JP4122433B2 - Catalyst-free production method of biodiesel fuel that does not produce by-products - Google Patents
Catalyst-free production method of biodiesel fuel that does not produce by-products Download PDFInfo
- Publication number
- JP4122433B2 JP4122433B2 JP2003294521A JP2003294521A JP4122433B2 JP 4122433 B2 JP4122433 B2 JP 4122433B2 JP 2003294521 A JP2003294521 A JP 2003294521A JP 2003294521 A JP2003294521 A JP 2003294521A JP 4122433 B2 JP4122433 B2 JP 4122433B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- biodiesel fuel
- fatty acid
- glycerin
- methanolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003225 biodiesel Substances 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000006227 byproduct Substances 0.000 title description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 81
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 76
- 238000006243 chemical reaction Methods 0.000 claims description 74
- 235000011187 glycerol Nutrition 0.000 claims description 37
- 238000006140 methanolysis reaction Methods 0.000 claims description 32
- 235000019387 fatty acid methyl ester Nutrition 0.000 claims description 23
- 241001465754 Metazoa Species 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 239000002699 waste material Substances 0.000 claims description 18
- 150000002759 monoacylglycerols Chemical class 0.000 claims description 16
- 235000019871 vegetable fat Nutrition 0.000 claims description 16
- 239000008162 cooking oil Substances 0.000 claims description 15
- 150000001982 diacylglycerols Chemical class 0.000 claims description 15
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 15
- 239000003054 catalyst Substances 0.000 claims description 10
- 229910000856 hastalloy Inorganic materials 0.000 claims description 9
- 239000003921 oil Substances 0.000 claims description 8
- 125000005313 fatty acid group Chemical group 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 claims description 6
- 150000004667 medium chain fatty acids Chemical group 0.000 description 13
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- 150000004665 fatty acids Chemical class 0.000 description 11
- 239000010775 animal oil Substances 0.000 description 10
- 239000003925 fat Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000008158 vegetable oil Substances 0.000 description 10
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 8
- 150000007824 aliphatic compounds Chemical class 0.000 description 7
- 150000004668 long chain fatty acids Chemical class 0.000 description 7
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 235000021314 Palmitic acid Nutrition 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 4
- 239000000828 canola oil Substances 0.000 description 4
- 235000019519 canola oil Nutrition 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- JNDDPBOKWCBQSM-UHFFFAOYSA-N tridecanoic acid monomethyl ester Natural products CCCCCCCCCCCCC(=O)OC JNDDPBOKWCBQSM-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 3
- VKEQBMCRQDSRET-UHFFFAOYSA-N Methylone Chemical compound CNC(C)C(=O)C1=CC=C2OCOC2=C1 VKEQBMCRQDSRET-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000008157 edible vegetable oil Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 235000020778 linoleic acid Nutrition 0.000 description 3
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- -1 aliphatic alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 240000005856 Lyophyllum decastes Species 0.000 description 1
- 235000013194 Lyophyllum decastes Nutrition 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000013410 fast food Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/003—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Fats And Perfumes (AREA)
- Liquid Carbonaceous Fuels (AREA)
Description
本発明は、動植物油脂またはその廃食油およびメタノールからのバイオディーゼル燃料の製造方法に関する。 The present invention relates to a method for producing biodiesel fuel from animal and vegetable fats and oils or waste cooking oils thereof and methanol.
近年、環境保護意識の高まりから、動植物油脂またはその廃食油から製造したいわゆるバイオディーゼル燃料が用いられるようになっている。 In recent years, so-called biodiesel fuel produced from animal or vegetable fats or waste cooking oils has been used due to increasing awareness of environmental protection.
バイオディーゼル燃料とは一般的に、動植物油脂およびその廃食油の主成分であるトリアシルグリセロールをメタノールによりエステル交換反応(以下、メタノリシス反応)することにより得られる脂肪酸メチルエステルを主成分とする燃料を指す。 In general, biodiesel fuel is a fuel mainly composed of fatty acid methyl ester obtained by subjecting triacylglycerol, which is the main component of animal and plant oils and fats and edible oils, to a transesterification reaction (hereinafter, methanolysis) with methanol. Point to.
トリアシルグリセロールとメタノールとのメタノリシス反応は3つの段階に分けることができる。第1段階は、トリアシルグリセロール1分子とメタノール1分子とから脂肪酸メチルエステル1分子とジアシルグリセロール1分子が生成される段階である。第2段階は、ジアシルグリセロール1分子とメタノール1分子から脂肪酸メチルエステル1分子とモノアシルグリセロール1分子が生成される段階である。第3段階は、モノアシルグリセロール1分子とメタノール1分子から脂肪酸メチルエステル1分子とグリセリン1分子が生成される段階である。 The methanolysis reaction of triacylglycerol and methanol can be divided into three stages. The first stage is a stage in which one molecule of fatty acid methyl ester and one molecule of diacylglycerol are produced from one molecule of triacylglycerol and one molecule of methanol. The second stage is a stage in which one molecule of fatty acid methyl ester and one molecule of monoacylglycerol are produced from one molecule of diacylglycerol and one molecule of methanol. The third stage is a stage in which one molecule of fatty acid methyl ester and one molecule of glycerin are generated from one molecule of monoacylglycerol and one molecule of methanol.
従来のバイオディーゼル燃料の製造方法では、第3段階までメタノリシス反応を完結させている。そのために副産物としてグリセリンが生成する。グリセリンを有効利用すべく種々の試みがなされているが(特許文献1参照)、国内のグリセリン市場は供給過剰状態であり、専用炉による焼却が行われているのが現実である。また、発熱量が低いために熱源としても利用ができないという問題点がある。グリセリンを生じさせずにバイオディーゼル燃料を製造することに対する要望は強いと考えられるが、かかる技術は皆無である。 In the conventional method for producing biodiesel fuel, the methanolysis reaction is completed up to the third stage. As a result, glycerin is produced as a by-product. Various attempts have been made to effectively use glycerin (see Patent Document 1). However, the domestic glycerin market is in an excessive supply state, and it is actually incinerated by a dedicated furnace. In addition, since the calorific value is low, it cannot be used as a heat source. Although there is a strong demand for producing biodiesel without producing glycerin, there is no such technology.
また、バイオディーゼル燃料の製造においては、アルカリ触媒、酸触媒などの触媒を用いてメタノリシス反応を行うことが一般的である。しかしながら、触媒法では触媒(例えば水酸化ナトリウム)が反応生成物に混入するために、製品の中和、洗浄および洗浄水の浄化が必要となる。 In the production of biodiesel fuel, it is common to perform a methanolysis reaction using a catalyst such as an alkali catalyst or an acid catalyst. However, in the catalytic method, since a catalyst (for example, sodium hydroxide) is mixed in the reaction product, it is necessary to neutralize the product, wash it, and purify the washing water.
触媒を使用しないバイオディーゼル燃料の製造方法としては、超臨界流体を応用した方法がある(非特許文献1参照)。しかしながら、グリセリンが副産物として生成するという問題は依然として残る。 As a method for producing biodiesel fuel without using a catalyst, there is a method using a supercritical fluid (see Non-Patent Document 1). However, the problem that glycerin is produced as a by-product remains.
この出願の発明に関連する先行技術文献情報としては次のものがある。
本発明の目的は、動植物油脂またはその廃食油とメタノールとからバイオディーゼル燃料を製造する方法であって、触媒を使用せず、且つ、副産物としてグリセリンを生成しない方法を提供することである。 An object of the present invention is to provide a method for producing biodiesel fuel from animal and vegetable oils or fats or waste cooking oil thereof and methanol, which does not use a catalyst and does not produce glycerin as a by-product.
すなわち本発明は、以下の発明を包含する。
(1) 動植物油脂またはその廃食油とメタノールとを混合し、グリセリンが生成されない反応条件下で触媒を使用せずにメタノリシス反応を行うことを特徴とする、バイオディーゼル燃料の製造方法。
(2) 上記のグリセリンが生成されない反応条件が、反応温度が370〜500℃、反応圧力が20〜60 MPa、および反応時間が4〜12分間であることを特徴とする、上記(1)に記載の方法。
(3) 上記メタノリシス反応と並行して脂肪酸基の炭素鎖の分解反応を行うことを特徴とする、上記(1)または(2)に記載の方法。
(4) 動植物油脂またはその廃食油とメタノールとを1:2〜2:1の体積比で混合することを特徴とする、上記(1)〜(3)のいずれかに記載の方法。
(5) 上記のメタノリシス反応が、適切な混合状態を維持できるハステロイ製の管状反応管内で行われることを特徴とする、上記(1)〜(4)のいずれかに記載の方法。
(6) 脂肪酸メチルエステル、モノアシルグリセロールおよびジアシルグリセロールを主成分とするバイオディーゼル燃料。
That is, the present invention includes the following inventions.
(1) A method for producing biodiesel fuel, comprising mixing animal and vegetable fats or oils or waste cooking oil thereof with methanol, and performing a methanolysis reaction without using a catalyst under reaction conditions in which glycerin is not generated.
(2) The above (1) is characterized in that the reaction conditions under which the glycerin is not generated are a reaction temperature of 370 to 500 ° C., a reaction pressure of 20 to 60 MPa, and a reaction time of 4 to 12 minutes. The method described.
(3) The method according to (1) or (2) above, wherein a decomposition reaction of a carbon chain of a fatty acid group is performed in parallel with the methanolysis reaction.
(4) The method according to any one of (1) to (3) above, wherein the animal or vegetable oil or fat or waste cooking oil thereof and methanol are mixed at a volume ratio of 1: 2 to 2: 1.
(5) The method according to any one of (1) to (4) above, wherein the methanolysis reaction is performed in a Hastelloy tubular reaction tube capable of maintaining an appropriate mixed state.
(6) Biodiesel fuel mainly composed of fatty acid methyl ester, monoacylglycerol and diacylglycerol.
本発明により、副産物としてグリセリンの発生を伴わずにバイオディーゼル燃料を製造することができる。すなわち本発明により、より完成された炭素循環型エネルギーシステムを構築することができる。また、副産物を生成しないためにバイオディーゼルの収率が向上する。さらに、無触媒化により従来の製造法に必須であった原料の前処理、製品の中和、洗浄及び洗浄水の浄化を不要とすることが可能となる。 According to the present invention, biodiesel fuel can be produced without generating glycerin as a by-product. That is, according to the present invention, a more complete carbon circulation type energy system can be constructed. Moreover, since the by-product is not generated, the yield of biodiesel is improved. Furthermore, the non-catalyst can eliminate the need for raw material pretreatment, product neutralization, washing, and cleaning water purification, which are essential for conventional production methods.
本発明は、メタノリシス反応における諸条件を適切に制御することにより、第1段階の反応は完了させつつ、第3段階の反応は抑制することにより、グリセリンを生成することなくバイオディーゼル燃料を製造することを可能とする。第2段階の反応の程度は任意の程度であってよいが、第2段階の反応が進行するほど得られるバイオディーゼル燃料中のジアシルグリセロール濃度が低下するとともにモノアシルグリセロール濃度が上昇してバイオディーゼル燃料の粘度が低下することから、第2段階の反応が促進されるようにメタノリシス反応の諸条件が制御されることが好ましい。 The present invention produces biodiesel fuel without producing glycerin by appropriately controlling various conditions in the methanolysis reaction, thereby completing the first stage reaction and suppressing the third stage reaction. Make it possible. The degree of reaction in the second stage may be any degree, but as the reaction in the second stage proceeds, the concentration of diacylglycerol in the biodiesel fuel obtained decreases and the concentration of monoacylglycerol increases and biodiesel increases. Since the viscosity of the fuel decreases, it is preferable to control the conditions of the methanolysis reaction so that the second-stage reaction is promoted.
無触媒化は、超臨界条件においてメタノリシス反応を行うことにより達成することができる。 Non-catalytic formation can be achieved by conducting a methanolysis reaction under supercritical conditions.
また、副産物が生成されないためにバイオディーゼル燃料の収率が向上する。好ましくは、従来は原料油の80%程度であった収率がほぼ100%となる。 In addition, the yield of biodiesel fuel is improved because no by-products are produced. Preferably, the yield, which was conventionally about 80% of the feedstock, is almost 100%.
本発明の方法により製造されるバイオディーゼル燃料は、脂肪酸メチルエステル、ジアシルグリセロールおよびモノアシルグリセロールを主成分とする。一方、従来技術により製造されるバイオディーゼル燃料は、脂肪酸メチルエステルを主成分とし、ジアシルグリセロールまたはモノアシルグリセロールを実質的に含まない。 The biodiesel fuel produced by the method of the present invention is mainly composed of fatty acid methyl ester, diacylglycerol and monoacylglycerol. On the other hand, the biodiesel fuel produced by the prior art is composed mainly of fatty acid methyl ester and substantially free of diacylglycerol or monoacylglycerol.
動植物油脂には炭素数16以上の長鎖脂肪酸が多く含まれている。一般的に、長鎖脂肪酸基を有するジアシルグリセロールまたはモノアシルグリセロールは、脂肪酸メチルエステルと比べて粘度が高いためにディーゼル燃料に適さないことが多い。 Animal and vegetable oils and fats are rich in long-chain fatty acids having 16 or more carbon atoms. In general, diacylglycerol or monoacylglycerol having a long chain fatty acid group is often unsuitable for diesel fuel due to its higher viscosity than fatty acid methyl ester.
そこで本発明は更に、メタノリシス反応と並行して脂肪酸基の炭素鎖の分解反応を行い、長鎖脂肪酸基を炭素数6から12程度の中鎖脂肪酸基に変換することにより、脂肪酸メチルエステル、ジアシルグリセロールおよびモノアシルグリセロールを主成分とする混合物の粘度を低下させ、バイオディーゼル燃料として使用可能な粘度を有するバイオディーゼル燃料を提供することを可能とする。 Therefore, the present invention further performs a decomposition reaction of the carbon chain of the fatty acid group in parallel with the methanolysis reaction, and converts the long chain fatty acid group into a medium chain fatty acid group having about 6 to 12 carbon atoms, thereby converting the fatty acid methyl ester, diacyl ester. By reducing the viscosity of a mixture based on glycerol and monoacylglycerol, it is possible to provide a biodiesel fuel having a viscosity that can be used as a biodiesel fuel.
本発明は更にまた、脂肪酸メチルエステル、モノアシルグリセロールおよびジアシルグリセロールを主成分とするバイオディーゼル燃料に関する。ここで「主成分とする」とは、脂肪酸メチルエステルを40重量%以上、モノアシルグリセロールを10重量%以上、及び、ジアシルグリセロールを5重量%以上の割合で含有することを意味する。本発明の好ましいバイオディーゼル燃料は、脂肪酸メチルエステルを40〜60重量%、モノアシルグリセロールを10〜30重量%、ジアシルグリセロールを5〜20重量%、その他の脂肪族化合物を5〜20重量%、トリアシルグリセロールを1重量%未満、及び、グリセリンを1重量%未満の割合で含有するものである。「その他の脂肪族化合物」については下記の記載を参照されたい。より好ましくは、セタン価が49〜65、引火点が100〜200℃、30℃での動粘度が3〜20mm2/sec.、流動点が-5℃以下のバイオディーゼル燃料である。 The invention further relates to a biodiesel fuel based on fatty acid methyl esters, monoacylglycerol and diacylglycerol. Here, “mainly comprising” means that fatty acid methyl ester is contained in an amount of 40% by weight or more, monoacylglycerol is contained in an amount of 10% by weight or more, and diacylglycerol is contained in a proportion of 5% by weight or more. Preferred biodiesel fuel of the present invention is 40-60% by weight of fatty acid methyl ester, 10-30% by weight of monoacylglycerol, 5-20% by weight of diacylglycerol, 5-20% by weight of other aliphatic compounds, It contains triacylglycerol in a proportion of less than 1% by weight and glycerin in a proportion of less than 1% by weight. For the “other aliphatic compounds”, see the following description. More preferably, it is a biodiesel fuel having a cetane number of 49 to 65, a flash point of 100 to 200 ° C., a kinematic viscosity at 30 ° C. of 3 to 20 mm 2 / sec., And a pour point of −5 ° C. or less.
以下、本発明をより詳細に説明する。
1.出発物質
本発明におけるメタノリシス反応は、動植物油脂またはその廃食油とメタノールとの混合物を出発物質とする。本発明における植物油脂としては、例えばナタネ油、キャノーラ油、トウモロコシ油、大豆油、ヒマワリ油、または紅花油が挙げられるがこれらに限定されない。本発明における動物油脂としては、豚脂(ラード)または牛脂が挙げられるがこれらに限定されない。廃食油とは、家庭、レストラン、ファーストフード店、弁当製造工場等において調理に用いた後に劣化のために廃棄されることとなった動植物油脂を意味する。本発明に使用できる動植物油脂の廃食油としては、例えば天ぷら、トンカツ、フライドチキン等の調理に用いた揚げ油の廃棄品が挙げられるがこれらに限定されない。
Hereinafter, the present invention will be described in more detail.
1. Starting material The methanolysis reaction in the present invention starts with a mixture of animal and vegetable oil or fat or its waste cooking oil and methanol. Examples of vegetable oils and fats in the present invention include, but are not limited to, rapeseed oil, canola oil, corn oil, soybean oil, sunflower oil, and safflower oil. Animal fats and oils in the present invention include but are not limited to pork fat (lard) or beef tallow. Waste cooking oil means animal and vegetable oils and fats that have been discarded due to deterioration after being used for cooking at home, restaurants, fast food stores, bento manufacturing factories, and the like. Examples of the waste edible oil of animal and vegetable oils and fats that can be used in the present invention include, but are not limited to, waste products of fried oil used for cooking such as tempura, tonkatsu, and fried chicken.
動植物油脂またはその廃食油とメタノールとの混合比率は任意に選択することができる。好ましくは、動植物油脂またはその廃食油とメタノールとを1:2〜2:1の体積比で混合する。 The mixing ratio of animal and vegetable oil or fat or its waste cooking oil and methanol can be arbitrarily selected. Preferably, animal and vegetable fats or oils or waste cooking oil thereof and methanol are mixed at a volume ratio of 1: 2 to 2: 1.
2.反応条件
本発明におけるメタノリシス反応は、グリセリンが生成されない反応条件下で触媒を使用せずに行う。
2. Reaction conditions The methanolysis reaction in the present invention is carried out without using a catalyst under reaction conditions in which glycerin is not produced.
上記の「グリセリンが生成されない反応条件」は、「グリセリンが生成されない」という要件を満たす限りにおいて任意に選択し得る。本発明において「グリセリンが生成されない反応条件」には、グリセリンが全く生成されない条件だけはなく、グリセリンが実質的に生成されない反応条件をも包含される。「グリセリンが実質的に生成されない反応条件」とは、グリセリンが生成されるものの、生成されたグリセリンがバイオディーゼル燃料から分離しない反応条件を意味する。ここで「生成されたグリセリンがバイオディーゼル燃料から分離しない」場合には、生成されたグリセリンの量がバイオディーゼル燃料から分離しない程度の少量である場合、及び、生成されたグリセリンが更に反応を受けて(例えばOH基がメチル基と置換されるなどして)親油性が高められた結果バイオディーゼル燃料から分離しなくなった場合が包含される。該反応条件は好ましくは、反応温度が370〜500℃、好ましくは380〜450℃、反応圧力が20〜60 MPa、好ましくは30〜50 MPa、最も好ましくは40 MPa、および反応時間が4〜12分間である条件である。更にまた、反応が行われる反応管内への流入時における混合物の温度が250℃以上であることがより好ましい。 The above “reaction conditions under which glycerin is not generated” can be arbitrarily selected as long as the requirement that “glycerin is not generated” is satisfied. In the present invention, “reaction conditions in which glycerin is not produced” includes not only conditions in which glycerin is not produced at all, but also reaction conditions in which glycerin is not substantially produced. “Reaction conditions under which glycerin is not substantially produced” means reaction conditions under which glycerin is produced but the produced glycerin is not separated from biodiesel fuel. Here, when “the produced glycerin is not separated from the biodiesel fuel”, the produced glycerin is so small that it is not separated from the biodiesel fuel, and the produced glycerin is further reacted. (For example, OH group is replaced with methyl group), and the case where it is no longer separated from biodiesel fuel as a result of enhanced lipophilicity. The reaction conditions are preferably a reaction temperature of 370-500 ° C, preferably 380-450 ° C, a reaction pressure of 20-60 MPa, preferably 30-50 MPa, most preferably 40 MPa, and a reaction time of 4-12. A condition that is minutes. Furthermore, it is more preferable that the temperature of the mixture when flowing into the reaction tube in which the reaction is performed is 250 ° C. or higher.
上記メタノリシス反応と並行して脂肪酸基の炭素鎖の分解反応を行うことが好ましい。脂肪酸基の炭素鎖の分解反応とは、動植物油脂またはその廃食油に多く含まれる長鎖脂肪酸基(炭素数14以上)が中鎖脂肪酸基(炭素数6から12程度)に変換される反応を指す。反応条件は特に限定されないが、例えば、動植物油脂またはその廃食油とメタノールとを混合し、反応温度が390〜500℃、好ましくは390〜450℃、反応圧力が20〜60 MPa、好ましくは30〜50 MPa、最も好ましくは40 MPa、および反応時間が4〜12分間である条件でメタノリシス反応を行う場合、メタノリシス反応と並行して脂肪酸基の炭素鎖の分解反応が進行する。更にまた、反応が行われる反応管内への流入時における混合物の温度が250℃以上であることがより好ましい。長鎖脂肪酸基が中鎖脂肪酸基に変換される機構は必ずしも明らかではないが、例えば長鎖脂肪酸基中の不飽和結合が高温高圧下で切断されて中鎖脂肪酸基になるものと考えられる。切断後のもう一方の「切れ端」としては種々のものがあり、例えば炭素数が6〜12個程度の炭化水素、脂肪酸、脂肪族アルコールが挙げられる。これらの「切れ端」は最終的なバイオディーゼル燃料中に含まれていてよい。 In parallel with the methanolysis reaction, it is preferable to carry out a decomposition reaction of the carbon chain of the fatty acid group. Decomposition reaction of fatty acid group carbon chain refers to a reaction in which long chain fatty acid groups (14 or more carbon atoms) contained in a large amount of animal and vegetable fats or waste cooking oils are converted to medium chain fatty acid groups (6 to 12 carbon atoms). Point to. The reaction conditions are not particularly limited, but, for example, animal and vegetable oils or waste edible oils and methanol are mixed, the reaction temperature is 390 to 500 ° C., preferably 390 to 450 ° C., the reaction pressure is 20 to 60 MPa, preferably 30 to When the methanolysis reaction is performed under the conditions of 50 MPa, most preferably 40 MPa, and a reaction time of 4 to 12 minutes, the decomposition reaction of the carbon chain of the fatty acid group proceeds in parallel with the methanolysis reaction. Furthermore, it is more preferable that the temperature of the mixture when flowing into the reaction tube in which the reaction is performed is 250 ° C. or higher. Although the mechanism by which a long chain fatty acid group is converted to a medium chain fatty acid group is not always clear, it is considered that, for example, an unsaturated bond in the long chain fatty acid group is cleaved at high temperature and high pressure to become a medium chain fatty acid group. There are various “cut pieces” after the cutting, and examples thereof include hydrocarbons, fatty acids, and aliphatic alcohols having about 6 to 12 carbon atoms. These “snips” may be included in the final biodiesel fuel.
メタノリシス反応終了後に、反応混合物から未反応のメタノールを減圧、加熱により蒸発させて除去して、最終的なバイオディーゼル燃料が得られる。好ましくは、除去されたメタノールは冷却により回収されて再度原料としてメタノリシス反応に使用される。 After completion of the methanolysis reaction, unreacted methanol is removed from the reaction mixture by evaporation under reduced pressure and heating to obtain a final biodiesel fuel. Preferably, the removed methanol is recovered by cooling and used again as a raw material in the methanolysis reaction.
3.反応装置
本発明においては、上記の反応条件を実現できる限りにおいて任意の反応容器内でメタノリシス反応を行うことができる。好ましくは、メタノリシス反応は、適切な混合状態を維持できるハステロイ製の管状反応管内で行われる。さらに好ましくは、メタノリシス反応は、内部まで均一に加熱することが可能であり、反応のための十分な長さを有し、適切な混合状態を維持できるハステロイ製の管状反応管内で行われる。超臨界反応装置において反応容器又は反応管の素材として通常用いられる金属としてはステンレス鋼、ハステロイ、インコネルが挙げられるが、本発明の方法にはハステロイ製であることが好ましい。なぜなら、ステンレス鋼では高温高圧に耐えられない可能性があり、インコネルでは反応が促進されてグリセリンが生成される可能性があるからである。ハステロイにはハステロイA、B、C、Fなど種々の組成のものが存在するが、いずれも本発明に使用することができる。典型的にはハステロイCを使用する。本発明に使用できるハステロイCの具体例としては三菱マテリアル株式会社製HC-22またはHC-276が挙げられる。「内部まで均一に加熱することが可能である管状反応管」とは、メタノリシス反応が均一に進行し得るように内部の温度条件をほぼ均一に維持できる管状反応管を意味する。「反応のための十分な長さを有する管状反応管」とは、適当な組成を有するバイオディーゼル燃料を得るのに必要な反応時間を確保するのに十分な長さを有する管状反応管を意味する。反応管が短すぎれば十分な反応時間が確保されずにメタノリシス反応が十分に進行しないため、適当な組成を有するバイオディーゼル燃料が得られない。「適切な混合状態を維持できる管状反応管」とは、グリセリンを副産物として生成することなく、メタノリシス反応が均一に進行する混合状態を維持できる管状反応管を意味し、より具体的には、攪拌手段(スタティックミキサー等)によらずに超臨界流体自体の流動により混合状態を維持できる管状反応管を指す。一般的な攪拌手段を用いた場合は攪拌が強くなりすぎる傾向があり、攪拌が強ければ副産物としてグリセリンが生成する傾向があるからである。より好ましくは、メタノリシス反応は、ハステロイ製の、内径1.8mm〜7.0mm、長さ0.5m〜15m、内容積14ml〜600mlの管状反応管内で行う。該管状反応管は任意の状態で使用することができ、例えば、直線状であっても、コイル状に巻かれていても、又はつづら折状に折り畳まれていてもよい。典型的には、メタノリシス反応は、ハステロイC製の内径1.8mm、長さ8m、内容積20mlの、コイル状に巻かれた管状反応管内で行う。
3. Reactor In the present invention, the methanolysis reaction can be carried out in any reaction vessel as long as the above reaction conditions can be realized. Preferably, the methanolysis reaction is carried out in a Hastelloy tubular reaction tube capable of maintaining an appropriate mixed state. More preferably, the methanolysis reaction is carried out in a Hastelloy tubular reaction tube that can be heated uniformly to the inside, has a sufficient length for the reaction, and can maintain an appropriate mixed state. Stainless steel, Hastelloy, and Inconel are listed as metals that are commonly used as materials for reaction vessels or reaction tubes in supercritical reactors. The method of the present invention is preferably made of Hastelloy. This is because stainless steel may not be able to withstand high temperatures and pressures, and inconel may accelerate the reaction and produce glycerin. There are various types of hastelloy such as hastelloy A, B, C, F, and any of them can be used in the present invention. Typically, Hastelloy C is used. Specific examples of Hastelloy C that can be used in the present invention include HC-22 or HC-276 manufactured by Mitsubishi Materials Corporation. The “tubular reaction tube that can be heated uniformly to the inside” means a tubular reaction tube that can maintain the internal temperature condition substantially uniformly so that the methanolysis reaction can proceed uniformly. “Tubular reaction tube having a sufficient length for the reaction” means a tubular reaction tube having a sufficient length to ensure the reaction time necessary to obtain a biodiesel fuel having an appropriate composition. To do. If the reaction tube is too short, sufficient reaction time is not secured and the methanolysis reaction does not proceed sufficiently, so that a biodiesel fuel having an appropriate composition cannot be obtained. “Tubular reaction tube capable of maintaining an appropriate mixed state” means a tubular reaction tube capable of maintaining a mixed state in which a methanolysis reaction proceeds uniformly without producing glycerin as a by-product. It refers to a tubular reaction tube that can maintain a mixed state by the flow of the supercritical fluid itself without using means (such as a static mixer). This is because when general stirring means is used, stirring tends to be too strong, and when stirring is strong, glycerin tends to be generated as a by-product. More preferably, the methanolysis reaction is carried out in a tubular reaction tube made of Hastelloy having an inner diameter of 1.8 mm to 7.0 mm, a length of 0.5 m to 15 m, and an internal volume of 14 ml to 600 ml. The tubular reaction tube can be used in an arbitrary state. For example, the tubular reaction tube may be linear, wound in a coil, or folded in a zigzag manner. Typically, the methanolysis reaction is carried out in a coiled tubular reaction tube made of hastelloy C with an inner diameter of 1.8 mm, a length of 8 m and an internal volume of 20 ml.
当該反応管を含む反応装置は、例えば図1に模式的に示すものである。当該装置によれば、混合器により原料が加熱前に適切に混合されることにより安定した連続運転が可能である。該混合器は、好ましくは、混合前流路総面積と混合後流路総面積の比を2:1としたT型混合器である。当該装置によれば、未反応のメタノールを減圧及び加熱により蒸発させて回収し、再度原料として利用することが可能である。 The reaction apparatus including the reaction tube is schematically shown in FIG. 1, for example. According to the said apparatus, the stable continuous operation is possible by mixing a raw material appropriately before a heating with a mixer. The mixer is preferably a T-type mixer in which the ratio of the total channel area before mixing to the total channel area after mixing is 2: 1. According to this apparatus, unreacted methanol can be recovered by evaporation under reduced pressure and heating and reused as a raw material.
4.生成物
本発明の方法により製造されるバイオディーゼル燃料は、好ましくは脂肪酸メチルエステルが40〜60重量%、モノアシルグリセロールが10〜30重量%、ジアシルグリセロールが5〜20重量%、その他の脂肪族化合物が5〜20重量%、トリアシルグリセロールが1重量%未満、グリセリンが1重量%未満の割合で含有されるものである。ここで「その他の脂肪族化合物」とは、上述のようにメタノリシス反応中に生成されたグリセリンが更に反応を受けて例えばOH基がメチル基と置換されるなどした場合のグリセリンに由来する脂肪族化合物、上述のように長鎖脂肪酸基が中鎖脂肪酸基に変換された場合に生じる「切れ端」(例えば、炭素数が6〜12個程度の炭化水素、脂肪酸、脂肪族アルコール)、及びその他の原因で発生する遊離脂肪酸を含む脂肪族化合物の総称である。
4). Products The biodiesel fuel produced by the process of the present invention preferably comprises 40-60 wt% fatty acid methyl ester, 10-30 wt% monoacylglycerol, 5-20 wt% diacylglycerol, and other aliphatics The compound is contained in a proportion of 5 to 20% by weight, triacylglycerol is less than 1% by weight, and glycerin is less than 1% by weight. Here, the “other aliphatic compound” means an aliphatic group derived from glycerin when the glycerin produced during the methanolysis reaction as described above is further reacted to replace the OH group with a methyl group, for example. Compounds, "snips" that occur when long chain fatty acid groups are converted to medium chain fatty acid groups as described above (eg, hydrocarbons, fatty acids, aliphatic alcohols with about 6-12 carbon atoms), and other It is a generic name for aliphatic compounds containing free fatty acids that are caused by the cause.
バイオディーゼル燃料の組成(脂肪酸メチルエステル、モノアシルグリセロール、ジアシルグリセロール、トリアシルグリセロール、グリセリン、およびその他の脂肪族化合物のそれぞれの含有量)は、以下の条件でのガスクロマトグラフィー質量分析により測定した。Agilent Technology社製ガスクロマトグラフィー6890Nと日本電子データム社製質量分析計GC-mate IIを用い、カラムにはAgilent Technology社製HP-5TA (15m x 0.32m x 0.1μm)を用いた。キャリアガスにヘリウム(流量1.5ml/分)を用いた。オーブン温度は測定開始時には50℃で1分間保持し、その後10℃/分で250℃まで昇温させ、次に15℃/分で365℃まで昇温させ、365℃で8分間保持した。インレット温度は220℃、スプリット比は45:1、試料注入量は2μlとした。測定試料は約20mg/mlとなるように1-ブタノールで希釈した。得られたマススペクトルから成分を特定し、ガスクロマトグラムのピーク面積に基づいてその含有量を算出した。内部標準としてはトリデカン酸メチルエステルまたはエチレングリコールを用いた。 Biodiesel fuel composition (each content of fatty acid methyl ester, monoacylglycerol, diacylglycerol, triacylglycerol, glycerin, and other aliphatic compounds) was measured by gas chromatography mass spectrometry under the following conditions: . Gas chromatography 6890N manufactured by Agilent Technology and mass spectrometer GC-mate II manufactured by JEOL Datum were used, and HP-5TA (15 m × 0.32 m × 0.1 μm) manufactured by Agilent Technology was used as the column. Helium (flow rate 1.5 ml / min) was used as the carrier gas. The oven temperature was maintained at 50 ° C. for 1 minute at the start of measurement, then heated to 250 ° C. at 10 ° C./minute, then heated to 365 ° C. at 15 ° C./minute, and held at 365 ° C. for 8 minutes. The inlet temperature was 220 ° C., the split ratio was 45: 1, and the sample injection volume was 2 μl. The measurement sample was diluted with 1-butanol so as to be about 20 mg / ml. Components were identified from the obtained mass spectrum, and the content was calculated based on the peak area of the gas chromatogram. Tridecanoic acid methyl ester or ethylene glycol was used as an internal standard.
上記の測定条件では脂肪酸基の組成を分析をすることはできない。そこでさらに以下の条件でガスクロマトグラフィー質量分析を行うことによりバイオディーゼル燃料中の脂肪酸メチルエステルの脂肪酸組成を分析した。上記の装置にAgilent Technology社製カラムHP-INNOWax(Cross-Linked PEG 30m x 320μm x 0.5μm)を装着し、キャリアガスとしてヘリウム(流量1.5ml/分)を用い、オーブン温度は測定開始時には150℃で1分間保持し、その後15℃/分で200℃まで昇温させ、次に2℃/分で250℃まで昇温させ、250℃で5分間保持した。インレット温度は220℃、スプリット比は45:1、試料注入量は2μlとした。測定試料は約20mg/mlとなるように1-ブタノールで希釈した。得られたマススペクトルから脂肪酸の種類を特定し、ガスクロマトグラムのピーク面積に基づいてその含有量を算出した。内部標準としてはトリデカン酸メチルエステルを用いた。なお本発明の方法で製造されるバイオディーゼル燃料においては、脂肪酸メチルエステルの脂肪酸組成は、該バイオディーゼル燃料を構成する全分子種に含まれる脂肪酸基の組成とほぼ同一であると考えられる。超臨界流体中でのメタノリシス反応は脂肪酸の鎖長の影響を受けずに進行するからである。 Under the above measurement conditions, the composition of fatty acid groups cannot be analyzed. Therefore, the fatty acid composition of fatty acid methyl ester in biodiesel fuel was analyzed by gas chromatography mass spectrometry under the following conditions. The above equipment is equipped with Agilent Technology column HP-INNOWax (Cross-Linked PEG 30m x 320μm x 0.5μm), helium (flow rate 1.5ml / min) as the carrier gas, and the oven temperature is 150 ° C at the start of measurement. At 1 ° C./minute, then raised to 200 ° C. at 15 ° C./minute, then raised to 250 ° C. at 2 ° C./minute and held at 250 ° C. for 5 minutes. The inlet temperature was 220 ° C., the split ratio was 45: 1, and the sample injection volume was 2 μl. The measurement sample was diluted with 1-butanol so as to be about 20 mg / ml. The type of fatty acid was identified from the obtained mass spectrum, and its content was calculated based on the peak area of the gas chromatogram. Tridecanoic acid methyl ester was used as an internal standard. In the biodiesel fuel produced by the method of the present invention, the fatty acid composition of the fatty acid methyl ester is considered to be almost the same as the composition of fatty acid groups contained in all molecular species constituting the biodiesel fuel. This is because the methanolysis reaction in the supercritical fluid proceeds without being affected by the chain length of the fatty acid.
本発明の方法により製造されるバイオディーゼル燃料は、好ましくはセタン価が49〜65、引火点が100〜200℃、30℃での動粘度が3〜20mm2/sec.、流動点が-5℃以下のものである。 The biodiesel fuel produced by the method of the present invention preferably has a cetane number of 49 to 65, a flash point of 100 to 200 ° C., a kinematic viscosity at 30 ° C. of 3 to 20 mm 2 / sec., And a pour point of −5. It is below ℃.
セタン価はJIS K2280、流動点はJIS K2269、動粘度(30℃)はJIS K2283、引火点(PMCC)はJIS K2265に規定された方法で測定した。 The cetane number was measured according to JIS K2280, the pour point was measured according to JIS K2269, the kinematic viscosity (30 ° C.) was measured according to JIS K2283, and the flash point (PMCC) was measured according to JIS K2265.
市販のキャノーラ油から以下の手順により、図1に表される装置を用いてバイオディーゼル燃料を製造した。反応管は、HC-22(ハステロイC、三菱マテリアル株式会社)製の内径1.8mm、長さ7.8m、内容積約20mlの、コイル状に巻かれたものを使用した。 Biodiesel fuel was produced from commercially available canola oil using the apparatus shown in FIG. 1 according to the following procedure. The reaction tube used was a coil made of HC-22 (Hastelloy C, Mitsubishi Materials Corporation) having an inner diameter of 1.8 mm, a length of 7.8 m, and an internal volume of about 20 ml.
キャノーラ油(日清製油株式会社、 Oilio(商標))を原料タンク1に、メタノール(和光純薬工業株式会社、特級試薬)を原料タンク2にそれぞれ入れ、キャノーラ油:メタノールが2:1の体積比で混合されるように送液ポンプを調節した。反応管内温度を395℃、圧力を40MPa、反応管通過時間を4分間、反応管流入時温度を270℃とした。製造されたバイオディーゼル燃料の組成は、各種脂肪酸メチルエステルが約50重量%、モノアシルグリセロールが約25重量%、ジアシルグリセロールが約20重量%、その他の脂肪族化合物が約5重量%、トリアシルグリセロール及びグリセリンがそれぞれ1重量%未満であった。また、燃料特性はセタン価が51.6、引火点(PMCC)は136℃、動粘度は15.10mm2/sec.、流動点は−5.0℃であり、一般的なナタネ由来のバイオディーゼル燃料とほぼ同等であった。また、該バイオディーゼル燃料中の脂肪酸メチルエステルの脂肪酸組成は、オレイン酸 (C18:1) が55重量%、リノール酸 (C18:2) が16重量%、ステアリン酸 (C18:0) が5重量%、パルミチン酸類 (C16:0及びC16:1)が12重量%、エイコサン酸類 (C20:0、C20:1及びC20:2)が7重量%、中鎖脂肪酸類(C6〜12)が5重量%であった。
Canola oil (Nisshin Oil Co., Ltd., Oilio (trademark)) is put into the raw material tank 1 and methanol (Wako Pure Chemical Industries, Ltd., special grade reagent) is put into the
一般家庭から排出された廃食油から以下の手順により、図1に表される装置を用いてバイオディーゼル燃料を製造した。反応管は、HC-22製の内径1.8mm、長さ7.8m、内容積約20mlの、コイル状に巻かれたものを使用した。 Biodiesel fuel was produced from waste cooking oil discharged from ordinary households by the following procedure using the apparatus shown in FIG. The reaction tube used was a coil made of HC-22 having an inner diameter of 1.8 mm, a length of 7.8 m, and an internal volume of about 20 ml.
はじめに、一般家庭から排出された廃食油から揚げかすのような大きな夾雑物のみを除去した。水分除去、遊離脂肪酸除去等の前処理は行わなかった。廃食油とメタノールとの体積比が2:1となるように送液ポンプを調節した。 First of all, only large impurities such as fried residue were removed from waste cooking oil discharged from ordinary households. Pretreatment such as water removal and free fatty acid removal was not performed. The liquid feed pump was adjusted so that the volume ratio of waste cooking oil to methanol was 2: 1.
反応管内温度を380℃、圧力を40MPa、反応管通過時間を4分間、反応管流入時温度を270℃とした場合、製造された製品の粘度は24.3mPa・sec.であった。これは、通常のバイオディーゼル燃料(8.6mPa・sec.)に比して大きな値である。粘度は株式会社ANDのCVJ5000を用いて23℃にて測定した。製造されたバイオディーゼル燃料中の脂肪酸メチルエステルの脂肪酸組成は、オレイン酸 (C18:1) が64重量%、リノール酸 (C18:2) が1重量%、ステアリン酸 (C18:0) が13重量%、パルミチン酸 (C16:0)が14重量%、エイコサン酸類 (C20:0、C20:1及びC20:2)が3重量%、中鎖脂肪酸類(C6〜12)が5重量%であった。 When the temperature in the reaction tube was 380 ° C., the pressure was 40 MPa, the reaction tube passage time was 4 minutes, and the temperature at the reaction tube inlet was 270 ° C., the viscosity of the manufactured product was 24.3 mPa · sec. This is a large value compared to a normal biodiesel fuel (8.6 mPa · sec.). Viscosity was measured at 23 ° C. using AND CVJ5000. The fatty acid composition of fatty acid methyl ester in the manufactured biodiesel fuel is 64% by weight of oleic acid (C18: 1), 1% by weight of linoleic acid (C18: 2), and 13% of stearic acid (C18: 0). %, Palmitic acid (C16: 0) was 14% by weight, eicosanoic acids (C20: 0, C20: 1 and C20: 2) were 3% by weight, and medium chain fatty acids (C6-12) were 5% by weight. .
反応管内温度を450℃、圧力を40MPa、反応管通過時間を4分間、反応管流入時温度を270℃とした場合、製造された製品の動粘度は9.16mPa・sec.まで低下した。製造されたバイオディーゼル燃料中の脂肪酸メチルエステルの脂肪酸組成は、オレイン酸 (C18:1) が60重量%、リノール酸 (C18:2) が0.6重量%、ステアリン酸 (C18:0) が11重量%、パルミチン酸 (C16:0)が14重量%、エイコサン酸類 (C20:0、C20:1及びC20:2)が2重量%、中鎖脂肪酸類(C6〜12)が12重量%であった。 When the temperature in the reaction tube was 450 ° C., the pressure was 40 MPa, the reaction tube passage time was 4 minutes, and the temperature at the reaction tube inlet was 270 ° C., the kinematic viscosity of the manufactured product decreased to 9.16 mPa · sec. The fatty acid composition of fatty acid methyl ester in the produced biodiesel fuel is 60% by weight of oleic acid (C18: 1), 0.6% by weight of linoleic acid (C18: 2), and 11% of stearic acid (C18: 0). %, Palmitic acid (C16: 0) was 14% by weight, eicosanoic acids (C20: 0, C20: 1 and C20: 2) were 2% by weight, and medium chain fatty acids (C6-12) were 12% by weight. .
市販のラードから以下の手順により、図1に表される装置を用いてバイオディーゼル燃料を製造した。反応管は、HC-22製の内径1.8mm、長さ7.8m、内容積約20mlの、コイル状に巻かれたものを使用した。 A biodiesel fuel was produced from a commercially available lard by the following procedure using the apparatus shown in FIG. The reaction tube used was a coil made of HC-22 having an inner diameter of 1.8 mm, a length of 7.8 m, and an internal volume of about 20 ml.
ラード(ミヨシ油脂株式会社、高級ラード、脂肪分99.5%)を原料タンク1に入れ、流動性改善のため60℃に加熱し保温した。メタノール(和光純薬工業株式会社、特級試薬)を原料タンク2に入れ、ラード:メタノールが1:2の体積比で混合されるように送液ポンプを調節した。反応管内温度を500℃、圧力を40MPa、反応管通過時間を8分間、反応管流入時温度を300℃とした。製造されたバイオディーゼル燃料の組成は、各種脂肪酸メチルエステルが56重量%、モノアシルグリセロールが20重量%、ジアシルグリセロールが10重量%、その他の脂肪族化合物が14重量%、トリアシルグリセロール及びグリセリンがそれぞれ1重量%未満(検出不可)であった。また、該バイオディーゼル燃料中の脂肪酸メチルエステルの脂肪酸組成は、オレイン酸 (C18:1) が10重量%、ステアリン酸 (C18:0) が25重量%、パルミチン酸 (C16:0)が33重量%、中鎖脂肪酸類(C6〜12)が23重量%、ミリスチン酸 (C14:0)が4重量%、ヘプタデカン酸 (C17:0)が1.3重量%、その他の脂肪酸 (C13、C15、C20)が2.2重量%であった。
Lard (Miyoshi Oil & Fat Co., Ltd., high grade lard, 99.5% fat content) was put into the raw material tank 1 and heated to 60 ° C. to keep it warm to improve fluidity. Methanol (Wako Pure Chemical Industries, Ltd., special grade reagent) was placed in the
従来のアルカリ触媒法によりラードからバイオディーゼル燃料を製造する場合は10℃程度で燃料は凝固するが、本実施例により製造されたバイオディーゼル燃料は0℃でも凝固することはなかった。 In the case of producing biodiesel fuel from lard by the conventional alkaline catalyst method, the fuel solidifies at about 10 ° C., but the biodiesel fuel produced by this example did not solidify even at 0 ° C.
1 原料タンク1(動植物油脂)
2 動植物油脂用送液ポンプ
3 原料タンク2(メタノール)
4 メタノール用送液ポンプ
5 予熱管
6 予熱管ヒーター
7 反応管
8 反応管用ヒーター
9 冷却管
10 排圧弁
11 減圧タンク
12 減圧ポンプ
13 余剰メタノール回収ライン
14 冷却器(メタノール回収装置)
15 バイオディーゼル燃料吐出口
1 Raw material tank 1 (animal and vegetable fats and oils)
2 Liquid feed pump for animal and vegetable oils 3 Raw material tank 2 (methanol)
4 Liquid feed pump for methanol 5 Preheating tube 6
15 Biodiesel fuel outlet
Claims (4)
上記のグリセリンが生成されない反応条件が、
動植物油脂またはその廃食油とメタノールとが1:2〜2:1の体積比で混合され、
メタノリシス反応がハステロイ製の管状反応管内で行われ、
反応温度が370〜500℃、および反応圧力が20〜60 MPaであり、
上記の管状反応管内への流入時における混合物の温度が250℃以上であるという条件である、前記方法。 A method for producing biodiesel fuel, comprising mixing animal and vegetable fats and oils or waste cooking oil thereof with methanol, and performing a methanolysis reaction without using a catalyst under reaction conditions in which glycerin is not generated ,
The reaction conditions under which the glycerin is not generated are
Animal and vegetable fats or their waste cooking oil and methanol are mixed in a volume ratio of 1: 2 to 2: 1,
The methanolysis reaction takes place in a Hastelloy tubular reaction tube,
The reaction temperature is 370-500 ° C., and the reaction pressure is 20-60 MPa,
The method as described above, wherein the temperature of the mixture at the time of flowing into the tubular reaction tube is 250 ° C or higher.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003294521A JP4122433B2 (en) | 2003-08-18 | 2003-08-18 | Catalyst-free production method of biodiesel fuel that does not produce by-products |
US10/568,066 US20060288636A1 (en) | 2003-08-18 | 2004-08-10 | Process for non-catalytically producing biodiesel fuel without yielding by-product |
KR1020067002715A KR100693199B1 (en) | 2003-08-18 | 2004-08-10 | Process for non-catalytically producing biodiesel fuel without yielding by-product |
DE112004001460T DE112004001460T5 (en) | 2003-08-18 | 2004-08-10 | Non-catalytic process for producing biodiesel fuel that does not produce by-product |
PCT/JP2004/011485 WO2005017075A1 (en) | 2003-08-18 | 2004-08-10 | Process for non-catalytically producing biodiesel fuel without yielding by-product |
CN2004800300015A CN1867650B (en) | 2003-08-18 | 2004-08-10 | Process for non-catalytically producing biodiesel fuel without yielding by-product |
AT0928204A AT503836A2 (en) | 2003-08-18 | 2004-08-10 | NON-CATALYTIC METHOD FOR PRODUCING BIODIESEL FIBER THAT PRODUCES NO BYPRODUCTIVE PRODUCT |
BRPI0413622-5A BRPI0413622A (en) | 2003-08-18 | 2004-08-10 | non-catalytic non-generating by-product process for biodiesel fuel production |
MYPI20043326A MY138548A (en) | 2003-08-18 | 2004-08-16 | Noncatalytic process for producing biodiesel fuel that does not generate by-product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003294521A JP4122433B2 (en) | 2003-08-18 | 2003-08-18 | Catalyst-free production method of biodiesel fuel that does not produce by-products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005060591A JP2005060591A (en) | 2005-03-10 |
JP4122433B2 true JP4122433B2 (en) | 2008-07-23 |
Family
ID=34191040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003294521A Expired - Lifetime JP4122433B2 (en) | 2003-08-18 | 2003-08-18 | Catalyst-free production method of biodiesel fuel that does not produce by-products |
Country Status (9)
Country | Link |
---|---|
US (1) | US20060288636A1 (en) |
JP (1) | JP4122433B2 (en) |
KR (1) | KR100693199B1 (en) |
CN (1) | CN1867650B (en) |
AT (1) | AT503836A2 (en) |
BR (1) | BRPI0413622A (en) |
DE (1) | DE112004001460T5 (en) |
MY (1) | MY138548A (en) |
WO (1) | WO2005017075A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005002700A1 (en) | 2005-01-19 | 2006-07-27 | Cognis Deutschland Gmbh & Co. Kg | Compositions usable as biofuel |
JP4219349B2 (en) | 2005-09-16 | 2009-02-04 | 富士フイルム株式会社 | Process for producing fatty acid alkyl ester and fuel |
KR100806353B1 (en) * | 2005-11-18 | 2008-02-27 | 노민정 | A Method for producing biodiesel using supercritical alcohols |
DE102006002848A1 (en) * | 2006-01-19 | 2007-07-26 | Dracowo Forschungs- Und Entwicklungs Gmbh | Preparing fatty acid methyl ester, useful as biodiesel, comprises transferring unavoidable small batch of remains from fryers to polyethylene container through a filter and reducing the acid number of the batch by its alkality |
JP2009542847A (en) * | 2006-06-28 | 2009-12-03 | サイバス,エルエルシー | Fatty acid blend and use thereof |
US7897798B2 (en) * | 2006-08-04 | 2011-03-01 | Mcneff Research Consultants, Inc. | Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same |
US8445709B2 (en) * | 2006-08-04 | 2013-05-21 | Mcneff Research Consultants, Inc. | Systems and methods for refining alkyl ester compositions |
JP5561452B2 (en) * | 2006-08-31 | 2014-07-30 | 学校法人日本大学 | Biodiesel fuel |
MX2009008612A (en) * | 2007-02-13 | 2009-11-10 | Mcneff Res Consultants Inc | Devices and methods for selective removal of contaminants from a composition. |
US8017796B2 (en) * | 2007-02-13 | 2011-09-13 | Mcneff Research Consultants, Inc. | Systems for selective removal of contaminants from a composition and methods of regenerating the same |
US7943791B2 (en) * | 2007-09-28 | 2011-05-17 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
EP2065460A1 (en) * | 2007-11-28 | 2009-06-03 | Wulfenia Beteiligungs GmbH | Biological fuel and method for its production |
CZ303071B6 (en) * | 2008-06-30 | 2012-03-21 | Univerzita Tomáše Bati ve Zlíne | Preliminary treatment process of waste oils and fats containing free fatty acids for alcoholytic preparation of biodiesel |
WO2009118779A1 (en) * | 2008-03-26 | 2009-10-01 | 株式会社大正理化 | Biodiesel fuel producing apparatus and process for producing biodiesel fuel |
US8361174B2 (en) * | 2008-10-07 | 2013-01-29 | Sartec Corporation | Catalysts, systems, and methods for producing fuels and fuel additives from polyols |
US9102877B2 (en) | 2008-11-12 | 2015-08-11 | Sartec Corporation | Systems and methods for producing fuels from biomass |
CN101845336A (en) * | 2010-06-03 | 2010-09-29 | 濮阳市中油石化有限公司 | Oil product processing equipment |
GB201010176D0 (en) * | 2010-06-17 | 2010-07-21 | Bergen Teknologioverforing As | Method |
CZ305933B6 (en) * | 2010-07-02 | 2016-05-11 | Univerzita Tomáše Bati ve Zlíně | Optimized process of preliminary treatment of acid waste fats and oils |
US8858657B1 (en) | 2010-12-22 | 2014-10-14 | Arrowhead Center, Inc. | Direct conversion of algal biomass to biofuel |
KR101364062B1 (en) * | 2011-08-26 | 2014-02-21 | 재단법인 포항산업과학연구원 | Process for producing biodiesel |
US8304566B2 (en) | 2012-03-09 | 2012-11-06 | Antonio Cantizani | Processes and apparatus for small-scale in situ biodiesel production |
US10223637B1 (en) | 2013-05-30 | 2019-03-05 | Google Llc | Predicting accuracy of submitted data |
US9475029B2 (en) * | 2013-08-28 | 2016-10-25 | Louisiana Eco Green, L.L.C. | Method of manufacturing bio-diesel and reactor |
EP2862915B1 (en) | 2013-10-18 | 2015-12-09 | Rigas Tehniska universitate | Method for manufacturing biodiesel |
MX2017002340A (en) * | 2017-02-22 | 2018-08-21 | Gross Del Sureste S A De C V | Continuous biodiesel synthesis process by transesterification with supercritical methanol. |
US10239812B2 (en) | 2017-04-27 | 2019-03-26 | Sartec Corporation | Systems and methods for synthesis of phenolics and ketones |
US10696923B2 (en) | 2018-02-07 | 2020-06-30 | Sartec Corporation | Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids |
US10544381B2 (en) | 2018-02-07 | 2020-01-28 | Sartec Corporation | Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8708004D0 (en) * | 1987-04-03 | 1987-05-07 | Shell Int Research | Production of methanol |
JP4411370B2 (en) * | 1998-10-06 | 2010-02-10 | 株式会社Cdmコンサルティング | Process for producing alkyl esters of fatty acids from fats and oils |
ES2252040T3 (en) * | 1999-08-18 | 2006-05-16 | Biox Corporation | SIMPLE PHASE PROCESS FOR THE PRODUCTION OF METHYL ESTERS OF FATTY ACIDS FROM TRIGLICERID BLENDS AND FATTY ACIDS. |
US6399800B1 (en) * | 1999-09-22 | 2002-06-04 | The United States Of America As Represented By The Secretary Of Agriculture | Process for the production of fatty acid alkyl esters |
JP4854889B2 (en) * | 2001-09-21 | 2012-01-18 | 株式会社レボインターナショナル | Method for producing diesel fuel oil from waste cooking oil |
US7227030B2 (en) * | 2002-06-13 | 2007-06-05 | Shiro Saka | Method for producing fatty acid alkyl ester composition |
JP4123899B2 (en) * | 2002-11-01 | 2008-07-23 | トヨタ自動車株式会社 | Fuel production method |
-
2003
- 2003-08-18 JP JP2003294521A patent/JP4122433B2/en not_active Expired - Lifetime
-
2004
- 2004-08-10 DE DE112004001460T patent/DE112004001460T5/en not_active Withdrawn
- 2004-08-10 KR KR1020067002715A patent/KR100693199B1/en not_active IP Right Cessation
- 2004-08-10 WO PCT/JP2004/011485 patent/WO2005017075A1/en active IP Right Grant
- 2004-08-10 US US10/568,066 patent/US20060288636A1/en not_active Abandoned
- 2004-08-10 CN CN2004800300015A patent/CN1867650B/en not_active Expired - Fee Related
- 2004-08-10 AT AT0928204A patent/AT503836A2/en not_active Application Discontinuation
- 2004-08-10 BR BRPI0413622-5A patent/BRPI0413622A/en not_active IP Right Cessation
- 2004-08-16 MY MYPI20043326A patent/MY138548A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2005017075A1 (en) | 2005-02-24 |
KR100693199B1 (en) | 2007-03-14 |
AT503836A2 (en) | 2008-01-15 |
MY138548A (en) | 2009-06-30 |
US20060288636A1 (en) | 2006-12-28 |
CN1867650A (en) | 2006-11-22 |
JP2005060591A (en) | 2005-03-10 |
CN1867650B (en) | 2011-06-15 |
KR20060037430A (en) | 2006-05-03 |
BRPI0413622A (en) | 2006-10-17 |
DE112004001460T5 (en) | 2006-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4122433B2 (en) | Catalyst-free production method of biodiesel fuel that does not produce by-products | |
Park et al. | Production and characterization of biodiesel from trap grease | |
Ang et al. | Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production | |
Man et al. | A Brønsted ammonium ionic liquid-KOH two-stage catalyst for biodiesel synthesis from crude palm oil | |
US9260372B2 (en) | Method for the production of polyols and uses thereof | |
White et al. | Production of biodiesel fuel from tall oil fatty acids via high temperature methanol reaction | |
Kwon et al. | Transforming animal fats into biodiesel using charcoal and CO 2 | |
KR20100075841A (en) | Energy efficient process to produce biologically based fuels | |
Komintarachat et al. | Continuous production of palm biofuel under supercritical ethyl acetate | |
Riadi et al. | Effect of bio-based catalyst in biodiesel synthesis | |
Melnyk et al. | Transesterification of sunflower oil triglycerides by 1-butanol in the presence of d-metal oxides | |
JP5452582B2 (en) | Method for producing glyceride composition for C heavy oil alternative fuel | |
Kusdiana et al. | Biodiesel fuel for diesel fuel substitute prepared by a catalyst-free supercritical methanol | |
US9932532B2 (en) | Production of biodiesel from oils and fats via supercritical water | |
Iijima et al. | The non-glycerol process of biodiesel fuel treated in supercritical methanol | |
JP4448941B2 (en) | Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials | |
Mazzocchia et al. | Biodiesel and FAME from triglicerides over acid and basic catalysts assisted by microwave | |
US20140243565A1 (en) | Process for producing biohydrocarbons | |
McFarlane | Processing of soybean oil into fuels | |
Budiman et al. | Second generation of biodiesel production from Indonesian jatropha oil by continuous reactive distillation process | |
AU2021106404A4 (en) | A frequently transesterification process of Jatropha curcus oil in the presence of a green solvent | |
Marulanda | Glycerol and Methylesters Decomposition in the Supercritical Production of Biodiesel: Potential Alternative Improve Fuel Characteristics and Yield | |
TWI387646B (en) | Reverse flow esterification reactor for producing biomass diesel and its | |
US20100251605A1 (en) | Liquid metal catalyst for biodiesel production | |
EP2231830B1 (en) | Method for production of short chain carboxylic acids and esters from biomass and product of same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080401 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4122433 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |