JP4167261B2 - Fuel gasification combined power generation system - Google Patents

Fuel gasification combined power generation system Download PDF

Info

Publication number
JP4167261B2
JP4167261B2 JP2005379483A JP2005379483A JP4167261B2 JP 4167261 B2 JP4167261 B2 JP 4167261B2 JP 2005379483 A JP2005379483 A JP 2005379483A JP 2005379483 A JP2005379483 A JP 2005379483A JP 4167261 B2 JP4167261 B2 JP 4167261B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
control valve
valve
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005379483A
Other languages
Japanese (ja)
Other versions
JP2006153020A (en
Inventor
雄一郎 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005379483A priority Critical patent/JP4167261B2/en
Publication of JP2006153020A publication Critical patent/JP2006153020A/en
Application granted granted Critical
Publication of JP4167261B2 publication Critical patent/JP4167261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated fuel gasification power generation combined cycle system to carry out a stable desulfurization reaction and reduce the pressure loss. <P>SOLUTION: The supplied amount of fuel, etc., is controlled by the valve upstream and downstream differential pressure used for the control of a pressure control valve at a gas turbine inlet without a conventional fuel gasification furnace pressure control valve. A flow control valve 33 installed upstream of a burner 32 of a gas turbine 31 controls the flow rate of fuel gas supplied to the burner 32. When the load applied to the gas turbine 31 varies, a control device 35 carries out a load follow-up control by opening and closing the flow control valve 33 corresponding to the load. The pressure control valve 34 controls the fuel gas pressure upstream of the flow control valve 33 so as to carry out adequate flow control in the flow control valve 33. The flow rates of fuel 1 and oxidizing agent 2 supplied to a gasification furnace 7 corresponding to the valve upstream and downstream pressure differential used for control of the pressure control valve 34 are controlled to decide. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

この発明は、燃料ガス化複合発電システムに関し、更に詳しくは、負荷変動時の燃料ガス圧の変化を利用して燃料等の供給量を調節し、圧力損失を減少させる燃料ガス化複合発電システムに関する。   The present invention relates to a combined fuel gasification combined power generation system, and more particularly, to a combined fuel gasification combined generation system that uses a change in fuel gas pressure when a load fluctuates to adjust a supply amount of fuel and the like to reduce pressure loss. .

図4は、従来の燃料ガス化複合発電システムを示す構成図である。この燃料ガス化複合発電システムは、大きく分けて、ガス化炉設備41、脱硫設備42、およびガスタービン設備43とで構成される。ガス化炉設備41は、燃料ガスを生成するためのもので、燃料44と酸化剤45とが窒素ガス46の圧力によって供給されるガス化炉47と、生成されたガス中の未燃焼燃料微粉を取り除くための脱塵装置48とで構成される。なお、酸化剤35は、ガスタービンの圧縮機49から抽気した空気や、さらにそれから分離装置によって分離された酸素を用いることができる。   FIG. 4 is a block diagram showing a conventional combined fuel gasification combined power generation system. This combined fuel gasification power generation system is roughly composed of a gasification furnace facility 41, a desulfurization facility 42, and a gas turbine facility 43. The gasifier facility 41 is for generating a fuel gas. The gasifier 47 is supplied with the fuel 44 and the oxidant 45 by the pressure of the nitrogen gas 46, and the unburned fuel fines in the generated gas. And a dust removing device 48 for removing the dust. The oxidant 35 may be air extracted from the compressor 49 of the gas turbine or oxygen separated therefrom by a separation device.

ガス化炉設備41で生成された燃料ガスは、ガス化炉圧力調節弁50を通り、脱硫設備42に入る。脱硫設備42では、燃料ガスから硫化物を取り除くために、COS変換器51が設けられ、燃料ガス中のCOSが触媒によってH2Sに変換される。その後、ポンプ52、53によって水が循環するガス冷却塔54、同じく水が循環するガス洗浄塔55、H2S吸収液が満たされたH2S吸収塔56を燃料ガスが通り抜ける。 The fuel gas generated in the gasifier facility 41 passes through the gasifier pressure control valve 50 and enters the desulfurization facility 42. In the desulfurization facility 42, a COS converter 51 is provided in order to remove sulfides from the fuel gas, and COS in the fuel gas is converted to H 2 S by the catalyst. Thereafter, the gas cooling tower 54 the water by the pump 52 and 53 is circulated, likewise the gas washing tower 55, H 2 H 2 S absorption tower 56 S absorbing liquid filled water is circulated passing through the fuel gas.

これらの反応塔を通過した燃料ガスは低温となっているので、ガス−ガスヒータ(GGH)57,58によって、反応塔に入る前の高温状態である燃料ガスで昇温される。なお、上記H2S吸収塔56でH2Sを吸収した吸収液は、吸収液再生塔59で、H2Sが取り除かれ、H2S吸収塔56に再び戻される。取り除かれたH2Sは、その後石膏化工程60に移される。 Since the fuel gas that has passed through these reaction towers has a low temperature, the temperature is raised by the gas-gas heaters (GGH) 57 and 58 with the fuel gas that is in a high temperature state before entering the reaction tower. The absorption liquid which absorbed H 2 S in the H 2 S absorption tower 56 is the absorbent regenerator 59, H 2 S is removed, again returned to the H 2 S absorption tower 56. The removed H 2 S is then transferred to the gypsumizing step 60.

脱硫設備42を通過した燃料ガスは、ガスタービン設備43に送られる。具体的には、ガスタービン61の燃焼器62の上流に設けられる圧力調節弁63、および流量調節弁64で燃料ガスの圧力と流量が調節される。そして、ガスタービン61は、そのように調節された燃料ガスを燃料として、タービンを回転させ、タービン軸に接続される発電機65を回転させる。なお、ここでは、図示しなかったが、発電設備としてガスタービン単体ではなく、蒸気タービンをも用いるコンバインドプラントとする場合も増えている。   The fuel gas that has passed through the desulfurization facility 42 is sent to the gas turbine facility 43. Specifically, the pressure and flow rate of the fuel gas are adjusted by a pressure control valve 63 and a flow rate control valve 64 provided upstream of the combustor 62 of the gas turbine 61. Then, the gas turbine 61 rotates the turbine using the fuel gas adjusted as described above as fuel, and rotates the generator 65 connected to the turbine shaft. In addition, although not shown here, the case of using a combined plant that uses not only a gas turbine but also a steam turbine as power generation equipment is increasing.

このように、ガス化炉47、脱硫設備42、ガスタービン61をこの順に設置した燃料ガス化複合発電システムでは、負荷に応じて、ガスタービン61の流量調節弁64を開閉することによって、負荷追従制御が行われる。また、ガス化炉47の圧力と圧力設定値との偏差によってガス化炉圧力制御弁50を開閉し、負荷追従制御に資する技術も知られている(たとえば、特許文献1)。   Thus, in the combined fuel gasification power generation system in which the gasification furnace 47, the desulfurization equipment 42, and the gas turbine 61 are installed in this order, the load follow-up is performed by opening and closing the flow rate control valve 64 of the gas turbine 61 according to the load. Control is performed. In addition, a technique that contributes to load follow-up control by opening and closing the gasifier pressure control valve 50 according to the deviation between the pressure of the gasifier 47 and the set pressure value is known (for example, Patent Document 1).

特開平10−299507号公報JP-A-10-299507

しかしながら、上記従来の燃料ガス化複合発電システムにおいては、発電出力を変化させたり、系統の負荷が変化する場合に、当該システムの負荷も当然変動する。そのような場合、ガス化炉圧力調節弁50が、ガス化炉47の圧力を調節する様に開閉するため、脱硫設備42に流入するガス量は変動する。また、ガスタービン61周辺では、圧力調節弁63および流量調節弁64がガスタービン入口の圧力および流量を調整するため、脱硫設備42から流出する燃料ガスの量が変動する。   However, in the conventional combined fuel gasification combined power generation system, when the power generation output is changed or the load on the system changes, the load on the system naturally varies. In such a case, the gasifier pressure control valve 50 opens and closes so as to adjust the pressure of the gasifier 47, so that the amount of gas flowing into the desulfurization facility 42 varies. Further, in the vicinity of the gas turbine 61, the pressure control valve 63 and the flow rate control valve 64 adjust the pressure and flow rate at the gas turbine inlet, so that the amount of fuel gas flowing out from the desulfurization facility 42 varies.

このため、ガス化炉47とガスタービン61の中間に位置する脱硫設備42の圧力および流量は制御されず、変動が生じる。反応塔内では液体は下向きに,ガスは上向きに流れ気液接触による反応を行っているが、この変動により反応塔の液体が飛散または落下してしまうという現象も生じ、これが負荷変化速度の制限ともなっていた。また、ガス化炉47からガスタービン61までの配管上に2つの大きな圧力調節弁50、63があるので、当該システムの圧力損失も比較的大きくなってしまっていた。   For this reason, the pressure and flow rate of the desulfurization equipment 42 located between the gasification furnace 47 and the gas turbine 61 are not controlled, and fluctuations occur. In the reaction tower, the liquid flows downward and the gas flows upward to react by gas-liquid contact. This fluctuation also causes a phenomenon in which the liquid in the reaction tower is scattered or dropped, which limits the rate of load change. It was with me. In addition, since there are two large pressure control valves 50 and 63 on the pipe from the gasification furnace 47 to the gas turbine 61, the pressure loss of the system is relatively large.

そこで、この発明は、上記に鑑みてなされたものであって、負荷が変動しても圧力変動から燃料等の供給量を制御し、脱硫設備における脱硫反応を安定して行わせることが可能で、圧力損失の少ない燃料ガス化複合発電システムを提供することを目的とする。   Therefore, the present invention has been made in view of the above, and even if the load fluctuates, it is possible to control the supply amount of fuel and the like from the pressure fluctuation and to stably perform the desulfurization reaction in the desulfurization equipment. An object of the present invention is to provide a combined fuel gasification combined power generation system with low pressure loss.

上述の目的を達成するために、この発明による燃料ガス化複合発電システムは、燃料と酸化剤とで燃料ガスを生成するガス化炉設備と、前記ガス化炉設備で生成された前記燃料ガスを燃料として駆動するガスタービンの燃焼器より上流に設けられる流量調節弁と、前記流量調節弁の上流に設けられ、かつ前記ガス化炉設備の下流に設けられる圧力調節弁と、前記ガス化炉と前記圧力調節弁との間を連通し、当該間に圧力を調節する弁を設けない配管と、を有し、前記流量調節弁上流の圧力を一定にする態様で前記圧力調節弁を制御して該圧力調節弁の上流と下流の圧力差を調節すると共に、負荷に応じて前記流量調節弁を開閉して当該負荷に追従するように制御する燃料ガス化複合発電システムにおいて、前記ガスタービンの負荷変動に対応した前記燃料と前記酸化剤の供給量を得る態様で、前記圧力調節弁の上流と下流の圧力差に応じて、前記ガス化炉へ供給する燃料と酸化剤の供給量を調節するための弁を制御するようにしたものである。 To achieve the above object, a fuel gasification combined cycle power generation system according to the present invention, a gasifier facility for generating a fuel gas in the fuel and oxidizer, the fuel gas produced in the gasifier facility a flow regulating valve provided upstream of the combustor of a gas turbine driving as a fuel, and the flow is provided upstream of the regulating valve, and the gasification furnace facilities of the pressure regulating valve that is provided downstream the gasification furnace and communicating between said pressure regulating valve has a pipe and not provided a valve to adjust the pressure between the control of the pressure regulating valve the pressure of the previous SL flow control valve upstream in a manner that a constant In the combined fuel gasification combined power generation system for controlling the pressure difference between the upstream and downstream of the pressure regulating valve and controlling the flow regulating valve to open and close according to the load, the gas turbine Responding to load fluctuations In manner of obtaining the supply amount of the fuel and the oxidant, in response to said pressure difference between the upstream and downstream of the pressure regulating valve, a valve for regulating the supply of fuel and oxidant supplied to said gasification furnace Is controlled.

流量調節弁は前記ガスタービンに供給する燃料ガスの流量を調節する。ガスタービンにかかる負荷が変動したときは、当該負荷に応じて流量調節弁を開閉することにより、負荷追従制御が可能になる。圧力制御弁は、流量調節弁において適切な流量調節を行うために、当該流量調節弁上流の燃料ガス圧力を調節する。   The flow rate control valve adjusts the flow rate of the fuel gas supplied to the gas turbine. When the load applied to the gas turbine fluctuates, load follow-up control can be performed by opening and closing the flow rate adjusting valve according to the load. The pressure control valve adjusts the fuel gas pressure upstream of the flow control valve in order to perform appropriate flow control in the flow control valve.

この発明にかかる燃料ガス化複合発電システムにおいては、ガスタービンの負荷が上がった場合、圧力調節弁の上流と下流とで圧力差が生じるので、圧力調節弁を調節して流量調節弁上流の圧力を一定に保つようにする。また、これと同時に、当該圧力調節弁圧力差に応じて、燃料と酸化剤の供給量を増加させる。これにより、負荷変動に追従させることができる。   In the fuel gasification combined power generation system according to the present invention, when the load of the gas turbine increases, a pressure difference is generated between the upstream and downstream of the pressure control valve. Therefore, the pressure upstream of the flow control valve is adjusted by adjusting the pressure control valve. To keep constant. At the same time, the supply amount of fuel and oxidant is increased according to the pressure control valve pressure difference. Thereby, it is possible to follow the load fluctuation.

以上説明したように、この発明に係る燃料ガス化複合発電システムによれば、ガスタービンの上流に設けられる圧力調節弁が、ガス化炉に供給する燃料と酸化剤の供給量を調節し、間接的にガス化炉圧力および脱硫設備を通過する燃料ガス圧力を調節できる。また、上記圧力調節弁以外に圧力を調節する弁が不要となるため、余計な圧力損失をなくし、全体としてプラント効率の向上が図れる。   As described above, according to the combined fuel gasification power generation system according to the present invention, the pressure regulating valve provided upstream of the gas turbine regulates the amount of fuel and oxidant supplied to the gasification furnace, and indirectly In particular, the gasifier pressure and the fuel gas pressure passing through the desulfurization facility can be adjusted. In addition, since a valve for adjusting the pressure other than the pressure adjusting valve is not required, unnecessary pressure loss is eliminated, and the overall plant efficiency can be improved.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、この実施例の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものを含む。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, the constituent elements of this embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、この発明の実施例1にかかる燃料ガス化複合発電システムを示す構成図である。なお、燃料ガス化複合発電システムの基本的な構成は、従来技術と同一なので、説明を省略する。この実施例1では、従来技術におけるガス化炉圧力調節弁を無用とし、ガスタービン入口の圧力調節弁の制御で用いる当該弁上下流の差圧で燃料等の供給量制御を行う点に特徴がある。   1 is a configuration diagram showing a combined fuel gasification power generation system according to Embodiment 1 of the present invention. Note that the basic configuration of the combined fuel gasification combined power generation system is the same as that of the prior art, and thus the description thereof is omitted. This embodiment 1 is characterized in that the gasification furnace pressure control valve in the prior art is not used, and the supply amount control of the fuel and the like is controlled by the differential pressure upstream and downstream of the valve used for controlling the pressure control valve at the gas turbine inlet. is there.

ガスタービン31の燃焼器32上流に設けられる流量調節弁33は、燃焼器32に供給する燃料ガスの流量を調節する。ガスタービン31にかかる負荷が変動したときは、制御装置35が当該負荷に応じて流量調節弁33を開閉することにより、負荷追従制御を行う。圧力調節弁34は、流量調節弁33において適切な流量調節を行うために、当該流量調節弁33上流の燃料ガス圧力を調節する。   A flow rate adjustment valve 33 provided upstream of the combustor 32 of the gas turbine 31 adjusts the flow rate of the fuel gas supplied to the combustor 32. When the load applied to the gas turbine 31 fluctuates, the control device 35 performs load follow-up control by opening and closing the flow rate adjustment valve 33 according to the load. The pressure adjustment valve 34 adjusts the fuel gas pressure upstream of the flow rate adjustment valve 33 in order to perform an appropriate flow rate adjustment in the flow rate adjustment valve 33.

厳密に言えば、圧力調節弁34は、その上流と下流の差圧を調整し、結果として、流量調節弁33の上流の燃料ガス圧力を調節する。この圧力調節弁34の制御装置35は、設定値と実際の圧力差との偏差に応じたリフト制御を行うのが一般的である。この実施例1では、この圧力調節弁34の制御に用いられる当該弁上下流の圧力差に応じてガス化炉7に供給する燃料1および酸化剤2の供給量を決定する制御を行う。なお、燃料1および酸化剤2の供給量の調節はそれぞれの供給路に設けられる弁の開閉により行う。   Strictly speaking, the pressure control valve 34 adjusts the differential pressure upstream and downstream thereof, and as a result, adjusts the fuel gas pressure upstream of the flow rate control valve 33. The control device 35 of the pressure control valve 34 generally performs lift control according to the deviation between the set value and the actual pressure difference. In the first embodiment, control is performed to determine the supply amounts of the fuel 1 and the oxidizer 2 supplied to the gasification furnace 7 in accordance with the pressure difference between the upstream and downstream of the valve used to control the pressure control valve 34. The supply amounts of the fuel 1 and the oxidant 2 are adjusted by opening and closing valves provided in the respective supply paths.

たとえば、ガスタービン31の負荷が上がった場合、圧力調節弁34の上流と下流とで圧力差が生じるので、圧力調節弁34を調節して流量調節弁34上流の圧力を一定に保つようにする。また、これと同時に、当該圧力差に応じて燃料1と酸化剤2の供給量を増加させる。これにより、ガス化炉の圧力が上がり、ガスタービンの出力を増大させ、負荷変動に追従させることができる。 For example, when the load of the gas turbine 31 increases, a pressure difference is generated between the upstream and downstream of the pressure control valve 34. Therefore, the pressure control valve 34 is adjusted to keep the pressure upstream of the flow control valve 34 constant. . At the same time, the supply amounts of the fuel 1 and the oxidant 2 are increased according to the pressure difference. Thereby, the pressure of the gasifier increases, the output of the gas turbine can be increased, and the load fluctuation can be followed.

このように、この実施例1にかかる燃料ガス化複合発電システムでは、ガスタービンの上流に設けられる圧力調節弁34が、間接的にガス化炉圧力および脱硫設備を通過する燃料ガス圧力を調節する。このため、上記圧力調節弁34以外に圧力を調節する弁が不要となるため、余計な圧力損失がなくなり、全体としてプラント効率の向上を図ることができる。   Thus, in the fuel gasification combined cycle system according to the first embodiment, the pressure control valve 34 provided upstream of the gas turbine indirectly adjusts the gasification furnace pressure and the fuel gas pressure passing through the desulfurization facility. . For this reason, a valve for adjusting the pressure other than the pressure adjusting valve 34 is not required, so that an unnecessary pressure loss is eliminated, and the overall plant efficiency can be improved.

図2は、実施例2にかかる燃料ガス化複合発電システムを示す構成図である。なお、燃料ガス化複合発電システムの基本的な構成は、従来技術および実施例1と同一なので、説明を省略する。この実施例2では、制御装置12を利用して脱硫設備の冷却塔21、および洗浄塔22のそれぞれのポンプ23、24を制御した点に特徴がある。   FIG. 2 is a configuration diagram illustrating the combined fuel gasification power generation system according to the second embodiment. Note that the basic configuration of the combined fuel gasification combined power generation system is the same as that of the prior art and the first embodiment, and a description thereof will be omitted. The second embodiment is characterized in that the control device 12 is used to control the pumps 23 and 24 of the cooling tower 21 and the washing tower 22 of the desulfurization facility.

制御装置12は、配管4を流れる燃料ガスの流速を一定に保つようにガス化炉7への燃料1と酸化剤2の供給量を決定する。したがって、部分負荷時や燃料ガスの流速が乱れた際には、当該流速を一定に保つように制御するが、一定になるまでは、多少の遷移時間がある。   The control device 12 determines the supply amounts of the fuel 1 and the oxidant 2 to the gasification furnace 7 so as to keep the flow rate of the fuel gas flowing through the pipe 4 constant. Therefore, when partial load is applied or when the flow rate of the fuel gas is disturbed, the flow rate is controlled to be constant. However, there is some transition time until the flow rate becomes constant.

上記冷却塔21、および洗浄塔22は、下部から流入する燃料ガスに対して上部からポンプによって液体を循環させ、燃料ガスを冷却・洗浄する構造を有する。そこで、燃料ガスの流速が一定に定まるまでの遷移時間内においては、制御装置12内の設定値と実際の流速の偏差に応じて冷却塔21や洗浄等22のポンプ23、24の循環量を制御することにより、ガス流量の変動に応じた冷却、洗浄を行うことができる。   The cooling tower 21 and the washing tower 22 have a structure for cooling and washing the fuel gas by circulating a liquid from the upper part with respect to the fuel gas flowing in from the lower part. Therefore, within the transition time until the fuel gas flow rate is fixed, the circulation amount of the pumps 23 and 24 of the cooling tower 21 and the cleaning unit 22 is set according to the deviation between the set value in the control device 12 and the actual flow rate. By controlling, cooling and cleaning can be performed in accordance with fluctuations in the gas flow rate.

つまり、流速が一定値よりも大きい場合は、ポンプ23、24の循環量を増加させ、循環させる液が飛散しないようにする。反対に、流速が小さい場合は、ポンプ23、24の循環量を減少させ、液だれを防止する。こうすることによって、燃料ガス流速に応じた量の処理液体を循環させることができる。したがって、常に脱硫設備における脱硫反応を常に効率よく行うことができる。   That is, when the flow velocity is larger than a certain value, the circulation amount of the pumps 23 and 24 is increased so that the liquid to be circulated does not scatter. On the contrary, when the flow rate is small, the circulation amount of the pumps 23 and 24 is decreased to prevent dripping. By doing so, it is possible to circulate an amount of the processing liquid corresponding to the fuel gas flow rate. Therefore, the desulfurization reaction in the desulfurization facility can always be performed efficiently.

図3は、実施例3にかかる燃料ガス化複合発電システムを示す構成図である。なお、燃料ガス化複合発電システムの基本的な構成は、従来技術と同一なので、説明を省略する。この燃料ガス化複合発電システムは、石炭、重質油、廃棄物と炭化物との混合物等の燃料1を空気等の酸化剤2と燃焼させ、燃焼ガスを生成し、それによってガスタービン14を駆動させるガス化複合発電システムである。   FIG. 3 is a configuration diagram illustrating the combined fuel gasification power generation system according to the third embodiment. Note that the basic configuration of the combined fuel gasification combined power generation system is the same as that of the prior art, and thus the description thereof is omitted. This combined fuel gasification power generation system burns fuel 1 such as coal, heavy oil, a mixture of waste and carbide with an oxidant 2 such as air to generate combustion gas, thereby driving a gas turbine 14. This is a combined gasification power generation system.

ガス化炉設備5の脱塵装置3によって未燃焼燃料微粉を取り除いた燃料ガスは、配管4を通り、脱硫設備6へと向かう。ガス化炉7と脱硫設備6との間を連通する配管4には、流量計8と圧力計9と温度計10とから構成される計測手段が設けられる。これらの計測手段は、配管4を通る燃料ガスの流量、圧力、および温度をそれぞれ計測する。これらの物理量は、演算により燃料ガスの流速に変換される(符号11)。   The fuel gas from which the unburned fuel fine powder has been removed by the dedusting device 3 of the gasification furnace facility 5 passes through the pipe 4 toward the desulfurization facility 6. The piping 4 that communicates between the gasification furnace 7 and the desulfurization facility 6 is provided with a measuring means that includes a flow meter 8, a pressure gauge 9, and a thermometer 10. These measuring means respectively measure the flow rate, pressure, and temperature of the fuel gas passing through the pipe 4. These physical quantities are converted into fuel gas flow rates by calculation (reference numeral 11).

そして、上記のように求まった燃料ガスの流速は、制御装置12に取り込まれる。制御装置12は、上記のように求まる燃料ガスの流速に応じてガス化炉7に供給される燃料1および酸化剤2の供給量を制御する。なお、同図では、流速変換11と制御装置12が別個に表してあるが、一つの制御装置で演算処理が可能である。   The flow rate of the fuel gas obtained as described above is taken into the control device 12. The control device 12 controls the supply amounts of the fuel 1 and the oxidant 2 supplied to the gasification furnace 7 according to the flow rate of the fuel gas obtained as described above. In the figure, the flow rate conversion 11 and the control device 12 are shown separately, but the arithmetic processing is possible with one control device.

制御方法を具体的に説明すると、燃料ガスの流速が大きい場合は、燃料と一定の割合で混合される酸化剤との供給量を減少させ、反対に少ない場合は、当該供給量を増加させる。発電機13の負荷が変化すると、配管4を流れる燃料ガスの圧力も流速も変化するので、そのうちの流速を一定に制御することによって、圧力も間接的に制御することになる。このことを考慮すると、燃料ガスの流速を少なくとも設定値の±20%程度の範囲に収めるのが好ましい。   The control method will be specifically described. When the flow rate of the fuel gas is high, the supply amount of the oxidant mixed with the fuel at a constant rate is decreased, and when the flow rate is low, the supply amount is increased. When the load on the generator 13 changes, the pressure and flow rate of the fuel gas flowing through the pipe 4 also change, so that the pressure is indirectly controlled by controlling the flow rate to be constant. Considering this, it is preferable to keep the flow rate of the fuel gas within a range of at least about ± 20% of the set value.

従来のように、発電機13の負荷信号を用いて、先行制御的にガス化炉7の圧力を制御したい場合は、点線で示したように、発電機13からの負荷信号を制御装置12に入力してやる。そして、配管4を流れる燃料ガスの流速を一定にできる範囲で燃料1と酸化剤2の供給量を決定するような演算式や演算テーブルを制御装置内の演算部にもてばよい。   When it is desired to control the pressure of the gasification furnace 7 in advance control using the load signal of the generator 13 as in the prior art, the load signal from the generator 13 is sent to the control device 12 as shown by the dotted line. I'll enter it. Then, an arithmetic expression or an arithmetic table for determining the supply amounts of the fuel 1 and the oxidant 2 within a range in which the flow rate of the fuel gas flowing through the pipe 4 can be made constant may be provided in the arithmetic unit in the control device.

以上のように燃料ガス化複合発電システムを構築すれば、発電機の負荷が変化した場合でも、脱硫設備を通過する燃料ガスの流速は一定となり、反応塔において、液の飛散や落下がなく、脱硫反応を安定して行わせることができる。なお、この燃料ガス化複合発電システムは、燃料ガス中に含まれる水素を利用した燃料電池(SOFC)が同図中のA点に組み込まれる、いわゆるSOFCコンバインドシステムとしたときも適用可能なシステムである。   By constructing the combined fuel gasification power generation system as described above, the flow rate of the fuel gas passing through the desulfurization equipment is constant even when the load on the generator changes, and there is no scattering or dropping of liquid in the reaction tower, The desulfurization reaction can be performed stably. This combined fuel gasification combined power generation system is also applicable to a so-called SOFC combined system in which a fuel cell (SOFC) using hydrogen contained in fuel gas is incorporated at point A in the figure. is there.

本発明にかかる燃料ガス化複合発電システムは、燃料ガス圧を調節し、システムの圧力損失を減少させる発電システムの生産、使用に有用である。   The combined fuel gasification power generation system according to the present invention is useful for the production and use of a power generation system that adjusts the fuel gas pressure and reduces the pressure loss of the system.

実施例1にかかる燃料ガス化複合発電システムを示す構成図である。1 is a configuration diagram illustrating a combined fuel gasification power generation system according to Embodiment 1. FIG. 実施例2にかかる燃料ガス化複合発電システムを示す構成図である。It is a block diagram which shows the fuel gasification combined cycle power generation system concerning Example 2. FIG. 実施例3にかかる燃料ガス化複合発電システムを示す構成図である。FIG. 6 is a configuration diagram illustrating a combined fuel gasification power generation system according to a third embodiment. 従来の燃料ガス化複合発電システムを示す構成図である。It is a block diagram which shows the conventional fuel gasification combined cycle power generation system.

符号の説明Explanation of symbols

1、44 燃料
2、45 酸化剤
6、42 脱硫設備
7、47 ガス化炉
8 流量計
9 圧力計
10 温度計
12、35 制御装置
13、65 発電機
14、61 ガスタービン
23、24、52、53 ポンプ
34 圧力調節弁
DESCRIPTION OF SYMBOLS 1,44 Fuel 2,45 Oxidant 6,42 Desulfurization equipment 7,47 Gasification furnace 8 Flowmeter 9 Pressure gauge 10 Thermometer 12,35 Control apparatus 13,65 Generator 14,61 Gas turbine 23,24,52, 53 Pump 34 Pressure control valve

Claims (1)

燃料と酸化剤とで燃料ガスを生成するガス化炉設備と、
前記ガス化炉設備で生成された前記燃料ガスを燃料として駆動するガスタービンの燃焼器より上流に設けられ、かつ前記ガス化炉設備の下流に設けられる流量調節弁と、
前記流量調節弁の上流に設けられる圧力調節弁と、
前記ガス化炉と前記圧力調節弁との間を連通し、当該間に圧力を調節する弁を設けない配管と、
を有し、
記流量調節弁上流の圧力を一定にする態様で前記圧力調節弁を制御して該圧力調節弁の上流と下流の圧力差を調節すると共に、負荷に応じて前記流量調節弁を開閉して当該負荷に追従するように制御する燃料ガス化複合発電システムにおいて、
前記ガスタービンの負荷変動に対応した前記燃料と前記酸化剤の供給量を得る態様で、前記圧力調節弁の上流と下流の圧力差に応じて、前記ガス化炉へ供給する燃料と酸化剤の供給量を調節するための弁を制御することを特徴とする燃料ガス化複合発電システム。
A gasifier facility for generating fuel gas with fuel and an oxidant;
A flow control valve that is provided to the fuel gas produced in the gasifier facility provided upstream from the combustor of a gas turbine driving as a fuel, and downstream of the gasifier facility,
A pressure regulating valve provided upstream of the flow regulating valve;
A pipe that communicates between the gasifier and the pressure control valve, and does not include a valve for adjusting the pressure between the gasification furnace and the pressure control valve;
Have
While adjusting the pressure difference between the upstream and downstream of the previous SL flow control valve the pressure upstream and controls the pressure regulating valve in a manner that a constant pressure regulating valve, by opening and closing the flow control valve according to a load In the combined fuel gasification combined power generation system that controls to follow the load,
In the aspect of obtaining the supply amount of the fuel and the oxidant corresponding to the load fluctuation of the gas turbine, the fuel and the oxidant supplied to the gasifier are changed according to the pressure difference between the upstream and the downstream of the pressure control valve. A fuel gasification combined cycle system that controls a valve for adjusting a supply amount.
JP2005379483A 2005-12-28 2005-12-28 Fuel gasification combined power generation system Expired - Lifetime JP4167261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379483A JP4167261B2 (en) 2005-12-28 2005-12-28 Fuel gasification combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379483A JP4167261B2 (en) 2005-12-28 2005-12-28 Fuel gasification combined power generation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001337010A Division JP3836014B2 (en) 2001-11-01 2001-11-01 Fuel gasification combined power generation system

Publications (2)

Publication Number Publication Date
JP2006153020A JP2006153020A (en) 2006-06-15
JP4167261B2 true JP4167261B2 (en) 2008-10-15

Family

ID=36631578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379483A Expired - Lifetime JP4167261B2 (en) 2005-12-28 2005-12-28 Fuel gasification combined power generation system

Country Status (1)

Country Link
JP (1) JP4167261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197261A (en) * 2014-04-02 2015-11-09 アズビル株式会社 Air conditioning billing system and air conditioning billing method

Also Published As

Publication number Publication date
JP2006153020A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US20200284189A1 (en) Process for regulating flows in operation of a power generation plant
JP6220589B2 (en) Gas turbine equipment
US10794274B2 (en) Gas turbine facility with supercritical fluid “CO2” recirculation
JP4745940B2 (en) Coal gasification combined power generation system and operation control method thereof
GB2532334A (en) Gas turbine facility
JP4611373B2 (en) Gas turbine equipment, fuel gas supply equipment, and fuel gas calorie increase suppressing method
JPWO2006087803A1 (en) Gas heating value control method and gas heating value control device
JP2012087789A (en) System and method for controlling semiclosed power cycle system
JP4503612B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
CN101014686B (en) Gas reforming equipment
JP4167261B2 (en) Fuel gasification combined power generation system
JP4481330B2 (en) Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
JP4546482B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
JP2006090287A (en) Composite power generation system and fuel gas calorific value control method
JP3836014B2 (en) Fuel gasification combined power generation system
JP5872337B2 (en) Chemical loop combustion apparatus and method of operating the same
JP2007170245A (en) Gas turbine facility, low calory gas feeding facility, and method of suppressing rise of calory of gas
JP3041263B2 (en) Method of controlling nitrogen oxides in flue gas from pressurized fluidized-bed boiler
JPH03266367A (en) Fuel system control unit of fuel cell system
JPH04216896A (en) Equipment for power generation by using coal gasification gas
JP2001263087A (en) Gas turbine controller
JPH02298633A (en) Coal gasifying combined cycle power generation plant
JP2006046131A (en) Gas turbine system, reformed fuel combustion gas turbine system, and reformed fuel supply method for gas turbine system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R151 Written notification of patent or utility model registration

Ref document number: 4167261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term