2 (en) * 2008-03-19 2012-11-28 Hoya株式会社 Substrate glass blank for information recording medium, substrate for information recording medium, and manufacturing method of information recording medium
JP5316044B2 (en) * 2009-02-09 2013-10-16 コニカミノルタ株式会社 Manufacturing method of glass substrate, manufacturing method of glass substrate for information recording medium, and manufacturing method of information recording medium
JP5306855B2 (en) * 2009-02-26 2013-10-02 Hoya株式会社 Manufacturing method of information recording medium substrate and manufacturing method of information recording medium
JP5307094B2 (en) * 2009-09-30 2013-10-02 Hoya株式会社 Information recording medium substrate glass blank, information recording medium substrate, information recording medium manufacturing method, and information recording medium substrate glass blank manufacturing apparatus
JP5559651B2 (en) * 2010-09-30 2014-07-23 Hoya株式会社 Glass blank manufacturing method for magnetic recording medium glass substrate, magnetic recording medium glass substrate manufacturing method, and magnetic recording medium manufacturing method
SG189021A1 (en) * 2010-09-30 2013-05-31 Hoya Corp Method of manufacturing glass blank for magnetic recording medium glass substrate, magnetic recording medium glass substrate manufacturing method, magnetic recording medium manufacturing method, and device for manufacturing glass blank for magnetic recording medium glass substrate
US8931308B2 (en) 2011-02-10 2015-01-13 Hoya Corporation Method of producing glass blank for substrate of information recording medium, substrate for information recording medium, and information recording medium; and manufacturing apparatus for glass blank for substrate of information recording medium
WO2019189594A1 (en) * 2018-03-30 2019-10-03 Hoya株式会社 Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate

Also Published As

Publication number Publication date
JP2004059355A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US7845192B2 (en) Methods for producing substrate blank
US6718799B2 (en) Die and glass material for forming glass substrate, method for manufacturing glass substrate, and magnetic disk glass substrate
JP4380379B2 (en) Manufacturing method of glass substrate for information recording medium
JP4495842B2 (en) Manufacturing method and manufacturing apparatus for glass molded product, and manufacturing method for glass product
JP4200422B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP4482246B2 (en) Manufacturing method of glass molded body, manufacturing method of substrate, and manufacturing method of information recording medium
CN102625782A (en) Glass blank, glass blank manufacturing method, manufacturing method for substrate for information recording medium, and manufacturing method for information recording medium
JPH11228152A (en) Method and device for forming glass substrate
JP5085383B2 (en) Substrate glass blank for information recording medium, substrate for information recording medium, and manufacturing method of information recording medium
JP4926898B2 (en) Disc glass, information recording medium substrate, and information recording medium manufacturing method
JP5485665B2 (en) Manufacturing method of glass blank, upper mold for glass press, press molding apparatus, manufacturing method of substrate for information recording medium, and manufacturing method of information recording medium
JPS62100429A (en) Production of optical disk substrate
JP2004206828A (en) Glass blank, substrate for information recording medium, and manufacturing method of information recording medium
JP2004203698A (en) Glass blank, its manufacturing method, method of manufacturing substrate for information recording medium, and method of manufacturing information recording medium
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP3681103B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP4186443B2 (en) Manufacturing method of glass substrate for hard disk with central hole
JP5282304B2 (en) Manufacturing method of glass element molding die, glass element molding die, optical element molding method, and glass blank molding method
WO2019189594A1 (en) Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate
JP2003026430A (en) Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism
JP2002187726A (en) Method of manufacturing glass substrate and die for molding glass substrate
JP4256146B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP2004083394A (en) Method of manufacturing glass shaped article
JPH06263462A (en) Glass lens forming mold
JP2002220241A (en) Method for forming optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Ref document number: 4200422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees