JP4106931B2 - Transparent gas barrier thin film coating film - Google Patents

Transparent gas barrier thin film coating film Download PDF

Info

Publication number
JP4106931B2
JP4106931B2 JP2002061483A JP2002061483A JP4106931B2 JP 4106931 B2 JP4106931 B2 JP 4106931B2 JP 2002061483 A JP2002061483 A JP 2002061483A JP 2002061483 A JP2002061483 A JP 2002061483A JP 4106931 B2 JP4106931 B2 JP 4106931B2
Authority
JP
Japan
Prior art keywords
film
thin film
metal compound
coated
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002061483A
Other languages
Japanese (ja)
Other versions
JP2003251732A (en
Inventor
泰美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2002061483A priority Critical patent/JP4106931B2/en
Publication of JP2003251732A publication Critical patent/JP2003251732A/en
Application granted granted Critical
Publication of JP4106931B2 publication Critical patent/JP4106931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表示装置内の液晶や、有機エレクトロルミネッセンス(以下有機EL)に対する水蒸気バリア層等として利用するプラスチックフィルムを基材とした水蒸気バリアに優れた透明ガスバリア薄膜被覆フィルムに関する。
【0002】
【従来の技術】
プラスチックフィルム上にガスバリア機能を有する薄膜をコーティングした透明ガスバリア薄膜被覆フィルムは食品や医薬品などの包装材として従来利用されてきた。最近では液晶や有機EL素子を用いた表示装置への応用が注目されている。
【0003】
現状では、これらの表示装置はガラス基材上に前記素子が形成される構造となっている。近年、これら表示装置の小型化・薄型化への要求に伴いその軽量性、易加工性、形態の多様性の観点から、ガラス基材の代替品として透明ガスバリア薄膜コーティングを施したポリマーフィルム基材が注目されている。
【0004】
ポリマーフィルム基材に透明バリア薄膜コーティングを施した例としては、特開平07−233463や特開平11−262969に見られるような酸化ケイ素(SiOX )、酸化アルミ(AlOX )薄膜のコーティングが良く知られており、高い透明性であり、かつ水蒸気透過速度2〜5gm-2day-1程度のバリア性を有している。しかしながら、この範囲の水蒸気バリア性は、基材をガラスとした場合と比較して非常に低い。液晶や有機ELの素子は、水蒸気劣化し易いため、表示機能の劣化を引き起こすことがわかってきた。したがって、従来に比べより高い水蒸気バリア性を有する薄膜のコーティングを施す必要があり、様々な提案がなされてきた。
【0005】
水蒸気バリア性を高めるため、SiOX 、AlOX 薄膜より、従来の網状構造の緻密さを高め、透過する水分子を低下させることが考えられた。例えば特開平8−62590に見られるように窒素原子を含有させた酸窒化物(例えばSiOX Y )が提案された。この提案により、バリア性が著しく高くなり、水蒸気透過速度0.2〜0.6gm-2day-1、酸素透過速度0.1〜0.4ccm-2day-1まで高くなった。しかし表示装置の水蒸気バリア層としては依然として不充分なバリア性であった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、これらの問題を解決し、従来の透明ガスバリア薄膜に比べ水蒸気バリアがより高く、かつ透明性を有する透明ガスバリア薄膜被覆フィルムを提供することにある。
【0007】
本発明は、これらの問題を解決するにあたり検討した結果、以下のことを見出した。酸素を始めとするガスの透過速度は、コーティングする薄膜の欠陥(空孔やクラック)の密度、サイズに強く寄与しており、すなわち膜の網状構造が緻密であるほど高いガスバリア性を示す。しかし水蒸気透過速度については、いまだはっきりしたことは解明されていないが、薄膜の欠陥(あるいは緻密さ)を制御するだけでなく、薄膜と水蒸気(水分子)との相互作用を高めることが重要であることがわかった。したがって水蒸気(水分子)相互作用が強い硫黄原子あるいはリン原子を組成として含有させた金属酸化物薄膜のコーティングにより、劇的に高い水蒸気バリア性を得ることができた。
【0008】
【課題を解決するための手段】
すなわち本発明の請求項1に係る発明は、金属化合物を少なくとも片面に被覆したポリマーフィルムであって、その金属化合物が、シリコン(Si)、アルミニウム(Al)のいずれかからなる金属原子(M)、酸素原子(O)、硫黄原子(S)より構成され、かつ金属化合物MOにおいて、その組成比X/Yが、(1.2〜1.7)/(0.3〜0.8)であることを特徴とする透明ガスバリア薄膜被覆フィルムである。
【0010】
本発明の請求項に係る発明は、金属化合物を少なくとも片面に被覆したポリマーフィルムであって、その金属化合物が、インジウム(In)、シリコン(Si)のいずれかからなる金属原子(M)、酸素原子(O)、リン原子(P)より構成され、かつ金属化合物MOにおいて、その組成比X/Yが、(1.5〜2.0)/(0.3〜1.0)であることを特徴とする透明ガスバリア薄膜被覆フィルムである。
【0013】
本発明の請求項に係る発明は、上記請求項1または請求項2に係る透明ガスバリア薄膜被覆フィルムの発明において、前記金属化合物を被覆したポリマーフィルムの水蒸気透過速度が、0.1gm−2day−1以下であり、かつ酸素透過速度が、0.05ccm−2day−1以下であり、かつ光波長550nmにおける光線透過率が、85%以上であることを特徴とする透明ガスバリア薄膜被覆フィルムである。
【0014】
【発明の実施の形態】
本発明で使用する上記ポリマーフィルム基材としては、不飽和ポリエステル(ポリエチレンテレフタレート)、ポリオレフィン、ポリイミド、ポリビニルアルコール、ポリエーテルサルファイドなど、透明性が高く、かつその厚さが、50〜200μmのフィルムであれば、本発明の目的を逸脱するものではない。またポリマーフィルム基材上に、表面処理あるいはラミネートが施してあっても構わない。
【0015】
上記金属化合物の形成方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法、化学気相堆積法(CVD)などが挙げられる。
【0016】
例えば、金属化合物MOX Y においては、その酸素原子Oと硫黄原子(S)の組成比X/Yは、(1.2〜1.7)/(0.3〜0.8)であることが望ましい。硫黄原子の割合が、この範囲以上になると、薄膜への光吸収が増加し、透明性が低下し、また、この範囲以下では、水蒸気バリア性が低下するという欠点をもつ。
【0017】
また、金属化合物MOX Y においては、その酸素原子(O)とリン原子(P)の組成比X/Yは、(1.5〜2.2)/(0.3〜1.0)であることが望ましい。リン原子(P)の割合が、この範囲以上になると、薄膜への光吸収が増加し、透明性が低下し、また、この範囲以下では、水蒸気バリア性が低下するという欠点をもつ。
【0018】
金属化合物の薄膜の厚みとしては、10〜200nmが望ましい。この厚みがこの範囲以上では、その圧縮応力のためクラックが生じ易くなり、水蒸気バリア性低下の原因となる。また、この範囲以下では十分な厚さではない。
【0019】
【実施例】
以下に、本発明の具体的実施例について説明する。
<実施例1>
反応性スパッタリング法により、ポリエステルフィルム上に、それぞれSiOX Y 、AlOX Y の薄膜を被覆した。
ターゲットにSi,Al、反応ガスに硫化水素と酸素の混合ガスを用いた。基材として不飽和ポリエステルフィルム(厚さ100μm)を用いた。
成膜方法としては、真空チェンバー内を1×10-4Paまで排気した後に、アルゴンガスを2×10-1Paまで導入し、続いて、酸素ガスを3×10-1Paまで導入し、さらに硫化水素ガスを全圧が5×10-1Paになるまで導入して、金属ターゲットのスパッタリングにより、上記基材上に、それぞれSiOX Y 、AlOX Y の薄膜を被覆した。
【0020】
<実施例2>
真空蒸着法により、ポリエステルフィルム上に、それぞれSiOX Y 、InOX Y の薄膜を被覆した。
蒸着材料としてSi,Inを用い、電子ビームにて蒸発させ、また、五酸化リン(P2 5 )を抵抗加熱にて蒸発させ成膜した。基材として不飽和ポリエステルフィルム(厚さ100μm)を用いた。
成膜方法としては、真空チェンバー内を1×10-4Paまで排気した後に、電子ビームにより、金属材料を5×10-2Paになるまで蒸発させ、同時に抵抗加熱により、五酸化リンを7×10-3Paになるまで蒸発させ、上記基材上に、それぞれSiOX Y 、InOX Y の薄膜を被覆した。
【0021】
<比較例1>
上記実施例1において、ターゲットにAlを用い、酸素ガスを3×10-1Paまで導入し、さらに硫化水素ガスを全圧が3.5×10-1Paになるまで導入する以外は、実施例1と同様にして、上記基材上に、それぞれSiOX Y 、AlOX Y の薄膜を被覆した。
【0022】
<比較例2>
上記実施例2において、蒸着材料にSiを用い、金属材料を5×10-2 Paになるまで蒸発させ、同時に抵抗加熱により、五酸化リンを9×10-3Paになるまで蒸発させた以外は、実施例2と同様にして、上記基材上に、それぞれSiOX Y 、InOX Y の薄膜を被覆した。
【0023】
<測定と結果>
上記実施例1、実施例2、及び比較例1、比較例2から得られた各々サンプルの水蒸気透過速度を、水蒸気透過速度測定装置(モダンコントロール社製:PERMATRAN)を用い、湿度90%RH、温度40℃の雰囲気下で測定した。また、前記各々サンプルの酸素透過速度を、酸素透過速度測定装置(モダンコントロール社製:OXTRAN)を用い、湿度0%、温度40℃の雰囲気下で測定した。
また、その各々サンプルの光線透過率を分光光度計にて測定した。また、金属化合物中の組成比X/Y(組成比X:Y)は、X線光電子分光測定装置(島津製作所製)にて測定した。上記測定結果は表1に併せて示した。
【0024】
【表1】

Figure 0004106931
【0025】
表1中の第一段記載のWVTR、OTR、及びT%は、それぞれ水蒸気透過速度(単位gm-2day-1)、酸素透過速度(単位ccm-2day-1)、及び光線透過率(単位%、光波長550nm)を表している。また膜厚の単位はnm。
【0026】
【発明の効果】
本発明の透明ガスバリア薄膜被覆フィルムは、金属酸化物に硫黄原子あるいはリン原子を含有させることで、今までに無い高水蒸気バリア性を持ち、かつ透明性の高いガスバリア薄膜被覆フィルムが得られる[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent gas barrier thin film coated film excellent in a water vapor barrier based on a plastic film used as a water vapor barrier layer or the like for liquid crystal in a display device or organic electroluminescence (hereinafter referred to as organic EL).
[0002]
[Prior art]
A transparent gas barrier thin film-coated film obtained by coating a plastic film with a thin film having a gas barrier function has been conventionally used as a packaging material for foods and pharmaceuticals. Recently, application to a display device using a liquid crystal or an organic EL element has attracted attention.
[0003]
At present, these display devices have a structure in which the element is formed on a glass substrate. In recent years, with the demand for miniaturization and thinning of these display devices, a polymer film substrate provided with a transparent gas barrier thin film coating as an alternative to a glass substrate from the viewpoint of lightness, ease of processing, and variety of forms. Is attracting attention.
[0004]
As an example of applying a transparent barrier thin film coating to a polymer film substrate, a silicon oxide (SiO x ) or aluminum oxide (AlO x ) thin film coating as disclosed in JP-A-07-233463 and JP-A-11-262969 is good. It is known, has high transparency, and has a barrier property of a water vapor transmission rate of about 2 to 5 gm −2 day −1 . However, the water vapor barrier property in this range is very low compared to the case where the substrate is made of glass. It has been found that liquid crystal and organic EL elements are liable to cause water vapor deterioration and thus cause display function deterioration. Therefore, it is necessary to apply a thin film coating having a higher water vapor barrier property than before, and various proposals have been made.
[0005]
In order to improve the water vapor barrier property, it has been considered that the density of the conventional network structure is increased and the permeated water molecules are lowered than the SiO x and AlO x thin films. For example, as shown in JP-A-8-62590, an oxynitride containing a nitrogen atom (for example, SiO x N y ) has been proposed. By this proposal, the barrier property is remarkably enhanced, and the water vapor transmission rate is increased to 0.2 to 0.6 gm −2 day −1 and the oxygen transmission rate is 0.1 to 0.4 ccm −2 day −1 . However, it still has an insufficient barrier property as a water vapor barrier layer of a display device.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve these problems and provide a transparent gas barrier thin film-coated film having a water vapor barrier higher than that of a conventional transparent gas barrier thin film and having transparency.
[0007]
As a result of investigations to solve these problems, the present invention has found the following. The permeation rate of oxygen and other gases strongly contributes to the density and size of defects (holes and cracks) of the thin film to be coated. That is, the denser the network structure of the film, the higher the gas barrier property. However, the water vapor transmission rate has not yet been clarified, but it is important not only to control the defects (or denseness) of the thin film, but also to increase the interaction between the thin film and water vapor (water molecules). I found out. Therefore, a dramatically high water vapor barrier property can be obtained by coating a metal oxide thin film containing a sulfur atom or phosphorus atom having a strong water vapor (water molecule) interaction as a composition.
[0008]
[Means for Solving the Problems]
That is, the invention according to claim 1 of the present invention is a polymer film in which a metal compound is coated on at least one surface, and the metal compound is a metal atom (M) made of either silicon (Si) or aluminum (Al 2). , Oxygen atom (O), and sulfur atom (S), and in the metal compound MO X S Y , the composition ratio X / Y is (1.2 to 1.7) / (0.3 to 0.00. 8) A transparent gas barrier thin film-coated film, which is characterized in that
[0010]
The invention according to claim 2 of the present invention is a polymer film in which a metal compound is coated on at least one side, and the metal compound is a metal atom (M) made of either indium (In) or silicon (Si ), It is composed of an oxygen atom (O) and a phosphorus atom (P), and in the metal compound MO X P Y , the composition ratio X / Y is (1.5 to 2.0) / (0.3 to 1.0 It is a transparent gas barrier thin film covering film characterized by these.
[0013]
According to a third aspect of the present invention, in the transparent gas barrier thin film-coated film according to the first or second aspect , the polymer film coated with the metal compound has a water vapor transmission rate of 0.1 gm −2 day. -1 or less, oxygen transmission rate is 0.05 ccm −2 day −1 or less, and light transmittance at a light wavelength of 550 nm is 85% or more, is there.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The polymer film substrate used in the present invention is a film having a high transparency and a thickness of 50 to 200 μm, such as unsaturated polyester (polyethylene terephthalate), polyolefin, polyimide, polyvinyl alcohol, and polyether sulfide. If there is, it does not deviate from the object of the present invention. Further, surface treatment or lamination may be performed on the polymer film substrate.
[0015]
Examples of the method for forming the metal compound include a vacuum deposition method, an ion plating method, a sputtering method, and a chemical vapor deposition method (CVD).
[0016]
For example, in the metal compound MO X S Y , the composition ratio X / Y between the oxygen atom O and the sulfur atom (S) is (1.2 to 1.7) / (0.3 to 0.8). It is desirable. When the ratio of the sulfur atom exceeds this range, light absorption into the thin film increases and the transparency decreases, and when it falls below this range, the water vapor barrier property decreases.
[0017]
Further, in the metal compound MO X P Y , the composition ratio X / Y between the oxygen atom (O) and the phosphorus atom (P) is (1.5 to 2.2) / (0.3 to 1.0). It is desirable that When the ratio of the phosphorus atom (P) exceeds this range, light absorption into the thin film increases and the transparency decreases, and below this range, the water vapor barrier property decreases.
[0018]
The thickness of the metal compound thin film is preferably 10 to 200 nm. If this thickness is above this range, cracks are likely to occur due to the compressive stress, which causes a decrease in water vapor barrier properties. Also, the thickness is not sufficient below this range.
[0019]
【Example】
Specific examples of the present invention will be described below.
<Example 1>
By reactive sputtering, on a polyester film, coated with a thin film of SiO X S Y, AlO X S Y , respectively.
Si, Al was used as a target, and a mixed gas of hydrogen sulfide and oxygen was used as a reaction gas. An unsaturated polyester film (thickness: 100 μm) was used as the substrate.
As a film forming method, after evacuating the inside of the vacuum chamber to 1 × 10 −4 Pa, argon gas is introduced to 2 × 10 −1 Pa, then oxygen gas is introduced to 3 × 10 −1 Pa, Further, hydrogen sulfide gas was introduced until the total pressure reached 5 × 10 −1 Pa, and thin films of SiO x S y and AlO x S y were respectively coated on the base material by sputtering of a metal target.
[0020]
<Example 2>
A thin film of SiO x P y and InO x p y was coated on the polyester film by vacuum deposition.
Si and In were used as the vapor deposition material, evaporated by an electron beam, and phosphorus pentoxide (P 2 O 5 ) was evaporated by resistance heating to form a film. An unsaturated polyester film (thickness: 100 μm) was used as the substrate.
As a film forming method, after evacuating the inside of the vacuum chamber to 1 × 10 −4 Pa, the metal material is evaporated to 5 × 10 −2 Pa by an electron beam, and at the same time, phosphorus pentoxide is 7 × evaporated to 10 -3 Pa, on the base material, coated with a thin film of SiO X P Y, InO X P Y respectively.
[0021]
<Comparative Example 1>
In Example 1 described above, Al was used as the target, oxygen gas was introduced up to 3 × 10 −1 Pa, and hydrogen sulfide gas was introduced until the total pressure reached 3.5 × 10 −1 Pa. In the same manner as in Example 1, thin films of SiO X S Y and AlO X S Y were coated on the substrate.
[0022]
<Comparative example 2>
In Example 2 above, Si was used as the evaporation material, the metal material was evaporated to 5 × 10 −2 Pa, and at the same time, phosphorus pentoxide was evaporated to 9 × 10 −3 Pa by resistance heating. , the same procedure as in example 2, on the base material, coated with a thin film of SiO X P Y, InO X P Y respectively.
[0023]
<Measurement and results>
The water vapor transmission rate of each sample obtained from Example 1, Example 2 and Comparative Example 1 and Comparative Example 2 was measured using a water vapor transmission rate measuring device (manufactured by Modern Control: PERMATRAN), with a humidity of 90% RH, Measurement was performed in an atmosphere at a temperature of 40 ° C. In addition, the oxygen transmission rate of each sample was measured in an atmosphere of 0% humidity and 40 ° C. using an oxygen transmission rate measurement device (manufactured by Modern Control Co., Ltd .: OXTRAN).
The light transmittance of each sample was measured with a spectrophotometer. The composition ratio X / Y (composition ratio X: Y) in the metal compound was measured with an X-ray photoelectron spectrometer (manufactured by Shimadzu Corporation). The measurement results are shown in Table 1.
[0024]
[Table 1]
Figure 0004106931
[0025]
The WVTR, OTR, and T% described in the first row in Table 1 are the water vapor transmission rate (unit: gm -2 day -1 ), oxygen transmission rate (unit: ccm -2 day -1 ), and light transmittance ( (Unit%, light wavelength 550 nm). The unit of film thickness is nm.
[0026]
【The invention's effect】
The transparent gas barrier thin film-covered film of the present invention has an unprecedented high water vapor barrier property and a highly transparent gas barrier thin film-coated film by containing a sulfur atom or phosphorus atom in a metal oxide.

Claims (3)

金属化合物を少なくとも片面に被覆したポリマーフィルムであって、その金属化合物が、シリコン(Si)、アルミニウム(Al)のいずれかからなる金属原子(M)、酸素原子(O)、硫黄原子(S)より構成され、かつ金属化合物MOにおいて、その組成比X/Yが、(1.2〜1.7)/(0.3〜0.8)であることを特徴とする透明ガスバリア薄膜被覆フィルム。A polymer film having at least one surface coated with a metal compound, wherein the metal compound is a metal atom (M), oxygen atom (O), or sulfur atom (S) made of silicon (Si) or aluminum (Al). A transparent gas barrier thin film characterized in that, in the metal compound MO X S Y , the composition ratio X / Y is (1.2 to 1.7) / (0.3 to 0.8) Coated film. 金属化合物を少なくとも片面に被覆したポリマーフィルムであって、その金属化合物が、インジウム(In)、シリコン(Si)のいずれかからなる金属原子(M)、酸素原子(O)、リン原子(P)より構成され、かつ金属化合物MOにおいて、その組成比X/Yが、(1.5〜2.0)/(0.3〜1.0)であることを特徴とする透明ガスバリア薄膜被覆フィルム。A polymer film having at least one surface coated with a metal compound, wherein the metal compound is a metal atom (M), an oxygen atom (O), or a phosphorus atom (P) made of indium (In) or silicon (Si ). it is more structure, and the metal compound MO X P Y, the composition ratio X / Y is, transparent gas barrier film, which is a (1.5 to 2.0) / (0.3 to 1.0) Coated film. 前記金属化合物を被覆したポリマーフィルムの水蒸気透過速度が、0.1gm−2day−1以下であり、かつ酸素透過速度が、0.05ccm−2day−1以下であり、かつ光波長550nmにおける光線透過率が、85%以上であることを特徴とする請求項1または請求項2に記載の透明ガスバリア薄膜被覆フィルム。The polymer film coated with the metal compound has a water vapor transmission rate of 0.1 gm −2 day −1 or less, an oxygen transmission rate of 0.05 ccm −2 day −1 or less, and a light beam at a light wavelength of 550 nm. The transparent gas barrier thin film-coated film according to claim 1 or 2, wherein the transmittance is 85% or more.
JP2002061483A 2002-03-07 2002-03-07 Transparent gas barrier thin film coating film Expired - Fee Related JP4106931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061483A JP4106931B2 (en) 2002-03-07 2002-03-07 Transparent gas barrier thin film coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061483A JP4106931B2 (en) 2002-03-07 2002-03-07 Transparent gas barrier thin film coating film

Publications (2)

Publication Number Publication Date
JP2003251732A JP2003251732A (en) 2003-09-09
JP4106931B2 true JP4106931B2 (en) 2008-06-25

Family

ID=28670344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061483A Expired - Fee Related JP4106931B2 (en) 2002-03-07 2002-03-07 Transparent gas barrier thin film coating film

Country Status (1)

Country Link
JP (1) JP4106931B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732363B2 (en) * 2011-09-30 2015-06-10 株式会社クラレ Composite structure, packaging material and molded product using the same, and method for producing composite structure
WO2013183093A1 (en) * 2012-06-04 2013-12-12 パナソニック株式会社 Organic el element, method for producing same, organic el panel, organic el light emitting device, and organic el display device
US10273379B2 (en) 2013-02-08 2019-04-30 Kuraray Co., Ltd. Multilayer structure and method for producing same
JP5873957B1 (en) 2014-03-18 2016-03-01 株式会社クラレ Electronic devices
WO2016002222A1 (en) 2014-07-02 2016-01-07 株式会社クラレ Multilayer structure and method for manufacturing same, packaging material and product in which same is used, and electronic device
JP6533525B2 (en) 2014-08-13 2019-06-19 株式会社クラレ MULTILAYER STRUCTURE, PACKAGING MATERIAL COMPRISING THE SAME, AND METHOD FOR MANUFACTURING THE MULTILAYER STRUCTURE
CN106573442A (en) 2014-08-13 2017-04-19 株式会社可乐丽 Antistatic sheet, and packaging material and electronic device including same
TWI687313B (en) 2014-12-24 2020-03-11 日商可樂麗股份有限公司 Multi-layer structure and packaging materials using the same
TWI687322B (en) 2014-12-24 2020-03-11 日商可樂麗股份有限公司 Electronic device and its manufacturing method

Also Published As

Publication number Publication date
JP2003251732A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
JP6180472B2 (en) Self-passivating mechanically stable hermetic thin film
US8547011B2 (en) Layered product, luminescence device and use thereof
TWI791739B (en) Organic-inorganic hybrid film , laminate and articles including organic-inorganic hybrid film
JP2011205133A (en) Article having flexible polymer substrate and gas-permeable barrier made by atomic layer deposition
JP2002260848A (en) Film used in organic el element and organic el device
JP4279816B2 (en) Transparent gas barrier substrate
JP4106931B2 (en) Transparent gas barrier thin film coating film
Lee et al. Environmental reliability and moisture barrier properties of silicon nitride and silicon oxide films using roll-to-roll plasma enhanced chemical vapor deposition
Gasonoo et al. Parylene C-AlN multilayered thin-film passivation for organic light-emitting diode using a single deposition chamber
CN101743267B (en) Multiple-layer film and method for manufacturing same
JP2004009395A (en) Transparent water vapor barrier film and its manufacturing process
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
Iwamori et al. Silicon oxide gas barrier films deposited by reactive sputtering
JP2004148673A (en) Transparent gas barrier film, substrate with transparent gas barrier film, and its manufacturing process
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
JPH06136159A (en) Transparent conductive film and its production
JPH02194944A (en) Transparent barrier composite film having retort resistance
JP2001121641A (en) Transparent conductive laminate
TW201226606A (en) Gas-barrier laminate film
JP2006076051A (en) Barrier film and its manufacturing method
JP4097947B2 (en) Transparent water vapor barrier film
WO2017090609A1 (en) Gas barrier film and electronic device
JP2004042412A (en) Film coated with transparent gas-barrier membrane
JP2001283645A (en) Transparent conductive film and its production
KR102252112B1 (en) A transparent conducting oxide thin film based on silver metal alloy composition and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees