JP4177612B2 - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP4177612B2 JP4177612B2 JP2002221878A JP2002221878A JP4177612B2 JP 4177612 B2 JP4177612 B2 JP 4177612B2 JP 2002221878 A JP2002221878 A JP 2002221878A JP 2002221878 A JP2002221878 A JP 2002221878A JP 4177612 B2 JP4177612 B2 JP 4177612B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- powder
- lithium ion
- ion secondary
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は、炭素材料のようなリチウムイオンをドープ且つ脱ドープが可能な物質を負極として使用し、正極にリチウムコバルト複合酸化物のようなリチウム複合酸化物を使用し、電池電圧が高く、高エネルギー密度を有し、さらに優れたサイクル特性を有する。
【0003】
前記リチウムイオン二次電池、例えば角形リチウムイオン二次電池は、帯状の正極集電体の両面に活物質層を形成した正極と、帯状の負極集電体の両面に活物質層を形成した負極とを、ポリエチレンフィルムのようなセパレータを介して捲回して電極群とし、この電極群の上下に絶縁体を載置した状態で容器に収納した構造を有する。なお、充電時にリチウムが析出して内部で短絡を生じるのを防止するために、正極にセパレータを介在して対向する負極の幅および長さを大きくするのが一般的である。
【0004】
このようなリチウムイオン二次電池では、前記電極群の捲き始め端部および捲き終わり端部の少なくとも一方に位置する正極の集電体の露出面と負極の活物質層とがセパレータを介して対向する部分において、極めてまれなケースであるが、それら正負極がセパレータを貫通して短絡を生じ、高温の発熱に至る問題があった。
【0005】
本発明者らは、前記発熱に至った二次電池を解体し、その発熱部分を調べた結果、何らかの原因で薄いセパレータに傷が発生し、正極の集電体の露出面と負極の活物質層との間で小さな内部短絡が起き、そのジュール発熱によりセパレータがさらに損傷して大きな電流が流れて、発熱に至ったものと推定するに至った。このような発熱は、正極の集電体材料であるアルミニウムをも溶解するほどの高温に達する場合があり、電池使用者に火傷を負わせる危険性がある。
【0006】
リチウムイオン二次電池において、発熱に至る事故が極めて稀であってもユーザにとっては重大で未然に回避することが切望されている。
【0007】
ところで、特開平7−130389号公報には帯状の金属箔の表裏両面に正極に対向する負極の長さが該正極より大きくなるように電極合剤が塗布された正極及び負極をセパレータを介して対向させて捲回してなる巻回電極体を有し、捲回電極体の捲き始め及び/又は捲き終わりに位置する負極又は正極の非対向部分の少なくとも一部に電解液に不溶の絶縁性樹脂を被覆することによって、前記被覆部分を外部との接触が絶たれた状態に維持できるため、電池の充電時において電解液中のリチウムイオンとの反応に殆ど関与しない状態で保持して前記被覆部分へのリチウムイオンの拡散を防止したリチウムイオン二次電池のような非水電解液二次電池が開示されている。
【0008】
このような非水電解液二次電池において、捲回電極体の捲き始め及び/又は捲き終わりに位置する負極と正極との間で例えば比較的大きな電極片のような異物によるセパレータおよび絶縁性樹脂被膜の突き抜け等により短絡を生じる場合がある。このとき、前記被膜は絶縁性樹脂により作られているため、前記短絡に伴うジュール発熱により溶融してその絶縁機能が喪失され、同時にセパレータをも損傷し、大きな電流が流れて前述したような発熱事故に至る問題があった。
【0009】
一方、特開平10−241655号公報には正極、負極およびこれらの間に介在されるセパレータを備えた電池において、前記正極の活物質層および前記負極の活物質層の少なくともいずれか一方に特定の比表面積を持つ絶縁性物質粒子とこの粒子同士を結合するバインダからなる絶縁性物質粒子集合体層を固定してセパレータを形成した電池が記載されている。
【0010】
【発明が解決しようとする課題】
本発明は、電極群の捲き始め端部および捲き終わり端部の少なくとも一方に位置する正極および負極の間で短絡が生じても高温の発熱に至る事故を未然に防止することが可能なリチウムイオン二次電池を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明に係るリチウムイオン二次電池は、集電体に活物質層を形成した正極および集電体に活物質層を形成した負極をそれらの間にセパレータを介在して捲回した電極群を備え、
前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における他方の極に対向する露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定したことを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0013】
本発明のリチウムイオン二次電池は、集電体に活物質層を形成した正極および集電体に活物質層を形成した負極をそれらの間にセパレータを介在して捲回した電極群を備える。この電極群は、例えば金属製外装缶のような外装部材に非水電解液とともに収納されている。
【0014】
前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定している。ここで、露出面の一部とは他方の極に対向する領域を少なくとも含むことを意味する。
【0015】
次に、前記正極、負極、セパレータ、非水系電解液および絶縁性被膜を説明する。
【0016】
1)正極
この正極は、集電体の例えば両面に活物質および結着剤を含む活物質層を形成した構造を有する。なお、正極は集電体の片面に正極活物質層を担持させた構造であってもよい。
【0017】
前記集電体としては、例えばアルミニウム箔、アルミニウムメッシュ等を挙げることができる。
【0018】
前記活物質としては、エネルギー密度の高いリチウム複合酸化物が好ましい。具体的には、LiCoO2、LiNiO2、LixNiyCo1-yO2(ただし、xは、電池の充電状態で異なり、通常は0<x<1、0.7<y<1.0である。)、LixCoySnzO2(ただし、x、y、zは各々0.05≦x≦1.10、0.85≦y≦1.00、0.001≦z≦0.10の数を表す。)が挙げられる。リチウム複合酸化物は、リチウムの炭酸塩、硝酸塩、酸化物あるいは水酸化物と、コバルト、マンガンあるいはニッケル等の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所定の組成で混合粉砕し、酸素雰囲気下で600〜1000℃の温度で焼成することにより得ることができる。
【0019】
前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0020】
前記正極活物質層には、例えばアセチレンブラック、カーボンブラック、黒鉛等の導電剤を含有することを許容する。
【0021】
2)負極
この負極は、集電体の例えば両面に活物質および結着剤を含む活物質層を形成した構造を有する。なお、負極は集電体の片面に負極活物質層を担持させた構造であってもよい。
【0022】
前記集電体としては、例えば銅、ニッケルの箔またはメッシュ等を挙げることができる。
【0023】
前記活物質は、リチウムをドープ・脱ドープできるものであればよく、例えばグラファイト類、コークス類(石油コークス、ピッチコークス、ニードルコークス等)、熱分解炭素類、有機高分子化合物の焼成体(フェノール樹脂等を適切な温度で焼成し、炭化したもの)あるいはポリアセチレン、ポリピロール等があげられる。
【0024】
前記結着剤としては、例えばポリテトラフルオロエチレン、ポリビニリデンフルオロライド、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム、カルボキシメチルセルロース等の結着剤を含有することが好ましい。
【0025】
3)セパレータ
このセパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
【0026】
4)非水系電解液
この非水電解液は、電解質を非水溶媒で溶解した組成を有する。
【0027】
電解質としては、例えば過塩素酸リチウム(LiClO4)、四フッ化硼酸リチウム(LiBF4)、六フッ化燐酸リチウム(LiPF6)、六フッ化砒素酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、LiN(CF3SO2)2、リチウムビス[5−フルオロ−2オラト−1−ベンゼン−スルホナト(2−)]ボレート等を用いることができる。
【0028】
非水溶媒としては、例えばγ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル等を用いることができ、2種類以上混合して使用してもよい。
【0029】
前記非水溶媒中の前記電解質の濃度は、0.5モル/L以上にすることが好ましい。
【0030】
5)絶縁性被膜
この絶縁性被膜は、500℃以上の耐熱性を有する粉体がバインダ樹脂で結着した構造を有する。
【0031】
前記粉体としては、例えばアルミナ、シリカ、ゼオライトおよび酸化チタンから選ばれる少なくとも1つの無機物粉体を挙げることができる。
【0032】
前記粉体は、平均粒径が30μm以下、より好ましくは0.005〜5μmであることが望ましい。前記粉体の平均粒径が30μmを超えると、塗布工程での絶縁性被膜の形成が困難になるばかりか、電極群を作製する際に適した比較的薄い絶縁性被膜の形成が困難になる虞がある。
【0033】
前記粉体として球状のものを用いる場合には、塗工スラリの流動性の向上や塗布装置の磨耗防止を図ることが可能になる。この球状粉体としては、アルミナやシリカなどが市販されている。
【0034】
前記バインダ樹脂としては、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0035】
前記絶縁性被膜を構成する前記粉体と前記バインダ樹脂の混合比率は、重量割合で前記粉体100に対して前記バインダ樹脂が5〜35であることが好ましい。前記バインダ樹脂の混合比率を5未満にすると、前記絶縁性被膜を塗布手段で形成する際の塗布性が低下したり、前記絶縁性被膜の強度が低下したり、前記集電体の露出面への前記絶縁性被膜の固定性が低下する虞がある。一方、前記バインダ樹脂の混合比率が35を超えると、前記絶縁性被膜に占めるバインダ樹脂量が多くなりすぎて正負極化での短絡に伴うジュール発熱による絶縁性被膜の溶融、損傷を防ぐことが困難になる虞がある。
【0036】
前記絶縁性被膜は、5μm以上、前記活物質層の厚さ以下の厚さを有することが好ましい。前記絶縁性被膜の厚さを5μm未満にすると、塗布ばらつきにより正負極間での短絡に伴うジュール発熱による絶縁性被膜の溶融、損傷を防ぐことが困難になる虞がある。一方、前記絶縁性被膜の厚さが活物質層の厚さを超えると、電極群を作製するための捲回操作に支障をきたしたり、それら活物質層の電極群に占める割合が低下する虞がある。最も好ましい前記絶縁性被膜の厚さは、20〜60μmである。
【0037】
前記絶縁性被膜は、例えば次のような方法により形成される。
【0038】
前記粉体と前記バインダ樹脂を適切な溶媒、例えばN−メチルピロリドンに添加し、撹拌して前記バインダ樹脂を溶解すると共に前記粉体をバインダ樹脂溶解液に分散させて塗工スラリを調製する。つづいて、塗工スラリを前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分の少なくとも一方の集電体における露出面の一部または全部にスプレーするか、刷毛塗りした後、乾燥して絶縁性被膜を形成し固定する。
【0039】
なお、製造工程数の削減を図るために前記正極または負極の作製に際し、集電体に活物質および結着剤を含む塗工スラリを塗布する工程に引き続いて前記粉体およびバインダ樹脂を含む塗工スラリを集電体の露出面にスプレー法により塗布し、その後これらの塗工膜を乾燥して活物質層および絶縁性被膜を形成することが好ましい。
【0040】
次に、本発明に係るリチウムイオン二次電池、例えば角形リチウムイオン二次電池を図1および図2を参照して説明する。
【0041】
金属からなる有底矩形筒状をなし、例えばアルミニウムから作られる外装缶1は、例えば正極端子を兼ね、底部内面に絶縁フィルム2が配置されている。電極群3は、前記外装缶1内に収納されている。この電極群3は、図1および図2に示すように例えば銅箔のような集電体4の両面に活物質層5を形成した構造の負極6とセパレータ7と例えばアルミニウム箔のような集電体8の両面に活物質層9を形成した構造の正極10とを前記正極10が最外周に位置するように渦巻状に捲回した後、扁平状にプレス成形することにより作製したものである。なお、前記負極6は捲き始め端部付近において前記集電体4の外面のみに活物質層5が形成されている。また、前記正極10は捲き終わり端部付近において前記集電体8の内面のみに活物質層9が形成され、この箇所の集電体8外面部分で前記外装缶1の内面と直接接触している。
【0042】
前記電極群3の捲き始め端部および捲き終わり端部に位置する前記負極6および正極10の集電体4,8はいずれも活物質層5,9が形成されずに露出されている。500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜11a,11b,11c,11dは例えば前記正極10の集電体8における露出面8a,8b,8c,8dの一部にそれぞれ固定されている。なお、前記絶縁性被膜は前記露出面の全部を覆うように固定してもよい。
【0043】
中心付近にリード取出穴を有する例えば合成樹脂からなるスペーサ12は、前記外装缶1内の前記電極群3上に配置されている。アルミニウムのような金属からなる蓋体13は、前記外装缶1の上端開口部に例えばレーザ溶接により気密に接合されている。前記蓋体13の中心付近には、負極端子の取出し穴が開口されている。負極端子14は、前記蓋体13の穴9にガラス製または樹脂製の絶縁材(図示せず)を介してハーメティックシールされている。前記負極端子14下端面には、リード15が接続され、かつこのリード15の他端は前記電極群3の負極6に接続されている。
【0044】
なお、本発明に係るリチウムイオン二次電池は前述した角形リチウムイオン二次電池に限らず、円筒形リチウムイオン二次電池、ラミネートフィルムを外装部材として用いる薄形リチウムイオン二次電池にも同様に適用できる。
【0045】
以上説明したように本発明によれば、電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定しているため、前記電極群の捲き始め端部および捲き終わり端部の例えば正極の集電体の露出面と負極の活物質層とがセパレータを介して対向する部分でセパレータを貫通して微小短絡を生じても、高温の発熱に至る事故を防ぐことができる。
【0046】
すなわち、極めて稀なケースであるが、前記電極群の捲き始め端部および捲き終わり端部の例えば正極の集電体の露出面と負極の活物質層とがセパレータを介して対向する部分でセパレータを貫通して微小な内部短絡を生じる。このとき、前記露出面の一部または全部に固定された絶縁性被膜は500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された構造を有するため、前記短絡に伴うジュール発熱による前記絶縁性被膜の溶融を前記粉体で食い止め、溶融に起因する絶縁性被膜の孔開きの拡大を防ぐことができる。その結果、正極の集電体と負極の活物質層との間の短絡パスとして作用する正極の集電体の表出面積を初期の微小短絡の状態にほぼ維持できるため、正負極間で大きな電流が流れるのを防止できる。したがって、前述したよう全体が発熱に至る事故を未然に防止で、信頼性の高いリチウムイオン二次電池を実現できる。
【0047】
特に、前記絶縁被膜を構成する粉体として、平均粒径が30μm以下のものを用いれば、その粉体がより均一に分散された絶縁性被膜を前記集電体の露出面に固定できるため、塗布加工性が良好で前述した短絡に伴うジュール発熱による前記絶縁性被膜の溶融を前記粉体で効果的に食い止め、溶融に起因する絶縁性被膜の孔開きの拡大をより確実に防ぐことができる。
【0048】
また、前記絶縁性被膜を構成する前記粉体と前記バインダ樹脂の混合比率を重量割合で前記粉体100に対して前記バインダ樹脂が5〜35になるように設定すれば、前記粉体が高密度で分散された絶縁性被膜を前記集電体の露出面に強固に固定できるため、前述した短絡に伴うジュール発熱による前記絶縁性被膜の溶融を前記粉体で一層効果的に食い止め、溶融に起因する絶縁性被膜の孔開きの拡大をさらに確実に防ぐことができる。
【0049】
【実施例】
以下、本発明の実施例を前述した図1に示すような角型非水電解液二次電池を参照して詳細に説明する。
【0050】
(実施例1)
<正極の作製>
まず、活物質としての平均粒径5μmのLiCoO2粉末89重量部、導電フィラーとしてのグラファイト粉末(ロンザ社製商品名;KS6)8重量部および結着剤としてのポリフッ化ビニリデン樹脂(呉羽化学社製商品名;#1100)3重量部をN−メチルピロリドン50重量部にデイゾルバーおよびビーズミルを用いて攪拌、混合して活物質含有ペーストを調製した。
【0051】
また、平均粒径0.5μmのアルミナ粉体100重量部およびポリフッ化ビニリデン(PVdF)15重量部をN−メチルピロリドン235重量部にデイゾルバーおよびビーズミルを用いて攪拌、混合して絶縁性被膜用ペーストを調製した。
【0052】
次いで、前記集電体であるAl箔の両端を除く両面に前記活物質含有ペーストをそれぞれ塗工した。なお、電極群としたときの捲き終わり端部付近ではAl箔の片面のみ塗工した。つづいて、電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する前記Al箔の露出面に前記絶縁性被膜用ペーストをそれぞれ塗工した。この後、乾燥させて前記Al箔に片面厚さが80μmの活物質層および厚さ5μmの絶縁性被膜を形成し、さらにプレス、スリット加工を施してリール状正極を作製した。
【0053】
<負極の作製>
まず、グラファイト(ロンザ社製商品名;KS15)100重量部にスチレン/ブタジエンラテックス(旭化成社製商品名;L1571、固形分48重量%)4.2重量部、カルボキシメチルセルロース(第一製薬社製商品名;BSH12)の水溶液(固形分1重量%)130重量部および水20重量部を添加し、混合してペーストを調製した。つづいて、このペーストを集電体であるCu箔に塗工し、乾燥して片面厚さが90μmの活物質層を形成した後、プレス、スリット加工を施してリール状負極を作製した。
【0054】
次いで、前記正負極の間にポリエチレン製微多孔膜を挟んだ後、捲回機により渦巻き状に捲回し、つづいて、この円筒状物を10kg/cm2の圧力で圧縮して偏平状電極群を作製した。ひきつづき、有底矩形筒状をなすアルミニウム製外装缶内に前記偏平状電極群を挿入し、前記外装缶の開口部にアルミニウム製蓋体をレーザ溶接し、さらに非水電解液を前記アルミニウム製蓋体に開口した注入口を通して注入し、封止することにより前述した図1および図2に示す構造の角型リチウムイオン二次電池を組立てた。なお、前記非水電解液としてはエチレンカーボネートとメチルエチルカーボネートを1:2の体積比で混合した混合溶媒に六フッ化燐酸リチウム(LiPF6)を1モル/L溶解した組成のものを用いた。
【0055】
(実施例2〜16)
電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する前記Al箔の露出面に下記表1に示す組成、形態の絶縁性被膜を形成、固定した以外、実施例1と同様で、前述した図1および図2に示す構造の15種の角型リチウムイオン二次電池を組立てた。
【0056】
なお、粉体としてゼオライト、酸化チタンを用いた実施例13〜16ではAl箔に予め活物質層を形成した後、絶縁性被膜用ペーストの塗工を刷毛塗りを採用して行なった。
【0057】
(比較例1)
電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する正極の集電体であるAl箔の露出面に絶縁性被膜を形成しない以外、実施例1と同様で、前述した図1に示す構造の角型リチウムイオン二次電池を組立てた。
【0058】
(比較例2)
電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する正極の集電体であるAl箔の露出面に下記表1に示す組成、形態の絶縁性被膜を形成、固定した以外、実施例1と同様で、前述した図1に示す構造の角型リチウムイオン二次電池を組立てた。このとき、絶縁性被膜を形成するための塗工は、刷毛塗りを採用した。
【0059】
得られた実施例1〜16および比較例1,2の二次電池について、外部から針を外装缶を貫通して電極群の捲き終わり端部に位置する正極の集電体の露出部と負極の活物質層とに亘って差し込み強制的に短絡を起こさせた。このとき、正極の集電体であるAl箔に溶融が認められる場合を発熱防止効果がなし、正極の集電体(Al箔)に溶融が認められない場合を発熱防止効果が有り、として評価した。この結果を下記表1に併記する。
【0060】
【表1】
【0061】
前記表1から明らかなように絶縁性被膜として500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された構造のものを用いた実施例1〜16の二次電池は、針刺しによる強制短絡を起こさせても集電体であるAl箔が溶融せず、優れた信頼性、安全性を有することがわかる。
【0062】
これに対し、正極の集電体の露出面に絶縁性被膜を形成しない比較例1の二次電池は勿論、正極の集電体の露出面に絶縁性被膜を固定した場合でも、その絶縁性被膜がポリフッ化ビニリデン(PVdF)のみの電解液に不溶の絶縁性樹脂から作られる比較例2では針刺しによる強制短絡を起こさせると、集電体であるAl箔が溶融し、信頼性、安全性が劣ることがわかる。
【0063】
なお、本発明に用いる絶縁性被膜は正極、セパレータ、負極を交互に積み重ねる構造のリチウムイオン二次電池にも適用することが可能である。
【0064】
【発明の効果】
以上詳述したように、本発明によれば電極群の捲き始め端部および捲き終わり端部の少なくとも一方に位置する正極および負極の間で短絡が生じても高温の発熱に至る事故を未然に防止することが可能な信頼性、安全性の高いリチウムイオン二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る角形リチウムイオン二次電池を示す部分切欠斜視図。
【図2】図1の二次電池に組み込まれる電極群の横断面図。
【符号の説明】
1…外装缶、
3…電極群、
4,8…集電体、
5,9…活物質層、
6…負極、
7…セパレータ、
8a,8b,8c,8d…正極集電体の露出面、
10…正極、
11a,11b,11c,11d…絶縁性被膜、
13…蓋体、
14…負極端子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium ion secondary battery.
[0002]
[Prior art]
A lithium ion secondary battery uses a material that can be doped and dedoped with lithium ions, such as a carbon material, as a negative electrode, and uses a lithium composite oxide, such as a lithium cobalt composite oxide, as a positive electrode. High, high energy density, and excellent cycle characteristics.
[0003]
The lithium ion secondary battery, for example, a prismatic lithium ion secondary battery includes a positive electrode in which an active material layer is formed on both sides of a strip-shaped positive electrode current collector, and a negative electrode in which an active material layer is formed on both surfaces of the strip-shaped negative electrode current collector Are wound through a separator such as a polyethylene film to form an electrode group, and an insulator is placed on the upper and lower sides of the electrode group and housed in a container. In order to prevent lithium from depositing during charging and causing a short circuit inside, it is common to increase the width and length of the opposing negative electrode with a separator interposed between the positive electrode and the positive electrode.
[0004]
In such a lithium ion secondary battery, the exposed surface of the positive electrode current collector and the active material layer of the negative electrode located at at least one of the rolling start end and the rolling end end of the electrode group face each other with a separator interposed therebetween. However, there is a problem that these positive and negative electrodes penetrate the separator and cause a short circuit, resulting in high temperature heat generation.
[0005]
As a result of disassembling the secondary battery that has caused the heat generation and examining the heat generation portion, the thin separator was damaged for some reason, and the exposed surface of the positive electrode current collector and the active material of the negative electrode It was estimated that a small internal short circuit occurred between the layers, and the Joule heat generated further damaged the separator and caused a large current to flow, resulting in heat generation. Such heat generation may reach such a high temperature that aluminum, which is the current collector material of the positive electrode, is dissolved, and there is a risk of causing burns to battery users.
[0006]
In a lithium ion secondary battery, even if an accident leading to heat generation is extremely rare, it is serious for the user and it is desired to avoid it in advance.
[0007]
By the way, in Japanese Patent Laid-Open No. 7-130389, a positive electrode and a negative electrode in which an electrode mixture is applied so that the length of the negative electrode facing the positive electrode is larger than that of the positive electrode on both the front and back sides of a strip-shaped metal foil are interposed via a separator. Insulating resin that has a wound electrode body that is wound oppositely and is insoluble in an electrolyte solution at least in part of the non-opposing portion of the negative electrode or positive electrode that is located at the beginning and / or end of winding of the wound electrode body By covering the coating portion, the coating portion can be maintained in a state in which contact with the outside is cut off, so that the coating portion is held while being hardly involved in the reaction with lithium ions in the electrolytic solution during battery charging. A non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that prevents diffusion of lithium ions into the battery is disclosed.
[0008]
In such a non-aqueous electrolyte secondary battery, a separator and an insulating resin due to foreign matters such as a relatively large electrode piece between the negative electrode and the positive electrode located at the beginning and / or end of the wound electrode body A short circuit may occur due to penetration of the coating. At this time, since the coating is made of an insulating resin, it melts due to Joule heat generation due to the short circuit and loses its insulating function, and at the same time damages the separator, and a large current flows to generate heat as described above. There was a problem leading to the accident.
[0009]
On the other hand, in JP-A-10-241655, in a battery including a positive electrode, a negative electrode, and a separator interposed therebetween, at least one of the active material layer of the positive electrode and the active material layer of the negative electrode is specified. A battery is described in which a separator is formed by fixing an insulating substance particle aggregate layer composed of insulating substance particles having a specific surface area and a binder that bonds the particles.
[0010]
[Problems to be solved by the invention]
The present invention provides a lithium ion capable of preventing an accident that leads to high-temperature heat generation even if a short circuit occurs between a positive electrode and a negative electrode located at at least one of a starting end and an end end of the electrode group. A secondary battery is to be provided.
[0011]
[Means for Solving the Problems]
The lithium ion secondary battery according to the present invention includes an electrode group in which a positive electrode having an active material layer formed on a current collector and a negative electrode having an active material layer formed on a current collector are wound with a separator interposed therebetween. Prepared,
Heat resistance of 500 ° C. or more is applied to a part or all of the exposed surface facing the other pole of at least one of the current collectors in the positive and negative electrode portions located at the start and end parts of the electrode group. It is characterized in that the insulating film in which the powder is bound with a binder resin is fixed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
The lithium ion secondary battery of the present invention includes an electrode group in which a positive electrode having an active material layer formed on a current collector and a negative electrode having an active material layer formed on a current collector are wound with a separator interposed therebetween. . This electrode group is housed together with a non-aqueous electrolyte in an exterior member such as a metal exterior can.
[0014]
In the positive and negative electrode portions located at the start and end portions of the electrode group, the powder having heat resistance of 500 ° C. or higher is formed on a part or all of the exposed surface of at least one current collector. The insulating film bound by is fixed. Here, the part of the exposed surface means that it includes at least a region facing the other pole.
[0015]
Next, the positive electrode, the negative electrode, the separator, the non-aqueous electrolyte, and the insulating film will be described.
[0016]
1) Positive electrode The positive electrode has a structure in which an active material layer containing an active material and a binder is formed on, for example, both surfaces of a current collector. Note that the positive electrode may have a structure in which a positive electrode active material layer is supported on one surface of a current collector.
[0017]
Examples of the current collector include an aluminum foil and an aluminum mesh.
[0018]
As the active material, a lithium composite oxide having a high energy density is preferable. Specifically, LiCoO 2 , LiNiO 2 , Li x Ni y Co 1-y O 2 (where x is different depending on the state of charge of the battery, and usually 0 <x <1, 0.7 <y <1. Li x Co y Sn z O 2 (where x, y and z are 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00 and 0.001 ≦ z ≦, respectively). Represents a number of 0.10). The lithium composite oxide is obtained by mixing and grinding lithium carbonate, nitrate, oxide or hydroxide and carbonate, nitrate, oxide or hydroxide of cobalt, manganese, nickel, etc. with a predetermined composition, It can be obtained by firing at a temperature of 600 to 1000 ° C. in an atmosphere.
[0019]
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR).
[0020]
The positive electrode active material layer is allowed to contain a conductive agent such as acetylene black, carbon black, and graphite.
[0021]
2) Negative electrode The negative electrode has a structure in which an active material layer containing an active material and a binder is formed on, for example, both surfaces of a current collector. Note that the negative electrode may have a structure in which a negative electrode active material layer is supported on one surface of a current collector.
[0022]
Examples of the current collector include copper, nickel foil or mesh.
[0023]
The active material may be any material that can be doped / undoped with lithium, such as graphites, cokes (petroleum coke, pitch coke, needle coke, etc.), pyrolytic carbons, and a fired body of an organic polymer compound (phenol). Resins and the like are calcined at a suitable temperature and carbonized), polyacetylene, polypyrrole, and the like.
[0024]
The binder preferably contains, for example, a binder such as polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene copolymer, styrene-butadiene rubber, or carboxymethylcellulose.
[0025]
3) Separator As this separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.
[0026]
4) Non-aqueous electrolyte This non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.
[0027]
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium trifluoromethanesulfonate. (LiCF 3 SO 3 ), LiN (CF 3 SO 2 ) 2 , lithium bis [5-fluoro-2-orato-1-benzene-sulfonate (2-)] borate and the like can be used.
[0028]
Examples of the non-aqueous solvent include γ-butyrolactone, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolane, methylsulfolane, Acetonitrile, propyl nitrile, anisole, acetate ester, propionate ester and the like can be used, and two or more kinds may be mixed and used.
[0029]
The concentration of the electrolyte in the non-aqueous solvent is preferably 0.5 mol / L or more.
[0030]
5) Insulating coating This insulating coating has a structure in which a powder having heat resistance of 500 ° C. or higher is bound with a binder resin.
[0031]
Examples of the powder include at least one inorganic powder selected from alumina, silica, zeolite, and titanium oxide.
[0032]
The powder preferably has an average particle size of 30 μm or less, more preferably 0.005 to 5 μm. When the average particle size of the powder exceeds 30 μm, it is difficult to form an insulating coating in the coating process, and it is difficult to form a relatively thin insulating coating suitable for manufacturing an electrode group. There is a fear.
[0033]
When a spherical powder is used as the powder, it becomes possible to improve the fluidity of the coating slurry and prevent the coating apparatus from being worn. As this spherical powder, alumina, silica and the like are commercially available.
[0034]
Examples of the binder resin that can be used include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR).
[0035]
The mixing ratio of the powder and the binder resin constituting the insulating coating is preferably 5 to 35 with respect to the powder 100 by weight. When the mixing ratio of the binder resin is less than 5, applicability when the insulating coating is formed by a coating means is decreased, the strength of the insulating coating is decreased, or the exposed surface of the current collector is exposed. There is a possibility that the fixing property of the insulating coating will deteriorate. On the other hand, when the mixing ratio of the binder resin exceeds 35, the amount of the binder resin in the insulating film becomes too large, and it is possible to prevent melting and damage of the insulating film due to Joule heat generation due to short-circuiting in the positive and negative electrodes. It can be difficult.
[0036]
The insulating coating preferably has a thickness not less than 5 μm and not more than the thickness of the active material layer. If the thickness of the insulating coating is less than 5 μm, it may be difficult to prevent melting and damage of the insulating coating due to Joule heat generation due to a short circuit between the positive and negative electrodes due to application variation. On the other hand, if the thickness of the insulating coating exceeds the thickness of the active material layer, the winding operation for producing the electrode group may be hindered or the ratio of the active material layer to the electrode group may be reduced. There is. The most preferable thickness of the insulating coating is 20 to 60 μm.
[0037]
The insulating film is formed by the following method, for example.
[0038]
The powder and the binder resin are added to an appropriate solvent, for example, N-methylpyrrolidone, and stirred to dissolve the binder resin, and the powder is dispersed in a binder resin solution to prepare a coating slurry. Subsequently, a coating slurry was sprayed or brushed on a part or all of the exposed surface of the current collector of at least one of the positive and negative electrode portions located at the start and end portions of the electrode group. Thereafter, it is dried to form and fix an insulating film.
[0039]
In order to reduce the number of manufacturing steps, in producing the positive electrode or the negative electrode, a coating containing the powder and binder resin is applied following the step of applying a coating slurry containing an active material and a binder to the current collector. It is preferable to apply the working slurry to the exposed surface of the current collector by a spray method, and then dry these coating films to form an active material layer and an insulating film.
[0040]
Next, a lithium ion secondary battery according to the present invention, for example, a prismatic lithium ion secondary battery will be described with reference to FIGS.
[0041]
An
[0042]
The
[0043]
A
[0044]
The lithium ion secondary battery according to the present invention is not limited to the prismatic lithium ion secondary battery described above, but also applies to cylindrical lithium ion secondary batteries and thin lithium ion secondary batteries using a laminate film as an exterior member. Applicable.
[0045]
As described above, according to the present invention, at least part of the exposed surface of the current collector at 500 ° C. or higher in the positive and negative electrode portions located at the start and end portions of the electrode group. Since the insulating film in which the heat-resistant powder is bound with the binder resin is fixed, the exposed surface of the current collector and the negative electrode, for example, at the beginning and end of the electrode group Even if the active material layer is opposed to the active material layer through the separator and penetrates the separator to cause a micro short circuit, it is possible to prevent an accident leading to high temperature heat generation.
[0046]
That is, in an extremely rare case, a separator is formed at a portion where, for example, the exposed surface of the current collector of the positive electrode and the active material layer of the negative electrode are opposed to each other with the separator interposed therebetween. A minute internal short circuit is caused through the. At this time, the insulating film fixed to a part or all of the exposed surface has a structure in which a powder having heat resistance of 500 ° C. or higher is bound with a binder resin, and thus the Joule heat generation due to the short circuit is performed. The melting of the insulating coating can be stopped by the powder, and the opening of the insulating coating due to the melting can be prevented from expanding. As a result, the exposed area of the positive electrode current collector acting as a short-circuit path between the positive electrode current collector and the negative electrode active material layer can be substantially maintained in the initial micro short-circuit state, so that a large amount is obtained between the positive and negative electrodes Current can be prevented from flowing. Therefore, it is possible to realize a highly reliable lithium ion secondary battery by preventing the accident that the whole generates heat as described above.
[0047]
In particular, as the powder constituting the insulating coating, if an average particle size of 30 μm or less is used, the insulating coating in which the powder is more uniformly dispersed can be fixed to the exposed surface of the current collector. The coating processability is good, and it is possible to effectively prevent the melting of the insulating coating due to the Joule heat generation due to the short circuit described above with the powder, and more reliably prevent the opening of the insulating coating from being expanded due to the melting. .
[0048]
In addition, if the mixing ratio of the powder constituting the insulating coating and the binder resin is set so that the binder resin is 5 to 35 with respect to the powder 100 in a weight ratio, the powder becomes high. Since the insulating coating dispersed in density can be firmly fixed to the exposed surface of the current collector, the melting of the insulating coating due to the Joule heat generated by the short circuit described above is more effectively prevented by the powder, and the melting is performed. It is possible to more reliably prevent the resulting opening of the insulating coating from expanding.
[0049]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to a square nonaqueous electrolyte secondary battery as shown in FIG.
[0050]
(Example 1)
<Preparation of positive electrode>
First, 89 parts by weight of LiCoO 2 powder having an average particle size of 5 μm as an active material, 8 parts by weight of graphite powder (Lonza Corporation trade name: KS6) as a conductive filler, and polyvinylidene fluoride resin (Kureha Chemical Co., Ltd.) as a binder Product name: # 1100) 3 parts by weight of N-methylpyrrolidone was stirred and mixed with 50 parts by weight of a dissolver and a bead mill to prepare an active material-containing paste.
[0051]
Further, 100 parts by weight of alumina powder having an average particle size of 0.5 μm and 15 parts by weight of polyvinylidene fluoride (PVdF) were stirred and mixed with 235 parts by weight of N-methylpyrrolidone using a dissolver and a bead mill, and the insulating coating paste. Was prepared.
[0052]
Next, the active material-containing paste was applied to both surfaces excluding both ends of the Al foil as the current collector. In addition, only one side of the Al foil was applied in the vicinity of the end portion of the electrode when the electrode group was used. Subsequently, the insulating coating paste was applied to the exposed surface of the Al foil facing the negative electrode at the start and end portions when the electrode group was formed. Thereafter, it was dried to form an active material layer having a thickness of 80 μm on one side and an insulating film having a thickness of 5 μm on the Al foil, followed by pressing and slitting to produce a reel-shaped positive electrode.
[0053]
<Production of negative electrode>
First, 100 parts by weight of graphite (trade name, manufactured by Lonza; KS15) and 4.2 parts by weight of styrene / butadiene latex (trade name, manufactured by Asahi Kasei Co., Ltd .; L1571, solid content: 48% by weight), carboxymethyl cellulose (product of Daiichi Pharmaceutical Co., Ltd.) Name: 130 parts by weight of an aqueous solution of BSH12) (
[0054]
Next, after sandwiching a polyethylene microporous film between the positive and negative electrodes, the film is wound in a spiral shape with a winding machine, and then the cylindrical object is compressed at a pressure of 10 kg / cm 2 to obtain a flat electrode group. Was made. Subsequently, the flat electrode group is inserted into an aluminum outer can having a bottomed rectangular cylindrical shape, an aluminum lid is laser welded to the opening of the outer can, and a non-aqueous electrolyte is added to the aluminum lid. The prismatic lithium ion secondary battery having the structure shown in FIGS. 1 and 2 was assembled by injecting and sealing through an inlet opening in the body. The non-aqueous electrolyte used was a composition in which 1 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2. .
[0055]
(Examples 2 to 16)
Example 1 except that an insulating film having the composition and form shown in Table 1 below was formed and fixed on the exposed surface of the Al foil facing the negative electrode at the beginning and end of the electrode when the electrode group was formed. Similarly, 15 types of prismatic lithium ion secondary batteries having the structure shown in FIGS. 1 and 2 were assembled.
[0056]
In Examples 13 to 16 in which zeolite and titanium oxide were used as powders, an active material layer was previously formed on an Al foil, and then the insulating coating paste was applied by brushing.
[0057]
(Comparative Example 1)
As described in Example 1, except that the insulating coating is not formed on the exposed surface of the Al foil, which is the current collector of the positive electrode facing the negative electrode at the starting end portion and the ending end portion when the electrode group is formed. A prismatic lithium ion secondary battery having the structure shown in FIG. 1 was assembled.
[0058]
(Comparative Example 2)
An insulating coating having the composition and form shown in Table 1 below was formed and fixed on the exposed surface of the Al foil, which is the current collector of the positive electrode facing the negative electrode at the starting end and the end end when the electrode group was formed. Except for the above, a rectangular lithium ion secondary battery having the structure shown in FIG. At this time, brush coating was adopted as the coating for forming the insulating coating.
[0059]
For the obtained secondary batteries of Examples 1 to 16 and Comparative Examples 1 and 2, the exposed portion and the negative electrode of the positive electrode current collector located at the end of the electrode group through the outer can through the outer can A short circuit was forced to be inserted across the active material layer. At this time, the case where melting is observed in the Al foil as the current collector of the positive electrode has no effect of preventing heat generation, and the case where no melting is observed in the current collector of the positive electrode (Al foil) is evaluated as having an effect of preventing heat generation. did. The results are also shown in Table 1 below.
[0060]
[Table 1]
[0061]
As apparent from Table 1, the secondary batteries of Examples 1 to 16 using a structure in which a powder having a heat resistance of 500 ° C. or higher was bound with a binder resin as the insulating coating were forced by needle stick. It can be seen that even when a short circuit is caused, the Al foil as the current collector does not melt and has excellent reliability and safety.
[0062]
On the other hand, not only the secondary battery of Comparative Example 1 in which the insulating film is not formed on the exposed surface of the positive current collector, but also the insulating film is fixed even when the insulating film is fixed on the exposed surface of the positive current collector. In Comparative Example 2 in which the coating is made of an insulating resin insoluble in an electrolytic solution of only polyvinylidene fluoride (PVdF), when a forced short circuit is caused by needle stick, the Al foil as a current collector melts and is reliable and safe. Is inferior.
[0063]
The insulating coating used in the present invention can also be applied to a lithium ion secondary battery having a structure in which positive electrodes, separators, and negative electrodes are alternately stacked.
[0064]
【The invention's effect】
As described above in detail, according to the present invention, even if a short circuit occurs between the positive electrode and the negative electrode located at at least one of the starting end portion and the end end portion of the electrode group, an accident that leads to high-temperature heat generation is caused in advance. A lithium ion secondary battery with high reliability and safety that can be prevented can be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a prismatic lithium ion secondary battery according to the present invention.
FIG. 2 is a cross-sectional view of an electrode group incorporated in the secondary battery of FIG.
[Explanation of symbols]
1 ... Exterior can,
3 ... Electrode group,
4, 8 ... current collector,
5, 9 ... active material layer,
6 ... negative electrode,
7 ... separator,
8a, 8b, 8c, 8d ... the exposed surface of the positive electrode current collector,
10 ... positive electrode,
11a, 11b, 11c, 11d ... insulating coating,
13 ... the lid,
14: Negative terminal.
Claims (6)
前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定したことを特徴とするリチウムイオン二次電池。A positive electrode in which an active material layer is formed on a current collector and an electrode group in which a negative electrode in which an active material layer is formed on a current collector are wound with a separator interposed therebetween,
In the positive and negative electrode portions located at the start and end portions of the electrode group, the powder having heat resistance of 500 ° C. or higher is partly or entirely on the exposed surface of at least one current collector. A lithium ion secondary battery characterized by fixing an insulating film bound in step (a).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221878A JP4177612B2 (en) | 2002-07-30 | 2002-07-30 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221878A JP4177612B2 (en) | 2002-07-30 | 2002-07-30 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004063343A JP2004063343A (en) | 2004-02-26 |
JP4177612B2 true JP4177612B2 (en) | 2008-11-05 |
Family
ID=31942069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002221878A Expired - Lifetime JP4177612B2 (en) | 2002-07-30 | 2002-07-30 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4177612B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966635B2 (en) | 2011-03-16 | 2018-05-08 | Gs Yuasa International Ltd. | Electric storage device |
WO2018164076A1 (en) | 2017-03-06 | 2018-09-13 | Ricoh Company, Ltd. | Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus |
US11588147B2 (en) | 2017-03-06 | 2023-02-21 | Ricoh Company, Ltd. | Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4140517B2 (en) * | 2003-12-12 | 2008-08-27 | 松下電器産業株式会社 | Lithium ion secondary battery and its construction method |
JP4830262B2 (en) * | 2004-04-15 | 2011-12-07 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery |
JP2005310619A (en) * | 2004-04-23 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Lithium-ion secondary battery |
CN100367559C (en) * | 2004-09-03 | 2008-02-06 | 松下电器产业株式会社 | Lithium ion secondary cell |
JP4859399B2 (en) * | 2004-09-03 | 2012-01-25 | パナソニック株式会社 | Lithium ion secondary battery |
US7638230B2 (en) | 2004-09-03 | 2009-12-29 | Panasonic Corporation | Lithium ion secondary battery |
JP4591674B2 (en) * | 2004-11-08 | 2010-12-01 | ソニー株式会社 | Lithium ion secondary battery |
JP4649993B2 (en) | 2005-01-12 | 2011-03-16 | パナソニック株式会社 | Lithium secondary battery and manufacturing method thereof |
JP4654700B2 (en) * | 2005-01-31 | 2011-03-23 | パナソニック株式会社 | Lithium ion secondary battery |
JP5005935B2 (en) * | 2006-03-20 | 2012-08-22 | 日立マクセルエナジー株式会社 | Nonaqueous electrolyte secondary battery |
KR101222405B1 (en) * | 2006-03-28 | 2013-01-17 | 삼성에스디아이 주식회사 | rechargeable battery having jelly roll type electrode assembly |
US20080026293A1 (en) * | 2006-07-26 | 2008-01-31 | Eveready Battery Company, Inc. | Lithium-iron disulfide cylindrical cell with modified positive electrode |
JP5148142B2 (en) * | 2007-03-15 | 2013-02-20 | 日立マクセルエナジー株式会社 | Non-aqueous electrolyte battery |
JP4586820B2 (en) | 2007-05-07 | 2010-11-24 | ソニー株式会社 | Winding type non-aqueous electrolyte secondary battery |
JP5427046B2 (en) * | 2010-01-14 | 2014-02-26 | 日立マクセル株式会社 | Non-aqueous electrolyte battery and manufacturing method thereof |
KR20130113423A (en) * | 2010-06-17 | 2013-10-15 | 린다 파예 나자르 | Multicomponent electrodes for rechargeable batteries |
JP5858325B2 (en) | 2010-09-03 | 2016-02-10 | 株式会社Gsユアサ | battery |
JP5818150B2 (en) | 2010-11-05 | 2015-11-18 | 株式会社Gsユアサ | Electrode for power storage element, power storage element using the same, and method for manufacturing electrode for power storage element |
KR101378074B1 (en) * | 2011-12-14 | 2014-03-28 | 주식회사 엘지화학 | Electrode for electrochemical device and electrochemical device comprising the same |
KR20150106811A (en) | 2013-11-21 | 2015-09-22 | 삼성에스디아이 주식회사 | Separators and secondary battery using the separator |
WO2015076573A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Secondary battery |
WO2015076575A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Separator and secondary battery using same |
WO2015076574A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Separator and secondary battery using same |
TWI560927B (en) * | 2013-12-17 | 2016-12-01 | Lg Chemical Ltd | Separator for electrochemical device and electrochemical device |
JP6416914B2 (en) * | 2014-01-13 | 2018-10-31 | エルジー・ケム・リミテッド | Battery module assembly including unit module |
JP6587157B2 (en) * | 2017-02-07 | 2019-10-09 | エルジー ケム. エルティーディ. | Electrode assembly and electrochemical device including the same |
JP7085149B2 (en) * | 2019-04-09 | 2022-06-16 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP7085147B2 (en) * | 2019-04-09 | 2022-06-16 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP7370808B2 (en) * | 2019-10-25 | 2023-10-30 | ニチコン株式会社 | Wound type secondary battery and its manufacturing method |
JP7253147B2 (en) * | 2019-11-26 | 2023-04-06 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
CN111554982B (en) * | 2020-05-11 | 2021-09-07 | 珠海冠宇电池股份有限公司 | Winding battery cell, preparation method thereof, battery and electronic product |
CN111725552A (en) * | 2020-08-05 | 2020-09-29 | 广州鹏辉能源科技股份有限公司 | Button cell and manufacturing method thereof |
CN112886066B (en) * | 2021-01-13 | 2023-02-17 | 上海瑞浦青创新能源有限公司 | Lithium ion battery and protection method for improving safety performance of lithium ion battery |
-
2002
- 2002-07-30 JP JP2002221878A patent/JP4177612B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966635B2 (en) | 2011-03-16 | 2018-05-08 | Gs Yuasa International Ltd. | Electric storage device |
WO2018164076A1 (en) | 2017-03-06 | 2018-09-13 | Ricoh Company, Ltd. | Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus |
US11588147B2 (en) | 2017-03-06 | 2023-02-21 | Ricoh Company, Ltd. | Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus |
US11909031B2 (en) | 2017-03-06 | 2024-02-20 | Ricoh Company, Ltd. | Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2004063343A (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4177612B2 (en) | Lithium ion secondary battery | |
JP4915390B2 (en) | Non-aqueous electrolyte battery | |
EP2262037B1 (en) | Lithium secondary battery using ionic liquid | |
JP5783425B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
US7659035B2 (en) | Nonaqueous electrolyte secondary battery | |
JP6750196B2 (en) | Non-aqueous lithium battery and method of using the same | |
JP4567822B2 (en) | Square non-aqueous electrolyte secondary battery | |
JP6272996B2 (en) | Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof | |
JP2006260864A (en) | Manufacturing method of lithium secondary battery | |
JP6656370B2 (en) | Lithium ion secondary battery and battery pack | |
US7425385B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2013134923A (en) | Lithium ion secondary battery | |
JP2003123767A (en) | Collector, electrode, and battery | |
JP2007172879A (en) | Battery and its manufacturing method | |
JP2009076249A (en) | Power storage device | |
JP2004095306A (en) | Non-aqueous electrolyte secondary battery | |
JP2000331686A (en) | Nonaqueous electrolyte secondary battery | |
WO2014115322A1 (en) | Negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell obtained using same | |
JP7488770B2 (en) | Nonaqueous electrolyte secondary battery and method of manufacturing same | |
JP5720411B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP4082103B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2002260673A (en) | Lithium secondary battery, method of manufacturing electrode for the lithium secondary battery, and method of manufacturing the lithium secondary battery | |
JP2001015168A (en) | Lithium secondary battery | |
CN111164799A (en) | Electrode and electricity storage element | |
JP3489381B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080822 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4177612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |