JP4177692B2 - Manufacturing method of glass plate with low reflection film - Google Patents
Manufacturing method of glass plate with low reflection filmInfo
- Publication number
- JP4177692B2 JP4177692B2 JP2003084313A JP2003084313A JP4177692B2 JP 4177692 B2 JP4177692 B2 JP 4177692B2 JP 2003084313 A JP2003084313 A JP 2003084313A JP 2003084313 A JP2003084313 A JP 2003084313A JP 4177692 B2 JP4177692 B2 JP 4177692B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- low reflection
- resin
- glass
- glass plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Surface Treatment Of Glass (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、低反射膜付きガラス板の製造方法に係り、さらに詳しくは可視光反射率が小さく、しかも耐磨耗性や耐薬品性などの耐久性に優れ、任意の膜厚の酸化珪素膜で被覆された単層の低反射膜付きガラス板の製造方法に関する。
【0002】
【従来の技術】
従来、ガラス板やその他のガラス物品の表面で可視光が反射して透視性や光透過率が低下したり、眩しくなることを防止するために、ガラス物品の表面に反射防止処理を施すことが行われている。このため、ガラス基板上に高屈折率膜と低屈折率膜とからなる多層膜を作製することが知られている。
【0003】
例えば、ガラス基板表面から第1層目の高屈折率膜(屈折率1.7〜1.8)と第2層目の低屈折率膜(屈折率1.4〜1.5)とを積層し、入射角50〜70度で入射し反射する光の反射率が、ガラス基板面の反射率に比べて数%低減するようにした反射率低減ガラス板が、特許文献1、特許文献2および特許文献3などに開示されている。
【特許文献1】
特開平4−357134号公報
【特許文献2】
特開平8−152501号公報
【特許文献3】
特開2000−335940公報
【0004】
【発明が解決しようとする課題】
このように、従来の低反射膜付きガラス板は、ガラス基板上に高屈折率膜と低屈折率膜とからなる多層膜を作製する方法が主流であるが、多層膜を作製することから低反射膜付きガラス板の製造に多大な時間を要し、また、各薄膜の厚みも反射率に大きな影響を及ぼすことがあった。このため、最近では、多層膜から単層の低コストで作製できる低反射膜付きガラス板の開発が望まれている。
【0005】
本発明は、このような問題点を改善するものであり、本発明は、可視光反射率が小さく、しかも耐磨耗性や耐薬品性などの耐久性に優れ、任意の膜厚の酸化珪素膜で被覆された単層の低反射膜付きガラス板の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、透明ガラス基板の表面に、有機珪素化合物(A)、熱分解温度の差が100℃以上である2種の熱分解性バインダー樹脂(B1)(以下単に「樹脂B1」という)および(B2)(以下単に「樹脂B2」という)、および有機溶剤(C)を配合した処理液を塗布して乾燥し、得られた皮膜付きのガラス基板を400〜800℃で焼成することを特徴とする低反射膜付きガラス板の製造方法を提供する。
【0007】
上記本発明においては、樹脂B1が、エチルセルロースであり、樹脂B2が、ニトロセルロースであること、および樹脂B1と、樹脂B2との使用比率(質量)が、B1:B2=1〜5:80〜1であることが好ましく、より好ましくはB1:B2=1〜5:5〜1である。
【0008】
上記本発明によれば、可視光反射率が小さく、しかも耐磨耗性や耐薬品性などの耐久性に優れ、任意の膜厚の酸化珪素膜で被覆された単層の低反射膜付きガラス板を製造することができる。このような効果は、処理液を塗布したガラス基板を焼成する際、焼成の初期に樹脂B1により塗布層が焼き締められ、その後に樹脂B2が焼失することで、生成する膜に空孔が生じ、優れた低反射特性と優れた膜の耐久性が得られるものと推測される。
【0009】
【発明の実施の形態】
次に好ましい実施の形態を挙げて本発明をより詳細に説明する。
本発明を特徴づける処理液は、必須の成分として、有機珪素化合物(A)、樹脂B1、樹脂B2および有機溶剤(C)を含有する。
【0010】
上記処理液を構成する有機珪素化合物(A)は、シリコンエトキシド、シリコンプロポキシド、シリコンブトキシドなどの珪素のアルコキシド類、ポリシロキサン骨格を持つシリコンオイル類、シリコンワニス類、酸化珪素超微粒子を水や有機溶剤などに分散させたシリカゾルなどを挙げることができる。
【0011】
処理液中の有機珪素化合物量は、好ましくは0.1〜60質量%、より好ましくは1〜30質量%である。有機珪素化合物量が0.1質量%未満では処理液中の有機珪素化合物量が不足し、低反射膜の製膜性が不十分である。一方、有機珪素化合物量が60質量%を超えると、有機珪素化合物量が多すぎて処理液がゲル状になり、低反射膜の製膜性が不十分である。
【0012】
樹脂B1は、後述の有機溶剤(C)に可溶で、処理液の粘度を適度に維持して処理液のガラス基板への塗布、および処理液の乾燥後の取扱を良好にし、かつ焼成時に比較的高温で熱分解することが必要である。樹脂B1の熱分解温度としては、250〜500℃の範囲が好ましく、熱分解温度が250℃未満では、膜の低反射化が不十分となるので好ましくない。一方、熱分解温度が500℃を超えると焼成後の酸化珪素膜強度が十分でなくなるために好ましくない。
【0013】
具体的な樹脂B1としては、例えば、エチルセルロースなどの熱分解性のセルロース類、ポリ塩化ビニル類、ポリメチルメタクリレートなどのポリアクリル類などの樹脂が挙げられる。より好ましい樹脂B1はエチルセルロースである。
【0014】
樹脂B2は、有機溶剤(C)に可溶で、処理液の粘度を適度に維持してガラス基板への塗布、および塗布物の乾燥後の取扱を良好にし、かつ焼成時に比較的低温で熱分解することが必要である。樹脂B2の熱分解温度としては、150〜400℃の範囲が好ましく、熱分解温度が150℃未満では塗布膜の乾燥工程で、樹脂B2が熱分解してしまうために好ましくない。一方、熱分解温度が400℃を超えると焼成後の酸化珪素膜強度が十分でなくなるために好ましくない。
【0015】
具体的な樹脂B2としては、例えば、ニトロセルロースなどの熱分解性のセルロース類、ポリ塩化ビニル類、ポリメチルメタクリレートなどのポリアクリル類などの樹脂が挙げられる。より好ましい樹脂B2はニトロセルロースである。
【0016】
以上の樹脂B1と樹脂B2とは、樹脂B1の熱分解温度(T1)と樹脂B2の分解温度(T2)とがT1−T2≧100℃であるように組み合わせて使用する。上記熱分解温度の関係がT1−T2<100℃であると、低反射膜付きガラス板の可視光反射率が高くなり、好ましくない。ここで樹脂の熱分解温度とは、樹脂の90質量%以上が焼失する温度(℃)をいう。
【0017】
また、使用する樹脂(B1とB2の合計量)の使用量は、溶剤種、樹脂種、分子量などにより異なるが、処理液全量の1〜70質量%が好ましい。使用量が1質量%未満になると、樹脂量が少なすぎて、処理液の塗布や乾燥時に塗布膜の収縮が起きてしまい、製膜性の悪い酸化珪素膜しか得られなくなる。一方、使用量が70質量%を超えると焼成後の酸化珪素膜の物性が悪くなる。
【0018】
樹脂B1と樹脂B2の使用比率(質量)は、B1:B2=1〜5:80〜1であることが好ましく、より好ましくはB1:B2=1〜5:25〜1であり、さらに好ましくはB1:B2=1〜5:5〜1である。樹脂B1の使用量が上記範囲未満であると、膜の低反射化が不十分となるので好ましくない。一方、樹脂B1の使用量が上記範囲を超えると膜強度が不十分となるので好ましくない。
【0019】
有機溶剤(C)は、有機珪素化合物(A)および樹脂(B1およびB2)を溶解できるものであれば特に制限はなく、各処理液の塗布方法などにより適宜選択される。具体的には、メタクレゾール、ジメチルホルムアミド、カルビトール、α−テレピネオール、ジアセトンアルコール、トリエチレングリコール、パラキシレン、トルエンなどの高沸点溶剤が、スクリーン印刷やフレキソ印刷などを利用して各処理液をガラス基板表面に塗布するうえで好ましい。
【0020】
上記処理液の製造方法は特に限定されないが、例えば、はじめに容器に所定量の有機溶剤(C)を測りとり、該容器を40〜80℃に設定したウオーターバスにセットする。その後、樹脂B1を前記容器に加えて15〜30分間攪拌し、そして樹脂B2を加えて15〜30分間攪拌する。さらに有機珪素化合物(A)を加えて10〜20分間攪拌した後、室温で冷却し、本発明で用いる処理液を得る。
【0021】
以上の如く作製された処理液は、透明ガラス基板上にスプレー、ディップ、ロールコート、スピンコート、フレキソ印刷、スクリーン印刷などの方法で塗布する。処理液の塗布量は、処理液の粘度などによっても異なるが、ウエット膜厚で0.2〜40μmにし、乾燥した後、大気雰囲気中で400〜800℃の炉中で焼成し、冷却を経て低反射率の酸化珪素膜で被覆された単層の低反射膜付きガラス板を得る。焼成時間は1〜10分間であることが好ましい。
【0022】
前記処理液によって処理される透明ガラス基板は無色透明に限られず、透過率が本発明の目的を損なわない範囲で着色されていてもよい。例えば、ガラス基板として用いられるガラスとしては、無色透明なフロートガラス(フロート法で製造されたガラス)の他に、着色されたフロートガラス、着色された熱線吸収ガラスなどが挙げられる。特に、本発明により形成される低反射膜付きガラス板を自動車用ガラスとして用いる場合、車内へ入射する日射エネルギー低減の観点から、ガラス基板として熱線吸収ガラスを用いることが好ましい。また、ガラス基板として強化ガラスを用いることもできる。
【0023】
本発明により形成される低反射膜付きガラス板を、積層体を構成する基板として使用することもできる。積層体は第一および第二の基板の間に中間膜または断熱層を挟み込んだ構造であり、本発明の低反射膜付きガラス板を第一および/または第二の基板として用いることができる。また、ガラス板の積層に際しては、ガラス板の低反射膜が形成された面を内側に配することが、低反射膜の耐久性の面から好ましい。前記中間膜としては、例えば、透明または着色されたポリビニルブチラール、エチレンビニルアセテートなどが挙げられる。前記断熱層としては、例えば、不活性ガス、空気あるいは窒素などを充填してなる層または真空層などが挙げられる。
【0024】
前記積層体としては、例えば、第一および第二の基板として低反射膜付きの熱線吸収ガラス、高熱線吸収ガラスおよび紫外線吸収ガラスのいずれかを用い、中間膜としてポリビニルブチラールを用いた合わせガラスが挙げられる。第一および第二の基板として低反射膜付きの高熱線吸収ガラスを用い、中間膜としてポリビニルブチラールを用いた合わせガラスにおいては、前記高熱線吸収ガラスの透過率が低いため、膜面から入射する光の非膜面側における反射率を低下させることができ、特に好ましい。前記合わせガラスは、輸送機器用窓(例えば、車両用窓)やメータ機器のカバーガラスに好適に用いられる。
【0025】
また、前記低反射膜付きガラス板の酸化珪素膜の厚みを0.01〜0.5μmとすることにより、使用するガラス基板によっても異なるが、ガラス基板と低反射膜付きガラス板との可視光透過率差を1〜5%とすることができる。本発明で得られた低反射膜付きガラス板が低反射膜の特性を有するのは、前述した、焼成の初期段階に樹脂B1により塗布層が焼き締められ、その後に樹脂B2が焼失することで、生成する膜に空孔が生じることによると考えられる。
【0026】
さらに、酸化珪素膜をガラス基板に付与することにより、酸化珪素膜表面で反射する光と、酸化珪素膜とガラス基板との界面で反射する光との干渉が発生し、ブラッグの条件;2nd×cosθ=(λ/2)×(2a+1)(a;0、1、2、3の整数)を満たす時、特定の波長で反射率を最小とすることが可能となる。なお、nは膜の屈折率、dは膜厚(nm)、θは入射角、λは光の波長(nm)である。
【0027】
以上の本発明の方法によって得られる低反射膜付きガラス板は次の如き用途において有用である。すなわち、近年、車両の窓や建築物、ドア、ショーウインドウなどの透明部材の大型化が一段と進み、太陽光、照明などの反射や写り込みなどが問題になるケースが増えている。また、太陽光を利用する太陽電池などの需要も増加しているが、受光部の反射損失を低減することが必要である。さらに車両のインパネ部の各種表示装置、例えば、メーターカバーガラスなどをより見やすくするために反射を低減することも求められている。本発明の方法によって得られる低反射膜付きガラス板は、上記の輸送機器用、特に車両用の窓や建築用窓、ショーウインドウ、太陽電池用基板やカバーガラス、車両用のインパネ部のメーターカバーガラス、PDP、LCD、タッチパネル、有機または無機のEL用基板などの各種表示装置のディスプレイ基板などの用途に有用である。
【0028】
本発明の低反射膜付きガラス板は、JIS−R3106(1999年)に規定される可視光透過率が30〜85%であることが好ましい。自動車用窓ガラス(特に、自動車用ウインドシールドまたは自動車用フロントドアガラス)に使用する場合には、70〜85%であることが好ましい。また、自動車用窓ガラスとして使用する場合、ガラス面の反射率が高いとぎらぎらした印象を与え、高級感が損われることから、JIS−R3106(1999年)に規定されるガラス面の可視光反射率は0.1〜5.5%であることが好ましく、特に5.0%以下であることが好ましい。
【0029】
【実施例】
次に実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるわけではない。なお、作製した低反射膜付きガラス板の評価方法は以下の通りである。
【0030】
<評価方法>
1.光学特性(可視光透過率および可視光反射率)
分光光度計(SHIMADZU社製;UV-3100PS)を用いて、低反射膜付きガラス板の波長λ=380〜780nmにおける可視光透過率と可視光反射率をJIS−R3106(1999年)により測定した。なお、可視光反射率はガラス面(低反射膜が形成されている面とは反対側の面)より測定した。
2.膜厚測定
触針式膜厚計(テンコール社製;AS500)によって低反射膜の膜厚測定を実施した。
【0031】
3.耐磨耗性
テーバー磨耗試験機で磨耗輪(CALIBRASE CS-10F)の荷重を250gに設定し、膜が剥離するまでの回転数を測定した。なお、回転数は実用上20回以上、好ましくは30回以上であることが好ましい。
4.耐酸性
低反射膜付きガラス板を0.1N(0.05×10-3mol/m3)のH2SO4水溶液に2時間浸漬し、浸漬前後で酸化珪素膜付きガラス板の可視光反射率および透過率を測定し、試験前後での差を算出した。
【0032】
5.耐アルカリ性
低反射膜付きガラス板を0.1N(0.1×10-3mol/m3)のNaOH水溶液に2時間浸漬し、浸漬前後で酸化珪素膜付きガラス板の可視光反射率および透過率を測定し、試験前後での差を算出した。
なお、耐酸性および耐アルカリ性の各試験において、試験前後での可視光透過率差(ΔT)および試験前後での可視光反射率差(ΔR)は実用上0.5%以下であることが好ましい。
【0033】
<低反射膜付きガラスの製造方法>
実施例1〜9
表1に示す配合で、前記方法にて酸化珪素膜形成用の処理液を作製した。実施例1〜9は処理液中の樹脂B1と樹脂B2の量を変量している。
【0034】
比較例1〜5
表1に示す配合で、前記方法により酸化珪素膜形成用の処理液を作製した。比較例1は、処理液中の樹脂が樹脂B1のみの場合である。比較例2については、樹脂B2のみを配合した酸化珪素膜形成用処理液を示しており、比較例3では処理液を塗付しないガラス基板そのものを示している。比較例4および5は、使用した2種の樹脂の熱分解温度の差が100℃未満の場合を示している(図1参照)。
【0035】
実施例1〜9、比較例1、2、4および5の処理液を厚さ3mmの透明なガラス基板上にスクリーン印刷法により塗布し、100℃の熱風循環式オーブンで10分間乾燥し、大気雰囲気中で640℃のベルト炉中で5分間焼成し、それぞれの低反射膜付きガラス板を得た。
【0036】
表2に上記で得られた低反射膜の膜厚、可視光透過率、可視光反射率、耐薬品性試験結果、耐磨耗性試験および製膜性の評価結果を示す。また、前記で使用したニトロセルロース、エチルセルロースおよびポリブチルメタクリレートの熱分解特性を図1に示す。
【0037】
【0038】
【0039】
1.表中の数値は質量%を表わす。
2.表中のKR−212(信越化学製)はシリコンワニスであり、その使用量はワニスとしての使用量である。
3.図1に示すニトロセルロース、エチルセルロース、およびポリブチルメタクリレートの熱分解温度は、熱重量示差熱分析装置TG/DTA6200(セイコーインスルメンツ製)にて、温度範囲:30〜700℃、速度:10℃/min.、ガス:空気、ガス流量:200cm3/min.、リファレンス:Al2O3の条件で測定した。
【0040】
【0041】
【0042】
上記表2に示すように、可視光反射率においては、実施例1〜9の低反射膜付きガラス板は、比較例3のガラス基板そのもの、樹脂B2の単独を用いた比較例2、樹脂B1の単独を用いた比較例1および熱分解温度の差が100℃未満である2つの樹脂を用いた比較例4および5に比べて優れた低反射特性を有している。なお、実施例1〜9においては、全て可視光反射率が5.5%以下の値を示しており、特に樹脂B1および樹脂B2を適量(B1:B2=1〜5:80〜1)配合した実施例2〜8では、可視光反射率が5.0%以下の値を示しており、十分な反射特性が得られているとともに膜強度も高いが、樹脂B1の配合量が上記適量よりも低い実施例9は、膜強度が高く、可視光反射率が5.5%以下であるものの、十分満足できるものではない。また、樹脂B2の配合量が上記適量よりも低い実施例1は可視光反射率が低く、低反射機能は十分満足するものの、膜強度や耐薬品性にやや難がある。
【0043】
表2に示す耐薬品性試験(耐アルカリ性試験および耐酸性試験)結果から、比較例1および4では耐薬品性試験(耐アルカリ性試験および耐酸性試験)後に酸化珪素膜が剥離してしまうのに対して、実施例1〜9では酸化珪素膜の剥離は見られなかった。特に実施例2〜9では試験前後での可視光反射率変化が小さく、耐薬品性にも優れていることが確認できた。
【0044】
表2に示す耐磨耗性試験結果から実施例1〜9では、酸化珪素膜が剥離するまでの回転数が比較例1および4と比較して多くなった。以上の結果より、実施例1〜9では耐磨耗性も優れていることが確認できた。
【0045】
図1に示す熱分解特性の結果より、ニトロセルロースは、低温で熱分解が完了し、エチルセルロースは高温で熱分解が完了していることが確認でき、それらの熱分解温度の差が100℃以上であることが分かる。
【0046】
【発明の効果】
以上のように本発明によれば、特定組成の処理液を用いることにより、可視光反射率が小さく、耐磨耗性や耐薬品性などに優れ、添加する有機珪素化合物を変化させることによって任意に膜厚を調整できる酸化珪素膜で被覆された単層の低反射膜付きガラス板を作製することができる。
【図面の簡単な説明】
【図1】 本発明で使用したニトロセルロース、エチルセルロースおよびポリブチルメタクリレートの熱分解特性を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a glass plate with a low reflection film, and more particularly, a silicon oxide film having an arbitrary film thickness with a low visible light reflectance and excellent durability such as wear resistance and chemical resistance. The present invention relates to a method for producing a single-layer glass sheet with a low-reflection film coated with.
[0002]
[Prior art]
Conventionally, in order to prevent visible light from being reflected on the surface of a glass plate or other glass article to reduce transparency or light transmittance or to become dazzling, the surface of the glass article has been subjected to antireflection treatment. Has been done. For this reason, it is known to produce a multilayer film composed of a high refractive index film and a low refractive index film on a glass substrate.
[0003]
For example, a first layer high refractive index film (refractive index 1.7 to 1.8) and a second layer low refractive index film (refractive index 1.4 to 1.5) are laminated from the glass substrate surface. The reflectance-reducing glass plate in which the reflectance of light incident and reflected at an incident angle of 50 to 70 degrees is reduced by several percent compared to the reflectance of the glass substrate surface is disclosed in Patent Document 1, Patent Document 2, and It is disclosed in Patent Document 3 and the like.
[Patent Document 1]
JP-A-4-357134 [Patent Document 2]
JP-A-8-152501 [Patent Document 3]
Japanese Patent Laid-Open No. 2000-335940
[Problems to be solved by the invention]
As described above, the conventional method for producing a glass plate with a low reflection film is a method of producing a multilayer film comprising a high refractive index film and a low refractive index film on a glass substrate. It takes a long time to produce a glass plate with a reflective film, and the thickness of each thin film sometimes has a great influence on the reflectance. Therefore, recently, development of a glass plate with a low reflection film that can be produced from a multilayer film at a low cost with a single layer has been desired.
[0005]
The present invention improves such problems, and the present invention has low visible light reflectivity, excellent durability such as wear resistance and chemical resistance, and silicon oxide having an arbitrary film thickness. It is an object of the present invention to provide a method for producing a single-layer glass sheet with a low reflection film coated with a film.
[0006]
[Means for Solving the Problems]
The present invention provides an organic silicon compound (A) on the surface of a transparent glass substrate, two types of thermally decomposable binder resins (B1) (hereinafter simply referred to as “resin B1”) having a thermal decomposition temperature difference of 100 ° C. or higher, and (B2) (hereinafter simply referred to as “resin B2”) and a treatment liquid containing an organic solvent (C) are applied and dried, and the obtained glass substrate with a film is fired at 400 to 800 ° C. A method for producing a glass plate with a low reflection film is provided.
[0007]
In the present invention, the resin B1 is ethyl cellulose, the resin B2 is nitrocellulose, and the use ratio (mass) of the resin B1 and the resin B2 is B1: B2 = 1-5: 80- 1, more preferably B1: B2 = 1 to 5: 5-1.
[0008]
According to the present invention, a single-layer glass with a low reflection film having a low visible light reflectivity and excellent durability such as wear resistance and chemical resistance and coated with a silicon oxide film having an arbitrary film thickness. A board can be manufactured. Such an effect is that when the glass substrate coated with the treatment liquid is baked, the coating layer is baked in by the resin B1 at the initial stage of baking, and then the resin B2 is burned out, thereby generating voids in the generated film. It is presumed that excellent low reflection characteristics and excellent film durability can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments.
The treatment liquid characterizing the present invention contains an organic silicon compound (A), a resin B1, a resin B2, and an organic solvent (C) as essential components.
[0010]
The organosilicon compound (A) that constitutes the treatment liquid contains silicon alkoxides such as silicon ethoxide, silicon propoxide, and silicon butoxide, silicon oils having a polysiloxane skeleton, silicon varnishes, and silicon oxide ultrafine particles in water. And silica sol dispersed in an organic solvent.
[0011]
The amount of the organosilicon compound in the treatment liquid is preferably 0.1 to 60% by mass, more preferably 1 to 30% by mass. When the amount of the organosilicon compound is less than 0.1% by mass, the amount of the organosilicon compound in the treatment liquid is insufficient, and the film forming property of the low reflection film is insufficient. On the other hand, when the amount of the organosilicon compound exceeds 60% by mass, the amount of the organosilicon compound is too large and the treatment liquid becomes a gel, and the film forming property of the low reflection film is insufficient.
[0012]
Resin B1 is soluble in the organic solvent (C) described later, maintains the viscosity of the treatment liquid to an appropriate level, improves the application of the treatment liquid to the glass substrate, and the handling of the treatment liquid after drying, and during firing. It must be pyrolyzed at a relatively high temperature. The thermal decomposition temperature of the resin B1 is preferably in the range of 250 to 500 ° C., and if the thermal decomposition temperature is less than 250 ° C., it is not preferable because the low reflection of the film becomes insufficient. On the other hand, if the thermal decomposition temperature exceeds 500 ° C., the strength of the silicon oxide film after firing is not sufficient, which is not preferable.
[0013]
Specific examples of the resin B1 include resins such as thermally decomposable celluloses such as ethyl cellulose, polyacryls such as polyvinyl chloride and polymethyl methacrylate. A more preferable resin B1 is ethyl cellulose.
[0014]
Resin B2 is soluble in the organic solvent (C), maintains the viscosity of the treatment liquid to an appropriate level, improves the coating on the glass substrate and the handling after drying the coating, and heats at a relatively low temperature during firing. It is necessary to disassemble. The thermal decomposition temperature of the resin B2 is preferably in the range of 150 to 400 ° C. If the thermal decomposition temperature is lower than 150 ° C, the resin B2 is thermally decomposed in the coating film drying step, which is not preferable. On the other hand, if the thermal decomposition temperature exceeds 400 ° C., the strength of the silicon oxide film after firing is not sufficient, which is not preferable.
[0015]
Specific examples of the resin B2 include resins such as thermally decomposable celluloses such as nitrocellulose, polyacryls such as polyvinyl chloride, and polymethyl methacrylate. A more preferred resin B2 is nitrocellulose.
[0016]
The resin B1 and the resin B2 are used in combination such that the thermal decomposition temperature (T1) of the resin B1 and the decomposition temperature (T2) of the resin B2 are T1−T2 ≧ 100 ° C. When the relationship of the thermal decomposition temperature is T1-T2 <100 ° C., the visible light reflectance of the glass plate with a low reflection film increases, which is not preferable. Here, the thermal decomposition temperature of the resin means a temperature (° C.) at which 90% by mass or more of the resin is burned out.
[0017]
Moreover, although the usage-amount of resin (total amount of B1 and B2) to be used changes with solvent seed | species, resin seed | species, molecular weight, etc., 1-70 mass% of the process liquid whole quantity is preferable. If the amount used is less than 1% by mass, the amount of resin is too small, and the coating film shrinks when the treatment liquid is applied or dried, and only a silicon oxide film with poor film-forming properties can be obtained. On the other hand, when the amount used exceeds 70% by mass, the physical properties of the fired silicon oxide film are deteriorated.
[0018]
The use ratio (mass) of the resin B1 and the resin B2 is preferably B1: B2 = 1 to 5:80 to 1, more preferably B1: B2 = 1 to 5:25 to 1, further preferably B1: B2 = 1 to 5: 5-1. When the amount of the resin B1 used is less than the above range, it is not preferable because the low reflection of the film becomes insufficient. On the other hand, if the amount of the resin B1 used exceeds the above range, the film strength becomes insufficient.
[0019]
The organic solvent (C) is not particularly limited as long as it can dissolve the organosilicon compound (A) and the resins (B1 and B2), and is appropriately selected depending on the application method of each treatment liquid. Specifically, high-boiling solvents such as metacresol, dimethylformamide, carbitol, α-terpineol, diacetone alcohol, triethylene glycol, para-xylene, and toluene are used for each processing solution using screen printing or flexographic printing. Is preferable in applying to the glass substrate surface.
[0020]
Although the manufacturing method of the said process liquid is not specifically limited, For example, a predetermined amount of organic solvents (C) are measured to a container first, and this container is set to the water bath set to 40-80 degreeC. Thereafter, resin B1 is added to the vessel and stirred for 15-30 minutes, and resin B2 is added and stirred for 15-30 minutes. Further, an organosilicon compound (A) is added and stirred for 10 to 20 minutes, and then cooled at room temperature to obtain a treatment liquid used in the present invention.
[0021]
The treatment liquid produced as described above is applied onto a transparent glass substrate by a method such as spraying, dip coating, roll coating, spin coating, flexographic printing, or screen printing. The coating amount of the treatment liquid varies depending on the viscosity of the treatment liquid, but is 0.2 to 40 μm in wet film thickness, dried, fired in an oven at 400 to 800 ° C. in an air atmosphere, and cooled. A single-layer glass sheet with a low-reflection film coated with a low-reflection silicon oxide film is obtained. The firing time is preferably 1 to 10 minutes.
[0022]
The transparent glass substrate treated with the treatment liquid is not limited to being colorless and transparent, and may be colored in a range where the transmittance does not impair the object of the present invention. For example, as glass used as a glass substrate, in addition to colorless and transparent float glass (glass manufactured by a float process), colored float glass, colored heat ray absorbing glass, and the like can be given. In particular, when the glass plate with a low reflection film formed according to the present invention is used as glass for automobiles, it is preferable to use heat ray absorbing glass as the glass substrate from the viewpoint of reducing solar energy incident on the inside of the vehicle. Moreover, tempered glass can also be used as a glass substrate.
[0023]
The glass plate with a low reflection film formed according to the present invention can also be used as a substrate constituting the laminate. The laminate has a structure in which an intermediate film or a heat insulating layer is sandwiched between the first and second substrates, and the glass plate with a low reflection film of the present invention can be used as the first and / or second substrate. Further, when the glass plates are laminated, it is preferable from the viewpoint of durability of the low reflection film that the surface of the glass plate on which the low reflection film is formed is arranged on the inner side. Examples of the intermediate film include transparent or colored polyvinyl butyral and ethylene vinyl acetate. Examples of the heat insulating layer include a layer filled with an inert gas, air, nitrogen, or the like, or a vacuum layer.
[0024]
As the laminate, for example, a laminated glass using a heat-absorbing glass with a low reflection film, a high-heat-absorbing glass and an ultraviolet-absorbing glass as the first and second substrates and a polyvinyl butyral as the intermediate film is used. Can be mentioned. In laminated glass using high heat ray absorbing glass with a low reflection film as the first and second substrates and polyvinyl butyral as the intermediate film, the transmittance of the high heat ray absorbing glass is low, so that the light enters from the film surface. The reflectance on the non-film surface side of light can be reduced, which is particularly preferable. The said laminated glass is used suitably for the cover glass of the window for transportation apparatuses (for example, window for vehicles) and meter apparatus.
[0025]
In addition, by setting the thickness of the silicon oxide film of the glass plate with a low reflection film to 0.01 to 0.5 μm, visible light between the glass substrate and the glass plate with a low reflection film varies depending on the glass substrate to be used. The transmittance difference can be 1 to 5%. The reason why the glass plate with a low reflection film obtained in the present invention has the characteristics of a low reflection film is that the coating layer is baked by the resin B1 in the initial stage of baking, and the resin B2 is burned out after that. This is thought to be due to the formation of vacancies in the resulting film.
[0026]
Further, by applying the silicon oxide film to the glass substrate, interference between the light reflected on the surface of the silicon oxide film and the light reflected on the interface between the silicon oxide film and the glass substrate occurs, and the Bragg condition: 2nd × When cos θ = (λ / 2) × (2a + 1) (a; an integer of 0, 1, 2, 3) is satisfied, the reflectance can be minimized at a specific wavelength. Here, n is the refractive index of the film, d is the film thickness (nm), θ is the incident angle, and λ is the wavelength of light (nm).
[0027]
The glass plate with a low reflection film obtained by the method of the present invention is useful in the following applications. That is, in recent years, the size of transparent members such as vehicle windows, buildings, doors, and show windows has further increased, and the number of cases in which reflection or reflection of sunlight, lighting, or the like becomes a problem is increasing. Moreover, although the demand for solar cells using sunlight is increasing, it is necessary to reduce the reflection loss of the light receiving unit. Furthermore, it is also required to reduce reflection in order to make various display devices in the instrument panel portion of the vehicle, such as a meter cover glass, more easily visible. The glass plate with a low reflection film obtained by the method of the present invention is used for the above-mentioned transportation equipment, in particular, windows for vehicles, windows for buildings, show windows, solar cell substrates and cover glasses, and instrument covers for vehicle instrument panels. It is useful for applications such as display substrates of various display devices such as glass, PDP, LCD, touch panel, organic or inorganic EL substrates.
[0028]
The glass plate with a low reflection film of the present invention preferably has a visible light transmittance of 30 to 85% as defined in JIS-R3106 (1999). When used for window glass for automobiles (particularly, windshield for automobiles or front door glass for automobiles), it is preferably 70 to 85%. In addition, when used as a window glass for automobiles, a high glare impression is given when the reflectance of the glass surface is high, and the sense of quality is impaired. Therefore, the visible light reflection of the glass surface defined in JIS-R3106 (1999). The rate is preferably 0.1 to 5.5%, particularly preferably 5.0% or less.
[0029]
【Example】
EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not necessarily limited to these examples. In addition, the evaluation method of the produced glass plate with a low reflection film is as follows.
[0030]
<Evaluation method>
1. Optical properties (visible light transmittance and visible light reflectance)
Using a spectrophotometer (manufactured by SHIMADZU; UV-3100PS), the visible light transmittance and visible light reflectance at a wavelength λ = 380 to 780 nm of a glass plate with a low reflection film were measured according to JIS-R3106 (1999). . The visible light reflectance was measured from the glass surface (the surface opposite to the surface on which the low reflection film is formed).
2. Film thickness measurement The film thickness of the low reflection film was measured with a stylus-type film thickness meter (manufactured by Tencor; AS500).
[0031]
3. The load of the wear wheel (CALIBRASE CS-10F) was set to 250 g with an abrasion-resistant Taber abrasion tester, and the number of revolutions until the film peeled was measured. The number of rotations is practically 20 times or more, preferably 30 times or more.
4). The glass plate with an acid-resistant low-reflection film is immersed in a 0.1N (0.05 × 10 −3 mol / m 3 ) H 2 SO 4 aqueous solution for 2 hours, and the visible light reflection of the glass plate with the silicon oxide film is before and after immersion. The rate and transmittance were measured, and the difference before and after the test was calculated.
[0032]
5. A glass plate with an alkali-resistant low-reflection film is immersed in a 0.1N (0.1 × 10 −3 mol / m 3 ) aqueous NaOH solution for 2 hours, and the visible light reflectance and transmission of the glass plate with a silicon oxide film before and after immersion. The rate was measured and the difference before and after the test was calculated.
In each of the acid resistance and alkali resistance tests, the visible light transmittance difference (ΔT) before and after the test and the visible light reflectance difference (ΔR) before and after the test are preferably 0.5% or less in practice. .
[0033]
<Method for producing glass with low reflection film>
Examples 1-9
A treatment liquid for forming a silicon oxide film was prepared by the method described above with the formulation shown in Table 1. In Examples 1 to 9, the amounts of the resin B1 and the resin B2 in the treatment liquid are varied.
[0034]
Comparative Examples 1-5
With the formulation shown in Table 1, a treatment liquid for forming a silicon oxide film was prepared by the above method. Comparative Example 1 is a case where the resin in the treatment liquid is only resin B1. Comparative Example 2 shows a silicon oxide film-forming treatment liquid containing only resin B2, and Comparative Example 3 shows a glass substrate itself to which no treatment liquid is applied. Comparative Examples 4 and 5 show the case where the difference between the thermal decomposition temperatures of the two resins used is less than 100 ° C. (see FIG. 1).
[0035]
The processing solutions of Examples 1 to 9, Comparative Examples 1, 2, 4 and 5 were applied on a transparent glass substrate having a thickness of 3 mm by a screen printing method, dried in a hot air circulation oven at 100 ° C. for 10 minutes, and air. Firing was performed in a belt furnace at 640 ° C. for 5 minutes in an atmosphere to obtain glass plates with low reflection films.
[0036]
Table 2 shows the film thickness, visible light transmittance, visible light reflectance, chemical resistance test result, abrasion resistance test, and film forming property evaluation result of the low reflection film obtained above. The thermal decomposition characteristics of the nitrocellulose, ethylcellulose and polybutylmethacrylate used above are shown in FIG.
[0037]
[0038]
[0039]
1. The numerical values in the table represent mass%.
2. In the table, KR-212 (manufactured by Shin-Etsu Chemical) is a silicon varnish, and the amount used is the amount used as a varnish.
3. The thermal decomposition temperatures of nitrocellulose, ethylcellulose, and polybutylmethacrylate shown in FIG. 1 are a thermogravimetric differential thermal analyzer TG / DTA6200 (manufactured by Seiko Instruments Inc.), temperature range: 30 to 700 ° C., speed: 10 ° C. / Min. , Gas: air, gas flow rate: 200 cm 3 / min. Reference: Measurement was performed under the conditions of Al 2 O 3 .
[0040]
[0041]
[0042]
As shown in Table 2 above, in terms of visible light reflectance, the glass plates with low reflection films of Examples 1 to 9 are the glass substrate itself of Comparative Example 3, Comparative Example 2 using resin B2 alone, and Resin B1. Compared to Comparative Example 1 using the above and Comparative Examples 4 and 5 using two resins having a difference in thermal decomposition temperature of less than 100 ° C., they have excellent low reflection characteristics. In Examples 1 to 9, all visible light reflectivities show values of 5.5% or less. Particularly, resin B1 and resin B2 are blended in appropriate amounts (B1: B2 = 1 to 5: 80-1). In Examples 2-8, the visible light reflectance is 5.0% or less, and sufficient reflection characteristics are obtained and the film strength is high. However, the blending amount of the resin B1 is more than the appropriate amount. In Example 9, the film strength is high and the visible light reflectance is 5.5% or less, but it is not satisfactory. Further, Example 1 in which the blending amount of the resin B2 is lower than the appropriate amount has a low visible light reflectance and sufficiently satisfies the low reflection function, but is somewhat difficult in film strength and chemical resistance.
[0043]
From the results of the chemical resistance test (alkali resistance test and acid resistance test) shown in Table 2, in Comparative Examples 1 and 4, the silicon oxide film peels off after the chemical resistance test (alkali resistance test and acid resistance test). On the other hand, in Examples 1 to 9, peeling of the silicon oxide film was not observed. In particular, in Examples 2 to 9, it was confirmed that the change in visible light reflectance before and after the test was small and the chemical resistance was excellent.
[0044]
From the results of the abrasion resistance test shown in Table 2, in Examples 1 to 9, the number of rotations until the silicon oxide film was peeled increased compared to Comparative Examples 1 and 4. From the above results, it was confirmed that Examples 1 to 9 were excellent in wear resistance.
[0045]
From the results of the thermal decomposition characteristics shown in FIG. 1, it can be confirmed that nitrocellulose has been thermally decomposed at a low temperature and ethyl cellulose has been thermally decomposed at a high temperature, and the difference between the thermal decomposition temperatures is 100 ° C. or more. It turns out that it is.
[0046]
【The invention's effect】
As described above, according to the present invention, by using the treatment liquid having a specific composition, the visible light reflectance is small, the wear resistance and the chemical resistance are excellent, and the organic silicon compound to be added is arbitrarily changed. A single-layer glass plate with a low-reflection film coated with a silicon oxide film whose thickness can be adjusted can be produced.
[Brief description of the drawings]
FIG. 1 is a graph showing thermal decomposition characteristics of nitrocellulose, ethylcellulose and polybutylmethacrylate used in the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003084313A JP4177692B2 (en) | 2002-08-02 | 2003-03-26 | Manufacturing method of glass plate with low reflection film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002225466 | 2002-08-02 | ||
JP2003084313A JP4177692B2 (en) | 2002-08-02 | 2003-03-26 | Manufacturing method of glass plate with low reflection film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004123507A JP2004123507A (en) | 2004-04-22 |
JP4177692B2 true JP4177692B2 (en) | 2008-11-05 |
Family
ID=32300763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003084313A Expired - Fee Related JP4177692B2 (en) | 2002-08-02 | 2003-03-26 | Manufacturing method of glass plate with low reflection film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4177692B2 (en) |
-
2003
- 2003-03-26 JP JP2003084313A patent/JP4177692B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004123507A (en) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5871843A (en) | Laminate and process for its production | |
US20100165467A1 (en) | Anti-reflective coated glas plate | |
Moghal et al. | Development of single layer nanoparticle anti-reflection coating for polymer substrates | |
JPWO2015115492A1 (en) | Glass plate with anti-glare function for solar cells | |
TW200909545A (en) | Composition for hard coat layer, hard coat film using the same and anti-reflective film comprising the hard coat film | |
US20090084488A1 (en) | Method of preparing colorless and transparent f-doped tin oxide conductive film using polymer post-treatment process | |
US7531242B2 (en) | Silicone-coated architectural glass | |
WO2011090156A1 (en) | Anti-fog article | |
US7309734B2 (en) | Silicone-coated architectural glass | |
JP4177692B2 (en) | Manufacturing method of glass plate with low reflection film | |
Yoneda et al. | Mechanical durability of water repellent glass | |
WO1995018774A1 (en) | Coatings on glass | |
WO2022239590A1 (en) | Light-absorptive composition, light-absorbing film, light-absorbing film manufacturing method, and optical filter | |
JP2004292194A (en) | Method for manufacturing glass plate having low reflective film, and glass plate having low reflective film | |
JP3912938B2 (en) | Colored film formation method | |
US7838116B2 (en) | Silicone-coated architectural and decorative glass | |
US7276263B2 (en) | Process for producing low reflection glass plate, and low reflection glass plate | |
JP4054669B2 (en) | Manufacturing method of low reflection glass plate | |
JP4054641B2 (en) | Manufacturing method of low reflection glass plate | |
JP2004143027A (en) | Method for manufacturing low reflective glass | |
JP2004210573A (en) | Manufacturing method of glass with iron oxide film | |
JP4409301B2 (en) | Manufacturing method of low reflection glass plate | |
JPWO2004046057A1 (en) | Thermal shielding plate, method for producing the same, and liquid composition used therefor | |
JP2004262696A (en) | Method for manufacturing low reflection glass plate | |
JP2003026999A (en) | Colored film-forming coating fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080822 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4177692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |