JP4131843B2 - Chatter mark detector - Google Patents

Chatter mark detector Download PDF

Info

Publication number
JP4131843B2
JP4131843B2 JP2003314389A JP2003314389A JP4131843B2 JP 4131843 B2 JP4131843 B2 JP 4131843B2 JP 2003314389 A JP2003314389 A JP 2003314389A JP 2003314389 A JP2003314389 A JP 2003314389A JP 4131843 B2 JP4131843 B2 JP 4131843B2
Authority
JP
Japan
Prior art keywords
thickness
laser
measured
radiation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003314389A
Other languages
Japanese (ja)
Other versions
JP2005083820A (en
Inventor
政光 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003314389A priority Critical patent/JP4131843B2/en
Publication of JP2005083820A publication Critical patent/JP2005083820A/en
Application granted granted Critical
Publication of JP4131843B2 publication Critical patent/JP4131843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Metal Rolling (AREA)

Description

本発明は、圧延機で圧延される板状の被測定物の厚さを測定する厚さ測定装置及びチャタマーク検出装置に係り、特にレーザ式厚さ計と放射線厚さ計とを一体にした板厚測定装置及びチャタマーク検出装置に関する。   The present invention relates to a thickness measuring device and a chatter mark detecting device for measuring the thickness of a plate-like object to be rolled by a rolling mill, and in particular, a laser thickness meter and a radiation thickness meter are integrated. The present invention relates to a plate thickness measuring device and a chatter mark detecting device.

従来、圧延機で圧延される板の厚さ測定装置としては、主に放射線厚さ計が使用されてきた。この放射線厚さ計には、X線を使用するX線厚さ計や、γ線を使用するγ線厚さ計がある。これらの厚さ計の厚さ測定精度としては、0.1%の精度が確保されており、通常の板厚の品質管理には支障なく使用されてきた。   Conventionally, a radiation thickness meter has been mainly used as a thickness measuring device for a sheet rolled by a rolling mill. This radiation thickness meter includes an X-ray thickness meter using X-rays and a γ-ray thickness meter using γ-rays. As the thickness measurement accuracy of these thickness gauges, an accuracy of 0.1% is ensured, and it has been used without any trouble for the quality control of a normal plate thickness.

しかし、更に板厚測定の測定分解能を細かくする要求には問題があった。即ち、圧延機の機械的な振動によるチャタマークや、圧延ロールの変形や損傷で発生するロールマークの様に、圧延される板の幅方向に長く、移動方向に一定のピッチで発生する板厚変動に対しては、測定分解能が不足するため検出が困難であった。   However, there is a problem in the demand for further reducing the measurement resolution of the plate thickness measurement. That is, the sheet thickness that is long in the width direction of the rolled sheet and is generated at a constant pitch in the moving direction, such as chatter marks due to mechanical vibrations of rolling mills and roll marks generated due to deformation or damage of the rolling roll. Variations were difficult to detect because of insufficient measurement resolution.

即ち、チャタマークやロールマークを検出するには、厚さ測定精度として0.1%、絶対値で数μ以下を、また,移動する板の変動速度と変動形状に応答できる分解能の点から、測定空間分解能として10mm、その応答速度は1ms以上が要求される。   That is, in order to detect chatter marks and roll marks, the thickness measurement accuracy is 0.1%, the absolute value is several μs or less, and from the point of resolution that can respond to the fluctuation speed and shape of the moving plate, The measurement spatial resolution is 10 mm, and the response speed is required to be 1 ms or more.

例えば、圧延速度が600m/minの場合において、圧延方向の分解能として10mmに応答できるためには、応答速度としては1msの厚さ測定装置が要求される。   For example, when the rolling speed is 600 m / min, a thickness measuring device of 1 ms is required as the response speed in order to respond to 10 mm as the resolution in the rolling direction.

このような板厚変動を検出する方法として、γ線厚さ計よりも優れた分解能を有するX線厚さ計を圧延方向に2台、所定の間隔で並置して、各々の板厚信号の差からチャタマーク等の板厚変動を求める方法がある(例えば、特許文献1参照。)。   As a method for detecting such a plate thickness variation, two X-ray thickness meters having a resolution superior to that of the γ-ray thickness meter are juxtaposed in the rolling direction at a predetermined interval, and There is a method for obtaining a thickness variation of chatter marks or the like from the difference (see, for example, Patent Document 1).

この方法は、空間測定分解能はX線ビーム径が被測定物表面で10mmφであるため、要求の最低値は満足するものの、応答速度は10msであるため、この点において満足できる性能が得られない。   In this method, since the spatial measurement resolution is 10 mmφ on the surface of the object to be measured, the X-ray beam diameter satisfies the minimum required value, but the response speed is 10 ms, so that satisfactory performance cannot be obtained in this respect. .

そこで、最近では、高分解能を要求される厚さ測定においては、放射線厚さ計に代えて、図5に示すようなレーザ光を利用したレーザ距離計によるレーザ式厚さ計が使用されている。   Therefore, recently, in thickness measurement requiring high resolution, a laser thickness meter using a laser distance meter using a laser beam as shown in FIG. 5 is used instead of the radiation thickness meter. .

同図において、レーザ式厚さ計による厚さ測定は、C型フレーム14の上下の腕部14T、14Bに被測定物11を挟み、距離Lの間隔をおいてレーザ距離計10T、10Bを対向配置し、レーザ光源部12から被測定物11の表面に照射したレーザ光の反射光をCCDカメラ13で受光し、レーザ距離計10T、10Bと被測定物11との間の距離Lt、Lbを夫々距離演算部15で演算して求める。   In the figure, the thickness measurement by the laser type thickness meter is performed by sandwiching the object 11 to be measured between the upper and lower arms 14T and 14B of the C-shaped frame 14 and facing the laser distance meters 10T and 10B with a distance L therebetween. The laser light reflected from the laser light source unit 12 and irradiated on the surface of the object to be measured 11 is received by the CCD camera 13, and the distances Lt and Lb between the laser distance meters 10T and 10B and the object to be measured 11 are set. Each is calculated by the distance calculation unit 15.

そして、厚さ演算部20において、被測定物の11の厚さtを下記(1)式から演算により求める。   Then, in the thickness calculation unit 20, the thickness t of the object to be measured 11 is obtained by calculation from the following equation (1).

t=L−(Lt+Lb) ・・・(1)
このレーザ式厚さ計の空間分解能は、被測定物11の表面においてレーザ光の径を光学系により1mmφ程度にすることは容易である。また、応答速度についても、レーザ光の強度を所定の強度以上に確保することによって1ms以上とすることが可能で、この方式は分解能に関しては、高分解能を要求される性能を満足できる。
t = L- (Lt + Lb) (1)
As for the spatial resolution of this laser type thickness meter, it is easy to set the diameter of the laser beam to about 1 mmφ on the surface of the object to be measured 11 by an optical system. Also, the response speed can be set to 1 ms or more by securing the intensity of the laser beam to a predetermined intensity or more, and this system can satisfy the performance required for high resolution.

しかしながら、このレーザ式厚さ計100は(1)式に示す様に、レーザ距離計10T、10Bを固定するC型フレーム14の腕部14T、14B間の距離Lが周囲温度の変化で変動すると、この変動分が測定誤差となる問題がある。   However, in this laser type thickness meter 100, when the distance L between the arm portions 14T and 14B of the C-type frame 14 for fixing the laser distance meters 10T and 10B varies as the ambient temperature changes, as shown in the equation (1). There is a problem that this variation becomes a measurement error.

一方、X線やγ線を使用した放射線厚さ計は、被測定物11の透過放射線量の変化から厚さを測定する方式であるため、放射線発生器と放射線検出器間の距離変動に対しては極微小な誤差しか発生しない。   On the other hand, a radiation thickness meter using X-rays or γ-rays is a method for measuring the thickness from a change in the amount of transmitted radiation of the object 11 to be measured. Only very small errors occur.

この点に関して図6を参照して詳述する。同図は放射線厚さ計200の一般的な構成図である。同図において、C型フレーム14の腕部14T、14Bには、夫々放射線検出器17、放射線発生器16が被測定物11を挟んで対向配置されている。   This point will be described in detail with reference to FIG. This figure is a general configuration diagram of the radiation thickness meter 200. In the figure, a radiation detector 17 and a radiation generator 16 are disposed opposite to each other with the object to be measured 11 sandwiched between the arms 14T and 14B of the C-shaped frame 14, respectively.

そして、放射線発生器16から照射された放射線は、被測定物11を透過し、その透過放射線量を放射線検出器17で受光し、この受光信号の変化を厚さ測定演算部21で演算し、厚さ測定を行っている。   And the radiation irradiated from the radiation generator 16 permeate | transmits the to-be-measured object 11, the transmitted radiation dose is received with the radiation detector 17, and the change of this received light signal is calculated with the thickness measurement calculating part 21, Thickness measurement is performed.

このような放射線厚さ計200において、放射線発生器16と放射線検出器1との間の距離Lが変動した場合、放射線発生器16から照射された放射線の受光光量の変化量は、放射線検出器17で受光する受光立体角の変化に相当する分しか変化しないので、この場合の測定誤差は極わずかしか生じない。   In such a radiation thickness meter 200, when the distance L between the radiation generator 16 and the radiation detector 1 fluctuates, the amount of change in the amount of received light emitted from the radiation generator 16 is the radiation detector. Since only the amount corresponding to the change in the solid angle of light received at 17 is changed, there is very little measurement error in this case.

即ち、この距離変動分をΔdとすると、受光立体角の変化は(Δd/L)に比例し、例えば、L=500mmで、Δl=0.1mmとした場合でも、その測定誤差は0.04%以下の極微小な範囲内に収まる。この様に放射線厚さ計によれば、距離変動に対しては問題が無いが、前述した様に測定分解能の点で性能を満たすことが困難である。
特公平5−87325号公報
That is, if this distance variation is Δd, the change in the solid angle of light reception is proportional to (Δd / L) 2. For example, even when L = 500 mm and Δl = 0.1 mm, the measurement error is 0. It falls within a very small range of 04% or less. As described above, according to the radiation thickness meter, there is no problem with respect to the distance variation, but it is difficult to satisfy the performance in terms of measurement resolution as described above.
Japanese Patent Publication No. 5-87325

以上述べた様に、圧延機で重要とされるチャタマーク等の板厚の厚さ形状測定を行おうとした場合、従来の放射線厚さ計では、厚さ測定精度は満足しているものの、測定分解能が不足する。一方、レーザ式厚さ計では測定分解能は満足しているものの、レーザ距離計の固定支持点間の距離変動による測定誤差が大きく、数μオーダの厚さ測定精度が満足されない問題がある。   As described above, when trying to measure the thickness and shape of chatter marks, which are important for rolling mills, the conventional radiation thickness meter is satisfactory, but the measurement accuracy is satisfactory. Insufficient resolution. On the other hand, the laser thickness meter satisfies the measurement resolution, but has a problem that the measurement error due to the distance fluctuation between the fixed support points of the laser distance meter is large and the thickness measurement accuracy on the order of several μs cannot be satisfied.

また、この腕部寸法は、被測定物の形状と厚さ測定装置の寸法から腕の長さで1000mm、腕の間隔500mm程度の比較的大型な構造物となる。そのため、このC型フレームを極力コンパクトにして、温度膨張率の低いアンバー材などの特殊金属を使用し、その周囲を断熱材で覆って周囲温度変化の影響を受けにくいC型フレームの構造としても、圧延機の近辺で使用される設置環境においては、この支持点間の距離変動を数μ以下に抑えることは困難である。   In addition, the arm size is a relatively large structure having an arm length of 1000 mm and an arm interval of about 500 mm from the shape of the object to be measured and the dimensions of the thickness measuring device. For this reason, the C-frame is made as compact as possible, using a special metal such as amber with a low coefficient of thermal expansion, and its surroundings are covered with a heat insulating material so that it is less susceptible to changes in ambient temperature. In an installation environment used in the vicinity of a rolling mill, it is difficult to suppress the variation in distance between the support points to several μ or less.

本発明は上記問題点を解決するためになされたもので、レーザ距離計の支持点間距離変
動による測定誤差の影響を除去し、高分解能で、且つ高精度で板厚の形状が測定できるチ
ャタマーク検出装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, eliminating the influence of a measurement error due to distance variation between the support point of the laser rangefinder, a high resolution, Ru can be measured the shape of the plate thickness at and accurately and to provide a switch <br/> Yatamaku detector.

上記目的を達成するために、本発明によるチャタマーク検出装置は、移動する被測定物
の上下を挟む腕部を有するC型フレームと、前記腕部の上下に対向して配置された1対の
レーザ距離計によって、前記被測定物の表面にレーザ光を照射して、その反射光から前記
レーザ距離計と前記被測定物表面との間の夫々の距離を測定することによって前記被測定
物の厚さを測定するレーザ式厚さ計と、一方の前記腕部に放射線発生器、他方の前記腕部
に放射線検出器を対向して配置し、前記被測定物の表面に前記放射線発生器から放射線を
照射し、前記被測定物を透過した放射線量を測定して被測定物の厚さを測定する放射線厚
さ計とを備え、前記レーザ式厚さ計の前記レーザ光の照射位置と前記放射線厚さ計の照射
位置は前記被測定物の移動方向において所定の距離で、且つ、前記移動方向と直行する方
向においては同じ位置となる様に前記腕部に固定並置し、前記レーザ式厚さ計の出力と前
記放射線厚さ計の出力との前記被測定物の移動方向における測定位置のずれを補正する位
置ずれ補正手段と、前記位置ずれ補正された前記レーザ式厚さ計及び放射線厚さ計の出力
に対して、前記放射線厚さ計の出力の平均値と前記レーザ式厚さ計の出力の平均値との差
を補正値として求め、位置ずれ補正後の前記レーザ式厚さ計の出力を前記補正値で補正す
る様にした厚さ演算手段と、前記厚さ演算手段の出力から周期性信号を求める周期信号判
定手段とを備えたことを特徴とする。

In order to achieve the above object, a chatter mark detection apparatus according to the present invention includes a C-shaped frame having arms that sandwich the upper and lower sides of a moving object to be measured, and a pair of arms disposed facing the upper and lower sides of the arms. By irradiating the surface of the object to be measured with a laser distance meter and measuring the distance between the laser distance meter and the surface of the object to be measured from the reflected light, the surface of the object to be measured is measured. A laser-type thickness meter for measuring the thickness, a radiation generator on one of the arm portions, and a radiation detector on the other arm portion are arranged opposite to each other, and the radiation generator is disposed on the surface of the object to be measured. A radiation thickness meter that irradiates radiation and measures the amount of radiation that has passed through the object to be measured to measure the thickness of the object to be measured; and the irradiation position of the laser light of the laser type thickness meter and the The irradiation position of the radiation thickness meter is the moving direction of the object to be measured. And fixedly juxtaposed to the arm so as to be at the same position in a direction perpendicular to the moving direction, and the output of the laser thickness gauge and the output of the radiation thickness gauge. A positional deviation correction unit that corrects a deviation of a measurement position in the moving direction of the object to be measured; The difference between the average value of the output and the average value of the output of the laser-type thickness gauge is obtained as a correction value, and the thickness of the laser-type thickness gauge after correction of misalignment is corrected by the correction value. It is characterized by comprising a calculating means and a periodic signal determining means for obtaining a periodic signal from the output of the thickness calculating means.

本発明によれば、高分解能、且つ高精度な板厚測定装置の出力から、周期性信号を統計的に判定するので高精度なチャタマーク検出装置が提供できる。   According to the present invention, since the periodic signal is statistically determined from the output of the plate thickness measuring device with high resolution and high accuracy, a highly accurate chatter mark detection device can be provided.

以上述べた様に、本発明によれば、高分解能であるレーザ式厚さ計のドリフト要因を、放射線厚さ計の厚さ信号とレーザ式厚さ計信号との差を補正値として求め、レーザ式厚計の厚さ信号を補正する様にしたので、レーザ式厚さ計のドリフト要因が除去され、高分解能で高精度な板厚測定装置が提供できる。   As described above, according to the present invention, the drift factor of the laser-type thickness meter having high resolution is obtained as a correction value by calculating the difference between the thickness signal of the radiation thickness meter and the laser-type thickness meter signal, Since the thickness signal of the laser thickness gauge is corrected, the drift factor of the laser thickness gauge is eliminated, and a plate thickness measuring apparatus with high resolution and high accuracy can be provided.

また、このような板厚測定装置を使用して、この板厚信号の周期性を統計的に判定するので、高いS/N比で、圧延機による種々の周波数のチャタマークが検出できる。   Further, since the periodicity of the sheet thickness signal is statistically determined using such a sheet thickness measuring apparatus, chatter marks having various frequencies by a rolling mill can be detected with a high S / N ratio.

更に、同様な圧延ロールの損傷により発生する周期性のロールマークも検出できる。   Furthermore, a periodic roll mark generated due to damage of the same rolling roll can also be detected.

以下、実施例1と実施例2について説明する。   Examples 1 and 2 will be described below.

本発明の実施例1を、図1乃至図3を参照して説明する。本発明の板厚測定装置50は、レーザ式厚さ計2及び放射線厚さ計3とを距離Lの間隔を置いて、移動する被測定物11を挟む構造のC型フレームに一体で固定した厚さ計検出部1と、被測定物11の移動方向上手に配置されたレーザ式厚さ計2と放射線厚さ計3との信号の位置ずれを補正する位置ずれ補正手段2aとを有する。   A first embodiment of the present invention will be described with reference to FIGS. In the plate thickness measuring device 50 of the present invention, the laser thickness meter 2 and the radiation thickness meter 3 are integrally fixed to a C-shaped frame having a structure sandwiching the moving object to be measured 11 at a distance L. A thickness gauge detection unit 1 and a position deviation correction means 2 a that corrects a position deviation of signals between the laser thickness gauge 2 and the radiation thickness gauge 3 arranged in the direction of movement of the object to be measured 11 are provided.

そして、位置ずれ補正後のレーザ式厚さ計2及び放射線厚さ計3の出力から厚さを求める詳細を後述する厚さ演算部4及び移動する被測定物11の移動速度を検出する圧延ロール6の軸に連結された速度検出器7とから構成される。   And the thickness roll which detects the moving speed of the thickness calculating part 4 and the moving to-be-measured object 11 which mention later the detail which calculates | requires thickness from the output of the laser-type thickness meter 2 and the radiation thickness meter 3 after position shift correction | amendment And a speed detector 7 connected to six shafts.

次に、各部の詳細構成と夫々の設定について、被測定物11の板厚を圧延ラインにおいて測定する場合について説明する。厚さ計検出部1の構成は、レーザ式厚さ計2、放射線厚さ計3、及び両厚さ計を一体で収納するC型フレーム14aで構成される。   Next, the detailed configuration of each part and the respective settings will be described in the case where the plate thickness of the DUT 11 is measured in the rolling line. The configuration of the thickness meter detection unit 1 includes a laser type thickness meter 2, a radiation thickness meter 3, and a C-type frame 14a that integrally accommodates both thickness meters.

図2は、レーザ式厚さ計2及び放射線厚さ計3をC型フレーム14aに搭載した、厚さ計検出部1の分解斜視図である。夫々の厚さ計は、図示しない厚さ演算部を有するが、厚さ演算部の実装はC型フレーム14aに実装される場合、またはC型フレーム14aから離間して、外に配置される場合がある。   FIG. 2 is an exploded perspective view of the thickness meter detection unit 1 in which the laser thickness meter 2 and the radiation thickness meter 3 are mounted on the C-type frame 14a. Each thickness meter has a thickness calculation unit (not shown), but the thickness calculation unit is mounted on the C-type frame 14a or is disposed outside the C-type frame 14a. There is.

図2において、レーザ式厚さ計2は、レーザ距離計10T、10B及び図示しない厚さ演算部とからなり、レーザ距離計10T、10BはC型フレーム14aの上部腕部1Tと下部腕部1Bに、被測定物11を挟んで対向配置される。   In FIG. 2, a laser thickness meter 2 includes laser distance meters 10T and 10B and a thickness calculator (not shown). The laser distance meters 10T and 10B are an upper arm portion 1T and a lower arm portion 1B of a C-type frame 14a. Are opposed to each other with the object to be measured 11 interposed therebetween.

これらのレーザ距離計10T、10Bは、夫々のレーザ光照射位置P1が一致する様に、予め被測定物11の表面で合わせて固定しておく。   These laser distance meters 10T and 10B are previously aligned and fixed on the surface of the object to be measured 11 so that the respective laser beam irradiation positions P1 coincide.

また、放射線厚さ計3は、放射線発生器16及び放射線検出器17及び図示しない厚さ演算部とからなり、放射線発生器16及び放射線検出器17は、C型フレーム14aの下部腕部1B、上部腕部1Tに、被測定物11を挟んで放射線の放射線照射位置P2で、放射線の光軸を合わせて対向配置される。   The radiation thickness meter 3 includes a radiation generator 16, a radiation detector 17, and a thickness calculation unit (not shown). The radiation generator 16 and the radiation detector 17 include the lower arm portion 1B of the C-type frame 14a, The upper arm 1T is disposed opposite to the object to be measured 11 at the radiation irradiation position P2 of the radiation with the optical axis of the radiation aligned.

上部腕部1T側と、下部腕部1Bの間隔は、被測定物11が上下に動揺しても支障なく通過できる空間寸法とし、さらに、所定の厚さ精度を得るためのレーザ距離計10T、10Bの光学寸法と放射線厚さ計の光学寸法とから出きるだけ最小寸法となるように、例えば、被測定物11の測定範囲が0.1乃至8mm程度厚さを測定する場合には、200mm乃至は500mm程度の寸法で設定される。   The distance between the upper arm portion 1T and the lower arm portion 1B is a space dimension that allows the object to be measured 11 to pass through without any trouble even if it swings up and down, and further, a laser distance meter 10T for obtaining a predetermined thickness accuracy, For example, in the case where the measurement range of the object to be measured 11 is about 0.1 to 8 mm, the thickness is 200 mm so that the minimum dimension can be obtained from the optical dimension of 10B and the optical dimension of the radiation thickness meter. Or the dimension is set to about 500 mm.

また、腕部14T、14Bの長さは、被測定物の11の板幅寸法と幅方向の測定位置で決定され、通常、被測定物11の板幅寸法は上記板厚さの範囲において、800mm乃至2000mmの範囲にあるので、その板幅中央部が測定できる様にするために、少なくとも1500mm程度の腕部14T、14Bの寸法としておく。   Further, the lengths of the arm portions 14T and 14B are determined by the plate width dimension of the object to be measured 11 and the measurement position in the width direction. Usually, the plate width dimension of the object to be measured 11 is within the range of the plate thickness. Since it is in the range of 800 mm to 2000 mm, in order to be able to measure the central portion of the plate width, the dimensions of the arm portions 14T and 14B of at least about 1500 mm are set.

このようなC型フレーム14aの構造は、腕部14Tと腕部14Bの間隔の変動が放射線厚さ計3において所定の測定誤差範囲内収まる、従来の放射線厚さ計の構造で良い。レーザ式厚さ計2の腕部14Tと腕部14Bとの距離の変動による誤差を抑えることを考慮して設定する必要は無い。   Such a structure of the C-shaped frame 14a may be a conventional radiation thickness meter structure in which the variation in the distance between the arm portion 14T and the arm portion 14B falls within a predetermined measurement error range in the radiation thickness meter 3. It is not necessary to set in consideration of suppressing an error due to a variation in the distance between the arm portion 14T and the arm portion 14B of the laser thickness gauge 2.

次に、この板厚測定装置50の各部に供給する被測定物11の移動に同期した速度信号の設定について説明する。図1に示す様に、速度検出器7は、所定の移動方向の距離分解能が得られる様に、圧延ロール6に機械的に連結されたパルス発信機等のギア比を調節して、例えば、パルス発信比率を1mm/パルス程度にしておく。   Next, the setting of the speed signal synchronized with the movement of the DUT 11 supplied to each part of the plate thickness measuring device 50 will be described. As shown in FIG. 1, the speed detector 7 adjusts the gear ratio of a pulse transmitter or the like mechanically connected to the rolling roll 6 so as to obtain a distance resolution in a predetermined movement direction, for example, The pulse transmission ratio is set to about 1 mm / pulse.

この速度検出器7は、非測定物11の移動速度を非接触で測定するレーザ速度計で生成することも可能である。   This speed detector 7 can also be generated by a laser velocimeter that measures the moving speed of the non-measurement object 11 in a non-contact manner.

この速度検出器7からの速度信号s3は、後述する位置ずれ補正回路2a、厚保さ演算部4及び周期性判定部5に供給され、移動方向の単位長さ信号として使用される。   The speed signal s3 from the speed detector 7 is supplied to a positional deviation correction circuit 2a, a thickness maintenance calculation unit 4 and a periodicity determination unit 5, which will be described later, and is used as a unit length signal in the movement direction.

次に、位置ずれ補正回路2aの設定について同じく図1を参照して説明する。   Next, the setting of the misalignment correction circuit 2a will be described with reference to FIG.

レーザ式厚さ計2の出力と、放射線厚さ計3の測定位置は、被測定物11の移動方向においてLrの間隔で設定されているので、測定位置の一致させるため、移動方向上流にあるレーザ式厚さ計2の出力信号s1を放射線厚さ計3の出力信号s2の位置まで、速度信号(以後、単位長さ信号と言う。)s3によってシフトして一致させておく。   Since the output of the laser thickness meter 2 and the measurement position of the radiation thickness meter 3 are set at intervals of Lr in the movement direction of the object 11 to be measured, in order to match the measurement position, it is upstream in the movement direction. The output signal s1 of the laser thickness meter 2 is shifted to the position of the output signal s2 of the radiation thickness meter 3 by the speed signal (hereinafter referred to as a unit length signal) s3 to be matched.

次に、厚さ演算部4について図3を参照して1説明する。厚さ演算部4は、
レーザ式厚さ計2の出力信号s1を被測定物11が単位長さ信号s3によって移動方向に所定長さで移動平均する平均化回路41、同じく放射線厚さ計3の出力信号s2を所定長さ移動平均する平均化回路42、この平均化回路41の出力信号s5と平均化回路42の出力信号s6との差を演算する減算回路43、及び位置ずれ補正後のレーザ式厚さ計2の出力信号s4に減算回路43の出力信号s7を加算して厚さ信号s8を求める加算回路44とから構成される。
Next, the thickness calculator 4 will be described with reference to FIG. The thickness calculator 4
An average circuit 41 for moving and averaging the output signal s1 of the laser thickness meter 2 by a unit length signal s3 in the moving direction by a predetermined length, and the output signal s2 of the radiation thickness meter 3 by a predetermined length. An averaging circuit 42 for moving average, a subtracting circuit 43 for calculating a difference between the output signal s5 of the averaging circuit 41 and the output signal s6 of the averaging circuit 42, and the laser thickness meter 2 after the positional deviation correction. An adder circuit 44 that adds the output signal s7 of the subtractor circuit 43 to the output signal s4 to obtain the thickness signal s8.

この様に構成された板厚測定装置50の動作について図3乃至図4を参照して説明する。チャタマークやロールマークは、例えば、図4(a)に示す様に、被測定物11の表面に一定のピッチLrの厚さ変動として発生する。   The operation of the plate thickness measuring apparatus 50 configured as described above will be described with reference to FIGS. The chatter mark and the roll mark are generated as a thickness variation of a constant pitch Lr on the surface of the object 11 to be measured, for example, as shown in FIG.

図4は、このような厚さ形状の変動を持つ被測定物11がレーザ厚さ計2を通過したときの、図3に示す厚さ演算部4の各部の信号波形示したものである。例えば、同図(a)に対応した厚さ信号の変動は定周期T(=1/f)で検出される。   FIG. 4 shows signal waveforms at various parts of the thickness calculator 4 shown in FIG. 3 when the DUT 11 having such a thickness variation passes through the laser thickness meter 2. For example, the variation of the thickness signal corresponding to FIG. 5A is detected at a constant period T (= 1 / f).

このレーザ式厚さ計2の周囲温度が変化し、腕部14Tと腕部14Bの距離が変動するとドリフトedが発生、例えば、同図(b)に示す様に定周期の被測定物の厚さ変動分に、ドリフト成分edが重畳した信号s1となる。   When the ambient temperature of the laser thickness gauge 2 changes and the distance between the arm portion 14T and the arm portion 14B varies, drift ed is generated. For example, as shown in FIG. The signal s1 is obtained by superimposing the drift component ed on the fluctuation.

このレーザ式厚さ計2の出力信号s1は位置ずれ補正回路2aを介して放射線厚さ計3の出力信号s2との測定位置と一致させ、レーザ式厚さ計2の厚さ信号s4として厚さ演算部4に入力される。   The output signal s1 of the laser thickness gauge 2 is made to coincide with the measurement position of the output signal s2 of the radiation thickness gauge 3 via the position deviation correction circuit 2a, and the thickness signal s4 of the laser thickness gauge 2 is obtained. Is input to the arithmetic unit 4.

通常、この出力信号s1及びs2は、被測定物11の絶対値厚さ、または、基準板厚値からの厚さ偏さとして出力される。ここでは、断らない限り夫々の出力信号s1、s2は厚さ偏差値であるとして説明する。   Normally, the output signals s1 and s2 are output as the absolute value thickness of the DUT 11 or the thickness deviation from the reference plate thickness value. Here, unless otherwise specified, each output signal s1, s2 will be described as a thickness deviation value.

次に、放射線厚さ計3の出力信号s2について説明する。放射線厚さ計3の空間分解能は、レーザ式厚さ計2の1mmφに比べて、その照射放射線の空間寸法がX線厚さ計の場合では10倍、γ線厚さ計の場合では50倍程度大きくなるので、出力信号s2は、厚さ信号s4に比べてこの空間寸法で平均化された緩やかな応答の信号となる。   Next, the output signal s2 of the radiation thickness meter 3 will be described. The spatial resolution of the radiation thickness meter 3 is 10 times larger in the case of the X-ray thickness meter and 50 times larger in the case of the γ-ray thickness meter than the 1 mmφ of the laser thickness meter 2. As a result, the output signal s2 becomes a signal with a gentle response averaged over this spatial dimension as compared with the thickness signal s4.

また、放射線厚さ計3は周囲温度が変化し、腕部14Tと腕部14Bの間の距離が変動しても、図4(D)に示す様にその変動誤差は極僅かしか表れない。   Further, even if the ambient temperature of the radiation thickness meter 3 changes and the distance between the arm portion 14T and the arm portion 14B varies, the variation error appears very little as shown in FIG.

従って、夫々の出力信号s1、s2を平均化回路41、42で所定の長さで移動平均した信号s5、s6は、図4(c)、(e)にみられるようにほぼ直線上になる。   Accordingly, the signals s5 and s6 obtained by moving and averaging the output signals s1 and s2 by the averaging circuits 41 and 42 with a predetermined length are substantially linear as seen in FIGS. 4 (c) and 4 (e). .

そして、移動平均した信号s5とs6の差を減算回路43で求めると、レーザ式厚さ計2による腕部14Tと腕部14Bの間の距離によるドリフト成分edが、補正値として検出される。   When the difference between the moving average signals s5 and s6 is obtained by the subtraction circuit 43, the drift component ed due to the distance between the arm portion 14T and the arm portion 14B by the laser thickness gauge 2 is detected as a correction value.

そして、位置ずれ補正後のレーザ式厚さ計2の厚さ信号s4に減算回路43の出力を加算回路44で加算すると、このドリフト成分edが除去された厚さ信号s8が得られる。   Then, when the output of the subtracting circuit 43 is added to the thickness signal s4 of the laser thickness meter 2 after the positional deviation correction by the adding circuit 44, a thickness signal s8 from which the drift component ed has been removed is obtained.

以上述べた様に、本実施例1によれば、レーザ式厚さ計2の誤差要因である腕部14Tと腕部14Bの間の距離による測定誤差(ドリフト成分ed)が、放射線厚さ計3との差を求めることによって検出されるので、この差レーザ式厚さ計2の厚さ信号s4に対して補正することによって、レーザ式厚さ計2のドリフト誤差が除去され、高精度、高分解能な板厚測定装置が提供できる。   As described above, according to the first embodiment, the measurement error (drift component ed) due to the distance between the arm portion 14T and the arm portion 14B, which is an error factor of the laser thickness meter 2, is the radiation thickness meter. 3 is detected by calculating the difference from the thickness signal s4 of the difference laser type thickness meter 2, the drift error of the laser type thickness meter 2 is eliminated, and high accuracy, A high-resolution plate thickness measuring device can be provided.

また、レーザ式厚さ計2と放射線厚さ計3との測定位置のずれを補正して、夫々の板厚さ信号の差を求めて厚さ演算を行っているので、測定位置の相違によって板厚さに相違があった場合でも、その差は除去される。   In addition, since the deviation of the measurement position between the laser thickness meter 2 and the radiation thickness meter 3 is corrected and the thickness calculation is performed by obtaining the difference between the respective plate thickness signals, depending on the difference in the measurement position Even if there is a difference in plate thickness, the difference is eliminated.

実施例2は、実施例1による板厚さ測定装置50を使用した、チャタマーク検出装置60で、同じく図1、図3及び図4を参照して説明する。チャタマーク検出装置60は、板厚測定装の検出原理は、チャタマークが圧延機の振動によって、種々の板厚さの変動が定周期で発生することを利用して、この定周期の発生パターンを上述した板厚測定装置50の出力から統計的処理によってS/N比を改善して検出するものである。   The second embodiment is a chatter mark detecting device 60 using the plate thickness measuring device 50 according to the first embodiment, and will be described with reference to FIGS. The chatter mark detection device 60 uses the fact that the chatter mark is generated by fluctuations of various plate thicknesses at regular intervals due to vibrations of the rolling mill. Is detected by improving the S / N ratio by statistical processing from the output of the plate thickness measuring device 50 described above.

実施例2が、実施例1と異なる点は、厚さ演算部4の厚さ信号s8と速度検出信号s3とを入力する周期性判定部5を設けたことにある。板厚測定装置50については、実施例1で説明したものと同一であるのでその説明を省略する。   The second embodiment is different from the first embodiment in that a periodicity determination unit 5 for inputting the thickness signal s8 and the speed detection signal s3 of the thickness calculation unit 4 is provided. Since the plate thickness measuring device 50 is the same as that described in the first embodiment, the description thereof is omitted.

周期性判定部5は、厚さ信号S8を所定の期間でフーリエ変換することによって図4(g)に見られるようなチャタマークの発生周波f及びその奇数倍の周波数において、パワースペクトルのピーク値が得られるので、このパワースペクトルを予め設定する所定の基準値と比較して判定する。   The periodicity determination unit 5 performs a Fourier transform on the thickness signal S8 in a predetermined period, thereby generating a peak value of the power spectrum at a chatter mark generation frequency f as shown in FIG. Is determined by comparing the power spectrum with a predetermined reference value set in advance.

また、予めチャタマークの発生するピッチが分かっている場合には、周期性判定処理を同期加算処理によって、S/N比を向上させて検出することが可能である。   When the pitch at which chatter marks are generated is known in advance, the periodicity determination process can be detected by improving the S / N ratio by a synchronous addition process.

この同期加算処理は、所定の被測定物11の移動方向に単位長さ毎に書き込みができる記憶回路を設け、この記憶回路の加算周期をチャタマークの周期に同期させて加算することによって、加算周期に一致した信号のピーク値からチャタマークを判定する。   This synchronous addition processing is performed by providing a storage circuit capable of writing for each unit length in the moving direction of a predetermined object to be measured 11, and adding by synchronizing the addition cycle of this storage circuit with the chatter mark cycle. Chatter marks are determined from the peak value of the signal that matches the period.

以上詳述した様に本発明の板厚測定装置50及びチャタマーク検出装置60は、各実施例に何ら限定されるものではなく、レーザ式厚さ計のレーザ距離計の距離測定方式や、放射線厚さ計の測定方式を本発明の主旨を逸脱しない範囲で変形して実施することいが可能である。   As described in detail above, the plate thickness measuring device 50 and the chatter mark detecting device 60 of the present invention are not limited to the respective embodiments, and the distance measuring method of the laser distance meter of the laser type thickness meter, the radiation It is possible to change the thickness gauge measurement method without departing from the gist of the present invention.

板厚測定装置及びチャタマーク検出装置の構成図。The block diagram of a plate | board thickness measuring apparatus and a chatter mark detection apparatus. 検出部の斜視図。The perspective view of a detection part. 厚さ測定部の詳細な構成図。The detailed block diagram of a thickness measurement part. 板厚測定装置及びチャタマーク検出装置の信号処理機能説明図。The signal processing function explanatory drawing of a plate | board thickness measuring apparatus and a chatter mark detection apparatus. レーザ式厚さ計の構成図。The block diagram of a laser-type thickness meter. 放射線厚さ計の構成図。The block diagram of a radiation thickness meter.

符号の説明Explanation of symbols

1 厚さ計検出部
2 レーザ式厚さ計
2a 位置ずれ補正回路
3 放射線厚さ計
4 厚さ演算部
41 平均化回路
42 平均化回路
43 減算回路
44 加算回路
5 周期性判定部
6 圧延ロール
7 速度検出器
10T、10B レーザ距離計
11 被測定物
12 レーザ光源部
13 CCDカメラ
14、14a C型フレーム
14T、14B 腕部
15 距離演算部
16 放射線発生器
17 放射線検出器
20 厚さ演算部、
21 厚さ演算部
50 レーザ式厚さ計
60 放射線厚さ計
100 レーザ式厚さ計
200 放射線厚さ計
DESCRIPTION OF SYMBOLS 1 Thickness meter detection part 2 Laser type thickness meter 2a Position shift correction circuit 3 Radiation thickness meter 4 Thickness calculation part 41 Averaging circuit 42 Averaging circuit 43 Subtraction circuit 44 Addition circuit 5 Periodicity judgment part 6 Rolling roll 7 Speed detector 10T, 10B Laser distance meter 11 Object 12 Laser light source 13 CCD camera 14, 14a C-type frame 14T, 14B Arm 15 Distance calculator 16 Radiation generator 17 Radiation detector 20 Thickness calculator
21 Thickness Calculation Unit 50 Laser Thickness Meter 60 Radiation Thickness Meter 100 Laser Thickness Meter 200 Radiation Thickness Meter

Claims (3)

移動する被測定物の上下を挟む腕部を有するC型フレームと、A C-shaped frame having arms that sandwich the top and bottom of the moving object to be measured;
前記腕部の上下に対向して配置された1対のレーザ距離計によって、前記被測定物の表面The surface of the object to be measured by a pair of laser rangefinders arranged opposite to the top and bottom of the arm part
にレーザ光を照射して、その反射光から前記レーザ距離計と前記被測定物表面との間の夫A laser beam is irradiated on the surface of the object to be measured between the laser distance meter and the surface of the object to be measured.
々の距離を測定することによって前記被測定物の厚さを測定するレーザ式厚さ計と、A laser-type thickness meter that measures the thickness of the object to be measured by measuring various distances;
一方の前記腕部に放射線発生器、他の前記腕部に放射線検出器を対向して配置し、前記被A radiation generator is disposed on one arm and a radiation detector is disposed on the other arm so as to face each other.
測定物の表面に前記放射線発生器から放射線を照射し、前記被測定物を透過した放射線量The amount of radiation that has been irradiated from the radiation generator onto the surface of the object to be measured and has passed through the object to be measured
を測定して被測定物の厚さを測定する放射線厚さ計とA radiation thickness meter to measure the thickness of the object to be measured
を備え、With
前記レーザ式厚さ計の前記レーザ光の照射位置と前記放射線厚さ計の照射位置は前記被測The irradiation position of the laser beam and the irradiation position of the radiation thickness meter of the laser thickness gauge are the measured values.
定物の移動方向において所定の距離で、且つ、前記移動方向と直行する方向においては同This is the same for a predetermined distance in the moving direction of the fixed object and in a direction perpendicular to the moving direction.
じ位置となる様に前記腕部に固定並置し、Fixed juxtaposition to the arm so that it is in the same position,
前記レーザ式厚さ計の出力と前記放射線厚さ計の出力との前記被測定物の移動方向におけThe output of the laser thickness gauge and the output of the radiation thickness gauge in the moving direction of the object to be measured.
る測定位置のずれを補正する位置ずれ補正手段と、Misalignment correcting means for correcting misalignment of the measurement position,
前記位置ずれ補正された前記レーザ式厚さ計及び放射線厚さ計の出力に対して、前記放射For the output of the laser-type thickness meter and radiation thickness meter corrected for the displacement, the radiation
線厚さ計の出力の平均値と前記レーザ式厚さ計の出力の平均値との差を補正値として求めThe difference between the average value of the wire thickness gauge output and the average value of the laser thickness gauge output is obtained as a correction value.
、位置ずれ補正後の前記レーザ式厚さ計の出力を前記補正値で補正する様にした厚さ演算, Thickness calculation that corrects the output of the laser-type thickness meter after correction of position deviation with the correction value
手段と、Means,
前記厚さ演算手段の出力から周期性信号を求める周期信号判定手段とをPeriodic signal determining means for obtaining a periodic signal from the output of the thickness calculating means;
備えたことを特徴とするチャタマーク検出装置。A chatter mark detection apparatus comprising:
前記周期信号判定手段は、前記被測定物の移動距離に同期した前記厚さ演算手段の出力
の周波数スペクトルを演算するフーリエ変換回路と、
前記フーリエ変換回路の出力を所定の値と比較して、チャタマークを判定するチャタマー
ク判定回路とを
備えたことを特徴とする請求項1に記載のチャタマーク検出装置
The periodic signal determining means is an output of the thickness calculating means synchronized with a moving distance of the object to be measured.
A Fourier transform circuit for calculating the frequency spectrum of
Chatter mark that determines the chatter mark by comparing the output of the Fourier transform circuit with a predetermined value
With the judgment circuit
The chatter mark detection apparatus according to claim 1, further comprising:
前記周期信号判定手段は、前記被測定物の移動距離に同期した厚さ演算手段の出力を所The periodic signal determining means outputs the output of the thickness calculating means synchronized with the moving distance of the object to be measured.
定のチャタマーク発生距離の周期で繰り返し加算する同期加算回路と、A synchronous addition circuit that repeatedly adds at a fixed chatter mark generation distance period;
前記同期加算回路の出力を所定の値と比較して、チャタマークを判定するチャタマーク判The chatter mark determination is performed by comparing the output of the synchronous adder circuit with a predetermined value to determine the chatter mark.
定回路とをConstant circuit
備えたことを特徴とする請求項1に記載のチャタマーク検出装置。The chatter mark detection apparatus according to claim 1, further comprising:
JP2003314389A 2003-09-05 2003-09-05 Chatter mark detector Expired - Fee Related JP4131843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314389A JP4131843B2 (en) 2003-09-05 2003-09-05 Chatter mark detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314389A JP4131843B2 (en) 2003-09-05 2003-09-05 Chatter mark detector

Publications (2)

Publication Number Publication Date
JP2005083820A JP2005083820A (en) 2005-03-31
JP4131843B2 true JP4131843B2 (en) 2008-08-13

Family

ID=34415017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314389A Expired - Fee Related JP4131843B2 (en) 2003-09-05 2003-09-05 Chatter mark detector

Country Status (1)

Country Link
JP (1) JP4131843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099870A1 (en) * 2011-12-27 2013-07-04 株式会社 東芝 Thickness measurement system and thickness measurement method
EP4234116A4 (en) * 2020-12-17 2023-12-20 Primetals Technologies Japan, Ltd. Rolling equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100092B1 (en) * 2006-12-15 2010-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for thickness measurement
JP5570135B2 (en) * 2009-03-30 2014-08-13 株式会社神戸製鋼所 Radiation plate thickness measuring device
CN102997833B (en) * 2012-11-22 2015-10-07 青岛云路新能源科技有限公司 Method for measuring thickness and device
CN103630102A (en) * 2013-12-17 2014-03-12 攀钢集团攀枝花钢钒有限公司 Deviation control alarm system and method for strip steel thickness detection
CN105180872B (en) * 2015-09-07 2018-08-17 中国科学院长春光学精密机械与物理研究所 The measurement method and device of high-precision mirror interval adjustment ring
WO2019188718A1 (en) * 2018-03-28 2019-10-03 バンドー化学株式会社 Surface shape monitoring device, abrasion loss measuring system, and surface shape monitoring system
CN109520458A (en) * 2018-11-28 2019-03-26 西安华运天成通讯科技有限公司 A kind of thickness detecting equipment of automatic navigator screen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099870A1 (en) * 2011-12-27 2013-07-04 株式会社 東芝 Thickness measurement system and thickness measurement method
JP2013137197A (en) * 2011-12-27 2013-07-11 Toshiba Corp Laser type thickness measurement system and calibration method therefor
EP4234116A4 (en) * 2020-12-17 2023-12-20 Primetals Technologies Japan, Ltd. Rolling equipment

Also Published As

Publication number Publication date
JP2005083820A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
WO2013099870A1 (en) Thickness measurement system and thickness measurement method
CA2672679C (en) Method and apparatus for thickness measurement
US9151595B1 (en) Laser thickness gauge and method including passline angle correction
JP2008051696A (en) Optical axis deviation type laser interferometer, its calibration method, correction method, and measuring method
JP4131843B2 (en) Chatter mark detector
EP0449642B1 (en) Web caliper measuring system
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
KR100256324B1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
EP3819587B1 (en) Apparatus for detecting relative positioning information between rolls, and method for measuring roll alignment state by using same
KR101157361B1 (en) Radiation thickness meter
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
JPS5842904A (en) Length measuring device
JP5599335B2 (en) Thickness measuring device
JPH04364410A (en) Method for measuring non-contact type plate thickness
JPH08238508A (en) Method for automatically controlling rolling gage of thickness of steel sheet utilizing laser doppler method and device therefor
JP2001147116A (en) Plate thickness measuring device
TWI620914B (en) Measuring device
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
JPH0781841B2 (en) Thickness measuring device
JPH09126746A (en) Thickness gauge
JP2004093541A (en) Measuring system of thickness of broad sheet material
JPH05231856A (en) Thickness measuring instrument
JPS648762B2 (en)
JPWO2008146480A1 (en) Measuring device
JPH0814873A (en) Method of measuring width of flange of h-beam with ultrasonic distance meters

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees