JP4157441B2 - Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet - Google Patents
Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet Download PDFInfo
- Publication number
- JP4157441B2 JP4157441B2 JP2003207618A JP2003207618A JP4157441B2 JP 4157441 B2 JP4157441 B2 JP 4157441B2 JP 2003207618 A JP2003207618 A JP 2003207618A JP 2003207618 A JP2003207618 A JP 2003207618A JP 4157441 B2 JP4157441 B2 JP 4157441B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon steel
- steel sheet
- electrolytic etching
- low iron
- iron loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000866 electrolytic etching Methods 0.000 title claims description 125
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 122
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 72
- 229910052742 iron Inorganic materials 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 37
- 239000002184 metal Substances 0.000 claims description 99
- 229910052751 metal Inorganic materials 0.000 claims description 99
- 238000005530 etching Methods 0.000 claims description 89
- 239000008151 electrolyte solution Substances 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 229910052839 forsterite Inorganic materials 0.000 claims description 8
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 8
- 239000012811 non-conductive material Substances 0.000 claims description 4
- 238000007562 laser obscuration time method Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 238000003869 coulometry Methods 0.000 claims 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000000137 annealing Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000005554 pickling Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010349 cathodic reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属帯の間接通電式連続電解エッチング方法および間接通電式連続電解エッチング装置に関し、特に、電源トランスの鉄心等に利用される歪取り焼鈍後に鉄損が劣化し難い低鉄損一方向性珪素鋼板の製造に好適な、金属帯の間接通電式連続電解エッチング方法および間接通電式連続電解エッチング装置に関するものである。
【0002】
【従来の技術】
鋼帯などの金属帯に、電気絶縁性のエッチングマスク(エッチングレジスト)を選択的に(エッチングパターンを付与して)形成し、電解エッチングにより連続して溝加工することにより、金属帯の材料特性を改善する従来技術の例としては、特許文献1や特許文献2等で開示されている、変圧器その他の電気機器の鉄心としての用途に好適な低鉄損方向性電磁鋼板の製造方法の発明の例がある。
連続式の電解エッチングには、間接通電方式か、または直接通電方式が検討されてきたが、例えば、特許文献3で開示されている直接通電式電解エッチング装置の発明で認識された課題のように、間接通電方式では、短絡電流が流れ、正確なエッチング量の制御を行うことが困難であることから、従来、工業的には、連続式の電解エッチッグに間接通電方式が採用されることはなかった。
【0003】
従来の金属帯の直接通電式連続電解エッチング装置の概略を、特許文献3で開示されている発明を例にして、以下に説明する。すなわち、当該装置は、図7に示すように、片面に電気絶縁性のエッチングレジストが施された金属帯の電解エッチング装置であって、電解エッチング槽2と、陽極であるコンダクターロール16と、当該コンダクターロール16と金属帯1を介在して相接するように配設されたバックアップロール17と、電解エッチング槽2の電解液3に浸漬された陰極15と、金属帯1を電解液3に浸漬するための浸漬用ロール13とを有し、金属帯1のエッチングレジスト面が下向きに通板され、当該金属帯1のエッチングレジスト面側と相対向して陰極15が上向きに、かつ当該エッチングレジスト面と陰極間距離が所定間隔となるように配設され、コンダクターロール16が金属帯1のエッチングレジストが施されていない面に、バックアップロール17が金属帯1のエッチングレジスト面にそれぞれ当接されるように配設されている。陽極と陰極は整流電源7に接続され、金属帯1への直接通電により、電解エッチングが施される。また、コンダクターロール16は、電解エッチング槽2の電解液3の外側に配設され、短絡電流の発生が防止されている。
【0004】
ところで、電解エッチングとは異なるものの隣接技術分野である電解酸洗の技術分野では、間接通電式での金属帯の連続処理方法が工業的に実用化されている。その中で、特に特許文献4には、図8に示すように、電解槽2内における陽極18と陰極15の間に非導電性材料6を配設することで漏れ電流を有利に低減できる効果を奏する鉄鋼材料の電解酸洗装置の発明が開示されている。
【0005】
【特許文献1】
特開昭63−042332号公報
【特許文献2】
特公平08−006140号公報
【特許文献3】
特開平10−204699号公報
【特許文献4】
特開平06−220699号公報
【0006】
【発明が解決しようとする課題】
上記従来技術の直接通電式の連続電解エッチングでは、コンダクターロールから金属帯へ直接通電する方法であるため、金属帯のコンダクターロールが当接する側の片面は、当然のことながら電気伝導性(導電性)を維持しておく必要がある。このような従来技術では、エッチングパターンを形成した電気絶縁性のエッチングレジストを施して電解エッチッグを行うことができるのは、一度の処理では、金属帯のコンダクターロールが当接しない側の片面だけとならざるを得ないため、金属帯の両面に電解エッチングを施す必要がある場合には、片面ずつ計2回の処理工程を経る必要があることになり、製造コストが増大するだけでなく生産性が悪いという問題があった。
また、金属帯の片面だけの電解エッチングの場合でも、処理前の金属帯の両面が何らかの前処理で既に電気絶縁性の皮膜に覆われていて、その皮膜は製品上除去できないか除去することが経済的に大きな負担となる場合には、上記従来技術そのものが電解エッチングに適用できないという問題があった。
【0007】
以上のような問題は、電解エッチングを直接通電式から間接通電式に変更することにより解決できる可能性があるが、間接通電式の電解エッチングは、工業的に前例がない技術であるだけに、電解エッチング条件や電解エッチング後の品質(溝形状等)の安定性等、不明な事項が多く、技術的には未完成なものと言わざるを得ない。
【0008】
そこで、本発明は、上記の従来技術の問題点を有利に解決するために、従来、工業的に実用化されていなかった間接通電式の連続電解エッチング技術を採用するとともに、従来の間接通電式連続電解エッチングの問題点をも有利に解決して、エッチングにより形成される溝の形状を安定させ、溝の幅、溝の深さをより均一とし、特に、電源トランスの鉄心等に利用される歪取り焼鈍後に鉄損が劣化し難い低鉄損一方向性珪素鋼板の製造に好適な、金属帯の間接通電式連続電解エッチング方法および間接通電式連続電解エッチング装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
まず、本発明に至るまでの予備的な検討について説明する。
すなわち、金属帯の間接通電式連続電解エッチングについて基礎的なデータを収集するために、上記特許文献4に記載の「電解酸洗」に関する発明に類似の、片側の表面にエッチングマスクが選択的に(エッチングパターンを付与して)形成され、残る片側の表面にエッチングマスクが全面的に形成された金属帯に、「電解エッチング」により連続して溝加工する予備実験を行った。
【0010】
図5は、実験装置の概略を長手方向垂直断面図で示すものである。主たる構成は、連続して通板される片側の表面にエッチングマスクが選択的に(エッチングパターンを付与して)形成された金属帯1のエッチング面と相対向して金属帯1の進行方向に、電極a4′、電極b5′を順次設置し、金属帯1と電極a4′、電極b5′の間に電解液3を充填し、電極a4′と電極b5′の間に、直流電源装置7を配置している。直流電源装置7と電極a4′の間には、開閉器9が設置されており、この開閉器9を閉にすることにより、電極a4′と電極b5′の間で、電極a4′が陽極となる電圧印加を行う。また、開閉器9を開とすることにより、電圧印加を中断する。また、金属帯1の搬送ロールとして、電解槽2の入出側には、リンガーロール11、12が設置され、電解液3の槽外への流出を抑制している。槽内には、シンクロール13、14が設置され、電極a4′、電極b5′と金属帯1の距離を一定に保持している。
【0011】
図6に、従来の金属帯の電解酸洗の場合の電圧印加の例に倣った、図5の実験装置における電極a4′と電極b5′の間の電極a4′に対する電圧印加の例を示す。この電圧印加により、電解電流が、電極a4′より、同電極に相対する電解液3、金属帯1のエッチングパターン部を通って金属帯1へ流れ、さらには電極b5′に相対する金属帯1のエッチングパターン部、電解液3を経て電極b5′へと流れる。
【0012】
なお、電極a4′と電極b5′の間の電解槽2内には、電解液3を介して、電極a4′から電極b5′へ、直接、電流が流れることを抑制する目的で、非電導性材料からなる遮蔽板6が設置されている。また、電極a4′は、いわゆるアノード(陽極)であり電極自身がエッチングされることのないようにPt系の不溶性電極を採用し、一方、電極b5′は、いわゆるカソード(陰極)でありSUS316からなる電極を採用した。
【0013】
以上のような、図5の実験装置を用いて、本発明者らは、電極a電極b間で電極aに、図6に示した電圧印加を行い、エッチングマスクが選択的に(エッチングパターンを付与して)形成された金属帯1の電解エッチングによる溝加工を行って、その溝の形状(幾何学形状、溝の幅、溝の深さ)を観察した。
なお、実験に用いた金属帯1は、仕上焼鈍された方向性珪素鋼板であり、その両側の表面には仕上焼鈍中に生成したフォルステライト(Mg2SiO4)皮膜と、さらにその皮膜上に張力付与型皮膜(燐酸系の絶縁皮膜)が塗布後、焼き付けられて形成されている。そして、その片側の表面には、レーザ光線によりフォルステライト皮膜と張力付与型皮膜を選択的に除去して地鉄を露出させたエッチングパターンが形成されている。なお、この張力付与型皮膜は、電気絶縁性皮膜であるため、エッチングマスクとして利用することができる。また、電解液3は、NaClの水溶液を用いた。
【0014】
図4に、本発明の目標とする電解エッチングで形成される溝形状(イ)と、本実験の電解エッチングで形成された溝形状の観察結果例(ロ)〜(ニ)を示す。
観察された電解エッチングの溝形状は、(ロ)傾斜型、(ハ)幅拡がり型、(ニ)局部エッチング型と分類できるように、幾何学形状が非常に不安定であり、溝の幅、溝の深さも大きく変動しやすいことが判明した。
そこで、本発明者らは、金属帯の鋼種を変更し、あるいは、電解条件(NaCl濃度、電解液温度、溝部の実効電流密度)を変更して、諸々の条件における溝の形状を調査したが、溝の形状を安定させ、溝の深さ、溝の幅のばらつきを大幅に減少させることはできなかった。
【0015】
本発明者らは、さらに、鋭意検討を重ねるうちに、電解エッチングで形成される溝のなかの物質移動、とりわけ、電解液の淀み(溶解沈殿物)に着目し、効果的に淀みを減少させ、物質移動を円滑に行わしめることにより、エッチングで形成される溝の形状を安定させ、溝の幅、溝の深さをより均一にできるのではないかという発想を得て、確認実験を行った。その結果、電解液の淀み(溶解沈殿物)を減少させる手段として、電解エッチング中に、形成される溝の表面に極短期間の間H2ガスを周期的に発生させることが極めて有効であることを見出し、本発明を完成したものである。
【0016】
すなわち、本発明の要旨とするところは、以下のとおりである。
(1) 低鉄損一方向性珪素鋼板の片面または両面をエッチング面とし、少なくとも該エッチング面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、間接通電式電解エッチングにより連続的に溝加工する、金属帯の間接通電式連続電解エッチング方法であって、前記金属帯のエッチング面と相対向して、複数個の電極を、前記金属帯の進行方向に、順次、A系、B系、A系、B系、・・・と配設し、前記金属帯と前記電極群の間に電解液を充填して、A系とB系の電極の間で、(I)時間M=3〜10msecの間にA系電極が陰極となる電圧印加と、(II)時間N=4M〜20Mmsecの間にA系電極が陽極となる電圧印加とを交互に繰り返し、矩形状の溝を形成することを特徴とする、低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(2) 前記(I)の電圧印加から前記(II)の電圧印加への移行の際に時間αmsec(α>0)間、および/または、前記(II)の電圧印加から前記(I)の電圧印加への移行の際に時間βmsec(β>0)間、前記A系電極とB系電極の間に電圧を印加しない時間の区間を挿むことを特徴とする、上記(1)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(3) 前記低鉄損一方向性珪素鋼板の進行方向に配設された電極のうちの最後の電極を、前記B系電極とすることを特徴とする、上記(1)または(2)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(4) 前記複数個の電極として、前記低鉄損一方向性珪素鋼板の進行方向に、金属帯の片面当たり、最小単位のA系、B系の順で、一対、計2電極となる電極群を用いることを特徴とする、上記(1)または(2)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(5) 前記(I)の電圧印加の時の単位時間あたりの通電量[A/dm 2 ]を、前記(II)の電圧印加のときの通電量[C/dm 2 ]以下とすることを特徴とする、上記(1)ないし(4)のいずれか1項に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(6) 前記(I)の電圧印加の時の単位時間あたりの通電量を、10A/dm2以上とすることを特徴とする、上記(1)ないし(5)のいずれか1項に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(7) 前記低鉄損一方向性珪素鋼板を、仕上焼鈍された絶縁皮膜を表面に有する方向性珪素鋼板とし、該絶縁皮膜を前記エッチングマスクとして使用することを特徴とする、上記(1)ないし(6)のいずれか1項に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(8) 前記低鉄損一方向性珪素鋼板を、冷間圧延された方向性珪素鋼板とすることを特徴とする、上記(1)ないし(6)のいずれか1項に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(9) 前記低鉄損一方向性珪素鋼板を、表面にフォルステライト皮膜と該皮膜上に表面張力付与型の絶縁皮膜を有する方向性珪素鋼板とすることを特徴とする、上記(7)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(10) 前記低鉄損一方向性珪素鋼板を、地鉄表面に表面張力付与型の絶縁皮膜を有する方向性珪素鋼板とすることを特徴とする、上記(7)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。
(11) 冷間圧延された方向性珪素鋼板の片面または両面をエッチング面とし、少なくとも該エッチング面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、間接通電式電解エッチングにより連続的に溝加工する、金属帯の間接通電式連続電解エッチング装置であって、(a)電解エッチング槽と、(b)前記金属帯の、少なくともエッチング面と相対向する側に、前記金属帯の進行方向に、順次、A系、B系、A系、B系、・・・と複数個の電極が配設され、かつ、前記電解エッチング槽の電解液に浸漬される電極群と、(c)前記金属帯の同一面に相対向し、かつ、互いに隣接するA系とB系の電極の間に配設された非導電性材料の遮蔽板と、(d)A系とB系の電極の間で、(I)時間M=3〜10 msec の間にA系電極が陰極となる電圧制御と、(II)時間N=4M〜20M msec の間にA系電極が陽極となる電圧制御と、(III)所定の時間、A系電極に電圧を印加しない電圧制御とを任意に組み合わせた電圧制御を行う電源装置と、を有し、矩形状の溝を形成することを特徴とする、低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング装置。
(12) 前記低鉄損一方向性珪素鋼板の進行方向に配設された電極のうちの最後の電極を、前記B系電極とすることを特徴とする、上記(11)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング装置。
(13) 前記複数個の電極として、前記低鉄損一方向性珪素鋼板の進行方向に、金属帯の片面当たり、最小単位のA系、B系の順で、一対、計2電極となる電極群が配設されていることを特徴とする、上記(11)に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング装置。
(14) 前記(I)の電圧印加の時の単位時間あたりの通電量[A/dm 2 ]を、前記(II)の電圧印加のときの通電量[C/dm 2 ]以下に制御する機能を有することを特徴とする上記(11)ないし(13)のいずれか1項に記載の低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング装置。
【0017】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態を説明する。
図1に、金属帯の片面または両面をエッチング面とし、少なくとも該エッチング面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、間接通電式連続電解エッチングにより溝加工する設備の構成図を、長手方向垂直断面図で模式的に示す。
主たる構成は、連続して通板される片側の表面にエッチングマスクが選択的に形成された金属帯1のエッチング面と相対向して金属帯1の進行方向に、電極A4、電極B5を順次設置し、金属帯1と電極A4、電極B5の間に電解液3を充填し、電極A4と電極B5の間に、直流電源装置7、8を配置している。直流電源装置7、8と電極A4の間には、それぞれ、開閉器9、10が設置されており、また、直流電源装置7、8と電極B5の間には、それぞれ、開閉器9′、10′が設置されている。開閉器9、9′を閉にし、開閉器10、10′を開にすることにより、電極A4と電極B5の間で電極A4に正の電圧を印加し、また、開閉器9、9′を開にし、開閉器10、10′を閉とすることにより、電極A4と電極B5の間で電極A4に負の電圧を印加する。なお、開閉器9、9′10、10′をすべて、開とすることにより、電圧印加を中断する。
なお、電極A4から電極B5へ、あるいは、電極B5から電極A4へ、電解液3を介して直接電流が流れる漏れ電流を抑制する目的で、電極A4と電極B5の間の電解槽2内に非導電性材料からなる遮蔽板6が設置されている。
【0018】
図2に、本発明による電極Aと電極Bの間の電極Aへの電圧印加例を示す。
通常、電極A4と電極B5との間で電極A4に正の電圧印加または負の電圧印加をそれぞれ行うことにより、所定の電解電流が流れるよう調整されている。例えば、電極A4への電圧印加が正の電圧印加(電極Aが陽極となる)の場合は、所定の電解電流が、電極A4より、同電極に相対する電解液3、金属帯1のエッチングパターン部(陰極となる)を通って金属帯1へ流れ、さらには電極B5に相対する金属帯1のエッチングパターン部(陽極となる)、電解液3を経て電極B5(陰極となる)へと流れる。この電解電流により、電極B5に相対する側の金属帯1のエッチングパターン部では、陽極反応
Me→Me++e-(金属帯が鋼帯の場合、Fe→Fe2++2e-)
により電解エッチングが進行することになる。逆に、電極A4への電圧印加が負の電圧印加(電極Aが陰極となる)の場合は、上記の場合と逆向きに所定の電流が流れることになるが、上記の電極B5(陽極となる)に相対する側の金属帯1のエッチングパターン部(陰極となる)では、陰極反応(電子受容反応)
2H++2e-→H2↑
により発生したH2ガスにより、電解エッチング中に発生したエッチングパターン部近傍の電解液の淀み(溶解沈殿物)を減少させることができる。
【0019】
なお、本発明では、電極A4も電極B5も、ともに陽極になる場合と陰極になる場合があることから、陽極の場合に電極自身が電解エッチングされることのないように例えばPt系等の不溶性材料から製作するのがよい。
また、金属帯を高速で電解エッチング処理する手段として、電解槽のなかの電極配置を電極A、電極B、電極A、電極B・・・・・・、電極A、電極Bと複数設置することが有効である。さらに、電解槽を複数設置することも有効である。なお、本明細書では、複数の電極Aまたは電極Bを総称してA系電極またはB系電極といい、単に電極Aまたは電極Bということもある。
【0020】
図2で示す電圧印加のパターンについて、A系とB系の電極の間で、(I)時間M=3〜10msecの間にA系電極が陰極となる電圧印加と、(II)時間N=4M〜20Mmsecの間にA系電極が陽極となる電圧印加とを、交互に繰り返すことが必要である。
上記(I)のA系電極を陰極、B系電極を陽極とする場合、Mを電圧印加時間(msec)とするとき、Mが3msec未満の時間の電圧印加では、エッチングで形成された溝部の表面でのH2ガスの発生が溝の中の電解液(沈殿物)の淀みを除去するのに充分でなく、一方、Mが10msec超の時間の電圧印加では、電解エッチングの電流効率の低下を招くことから、時間M=3〜10msecと規定した。
【0021】
また、上記(II)のA系電極を陽極、B系電極を陰極とする場合、Nを電圧印加時間(msec)とするとき、Nが4Mmsec未満の電圧印加では、電解エッチングの電流効率の低下を招き、一方、Nが20Mmsec超の電圧印加では、電解エッチングで形成された溝の中の淀み(沈殿物)が大きくなりすぎ、溝のなかの電解液(沈殿物)の淀みを除去するのが困難になることから、時間N=4M〜20Mmsecと規定した。
【0022】
図9の装置は、図1の装置の(I)の電圧印加を行う直流電源装置8と開閉器10′の間に、抵抗19を設置したものである。この抵抗19を増加・減少させることにより、(I)の電圧印加のときの、電極B5より、同電極に相対する電解液3、金属帯1のエッチングパターン部(陰極となる)を通って金属帯1へ流れ、さらには電極A4に相対する金属帯1のエッチングパターン部(陽極となる)、電解液3を経て電極A4(陰極となる)へと流れる電流を減少・増大させることができる。
【0023】
ここで、電極A、電極Bを複数設置するとき、あるいは、電解槽を複数設置するときの電極の配置について説明する。一般的にいえば、金属帯の進行方向の最後の電極は、電解液中の物質の陰極反応による金属帯(陰極)への付着を防止する(金属帯のエッチングパターン部を陽極にする)観点から、陰極であることが望ましい。本発明では、電極Aと電極Bとは、陽極と陰極とに交互に切り替えて使用されるが、上記(I)、(II)の電圧印加での時間配分は常にN>Mであるため、B系電極が主として陰極となる。そこで、金属帯の進行方向の最後の電極は、上記の電解液中の物質の金属帯への付着を防止する観点から、主として陰極となるB系とすることが望ましい。
【0024】
また、前記(I)の電圧印加から前記(II)の電圧印加への移行の際に時間αmsec(α>0)間、および/または、前記(II)の電圧印加から前記(I)の電圧印加への移行の際に時間βmsec(β>0)間、前記A系電極とB系電極の間に電圧を印加しない時間の区間を挿むことも電解エッチングを安定して行うことに有効である。実際の電解エッチング設備では、電解電源装置と電極A、電極Bとの間、あるいは、電極A、電極Bと金属帯との間にそれぞれ電気的な、いわゆるLC回路が形成され、印加電圧の陽極、陰極の切替のときに生じる時間遅れが問題となる場合があるからである。このLC回路による時間遅れの問題は、設備規模が大きくなるほど顕在化することになる。このような問題を解決するための本発明による電極Aと電極Bの間の電極Aへの電圧印加例を、図3に示す。
ただし、αまたはβが10msec超となる長い電圧印加しない時間を採用すると、電解エッチング速度の低下、あるいは、電解エッチング設備(電解槽)の長大化を招くので好ましくなく、また、αまたはβが1msec未満では、上記のLC回路による時間遅れの問題の有効な解決手段とはなりえないため、αまたはβは1〜10msecの範囲にするのが望ましい。
【0025】
本発明者らは、図1に示した設備の電極A電極B間で電極Aに、図3に示した電圧印加を行い、エッチングパターンを付与したエッチングマスクが形成された金属帯の電解エッチングによる溝加工を行って、その溝の形状(幾何学形状、溝の幅、溝の深さ)を観察した。その結果、本発明による電解エッチングで形成された溝の形状は非常に安定化し、全て、図4の(イ)のような凹型の形状となり、溝の幅、溝の深さもより均一となり、バラツキは大幅に改善されていることを確認した。
【0026】
なお、実験に用いた金属帯1は、仕上焼鈍された方向性珪素鋼板であり、その両側の表面には仕上焼鈍中に生成したフォルステライト(Mg2SiO4)皮膜と、さらにその皮膜上に張力付与型皮膜(燐酸系の絶縁皮膜)が塗布後、焼き付けられて形成されている。そして、その片側の表面には、レーザ光線によりフォルステライト皮膜と張力付与型皮膜を選択的に除去して地鉄を露出させたエッチングパターンが形成されている。なお、この張力付与型皮膜は、電気絶縁性皮膜であるため、エッチングマスクとして利用することができる。また、電解液3は、NaClの水溶液を用いた。
【0027】
また、前記(I)の電圧印加の時の単位時間あたりの通電量(電流密度)を、前記(II)の電圧印加のときの通電量以下とすることも、電解エッチングを効率的に行うことに有効である。前記(I)の電圧印加の時の単位時間あたりの通電量が前記(II)の電圧印加のときの通電量を超えると、電解エッチング速度の低下、あるいは、電解エッチング設備(電解槽)の長大化を招くので好ましくないからである。
一方、前記(I)の電圧印加の時の単位時間あたりの通電量を、10A/dm2以上とすることも、電解エッチングを安定して行うことに有効である。10A/dm2未満では、発生H2ガスの噴出力が小さく、電解エッチングで形成された溝の中の淀みを除去する効率が悪くなり好ましくないからである。
図10は、上記のように単位時間あたりの通電量を制御する際の、電極Aと電極Bの間の電極Aへの電圧印加例を示すものである。ここでは、電解エッチングの電気回路の電気抵抗が変化しない場合は、単位時間あたりの通電量の制御は電圧制御で代替できることを前提としている。図9の装置は、可変抵抗19を調整して電圧制御することにより単位時間あたりの通電量を制御している例である。
【0028】
本発明に使用する電解電源装置は、上記の直流電源装置と開閉器による切替システムに限定されるものではなく、上記に記述の電圧印加サイクルをとれるものであれば、方式を問わない。いわゆる、6相半波整流波形の、トランジスター方式でも、インバータ方式でも有効である。また、抵抗も必ずしも単独に設置する必要はなく、上記に記述の(I)の電圧印加のときの通電量を制御できるものであれば、方式は問わず、勿論、直流電源方式と組み合わせたものでかまわない。
【0029】
本発明は、金属帯の片面または両面をエッチング面とし、少なくとも該エッチング面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、連続して、間接通電式の電解エッチングにより安定して溝加工する場合のすべてに対して有効である。金属帯の片面のみをエッチング面とする場合の残る片側の面は、エッチングマスクを全面的に形成してもよいし、形成しなくてもよい。
【0030】
なお、本明細書では、金属帯の片側の表面を電解エッチングする装置は図1、図9で例示したとおりであるが、金属帯の両側の表面を電解エッチングする装置は、図1、図9で例示した装置において、電極部と電源装置部を図8の装置のように金属帯の上面側と下面側の両側に配設するだけであるため、本発明例としての図示を省略している。
【0031】
本発明による効果は、特に、表面にエッチングマスクが形成された仕上焼鈍された珪素鋼板に電解エッチングを施した「歪取り焼鈍による鉄損劣化がない耐歪取り焼鈍低鉄損一方向性珪素鋼板」について顕著である。これは、このような珪素鋼板では、電解エッチングで形成される溝形状のバラツキがそのまま磁性のバラツキとなって問題が顕在化するからである。
もちろん、張力付与型皮膜(燐酸系の絶縁皮膜)が塗膜され、その片側の表面にエッチングマスクが選択的に形成された、フォルステライト(Mg2SiO4)を有しない方向性珪素鋼板でもその効果は有効である。
【0032】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
(実施例1)
電解エッチング前の金属帯は、下記条件下で、最終板厚まで冷間圧延し、脱炭焼鈍後、MgOからなる焼鈍分離材を両側の表面に塗布・乾燥し、更に、仕上焼鈍し、仕上焼鈍中に両表面に生成したフォルステライト(Mg2SiO4)皮膜の上に張力付与型皮膜(燐酸系の絶縁皮膜)を塗布した後、焼き付けた方向性珪素鋼板であり、その片側の表面には、さらに、レーザ光線によりフォルステライト皮膜と張力付与型皮膜を選択的に除去して地鉄を露出させたエッチングパターンが形成されている方向性珪素鋼板である。なお、この張力付与型皮膜は、電気絶縁性皮膜であるため、エッチングマスクとして利用することとした。
【0033】
上記のような前処理が施された方向性珪素鋼板に、図1または図5に示す間接通電式連続電解エッチング装置を用いて、電解エッチング処理を施した。
[方向性珪素鋼板] 板厚 0.22mm、板幅 1000mm
[エッチングマスク] 鋼帯長手方向に直角な方向(鋼帯幅方向)に、
3mmピッチ、幅0.2mmのエッチングパターンを有する。
[電解液] 組成500g−NaCl/l、液温 60℃
[目標溝深さ] 0.02mm
[電解電流] 350C/dm2 (A・s/dm 2 )
電解エッチング後、鋼帯の幅方向における電解エッチングで形成された溝の形状パターン、溝の深さのばらつきを評価した。
【0034】
表1に、図1または図5に示す装置に、図2、図3、図6いずれかの電圧印加をしたときの試験条件と結果を示す。
No.1〜5に示される本発明例では、溝の形状は、全て凹型(イ)であり安定しており、その結果、溝の深さのバラツキ(%)((溝の深さの標準偏差)/(溝の深さの平均値)×100)は、極めて小さいことが分かる。なお、本発明例のNo.5では、LC回路による時間遅れの問題を回避するための特別な回路構成を採用したが、この回路構成は公知技術に基づくものであるため詳細な説明は省略する。
【0035】
一方、電極Aへの負の電圧印加時間が短い比較例のNo.11、および、正の電圧印加時間/負の電圧印加時間の比率が20を超える比較例のNo.12、13では、溝の形状は、一部凹型(イ)が認められるものの、依然として、溝の形状が、傾斜型(ロ)、幅拡がり型(ハ)、局部エッチング型(ニ)が混在しており、その結果、溝の深さのバラツキは大きく、満足できる品質ではなかった。
また、従来の電圧印加法による比較例のNo.14は、溝の形状は、凹型(イ)は認められず、傾斜型(ロ)、幅拡がり型(ハ)、局部エッチング型(ニ)が混在しており、その結果、溝の深さのばらつきは更に大きいものであった。
【0036】
【表1】
【0037】
(実施例2)
電解エッチング前の金属帯は、実施例1と同じである。
上記のような前処理が施された方向性珪素鋼板に、図9に示す間接通電式連続電解エッチング装置を用いて、電解エッチング処理を施した。
[方向性珪素鋼板] 板厚 0.22mm、板幅 1000mm
[エッチングマスク] 鋼帯長手方向に直角な方向(鋼帯幅方向)に、
3mmピッチ、幅0.2mmのエッチングパターンを有する。
[電解液] 組成500g−NaCl/l、液温 60℃
[目標溝深さ] 0.02mm
[電解電流] (I)の電圧印加期間 0.4〜250A/dm2(エッチング部位)
(II)の電圧印加期間 350C/dm2 (A・s/dm 2 )
電解エッチング後、鋼帯の幅方向における電解エッチングで形成された溝の形状パターン、溝の深さのばらつきを評価した。
【0038】
表2に、図9に示す装置に、図3、図10のいずれかの電圧印加をしたときの試験条件と結果を示す。
本発明例のNo.6は、前記(I)の電圧印加の時の時間単位あたりの通電量を、前記(II)の電圧印加の時の時間あたりの通電量と同じとしたものである。本発明例のNo.7、8、比較例のNo.15、16は、本発明例のNo.6から、順次、前記(I)の電圧印加の時の時間単位あたりの通電量を、減少させて試験を行ったものである。ちなみに、本発明例のNo.6の電圧印加は、図3の電圧印加に相当する。
No.6〜8に示される本発明例では、溝の形状は、全て凹型(イ)であり安定しており、その結果、溝の深さのバラツキ(%)((溝の深さの標準偏差)/(溝の深さの平均値)×100)は、極めて小さいことが分かる。
一方、電圧印加(I)の単位時間あたりの通電量が低い比較例のNo.15、16では、溝の形状は、一部凹型(イ)が認められるものの、依然として、溝の形状が、傾斜型(ロ)、幅拡がり型(ハ)、局部エッチング型(ニ)のものが混在しており、その結果、溝の深さのバラツキは大きく、満足できる品質ではなかった。
【0039】
【表2】
【0040】
【発明の効果】
以上説明したように、本発明によれば、片面ずつの処理とならざるを得ない直接通電式電解エッチングで金属帯の両面を電解エッチングする場合の非効率の問題や、金属帯の両面にエッチングマスクを有する金属帯の電解エッチングは直接通電式電解エッチングでは処理できないという従来の問題点を有利に解決することができ、従来の間接通電式連続電解エッチングでの電解エッチング溝形状の問題点をも有利に解決して、電解エッチングにより形成される溝の形状を安定させ、溝の幅、溝の深さをより均一とし、特に、電源トランスの鉄心等に利用される歪取り焼鈍後に鉄損が劣化し難い低鉄損一方向性珪素鋼板の製造に好適な、金属帯の間接通電式連続電解エッチング方法および間接通電式連続電解エッチング装置を提供することができるため、その効果は絶大である。
【図面の簡単な説明】
【図1】 本発明に係る、少なくとも片側の表面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、間接通電式電解エッチングにより連続して溝加工する装置の長手方向垂直断面図による概略説明図である。
【図2】 本発明に係る、A系電極とB系電極の間でのA系電極への電圧印加例を示す図である。
【図3】 本発明に係る、A系電極とB系電極の間でのA系電極への電圧印加の別の例を示す図である。
【図4】 電解エッチングで形成される溝の断面形状のパターンを分類して示す図である。
【図5】 従来の金属帯に対する電解酸洗装置に類似のもので、本発明に至る予備実験に用いた装置であって、少なくとも片側の表面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、間接通電式電解エッチングにより連続して溝加工する装置の長手方向垂直断面図による概略説明図である。
【図6】 従来の金属帯に対する電解酸洗で用いられる電圧印加に類似のもので、本発明の予備実験で用いた、図5の実験装置における電極aと電極bの間の電極aへの電圧印加例を示す図である。
【図7】 従来の金属帯の直接通電式連続電解エッチング装置の概略を、長手方向垂直断面図で説明する図である。
【図8】 従来の金属帯の間接通電式連続電解酸洗装置の概略を、長手方向垂直断面図で説明する図である。
【図9】 本発明に係る、別の、少なくとも片側の表面にエッチングパターンを付与したエッチングマスクが形成された金属帯に、間接通電式電解エッチングにより連続して溝加工する装置の長手方向垂直断面図による概略説明図である。
【図10】 本発明に係る、A系電極とB系電極の間でのA系電極への電圧印加の更に別の例を示す図である。
【符号の説明】
1 金属帯
2 電解槽(電解エッチング槽)
3 電解液
4 電極A
4′電極a
5 電極B
5′電極b
6 遮蔽板(非導電性材料)
7、8 直流電源装置
9、9′、10、10′ 開閉器
11、12 リンガーロール
13、14 シンクロール(浸漬用ロール)
15 陰極
16 コンダクターロール
17 バックアップロール
18 陽極
19 抵抗[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indirect energization type continuous electrolytic etching method and an indirect energization type continuous electrolytic etching apparatus for a metal strip, and in particular, a low iron loss unidirectional in which iron loss is less likely to be deteriorated after strain relief annealing used for an iron core of a power transformer. The present invention relates to an indirect energization type continuous electrolytic etching method and an indirect energization type continuous electrolytic etching apparatus suitable for manufacturing a conductive silicon steel sheet.
[0002]
[Prior art]
By selectively forming an etching mask (etching resist) that is electrically insulating on a metal band such as a steel band (with an etching pattern), and continuously machining grooves by electrolytic etching, the material properties of the metal band As an example of the prior art for improving the invention, the invention of a method for producing a low iron loss directional electrical steel sheet suitable for use as an iron core of a transformer or other electric device disclosed in Patent Document 1,
For continuous electrolytic etching, an indirect energization method or a direct energization method has been studied. For example, as a problem recognized in the invention of the direct energization electrolytic etching apparatus disclosed in
[0003]
An outline of a conventional metal strip direct energization type continuous electrolytic etching apparatus will be described below by taking the invention disclosed in
[0004]
By the way, although it is different from electrolytic etching, in the technical field of electrolytic pickling, which is an adjacent technical field, an indirect energization type metal band continuous processing method is industrially put into practical use. Among them, particularly in
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 63-042332
[Patent Document 2]
Japanese Patent Publication No. 08-006140
[Patent Document 3]
Japanese Patent Laid-Open No. 10-204699
[Patent Document 4]
Japanese Patent Laid-Open No. 06-220699
[0006]
[Problems to be solved by the invention]
In the direct current type continuous electrolytic etching of the above-mentioned prior art, since the method is such that the current is directly applied from the conductor roll to the metal band, it is natural that the one side of the metal band where the conductor roll abuts is electrically conductive (conductive). ) Must be maintained. In such a conventional technique, electrolytic etching can be performed by applying an electrically insulating etching resist in which an etching pattern is formed, and only one side on the side where the conductor roll of the metal band is not in contact with one treatment. In other words, if it is necessary to perform electrolytic etching on both sides of the metal strip, it is necessary to go through a total of two processing steps for each side, which not only increases manufacturing costs but also increases productivity. There was a problem of being bad.
In addition, even in the case of electrolytic etching of only one side of the metal strip, both sides of the metal strip before treatment are already covered with an electrically insulating film by some pretreatment, and the film cannot be removed or removed on the product. In the case where the burden is economically large, there is a problem that the above-described conventional technology itself cannot be applied to electrolytic etching.
[0007]
The problems as described above may be solved by changing the electrolytic etching from the direct energization type to the indirect energization type, but the indirect energization type electrolytic etching is a technology unprecedented industrially, There are many unknown matters such as the electrolytic etching conditions and the stability of the quality (groove shape, etc.) after the electrolytic etching, and it must be said that they are technically incomplete.
[0008]
Therefore, the present invention employs an indirect energization type continuous electrolytic etching technique that has not been put into practical use in the past, and also a conventional indirect energization type in order to advantageously solve the problems of the above prior art. The problem of continuous electrolytic etching is also advantageously solved, the shape of the groove formed by etching is stabilized, the width of the groove and the depth of the groove are made more uniform, and particularly used for the iron core of a power transformer, etc. An object of the present invention is to provide an indirect energization type continuous electrolytic etching method and an indirect energization type continuous electrolytic etching apparatus for a metal strip suitable for manufacturing a low iron loss unidirectional silicon steel sheet in which iron loss does not easily deteriorate after stress relief annealing. Is.
[0009]
[Means for Solving the Problems]
First, a preliminary study up to the present invention will be described.
That is, in order to collect basic data on indirect energization type continuous electrolytic etching of a metal strip, an etching mask is selectively formed on the surface on one side similar to the invention relating to “electrolytic pickling” described in
[0010]
FIG. 5 shows an outline of the experimental apparatus in a longitudinal sectional view in the longitudinal direction. The main structure is that in the traveling direction of the metal band 1 opposite to the etching surface of the metal band 1 in which an etching mask is selectively formed (provided with an etching pattern) on the surface of one side that is continuously passed through. The electrode a4 'and the electrode b5' are sequentially installed, the
[0011]
FIG. 6 shows an example of voltage application to the electrode a4 ′ between the electrode a4 ′ and the electrode b5 ′ in the experimental apparatus of FIG. 5, following the example of voltage application in the case of conventional electrolytic pickling of a metal strip. By applying this voltage, an electrolytic current flows from the electrode a4 ′ to the metal band 1 through the
[0012]
In the
[0013]
Using the experimental apparatus shown in FIG. 5 as described above, the inventors applied the voltage shown in FIG. 6 to the electrode a between the electrodes a and b, and the etching mask was selectively (etched pattern). Groove processing by electrolytic etching of the formed metal strip 1 was performed, and the shape of the groove (geometric shape, groove width, groove depth) was observed.
The metal strip 1 used in the experiment is a directional silicon steel plate that has been subjected to finish annealing, and the forsterite (Mg2SiOFour) A film and a tension-imparting film (phosphoric acid-based insulating film) are applied and then baked on the film. Then, an etching pattern is formed on the surface on one side, in which the forsterite film and the tension-imparting film are selectively removed by a laser beam to expose the base iron. In addition, since this tension | tensile_strength type | mold film | membrane is an electrically insulating film | membrane, it can be utilized as an etching mask. As the
[0014]
FIG. 4 shows observation results (b) to (d) of the groove shape (A) formed by the electrolytic etching targeted by the present invention and the groove shape formed by the electrolytic etching of this experiment.
The observed electrolytic etching groove shapes are (b) inclined type, (c) widening type, and (d) local etching type, so that the geometric shape is very unstable, the groove width, It has been found that the depth of the groove is also likely to vary greatly.
Therefore, the present inventors investigated the shape of the groove under various conditions by changing the steel type of the metal strip or by changing the electrolysis conditions (NaCl concentration, electrolyte temperature, effective current density of the groove). It was impossible to stabilize the shape of the groove and greatly reduce the variation in the depth and width of the groove.
[0015]
As the inventors of the present invention have further made extensive studies, they pay attention to mass transfer in the groove formed by electrolytic etching, particularly, stagnation (dissolved precipitate) of the electrolytic solution, and effectively reduce stagnation. We conducted a confirmation experiment with the idea that the shape of the groove formed by etching could be stabilized by smoothing the mass transfer and that the width and depth of the groove could be made more uniform. It was. As a result, as a means of reducing electrolyte stagnation (dissolved precipitates), during electrolytic etching, the surface of the groove to be formed has a very short period of time.2The inventors have found that it is extremely effective to generate gas periodically, and have completed the present invention.
[0016]
That is, the gist of the present invention is as follows.
(1)Low iron loss unidirectional silicon steel sheetIndirect energization continuous electrolysis of a metal band, wherein one or both surfaces of the metal band are etched surfaces, and at least an etching mask having an etching pattern formed on the etched surface is continuously grooved by indirect energization electrolytic etching. In the etching method, a plurality of electrodes are sequentially arranged in the traveling direction of the metal band so as to face the etching surface of the metal band, and the A system, the B system, the A system, the B system,. An electrolyte is filled between the metal strip and the electrode group, and between the A system and B system electrodes, (I) the A system electrode is connected to the cathode during a time M = 3 to 10 msec. And (II) voltage application in which the A-system electrode serves as an anode during time N = 4M to 20 Mmsec, and alternately,Form a rectangular grooveIt is characterized byLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(2) During a transition from the voltage application of (I) to the voltage application of (II) for a time αmsec (α> 0) and / or from the voltage application of (II) to (I) The above (1), wherein a time interval in which no voltage is applied is inserted between the A-system electrode and the B-system electrode for a time βmsec (β> 0) at the time of transition to voltage application. ofLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(3) saidLow iron loss unidirectional silicon steel sheetThe last electrode among the electrodes arranged in the traveling direction is the B-system electrode, as described in (1) or (2) aboveLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(4) As the plurality of electrodes, theLow iron loss unidirectional silicon steel sheet(1) or (2), wherein a pair of electrodes in total, in the order of the minimum unit A system and B system, is used in the traveling direction of the metal strip in one order on each side of the metal strip. ofLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(5) Energization amount per unit time when the voltage of (I) is applied[A / dm 2 ]When the voltage of (II) is appliedThroughElectricity[C / dm 2 ]Any one of (1) to (4) above, characterized in that:Low iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(6) The energization amount per unit time when the voltage of (I) is applied is set to 10 A / dm2 or more, according to any one of (1) to (5) aboveLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(7) saidLow iron loss unidirectional silicon steel sheetA directional silicon steel sheet having a finish-annealed insulating film on the surface, and using the insulating film as the etching mask, according to any one of (1) to (6) aboveLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(8) saidLow iron loss unidirectional silicon steel sheetThe cold-rolled grain-oriented silicon steel sheet according to any one of (1) to (6) above,Low iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(9) saidLow iron loss unidirectional silicon steel sheetThe directional silicon steel sheet having a forsterite film on the surface and a surface tension imparting type insulating film on the film, according to (7),Low iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(10) saidLow iron loss unidirectional silicon steel sheetIs a grain-oriented silicon steel sheet having a surface tension imparting type insulation film on the surface of the ground iron, as described in (7) aboveLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching method.
(11) Continuously by indirect energization type electrolytic etching on a metal strip on which one or both surfaces of a cold-rolled directional silicon steel sheet are etched surfaces and an etching mask having an etching pattern applied to at least the etched surface is formed. An indirect energization type continuous electrolytic etching apparatus for a metal band for groove processing, comprising: (a) an electrolytic etching tank; and (b) a traveling direction of the metal band on at least a side facing the etching surface of the metal band. A group of electrodes, each of which is sequentially provided with an A system, a B system, an A system, a B system,..., And is immersed in an electrolytic solution in the electrolytic etching bath; A shielding plate made of a non-conductive material opposite to the same surface of the metal strip and disposed between the A-system and B-system electrodes adjacent to each other; and (d) between the A-system and B-system electrodes. (I)Time M = 3-10 msec BetweenVoltage control with the A-system electrode serving as a cathode; (II)Time N = 4M-20M msec BetweenA rectangular power supply having a voltage control in which voltage control in which the A-system electrode serves as an anode and (III) voltage control in which voltage is not applied to the A-system electrode for a predetermined time is arbitrarily combined. Characterized by forming,Low iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching equipment.
(12) saidLow iron loss unidirectional silicon steel sheetThe last electrode among the electrodes arranged in the traveling direction is the B-system electrode, as described in (11) aboveLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching equipment.
(13) As the plurality of electrodes,Low iron loss unidirectional silicon steel sheet(11), characterized in that a pair of electrodes in total is arranged in the order of the minimum unit A system and B system in one direction of the metal strip in the advancing direction. ofLow iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching equipment.
(14) Energization amount per unit time when the voltage of (I) is applied[A / dm 2 ]When the voltage of (II) is appliedThroughElectricity[C / dm 2 ]Any one of the above-mentioned (11) to (13) is characterized by having a function to be controlled as follows:Low iron loss unidirectional silicon steel sheetIndirect energization type continuous electrolytic etching equipment.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of equipment for processing a groove by indirect energization type continuous electrolytic etching on a metal band on which one or both surfaces of the metal band is an etching surface and an etching mask having an etching pattern applied to at least the etching surface is formed. , Schematically shown in a longitudinal vertical sectional view.
The main structure is that the electrodes A4 and B5 are sequentially arranged in the advancing direction of the metal band 1 opposite to the etching surface of the metal band 1 in which an etching mask is selectively formed on the surface of one side that is continuously passed. Installed, the
In addition, in order to suppress the leakage current that flows directly from the electrode A4 to the electrode B5 or from the electrode B5 to the electrode A4 via the
[0018]
FIG. 2 shows an example of voltage application to the electrode A between the electrodes A and B according to the present invention.
Usually, a predetermined electrolytic current is adjusted to flow by applying a positive voltage or a negative voltage to the electrode A4 between the electrode A4 and the electrode B5. For example, when the voltage application to the electrode A4 is a positive voltage application (the electrode A serves as an anode), the predetermined electrolytic current is etched from the electrode A4 to the
Me → Me++ E-(If the metal strip is a steel strip, Fe → Fe2++ 2e-)
As a result, electrolytic etching proceeds. Conversely, when the voltage application to the electrode A4 is a negative voltage application (the electrode A becomes a cathode), a predetermined current flows in the opposite direction to the above case, but the electrode B5 (the anode and In the etching pattern portion of the metal strip 1 on the side opposite to (becomes) (to become the cathode), the cathode reaction (electron acceptance reaction)
2H++ 2e-→ H2↑
H generated by2The gas can reduce the stagnation (dissolved precipitate) of the electrolyte near the etching pattern portion generated during the electrolytic etching.
[0019]
In the present invention, both the electrode A4 and the electrode B5 may be an anode or a cathode. Therefore, in the case of the anode, for example, an insoluble material such as a Pt system is used so that the electrode itself is not subjected to electrolytic etching. It is good to make from material.
In addition, as a means for performing electrolytic etching treatment of the metal strip at high speed, a plurality of electrode arrangements in the electrolytic cell, such as electrode A, electrode B, electrode A, electrode B... Is effective. It is also effective to install a plurality of electrolytic cells. In the present specification, the plurality of electrodes A or B are collectively referred to as A-system electrodes or B-system electrodes, and may be simply referred to as electrodes A or electrodes B.
[0020]
For the pattern of voltage application shown in FIG. 2, (I) voltage application in which the A-system electrode becomes a cathode during time M = 3 to 10 msec, and (II) time N = It is necessary to alternately repeat the voltage application in which the A-system electrode serves as an anode between 4 M and 20 Mmsec.
When the above-mentioned (I) A-system electrode is a cathode and the B-system electrode is an anode, when M is a voltage application time (msec), when a voltage is applied for a time when M is less than 3 msec, the groove formed by etching H on the surface2Since the generation of gas is not sufficient to remove the stagnation of the electrolyte (precipitate) in the groove, on the other hand, when a voltage is applied for a time in which M exceeds 10 msec, the current efficiency of electrolytic etching is reduced. Time M = 3-10 msec.
[0021]
In addition, when the A-system electrode in (II) is an anode and the B-system electrode is a cathode, when N is a voltage application time (msec), the current efficiency of electrolytic etching is reduced when N is less than 4 Mmsec. On the other hand, when a voltage of N exceeding 20 Mmsec is applied, the stagnation (precipitate) in the groove formed by electrolytic etching becomes too large, and the stagnation of the electrolyte (precipitate) in the groove is removed. Therefore, the time N is defined as 4 to 20 Mmsec.
[0022]
In the apparatus of FIG. 9, a
[0023]
Here, the arrangement of the electrodes when a plurality of electrodes A and B are installed or when a plurality of electrolytic cells are installed will be described. Generally speaking, the last electrode in the direction of travel of the metal band is a viewpoint that prevents the substance in the electrolyte from adhering to the metal band (cathode) due to the cathodic reaction (the etching pattern part of the metal band is used as the anode) Therefore, the cathode is desirable. In the present invention, the electrode A and the electrode B are used by alternately switching between the anode and the cathode, but the time distribution in the voltage application of the above (I) and (II) is always N> M. The B-type electrode is mainly the cathode. Therefore, it is desirable that the last electrode in the traveling direction of the metal strip is a B system mainly serving as a cathode from the viewpoint of preventing the substances in the electrolyte from adhering to the metal strip.
[0024]
Further, during the transition from the voltage application of (I) to the voltage application of (II), during the time αmsec (α> 0) and / or from the voltage application of (II) to the voltage of (I) Inserting a time interval in which no voltage is applied between the A-system electrode and the B-system electrode for a time βmsec (β> 0) at the time of transition to application is also effective for stable electrolytic etching. is there. In an actual electrolytic etching facility, an electrical so-called LC circuit is formed between the electrolytic power supply device and the electrodes A and B, or between the electrodes A and B and the metal strip, and the anode of the applied voltage This is because the time delay that occurs when switching the cathode may be a problem. The problem of time delay due to the LC circuit becomes more apparent as the equipment scale increases. An example of voltage application to the electrode A between the electrode A and the electrode B according to the present invention for solving such a problem is shown in FIG.
However, if a long voltage non-application time in which α or β exceeds 10 msec is adopted, it is not preferable because the electrolytic etching rate is lowered or the electrolytic etching equipment (electrolyzer) is lengthened, and α or β is 1 msec. If it is less than 1, it cannot be an effective solution to the problem of time delay caused by the LC circuit, so α or β is preferably in the range of 1 to 10 msec.
[0025]
The inventors apply the voltage shown in FIG. 3 to the electrode A between the electrodes A and B of the equipment shown in FIG. 1, and perform electrolytic etching on a metal band in which an etching mask provided with an etching pattern is formed. Groove processing was performed, and the shape of the groove (geometric shape, groove width, groove depth) was observed. As a result, the shape of the groove formed by the electrolytic etching according to the present invention is very stabilized, and all have a concave shape as shown in FIG. 4 (a), and the groove width and groove depth are more uniform, resulting in variations. Confirmed that it has improved significantly.
[0026]
The metal strip 1 used in the experiment is a directional silicon steel plate that has been subjected to finish annealing, and the forsterite (Mg2SiOFour) A film and a tension-imparting film (phosphoric acid-based insulating film) are applied and then baked on the film. Then, an etching pattern is formed on the surface on one side, in which the forsterite film and the tension-imparting film are selectively removed by a laser beam to expose the base iron. In addition, since this tension | tensile_strength type | mold film | membrane is an electrically insulating film | membrane, it can be utilized as an etching mask. As the
[0027]
Further, the energization amount (current density) per unit time when the voltage of (I) is applied is the same as when the voltage of (II) is applied.ThroughIt is effective to perform electrolytic etching efficiently to make it below the electric charge. When the energization amount per unit time when the voltage of (I) is applied is the voltage application of (II)ThroughIf the amount of electricity is exceeded, the electrolytic etching rate is reduced or the electrolytic etching equipment (electrolysis tank) is lengthened, which is not preferable.
On the other hand, the energization amount per unit time when the voltage (I) is applied is 10 A / dm.2This is also effective for performing electrolytic etching stably. 10A / dm2Less than H2This is because the gas jet power is small, and the efficiency of removing stagnation in the groove formed by electrolytic etching deteriorates, which is not preferable.
FIG. 10 shows an example of voltage application to the electrode A between the electrode A and the electrode B when the energization amount per unit time is controlled as described above. Here, it is assumed that when the electric resistance of the electric circuit of electrolytic etching does not change, the control of the energization amount per unit time can be replaced by voltage control. The apparatus of FIG. 9 is an example in which the energization amount per unit time is controlled by adjusting the voltage of the
[0028]
The electrolytic power supply device used in the present invention is not limited to the switching system using the DC power supply device and the switch described above, and any system can be used as long as it can take the voltage application cycle described above. The so-called 6-phase half-wave rectified waveform is effective in both the transistor system and the inverter system. Also, it is not always necessary to install a single resistor, and any method can be used as long as it can control the amount of current when the voltage (I) described above is applied. It doesn't matter.
[0029]
According to the present invention, a groove is stably formed by indirect energization type electrolytic etching continuously on a metal band on which one or both surfaces of the metal band is an etching surface, and at least an etching mask having an etching pattern is formed on the etching surface. This is effective for all processing. When only one surface of the metal strip is used as an etching surface, the remaining one surface may or may not be formed entirely on the etching mask.
[0030]
In this specification, the apparatus for electrolytically etching the surface on one side of the metal strip is as illustrated in FIGS. 1 and 9, but the apparatus for electrolytically etching the surfaces on both sides of the metal strip is shown in FIGS. In the apparatus illustrated in Fig. 8, the electrode section and the power supply apparatus section are merely disposed on both the upper surface side and the lower surface side of the metal strip as in the apparatus of FIG. .
[0031]
The effect of the present invention is that, in particular, a finish annealed silicon steel sheet having an etching mask formed on the surface thereof is subjected to electrolytic etching, “a strain relief annealed low iron loss unidirectional silicon steel sheet without iron loss deterioration due to strain relief annealing. Is remarkable. This is because, in such a silicon steel plate, the groove shape variation formed by electrolytic etching becomes the magnetic variation as it is, and the problem becomes obvious.
Of course, forsterite (Mg) is coated with a tension-imparting film (phosphoric acid-based insulating film) and an etching mask is selectively formed on one surface of the film.2SiOFourThe effect is effective even with a grain-oriented silicon steel sheet not having).
[0032]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
Example 1
The metal strip before electrolytic etching is cold-rolled to the final thickness under the following conditions, decarburized and annealed, and then coated with an annealing separator made of MgO and dried on both surfaces, and then finish-annealed and finished. Forsterite (Mg) formed on both surfaces during annealing2SiOFour) A directional silicon steel sheet that is baked after applying a tension-imparting film (phosphoric acid-based insulating film) on the film. It is a grain-oriented silicon steel sheet in which an etching pattern is formed by selectively removing the metal and exposing the base iron. In addition, since this tension | tensile_strength type | mold film | membrane is an electrically insulating film | membrane, it decided to utilize as an etching mask.
[0033]
The grain-oriented silicon steel sheet that had been subjected to the pretreatment as described above was subjected to electrolytic etching using the indirect energization type continuous electrolytic etching apparatus shown in FIG. 1 or FIG.
[Directional silicon steel sheet] Thickness 0.22mm, Width 1000mm
[Etching mask] In the direction perpendicular to the steel strip longitudinal direction (steel strip width direction)
It has an etching pattern with a pitch of 3 mm and a width of 0.2 mm.
[Electrolyte] Composition 500 g-NaCl / 1, liquid temperature 60 ° C.
[Target groove depth] 0.02mm
[Electrolytic current] 350 C / dm2 (A · s / dm 2 )
After the electrolytic etching, the variation in the shape pattern of the groove formed by the electrolytic etching in the width direction of the steel strip and the depth of the groove were evaluated.
[0034]
Table 1 shows test conditions and results when the voltage shown in FIG. 2, FIG. 3, or FIG. 6 is applied to the apparatus shown in FIG.
No. In the examples of the present invention shown in 1 to 5, the shape of the groove is all concave (A) and is stable. As a result, the groove depth variation (%) ((standard deviation of the groove depth) / (Average groove depth) × 100) is very small. In addition, No. of the example of the present invention. In FIG. 5, a special circuit configuration for avoiding the problem of time delay due to the LC circuit is employed. However, since this circuit configuration is based on a known technique, detailed description thereof is omitted.
[0035]
On the other hand, in the comparative example No. 11 and Comparative Example No. 1 in which the ratio of positive voltage application time / negative voltage application time exceeds 20. In Nos. 12 and 13, although the groove shape is partially concave (A), the groove shape is still mixed with inclined type (B), widening type (C), and local etching type (D). As a result, the variation in the depth of the groove was large and the quality was not satisfactory.
In addition, No. of the comparative example by the conventional voltage application method. 14, the groove shape is not recognized as a concave shape (b), and a sloping type (b), a widening type (c), and a local etching type (d) are mixed. As a result, the depth of the groove The variation was even greater.
[0036]
[Table 1]
[0037]
(Example 2)
The metal strip before electrolytic etching is the same as that in the first embodiment.
The grain-oriented silicon steel sheet subjected to the pretreatment as described above was subjected to an electrolytic etching treatment using an indirect energization type continuous electrolytic etching apparatus shown in FIG.
[Directional silicon steel sheet] Thickness 0.22mm, Width 1000mm
[Etching mask] In the direction perpendicular to the steel strip longitudinal direction (steel strip width direction)
It has an etching pattern with a pitch of 3 mm and a width of 0.2 mm.
[Electrolyte] Composition 500 g-NaCl / 1, liquid temperature 60 ° C.
[Target groove depth] 0.02mm
[Electrolytic current] Voltage application period of (I) 0.4 to 250 A / dm2(Etching part)
Voltage application period (II) 350 C / dm2 (A · s / dm 2 )
After the electrolytic etching, the variation in the shape pattern of the groove formed by the electrolytic etching in the width direction of the steel strip and the depth of the groove were evaluated.
[0038]
Table 2 shows test conditions and results when the voltage shown in FIG. 3 or 10 is applied to the apparatus shown in FIG.
No. of the example of the present invention. No. 6 is the same as the energization amount per time unit when the voltage of (I) is applied as the energization amount per time unit when the voltage of (II) is applied. No. of the example of the present invention. 7, 8 and Comparative Example No. 15 and 16 are Nos. The test was carried out by sequentially reducing the amount of energization per unit of time when applying the voltage of (I) starting from 6. Incidentally, No. of the present invention example. The voltage application of 6 corresponds to the voltage application of FIG.
No. In the examples of the present invention shown in FIGS. 6 to 8, the shape of the groove is all concave (A) and is stable. As a result, the groove depth variation (%) ((standard deviation of the groove depth) / (Average groove depth) × 100) is very small.
On the other hand, No. of the comparative example with low energization amount per unit time of voltage application (I). 15 and 16, although the groove shape is partially concave (A), the groove shape is still inclined (B), widened (C), and locally etched (D). As a result, the variation in groove depth was large and the quality was not satisfactory.
[0039]
[Table 2]
[0040]
【The invention's effect】
As described above, according to the present invention, the problem of inefficiency when both sides of a metal strip are electrolytically etched by direct energization type electrolytic etching that must be processed one side at a time, and etching is performed on both sides of the metal strip. It can advantageously solve the conventional problem that electrolytic etching of a metal strip having a mask cannot be processed by direct energization type electrolytic etching, and also has the problem of electrolytic etching groove shape in conventional indirect energization type continuous electrolytic etching. Resolving it advantageously, stabilizing the shape of the groove formed by electrolytic etching, making the width and depth of the groove more uniform, especially after the stress relief annealing used for the core of power transformer etc. It is possible to provide an indirect energization type continuous electrolytic etching method and an indirect energization type continuous electrolytic etching apparatus for a metal strip suitable for the production of a low iron loss unidirectional silicon steel sheet which is difficult to deteriorate. Because, the effect is enormous.
[Brief description of the drawings]
FIG. 1 is a schematic of a vertical cross-sectional view in the longitudinal direction of an apparatus for continuously grooving a metal strip having an etching mask provided with an etching pattern on at least one surface according to the present invention by indirect energization electrolytic etching. It is explanatory drawing.
FIG. 2 is a diagram showing an example of voltage application to an A-system electrode between an A-system electrode and a B-system electrode according to the present invention.
FIG. 3 is a diagram showing another example of voltage application to the A-system electrode between the A-system electrode and the B-system electrode according to the present invention.
FIG. 4 is a diagram showing classified patterns of cross-sectional shapes of grooves formed by electrolytic etching.
FIG. 5 is similar to a conventional electrolytic pickling apparatus for a metal band, and is an apparatus used in a preliminary experiment leading to the present invention, in which an etching mask having an etching pattern formed on at least one surface is formed. It is a schematic explanatory drawing by the longitudinal direction vertical sectional view of the apparatus which carries out a continuous groove | channel process by indirect energization type | formula electrolytic etching in a belt | band | zone.
6 is similar to the voltage application used in electrolytic pickling on a conventional metal strip, and applied to the electrode a between the electrodes a and b in the experimental apparatus of FIG. 5 used in the preliminary experiment of the present invention. It is a figure which shows the example of a voltage application.
FIG. 7 is a diagram for explaining an outline of a conventional direct energization type continuous electrolytic etching apparatus for a metal strip in a longitudinal sectional view in the longitudinal direction.
FIG. 8 is a diagram for explaining an outline of a conventional metal strip indirect energization type continuous electrolytic pickling apparatus in a longitudinal sectional view in the longitudinal direction.
FIG. 9 is a longitudinal sectional view in the longitudinal direction of another apparatus according to the present invention for continuously grooving a metal band having an etching mask provided with an etching pattern on at least one surface by indirect energization electrolytic etching. It is a schematic explanatory drawing by a figure.
FIG. 10 is a diagram showing still another example of voltage application to the A-system electrode between the A-system electrode and the B-system electrode according to the present invention.
[Explanation of symbols]
1 Metal strip
2 Electrolytic tank (electrolytic etching tank)
3 Electrolytic solution
4 Electrode A
4 'electrode a
5 Electrode B
5 'electrode b
6 Shield plate (non-conductive material)
7, 8 DC power supply
9, 9 ', 10, 10' switch
11, 12 Ringer roll
13, 14 Sink roll (dipping roll)
15 Cathode
16 Conductor roll
17 Backup roll
18 Anode
19 Resistance
Claims (14)
前記金属帯のエッチング面と相対向して、複数個の電極を、前記金属帯の進行方向に、順次、A系、B系、A系、B系、・・・と配設し、
前記金属帯と前記電極群の間に電解液を充填して、A系とB系の電極の間で、(I)時間M=3〜10msecの間にA系電極が陰極となる電圧印加と、(II)時間N=4M〜20Mmsecの間にA系電極が陽極となる電圧印加と
を交互に繰り返し、矩形状の溝を形成することを特徴とする、低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング方法。One side or both sides of the low iron loss unidirectional silicon steel sheet as an etching surface, and at least the etching surface provided with an etching pattern on the etching surface is continuously grooved by indirect energization electrolytic etching, An indirect energization type continuous electrolytic etching method for a metal strip,
Opposite to the etching surface of the metal strip, a plurality of electrodes are sequentially arranged in the traveling direction of the metal strip as A system, B system, A system, B system,.
An electrolyte is filled between the metal strip and the electrode group, and (I) voltage application in which the A-system electrode becomes a cathode during a time M = 3 to 10 msec between the A-system and B-system electrodes; (II) A low iron loss unidirectional silicon steel sheet characterized by forming a rectangular groove by alternately repeating voltage application in which the A-system electrode serves as an anode during a time N = 4 M to 20 Mmsec. Indirect energization type continuous electrolytic etching method.
(a)電解エッチング槽と、
(b)前記金属帯の、少なくともエッチング面と相対向する側に、前記金属帯の進行方向に、順次、A系、B系、A系、B系、・・・と複数個の電極が配設され、かつ、前記電解エッチング槽の電解液に浸漬される電極群と、
(c)前記金属帯の同一面に相対向し、かつ、互いに隣接するA系とB系の電極の間に配設された非導電性材料の遮蔽板と、
(d)A系とB系の電極の間で、(I)時間M=3〜10 msec の間にA系電極が陰極となる電圧制御と、(II)時間N=4M〜20M msec の間にA系電極が陽極となる電圧制御と、(III)所定の時間、A系電極に電圧を印加しない電圧制御とを任意に組み合わせた電圧制御を行う電源装置と、
を有し、矩形状の溝を形成することを特徴とする、低鉄損一方向性珪素鋼板の間接通電式連続電解エッチング装置。One side or both sides of the low iron loss unidirectional silicon steel sheet as an etching surface, and at least the etching surface provided with an etching pattern on the etching surface is continuously grooved by indirect energization electrolytic etching, An indirect energization type continuous electrolytic etching apparatus for a metal strip,
(A) an electrolytic etching tank;
(B) A plurality of electrodes are sequentially arranged on the metal band at least on the side facing the etching surface in the traveling direction of the metal band in the order of the A system, B system, A system, B system,. And an electrode group immersed in the electrolytic solution in the electrolytic etching tank,
(C) a shielding plate made of a non-conductive material disposed between the A-system and B-system electrodes opposite to each other on the same surface of the metal band;
(D) Between the A-system and B-system electrodes, (I) Voltage control in which the A-system electrode becomes a cathode during a time M = 3 to 10 msec , and (II) a time N = 4 M to 20 M msec . a power supply device a system electrodes to perform a voltage control as the anode, optionally combined voltage control and voltage control of not applying (III) a predetermined time, the voltage on the a-system electrodes,
And an indirect energization type continuous electrolytic etching apparatus for a low iron loss unidirectional silicon steel sheet , characterized in that a rectangular groove is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003207618A JP4157441B2 (en) | 2002-08-15 | 2003-08-15 | Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002236913 | 2002-08-15 | ||
JP2003207618A JP4157441B2 (en) | 2002-08-15 | 2003-08-15 | Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004131841A JP2004131841A (en) | 2004-04-30 |
JP4157441B2 true JP4157441B2 (en) | 2008-10-01 |
Family
ID=32301054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003207618A Expired - Fee Related JP4157441B2 (en) | 2002-08-15 | 2003-08-15 | Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4157441B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4938714B2 (en) * | 2008-04-01 | 2012-05-23 | ソマックス株式会社 | Electrolytic cleaning apparatus and electrolytic cleaning method |
JP2011246790A (en) * | 2010-05-28 | 2011-12-08 | Nippon Steel Corp | Continuous electrolytic etching method and continuous electrolytic etching device for metallic strip |
CN112427754B (en) * | 2020-11-10 | 2021-12-17 | 南京航空航天大学 | Continuous electrolytic machining device of strip-shaped workpiece group groove structure |
-
2003
- 2003-08-15 JP JP2003207618A patent/JP4157441B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004131841A (en) | 2004-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100530814B1 (en) | Indirect conducting type continuous electrolytic etching method and apparatus for metallic strap | |
KR102217899B1 (en) | Electrolytic treatment method and electrolytic treatment device | |
KR910000510B1 (en) | Preparation of zn-ni alloy plated steel strip | |
US4214961A (en) | Method and apparatus for continuous electrochemical treatment of a metal web | |
KR100487646B1 (en) | Process and a device for electrolytic pickling of metallic strip | |
KR100729973B1 (en) | Method and device for the electrolytic treatment of electrically conducting surfaces of mutually isolated sheet and foil material pieces | |
EP0502537B1 (en) | Apparatus for continuous electrolytic treatment of aluminum article | |
JP4157441B2 (en) | Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet | |
US2197653A (en) | Method of electrically pickling and cleaning stainless steel and other metals | |
JP4157442B2 (en) | Direct conduction type continuous electrolytic etching method and direct conduction type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet | |
US20030105533A1 (en) | Electrolysis apparatus | |
RU2676816C1 (en) | Electrotechnical steel strip with the oriented structure continuous electrolytic etching method and device for the electrotechnical steel strip with the oriented structure continuous electrolytic etching | |
JP2011246790A (en) | Continuous electrolytic etching method and continuous electrolytic etching device for metallic strip | |
JP2005226134A (en) | Indirect energizing type continuous electrolytic etching method and indirect energizing type continuous electrolytic etching apparatus for metallic strip | |
JP4890387B2 (en) | Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet | |
JP4016431B2 (en) | Directional silicon steel strip manufacturing method and electrolytic etching apparatus | |
JP2005226133A (en) | Indirect energizing type continuous electrolytic etching method and indirect energizing type continuous electrolytic etching apparatus for metallic strip | |
JP2005226135A (en) | Direct energizing type continuous electrolytic etching method and direct energizing type continuous electrolytic etching apparatus for metallic strip | |
JP2005226132A (en) | Direct energizing type continuous electrolytic etching method and direct energizing type continuous electrolytic etching apparatus for metallic strip | |
JP4423813B2 (en) | Formation method of electrode foil for aluminum electrolytic capacitor | |
JPH06220699A (en) | Device for electrolytically pickling steel material | |
US5370780A (en) | Device for continuous electrodeless electrochemical treating of an electrically conductive web in an electrolyte cell | |
JP3855336B2 (en) | Continuous electrolytic etching equipment | |
US20080237059A1 (en) | Electrolysis treatment apparatus, support for planographic printing plate, planographic printing plate, and electrolysis treatment process | |
JPH10102298A (en) | Continuous electroplating method for steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080711 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4157441 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |