JP4102681B2 - Water treatment system - Google Patents
Water treatment system Download PDFInfo
- Publication number
- JP4102681B2 JP4102681B2 JP2003055512A JP2003055512A JP4102681B2 JP 4102681 B2 JP4102681 B2 JP 4102681B2 JP 2003055512 A JP2003055512 A JP 2003055512A JP 2003055512 A JP2003055512 A JP 2003055512A JP 4102681 B2 JP4102681 B2 JP 4102681B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- adsorbent
- adsorption
- treated
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Water Treatment By Sorption (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水処理システムおよび水処理方法に関し、特に、食品工場、アルコール工場、畜産施設等からの排出される、窒素、リンを高濃度に含む排液を処理するための水処理システムおよび水処理方法に関する。
【0002】
【従来の技術】
酢酸発酵工程やアルコール発酵工程から発生する排液は、通常、UASB法(上向流嫌気性スラッジベッド法)等による嫌気処理装置により処理され、嫌気処理装置にて排液中のCOD(化学的酸素要求量)の低減、および有用メタンガスの回収が行われている。嫌気処理された排液は、十分にCODが低減されているものの、依然、アンモニウムイオン濃度で1000mg/L以上の窒素成分、および高濃度のリン成分を含んでいる。近年、環境問題への関心の高まり、排液への規制強化などに伴い、アルコール発酵排液に高濃度に含まれる窒素成分の除去が必要となってきている。
【0003】
排液中に含まれるアンモニア性窒素(NH4 −N)を除去する方法としては、亜硝化菌、硝化菌によりNH4 +をNO2 -、NO3 -に酸化(硝化)し、さらに脱窒菌により窒素ガスとする、標準活性汚泥法などの生物学的硝化脱窒法が知られている。
しかしながら、UASB法等によって嫌気処理された排液は、水素供与体成分(BOD成分)に対する窒素成分の濃度が高すぎるため、このままでは標準活性汚泥法による生物処理ができない。生物処理を行うためには、pH調整、メタノールの投入などの必要があり、処理コストが高くなると言う問題があった。
【0004】
排液中に含まれるアンモニア性窒素を除去する方法としては、ゼオライトによるアンモニア性窒素の選択的吸着性に着目した方法が開示されている。
特開平11−239785号公報には、ゼオライトのナトリウムイオン、カリウムイオンの一部をマグネシウムイオンで置換した置換ゼオライトを用いる方法が開示されている。この方法によれば、排液中のアンモニウムイオン濃度が30mg/L以下の濃度であれば、安定した処理が可能である。しかしながら、アンモニウムイオン濃度が30mg/Lを超える、特に1000mg/L以上となると、置換ゼオライト単位質量あたりに吸着されたアンモニウムイオンが少ない状態で吸着平衡に達してしまうため、置換ゼオライトが本来有する吸着容量を効率よく使うことができず、置換ゼオライトの投入量が増え、処理コストが高くなるという問題があった。
【0005】
【特許文献1】
特開平11−239785号公報(第2−6頁)
【0006】
【発明が解決しようとする課題】
よって、本発明の目的は、対象物質を高濃度に含む被処理水中の対象物質を低コストで除去できる水処理システムおよび水処理方法を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明の水処理システムは、被処理水中のアンモニウムイオンを吸着剤に吸着させる吸着処理手段を2段で1組とした多段吸着処理手段を2組以上具備し、各多段吸着処理手段ごとに、後段側の吸着処理手段の被処理水に吸着剤を投入する吸着剤投入手段と、後段側の吸着処理手段で使用した吸着剤を前段側の吸着処理手段に移送する吸着剤移送手段とが設けられていることを特徴とするものである。
【0008】
また、本発明の水処理システムは、吸着処理手段で処理された被処理水を生物学的に処理する生物処理手段を具備することが望ましい。
また、本発明の水処理システムは、多段吸着処理手段よりも前段側に、被処理水を嫌気菌によって処理する嫌気処理手段を具備することが望ましい。
前記吸着剤は、ゼオライトであることが望ましい。
【0011】
【発明の実施の形態】
以下、本発明を詳しく説明する。
(形態例1)
図1は、本発明の水処理システムの一形態例を示す概略構成図である。この水処理システムは、被処理水中の固形分を沈澱させる第1の沈殿槽11および第2の沈殿槽12と、被処理水の水温、pH等を調整する第1の調整槽13および第2の調整槽14と、被処理水を嫌気菌によって処理する第1の嫌気処理装置15および第2の嫌気処理装置16(嫌気処理手段)と、被処理水の水温、pH、水量等を調整する二次調整槽17と、被処理水中の対象物質を吸着剤に吸着させる第1の吸着処理装置18および第2の吸着処理装置19(吸着処理手段)からなる第1の多段吸着処理装置20(多段吸着処理手段)と、第3の吸着処理装置21および第4の吸着処理装置22(吸着処理手段)からなる第2の多段吸着処理装置23(多段吸着処理手段)と、吸着処理装置で処理された被処理水を生物学的に処理する接触酸化装置24(生物処理手段)と、接触酸化装置13で処理された被処理水の固液分離を行う加圧浮上分離装置25と、第2の吸着処理装置19の被処理水に吸着剤を投入する第1の吸着剤投入装置26(吸着剤投入手段)と、第4の吸着処理装置22の被処理水に吸着剤を投入する第2の吸着剤投入装置27(吸着剤投入手段)と、第2の吸着処理装置19で使用した吸着剤を第1の吸着処理装置18に移送する第1の吸着剤移送装置28(吸着剤移送手段)と、第4の吸着処理装置22で使用した吸着剤を第3の吸着処理装置21に移送する第2の吸着剤移送装置29(吸着剤移送手段)と、第1の吸着処理装置18で使用した吸着剤を回収する第1の吸着剤回収装置30と、第3の吸着処理装置21で使用した吸着剤を回収する第2の吸着剤回収装置31と、第2の調整槽14から第1の嫌気処理装置15へ被処理水を送液する第1の被処理水供給装置32と、二次調整槽17から第1の吸着処理装置18へ被処理水を送液する第2の被処理水供給装置33とを具備して概略構成されるものである。
【0012】
第1の沈殿槽11は、主に粒径1mm以上の比較的大きい固形物を沈殿させるための槽であり、第2の沈殿槽12は、主に粒径1mm以下の比較的小さい固形物を沈殿させるための槽である。
第1の調整槽13および第2の調整槽14は、被処理水の水温、pH、水量等の調整を行うものである。また、後段の嫌気処理装置における嫌気菌の栄養源である微量の金属を添加するための槽である。
【0013】
嫌気処理手段は、エネルギー(メタンガス)回収およびCOD低減を行うものである。具体的には、第1の嫌気処理装置15は、被処理水を嫌気菌で処理して主に酸を生成させるものであり、第2の嫌気処理装置16は、被処理水を嫌気菌でさらに処理して主にメタンを生成させるものである。
嫌気処理装置としては、UASB法(上向流嫌気性スラッジベッド法)による装置、EGSB法(膨張顆粒スラッジベッド法)による装置など、上向流嫌気性処理装置を用いることができる。
【0014】
第1の吸着処理装置18は、被処理水と吸着剤とを接触させる部分と吸着剤を沈降分離させる部分とを有する吸着処理槽34と、吸着処理槽34内の被処理水を攪拌する攪拌装置35とを備えたものである。
同様に、第2の吸着処理装置19は、吸着処理槽36と、攪拌装置37とを備えたものであり、第1の吸着処理装置18で処理された被処理水が重力によって第2の吸着処理装置19へと流れるように、第1の吸着処理装置18よりも低い位置に設置されているものである。
【0015】
同様に、第3の吸着処理装置21は、吸着処理槽38と、攪拌装置39とを備えたものであり、第2の吸着処理装置19で処理された被処理水が重力によって第3の吸着処理装置21へと流れるように、第2の吸着処理装置19よりも低い位置に設置されているものである。
同様に、第4の吸着処理装置22は、吸着処理槽40と、攪拌装置41とを備えたものであり、第3の吸着処理装置21で処理された被処理水が重力によって第4の吸着処理装置22へと流れるように、第3の吸着処理装置21よりも低い位置に設置されているものである。
【0016】
接触酸化装置24は、接触酸化槽42と、この中に配置された、好気性微生物(汚泥)を付着させる接触材43と、接触酸化槽42に空気を供給するブロアポンプ44と、接触材43の下方に配置され、ブロアポンプ44からの空気を接触酸化槽42内に散気する散気管45とを備えたものである。
加圧浮上分離装置25は、加圧によって被処理水内に発生した微細な気泡により被処理水内の汚泥を浮上させ、被処理水を汚泥および処理水に分離するものであり、固液分離槽46と、固液分離槽46内の被処理水を加圧する、加圧ポンプ、加圧タンク等の加圧手段(図示略)と、浮上した汚泥を掻き取る、スクレーパー等の掻き取り手段47とを備えたものである。
【0017】
第1の吸着剤投入装置26は、第1の多段吸着処理装置20を構成する2つの吸着処理装置の内、後段側の第2の吸着処理装置19へ吸着剤を投入するものであり、吸着剤を貯留する貯留容器(図示略)と、吸着剤を第2の吸着処理装置19へ投入するための投入口(図示略)と、投入口に設けられた、吸着剤の投入速度(時間あたりの投入量)を調整する調整機構(図示略)とを備えたものである。
同様に、第2の吸着剤投入装置27は、第2の多段吸着処理装置23を構成する2つの吸着処理装置の内、後段側の第4の吸着処理装置22へ吸着剤を投入するものであり、吸着剤を貯留する貯留容器(図示略)と、吸着剤を第4の吸着処理装置22へ投入するための投入口(図示略)と、投入口に設けられた、吸着剤の投入速度(時間あたりの投入量)を調整する調整機構(図示略)とを備えたものである。
【0018】
第1の吸着剤移送装置28は、第2の吸着処理装置19の吸着処理槽36の底に、凝集剤によって凝集、沈降した吸着剤を若干の被処理水とともに回収し、第1の吸着処理装置18に供給するものである。
第2の吸着剤移送装置29は、第4の吸着処理装置22の吸着処理槽40の底に、凝集剤によって凝集、沈降した吸着剤を若干の被処理水とともに回収し、第3の吸着処理装置21に供給するものである。
これら吸着剤移送装置としては、例えば、スクリューポンプ、スネークポンプ、ギアポンプ、カスケードポンプ、チューブポンプなどの中から、吸着剤の粘性、濃度、量などに応じて適宜選択して用いることができる。
【0019】
第1の吸着剤回収装置30は、第1の吸着処理装置18の吸着処理槽34の底に沈降した吸着剤を若干の被処理水とともに回収し、吸着剤脱水装置(図示略)に移送するものである。
第2の吸着剤回収装置31は、第3の吸着処理装置21の吸着処理槽38の底に沈降した吸着剤を若干の被処理水とともに回収し、吸着剤脱水装置(図示略)に移送するものである。
これら吸着剤回収装置としては、例えば、スクリューポンプ、スネークポンプ、ギアポンプ、カスケードポンプ、チューブポンプなどの中から、吸着剤の粘性、濃度、量などに応じて適宜選択して用いることができる。
【0020】
吸着剤脱水装置(図示略)は、吸着処理装置から回収された吸着剤から水を脱水し、脱水による排水を二次調整槽17に戻し、脱水された吸着剤を得るものである。吸着剤脱水装置としては、ロール脱水方式の脱水機、加圧脱水方式の脱水機、真空脱水方式の脱水機などを用いることができる。
また、第1の多段吸着処理装置20および第2の多段吸着処理装置23には、それぞれを構成する2つの吸着処理装置の内、後段側の吸着処理装置へ凝集剤を投入する凝集剤投入装置(図示略)を付設するものとする。
【0021】
次に、図示例の水処理システムを用いた水処理方法について説明する。
この水処理システムの運転開始前には、まず、第1の嫌気処理装置15および第2の嫌気処理装置16内に嫌気菌を植種し、培養する。また、接触酸化装置24に種汚泥を植種し、担体である接触材43に好気性微生物を付着させる。
さらに、第2の吸着処理装置19に吸着剤投入装置26から吸着剤を所定量投入し、第2の吸着処理装置19において所定時間、吸着処理を行った後、第1の吸着剤移送装置28を作動させ、第2の吸着処理装置19の吸着処理槽36の底に、凝集剤によって凝集、沈降した吸着剤を若干の被処理水とともに回収し、所定量の吸着剤を第1の吸着処理装置18に供給する。同様に、第4の吸着処理装置22に第2の吸着剤投入装置27から吸着剤を所定量投入し、第4の吸着処理装置22において所定時間、吸着処理を行った後、第2の吸着剤移送装置29を作動させ、第4の吸着処理装置22の吸着処理槽40の底に、凝集剤によって凝集、沈降した吸着剤を若干の被処理水とともに回収し、所定量の吸着剤を第3の吸着処理装置21に供給する。
【0022】
このようにして各装置の条件を調整した後、連続運転を開始する。
まず、アルコール発酵などの排液(被処理水)は、第1の沈殿槽11、続いて第2の沈殿槽12に導入され、被処理水中の固形分が沈殿により除去される。
沈殿により固形物を除去された被処理水は、第1の調整槽13、続いて第2の調整槽14に供給され、その水温、pH等が調整される。また、第2の調整槽14にて、嫌気菌の栄養源である微量の金属が被処理水に添加される。
被処理水に固形分が含まれていない場合は、第1の沈殿槽11および第2の沈殿槽12に通さずに、被処理水を直接第1の調整槽13に供給してもよい。
【0023】
水温、pH等が調整された被処理水は、第1の被処理水供給装置32によって第1の嫌気処理装置15に送られ、第1の嫌気処理装置15にて嫌気菌で処理され、ここで主に酸が生成される。続いて、被処理水は、第2の嫌気処理装置16にて嫌気菌でさらに処理され、ここで主にメタンが生成される。
嫌気処理された被処理水は、二次調整槽17に送られ、その水温、pH、水量等が調整される。
【0024】
第2の被処理水供給装置33によって二次調整槽17から第1の吸着処理装置18に連続的に供給された被処理水は、まず、第1の吸着処理装置18において吸着剤と接触し、被処理水中の対象物質が吸着剤に吸着される。第1の吸着処理装置18において吸着処理された被処理水は、第1の吸着処理装置18から溢れ、第1の吸着処理装置18と第2の吸着処理装置19との高低差によって第2の吸着処理装置12に供給され、第2の吸着処理装置19において吸着剤と接触し、被処理水中の対象物質が吸着剤に吸着される。
【0025】
第2の吸着処理装置19において吸着処理された被処理水は、第2の吸着処理装置19から溢れ、第2の吸着処理装置19と第3の吸着処理装置21との高低差によって第3の吸着処理装置21に供給され、第3の吸着処理装置21において吸着剤と接触し、被処理水中の対象物質が吸着剤に吸着される。第3の吸着処理装置21において吸着処理された被処理水は、第3の吸着処理装置21から溢れ、第3の吸着処理装置21と第4の吸着処理装置22との高低差によって第4の吸着処理装置22に供給され、第4の吸着処理装置22において吸着剤と接触し、被処理水中の対象物質が吸着剤に吸着される。
【0026】
第4の吸着処理装置22において吸着処理された被処理水は、第4の吸着処理装置22から溢れ、第4の吸着処理装置22と接触酸化装置24との高低差によって接触酸化装置24に供給され、接触酸化装置24において生物学的に処理される。具体的には、好気性微生物(汚泥)が付着した接触材43にブロアポンプ44からの空気を散気管45から散気して、空気の存在下、好気性微生物によって対象物質を酸化、分解する。接触酸化装置24において酸化処理された被処理水は、加圧浮上分離装置25に供給され、汚泥および処理水に分離される。
【0027】
連続運転の際には、吸着剤投入装置26から吸着剤を第2の吸着処理装置19内に所定の投入速度で連続的に供給し、かつ第2の吸着処理装置19から吸着剤を第1の吸着剤移送装置28によって回収し、回収した吸着剤を所定の移送速度で第1の吸着処理装置18に供給する。また、第1の吸着処理装置18から吸着剤を第1の吸着剤回収装置30によって所定の回収速度で回収する。また、吸着剤投入装置27から吸着剤を第4の吸着処理装置22内に所定の投入速度で連続的に供給し、かつ第4の吸着処理装置22から吸着剤を第2の吸着剤移送装置29によって回収し、回収した吸着剤を所定の移送速度で第3の吸着処理装置21に供給する。また、第3の吸着処理装置21から吸着剤を第2の吸着剤回収装置31によって所定の回収速度で回収する。
【0028】
ここで、吸着処理装置からの吸着剤の回収は、被処理水の混入量を極力減らすために、断続的に行うことが好ましい。第1の吸着処理装置18および第3の吸着処理装置21から回収された吸着剤を、吸着剤脱水装置にて脱水し、排水を二次調整槽17に戻し、脱水された吸着剤を得る。脱水された吸着剤は、再利用または廃棄される。
【0029】
吸着剤としては、対象物質が、アンモニア性窒素等の窒素化合物、色素、臭気物質などの場合は、合成ゼオライト、天然ゼオライト、人工ゼオライト等を用いることができる。また、対象物質が、リン化合物の場合は、無機凝集剤、酸化チタン、流用活性アルミナ、ケイ酸チタニウム等を用いることができる。吸着剤は、粒径が小さいほど表面積が増加するので、平均粒径が0.01〜50μmのものが好ましい。
吸着剤の投入量(投入速度)は、吸着剤の吸着能、吸着処理後の被処理水に含まれる対象物質の目標濃度、水処理システムで得られる処理水に含まれる対象物質の目標濃度、生物処理手段の処理能力等によって適宜決定される。
【0030】
吸着剤を凝集させるための凝集剤としては、無機凝集剤、有機高分子凝集剤、凝集助剤を用いることができる。中でも、使用済みのゼオライトを土壌に還元することが可能であり、廃棄物が発生しないことから、鉄系の無機凝集剤が好適である。
凝集剤の投入量(投入速度)は、無機凝集剤の場合、吸着剤であるゼオライトの沈降性、被処理水中のリン濃度、水処理システムで得られる処理水に含まれるリンの目標濃度等の条件によって、適宜決定すればよい。
有機高分子凝集剤は、無機凝集剤と併用することが好ましく、その投入量は無機凝集剤の場合と同様に適宜決定すればよい。
【0031】
第1の沈殿槽11および第2の沈殿槽12における被処理水の滞留時間は、被処理水中の固形分の量に応じて適宜決定すればよい。
また、第1の調整槽13および第2の調整槽14における被処理水の温度、pH、および金属の添加量は、被処理水の性質により適宜決定すればよい。
また、二次調整槽17における被処理水の温度は、被処理水の種類、吸着剤の種類、運転コストを鑑み、適宜決定すればよい。
【0032】
第1の多段吸着処理装置20および第2の多段吸着処理装置23における被処理水の滞留時間は、被処理水中の対象物質の濃度、吸着剤の種類、量などの条件に応じて適宜決定すればよい。この滞留時間は、第2の被処理水供給装置33による第1の吸着処理装置18への被処理水の供給速度を調整することにより、調節することができる。
また、接触酸化装置24における被処理水の滞留時間は、被処理水中の対象物質の濃度、接触酸化槽42の容積などの条件に応じて適宜決定すればよい。
【0033】
以上説明した水処理システムにあっては、第1の吸着処理装置18および第2の吸着処理装置19を1組とした第1の多段吸着処理装置20と、第3の吸着処理装置21および第4の吸着処理装置22を1組とした第2の多段吸着処理装置23とを具備しているので、以下の理由から、対象物質を高濃度、具体的にはアンモニウムイオンを1000mg/L以上含む被処理水中の対象物質を低コストで除去できる。
【0034】
アンモニウムイオン濃度が1000mg/L以上の被処理水について、吸着剤の単位質量あたりの吸着平衡濃度および吸着量をもとに、多段化によるアンモニウムイオンの除去率を求めると、図6に示す1段処理では約65%、図7に示す2段処理では同じ吸着剤量で約72%、図8に示す3段処理では同じ吸着剤量で約73%、図9に示す4段処理では同じ吸着剤量で約73%となる。ここで、符号1は吸着処理装置、符号2は吸着剤移送装置、符号3は吸着剤回収装置、符号4は吸着剤投入装置である。したがって、後段側で使用した吸着剤を前段側に移送して再利用するタイプの多段吸着処理装置では、吸着剤の投入ポイントあたりの吸着処理装置を4段とするよりも、吸着剤の投入ポイントあたりの吸着処理装置を2段とし、この2段のものを2つ組み合わせた方が、吸着効率はよい。よって、2段2組とすることにより、吸着剤の投入ポイントは4段1組のものよりも多くなるが、全体の吸着剤の投入量は減らすことができる。
【0035】
また、各多段吸着処理装置ごとに、後段側の吸着処理装置の被処理水に吸着剤を投入する吸着剤投入装置と、後段側の吸着処理装置で使用した吸着剤を前段側の吸着処理装置に移送する吸着剤移送装置とが設けられているので、以下の理由から、吸着剤のより効率的な使用が可能である。すなわち、吸着剤であるゼオライトは、アンモニウムイオンの濃度が低い方が、単位質量あたりのアンモニウムイオンの吸着量が多くなる傾向がある。よって、アンモニウムイオン濃度が比較的低い第2の吸着処理装置19(第4の吸着処理装置22)においてフレッシュな吸着剤を用いた方がアンモニウムイオンの吸着効率がよい。第2の吸着処理装置12(第4の吸着処理装置22)において使用された吸着剤の吸着能は、飽和に達していないので、これを第1の吸着処理装置18(第3の吸着処理装置21)にて再利用することが可能であり、吸着剤をより効率的に使用できる。
【0036】
また、以上説明した水処理方法にあっては、被処理水中の対象物質を吸着剤に吸着させる吸着処理工程を2工程で1組とした多段吸着処理工程を2組以上有しているので、対象物質を高濃度に含む被処理水中の対象物質を低コストで除去できる。また、各多段吸着処理工程において、後工程側の吸着処理工程の被処理水に吸着剤を投入し、後段側の吸着処理工程で使用した吸着剤を前工程側の吸着処理工程で再利用しているので、吸着剤のより効率的な使用が可能である。
【0037】
このような吸着処理装置(吸着処理工程)の組み合わせは、水素供与体成分(BOD成分)に対する窒素成分の濃度が高すぎる排液の処理、例えば、アルコール排液を嫌気処理した後の被処理水の処理に好適である。また、このような吸着処理装置(吸着処理工程)の組み合わせによって処理された被処理水は、BOD成分と窒素成分とのバランスがよく、生物処理に好適である。
【0038】
(形態例2)
なお、本発明における生物処理手段は、上述の接触酸化法による装置(接触酸化装置24)に限定はされず、標準活性汚泥法、膜分離式活性汚泥法、オキシデーションディチ法(OD法)などの硝化脱窒法による装置を用いることができる。以下、膜分離式活性汚泥法の装置を用いた例について説明する。
【0039】
図2は、本発明の水処理システムの他の形態例を示す概略構成図であり、この水処理システムは、図1の水処理システムにおける接触酸化装置24および加圧浮上分離装置25の代わりに、浸漬型膜分離装置50を設けたものである。
浸漬型膜分離装置50は、被処理水の生物処理および固液分離を行うものであり、膜分離槽51と、この中に配置された中空糸膜モジュール52と、これに接続された吸引ポンプ53と、膜分離槽51に空気を供給するブロアポンプ54と、中空糸膜モジュール52の下方に配置され、ブロアポンプ54からの空気を膜分離槽51内に散気する散気管55とを備えたものである。
中空糸膜モジュール52は、略平行にシート状に配列された複数本の中空糸膜56と、この両端部をその開口を維持したまま支持する2本の集水管57とを備え、集水管57の端部が吸引ポンプ53に接続されたものである。
【0040】
次に、図示例の水処理システムを用いた水処理方法について説明する。
吸着処理工程までは、形態例1の水処理システムを用いた場合と同じなので、説明を省略する。
第4の吸着処理装置22において吸着処理された被処理水は、第4の吸着処理装置22から溢れ、第4の吸着処理装置22と浸漬型膜分離装置50との高低差によって浸漬型膜分離装置50に供給され、浸漬型膜分離装置50において生物学的に処理され、固液分離される。具体的には、好気性微生物(汚泥)を含む被処理水にブロアポンプ54からの空気を散気管55から散気して、空気の存在下、好気性微生物によって対象物質を酸化、分解する。これと同時に、吸引ポンプ53を作動させることにより、浸漬型膜分離装置50の被処理水が中空糸膜56を介して吸引され、その膜面で微生物や吸着剤等の固形物が捕らえられ、吸引ポンプ53側から処理水が得られる。
【0041】
(形態例3)
また、本発明における生物処理手段は、図3に示すように、浸漬型膜分離装置50と、接触酸化装置24および加圧浮上分離装置25とを併用したものであっても構わない。
【0042】
(その他の形態)
本発明の水処理システムは、図示例のものに限定はされず、吸着処理手段を2段で1組とした多段吸着処理手段を2組以上具備し、各多段吸着処理手段ごとに、後段側の吸着処理手段の被処理水に吸着剤を投入する吸着剤投入手段と、後段側の吸着処理手段で使用した吸着剤を前段側の吸着処理手段に移送する吸着剤移送手段とが設けられているものであればよい。
例えば、各多段吸着処理手段における2つの吸着処理手段は、図1に示すように隣り合っている必要はなく、図4に示すように、第3の吸着処理装置を21を第1の吸着処理装置18よりも前段側に設けてもよく、図5に示すように、第3の吸着処理装置を21を、第1の吸着処理装置18と第2の吸着処理装置19との間に設けてもよい。
また、吸着処理手段を2段で1組とした多段吸着処理手段を3組以上設けてもよい。
【0043】
沈殿槽は、図示例のように2段のものに限定はされず、その段数は、被処理水の種類、得られる処理水中の対象物質の目標濃度等に応じて適宜設計される。
また、調整槽は、図示例のように2段のものに限定はされず、その段数は、被処理水の種類、得られる処理水中の対象物質の目標濃度等に応じて適宜設計される。
また、嫌気処理手段は、図示例のように2段のものに限定はされず、その段数は、被処理水の種類、水量等に応じて適宜設計される。嫌気処理手段は、酸生成およびメタン生成を行うことが可能であることから、2段であることが好ましい。
【0044】
また、各吸着処理装置間の被処理水の送液、および第4の吸着処理装置22から接触酸化装置24または浸漬型膜分離装置50への被処理水の送液は、図示例では、各装置の高低差を利用した重力式で送液しているが、各装置間に送液ポンプを設けて、これで被処理水を送液しても構わない。
【0045】
また、浸漬型膜分離装置50においては、吸引ポンプ53によって被処理水を中空糸膜56を介して吸引し、処理水と固形分とを分離しているが、吸引ポンプ53の代わりに、浸漬型膜分離装置50よりも下方に貯水槽を設け、重力やサイフォン効果を利用して被処理水を中空糸膜56を介して吸引し、この貯水槽に処理水を送液するようにしてもよい。吸引ポンプ53を使用しないことによって、より低コストで処理水を得ることができる。
【0046】
また、膜分離装置を用いる場合、これに用いる分離膜としては、中空糸膜以外に、平膜、管状膜、セラミック膜、金属膜等の各種分離膜を用いることができる。分離膜の材質も、固液分離が可能なものであればよく、高分子、金属、セラミックなどから選ぶことができる。
分離膜の平均孔径は、分離膜の二次側への吸着剤の流入を防ぐために、吸着剤の平均粒径よりも小さいことが好ましい。
また、加圧浮上分離装置25の代わりに、常圧で固形分の分離が可能な分散空気法による装置を用いてもよい。
【0047】
【実施例】
以下、具体的な実施例について説明する。
[実施例1]
図1に示す水処理システムを用いて、アンモニウムイオンを含む被処理水を処理した。第1の沈殿槽11に供給する被処理水としては、大豆および米を原料とする発酵酒の製造工場からのアルコール発酵排液を用いた。第1の調整槽13に供給する被処理水としては、米の洗浄液を用いた。アルコール発酵排液と米の洗浄液との比率(アルコール発酵排液:米の洗浄液)は、5:3とした。アルコール発酵排液および米の洗浄液の水質を表1に示す。
吸着剤としては、アンモニウムイオンを吸着する作用を持つゼオライト(平均粒径4.0μm)を用い、吸着剤を凝集させる凝集剤としては、PFC(ポリ塩化鉄)を用いた。
【0048】
【表1】
【0049】
表中、CODcr(Chemical Oxygen Demand)はニクロム酸カリウムを用いた測定法による化学的酸素要求量、SS(Suspended Solids)は浮遊物質、VSS(Volatile Suspended Solids)は溶解性浮遊物質、VFA(Volatile FattyAcids)は揮発性脂肪酸量、T−Nは全窒素、Pはリン成分である。
【0050】
水処理システムの運転条件は以下の通りである。
(1)処理量:48L/日
(2)第1の沈殿槽11における被処理水の滞留時間:2時間
(3)第2の沈殿槽12における被処理水の滞留時間:12時間
(4)第2の調整槽14における調整後の被処理水のpH:6.8−7.5
(5)第2の調整槽14における調整後の被処理水の水温:35℃
(6)第1の嫌気処理装置15における被処理水の滞留時間:36時間
(7)第2の嫌気処理装置16における被処理水の滞留時間:24時間
(8)二次調整槽17における調整後の被処理水の水温:30℃
(9)各多段吸着処理装置における被処理水の滞留時間:各1.5時間
(10)第1の多段吸着処理装置20におけるゼオライト濃度:30000mg/L
(11)第2の多段吸着処理装置23におけるゼオライト濃度:7500mg/L
(12)第1の多段吸着処理装置20へのPFC(ポリ塩化鉄)の投入は、被処理水中のPFC濃度が10ppmとなるように連続的に行った。
(13)第2の多段吸着処理装置23へのPFC(ポリ塩化鉄)の投入は、被処理水中のPFC濃度が2.5ppmとなるように連続的に行った。
(14)被接触酸化装置24における被処理水の滞留時間:14時間
(15)加圧浮上分離装置25における被処理水の滞留時間:4時間
【0051】
以上の条件で、水処理システムを定常運転し、処理水を得た。処理水のCODcrは270mg/L、アンモニウム濃度は8.5mg/L、リン濃度は3mg/Lであった。
【0052】
[実施例2]
水処理システムを図3に示すものに変更した以外は、実施例1と同様に被処理水を処理した。0.4μmの分画を有する中空糸膜モジュールを用い、浸漬型膜分離装置50における被処理水の滞留時間を2時間とした。
以上の条件で、水処理システムを定常運転し、処理水を得た。処理水のCODcrは250mg/L、アンモニウム濃度は8mg/L、リン濃度は2.5mg/Lであった。
【0053】
[実施例3]
水処理システムを図2に示すものに変更した以外は、実施例1と同様に被処理水を処理した。0.4μmの分画を有する中空糸膜モジュールを用い、浸漬型膜分離装置50における被処理水の汚泥濃度を10000mg/L、汚泥負荷を0.2、滞留時間を24時間とした。
以上の条件で、水処理システムを定常運転し、処理水を得た。処理水のCODcrは200mg/L、アンモニウム濃度は7mg/L、リン濃度は2mg/Lであった。
【0054】
[実施例4]
各吸着処理装置の並び方を図4に示す並び方に変更し、条件を以下のように変更した以外は、実施例3と同様に被処理水を処理した。
(10)第1の多段吸着処理装置20におけるゼオライト濃度:7500mg/L
(11)第2の多段吸着処理装置23におけるゼオライト濃度:30000mg/L
(12)第1の多段吸着処理装置20へのPFC(ポリ塩化鉄)の投入は、被処理水中のPFC濃度が2.5ppmとなるように連続的に行った。
(13)第2の多段吸着処理装置23へのPFC(ポリ塩化鉄)の投入は、被処理水中のPFC濃度が10ppmとなるように連続的に行った。
以上の条件で、水処理システムを定常運転し、処理水を得た。処理水のCODcrは220mg/L、アンモニウム濃度は7.5mg/L、リン濃度は2.5mg/Lであった。
【0055】
【発明の効果】
以上説明したように、本発明の水処理システムは、被処理水中の対象物質を吸着剤に吸着させる吸着処理手段を2段で1組とした多段吸着処理手段を2組以上具備し、各多段吸着処理手段ごとに、後段側の吸着処理手段の被処理水に吸着剤を投入する吸着剤投入手段と、後段側の吸着処理手段で使用した吸着剤を前段側の吸着処理手段に移送する吸着剤移送手段とが設けられているものであるので、対象物質を高濃度に含む被処理水中の対象物質を低コストで除去できる。
【0056】
また、本発明の水処理方法は、被処理水中の対象物質を吸着剤に吸着させる吸着処理工程を2工程で1組とした多段吸着処理工程を2組以上有し、各多段吸着処理工程において、後工程側の吸着処理工程の被処理水に吸着剤を投入し、後段側の吸着処理工程で使用した吸着剤を前工程側の吸着処理工程で再利用する方法であるので、対象物質を高濃度に含む被処理水中の対象物質を低コストで除去できる。
【図面の簡単な説明】
【図1】 本発明の水処理システムの一例を示す概略構成図である。
【図2】 本発明の水処理システムの他の例を示す概略構成図である。
【図3】 本発明の水処理システムの他の例を示す概略構成図である。
【図4】 本発明の水処理システムにおける吸着処理手段の並び方の他の例を示す概略構成図である。
【図5】 本発明の水処理システムにおける吸着処理手段の並び方の他の例を示す概略構成図である。
【図6】 本発明以外の水処理システムにおける吸着処理手段の一例を示す概略構成図である。
【図7】 本発明以外の水処理システムにおける多段吸着処理手段の一例を示す概略構成図である。
【図8】 本発明以外の水処理システムにおける多段吸着処理手段の他の例を示す概略構成図である。
【図9】 本発明以外の水処理システムにおける多段吸着処理手段の他の例を示す概略構成図である。
【符号の説明】
15 第1の嫌気処理装置(嫌気処理手段)
16 第2の嫌気処理装置(嫌気処理手段)
18 第1の吸着処理装置(吸着処理手段)
19 第2の吸着処理装置(吸着処理手段)
20 第1の多段吸着処理装置(多段吸着処理手段)
21 第3の吸着処理装置(吸着処理手段)
22 第4の吸着処理装置(吸着処理手段)
23 第2の多段吸着処理装置(多段吸着処理手段)
24 接触酸化装置(生物処理手段)
26 第1の吸着剤投入装置(吸着剤投入手段)
27 第2の吸着剤投入装置(吸着剤投入手段)
28 第1の吸着剤移送装置(吸着剤移送手段)
29 第2の吸着剤移送装置(吸着剤移送手段)
50 浸漬型膜分離装置(生物処理手段)[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water treatment system and a water treatment method, and in particular, a water treatment system and water for treating effluent containing nitrogen and phosphorus in high concentrations discharged from food factories, alcohol factories, livestock facilities, and the like. It relates to the processing method.
[0002]
[Prior art]
The effluent generated from the acetic acid fermentation process and the alcohol fermentation process is usually treated by an anaerobic treatment device such as the UASB method (upflow anaerobic sludge bed method), and the COD (chemical (Required oxygen demand) and recovery of useful methane gas. Although the COD is sufficiently reduced, the effluent subjected to anaerobic treatment still contains a nitrogen component having an ammonium ion concentration of 1000 mg / L or more and a high concentration phosphorus component. In recent years, it has become necessary to remove nitrogen components contained in high concentrations in alcoholic fermentation effluents as interest in environmental issues increases and regulations on effluents are tightened.
[0003]
Ammonia nitrogen (NH) contained in the drainageFour -N) is a method for removing NH by nitrifying bacteria or nitrifying bacteria.Four +NO2 -, NOThree -Biological nitrification and denitrification methods such as the standard activated sludge method are known, which are oxidized (nitrified) into nitrogen gas by denitrifying bacteria.
However, since the concentration of the nitrogen component with respect to the hydrogen donor component (BOD component) is too high, the wastewater that has been anaerobically treated by the UASB method or the like cannot be biologically treated by the standard activated sludge method. In order to perform biological treatment, it is necessary to adjust pH, add methanol, etc., and there is a problem that the treatment cost becomes high.
[0004]
As a method of removing ammonia nitrogen contained in the effluent, a method focusing on selective adsorption of ammonia nitrogen by zeolite is disclosed.
Japanese Patent Application Laid-Open No. 11-239785 discloses a method of using a substituted zeolite obtained by substituting a part of sodium ions and potassium ions of a zeolite with magnesium ions. According to this method, when the ammonium ion concentration in the drainage is 30 mg / L or less, stable treatment is possible. However, if the ammonium ion concentration exceeds 30 mg / L, particularly 1000 mg / L or more, the adsorption equilibrium is reached with a small amount of ammonium ions adsorbed per unit mass of the substituted zeolite. Cannot be used efficiently, and the amount of substituted zeolite added increases, resulting in high processing costs.
[0005]
[Patent Document 1]
JP-A-11-239785 (page 2-6)
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a water treatment system and a water treatment method that can remove a target substance in water to be treated containing the target substance at a high concentration at low cost.
[0007]
[Means for Solving the Problems]
That is, the water treatment system of the present inventionAmmonium ionThere are two or more sets of multi-stage adsorption treatment means for adsorbing the adsorbent to the adsorbent, and for each multi-stage adsorption treatment means, the adsorbent is added to the water to be treated of the adsorption treatment means on the rear stage side. An adsorbent charging means for charging and an adsorbent transferring means for transferring the adsorbent used in the adsorption processing means on the rear stage side to the adsorption processing means on the front stage side are provided.
[0008]
The water treatment system of the present invention preferably includes a biological treatment means for biologically treating the water to be treated treated by the adsorption treatment means.
In addition, the water treatment system of the present invention preferably includes an anaerobic treatment means for treating the water to be treated with anaerobic bacteria on the upstream side of the multistage adsorption treatment means.
The adsorbent is preferably a zeolite.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
(Example 1)
FIG. 1 is a schematic configuration diagram illustrating an example of a water treatment system according to the present invention. This water treatment system includes a first settling tank 11 and a
[0012]
The first sedimentation tank 11 is a tank for mainly precipitating relatively large solids having a particle diameter of 1 mm or more, and the
The
[0013]
The anaerobic treatment means performs energy (methane gas) recovery and COD reduction. Specifically, the first
As the anaerobic treatment device, an upward flow anaerobic treatment device such as a device based on the UASB method (upward flow anaerobic sludge bed method) or a device based on the EGSB method (expanded granule sludge bed method) can be used.
[0014]
The first
Similarly, the second
[0015]
Similarly, the third
Similarly, the fourth
[0016]
The
The pressurized
[0017]
The first
Similarly, the second
[0018]
The first
The second
As these adsorbent transfer devices, for example, a screw pump, a snake pump, a gear pump, a cascade pump, a tube pump, and the like can be appropriately selected according to the viscosity, concentration, amount, etc. of the adsorbent.
[0019]
The first
The second
These adsorbent recovery devices can be appropriately selected from screw pumps, snake pumps, gear pumps, cascade pumps, tube pumps, etc., depending on the viscosity, concentration, amount, etc. of the adsorbent.
[0020]
The adsorbent dewatering device (not shown) dehydrates water from the adsorbent collected from the adsorption processing device and returns the drainage by dehydration to the
Further, in the first multi-stage
[0021]
Next, a water treatment method using the illustrated water treatment system will be described.
Before starting the operation of this water treatment system, first, anaerobic bacteria are inoculated into the first
Furthermore, after a predetermined amount of adsorbent is charged into the second
[0022]
Thus, after adjusting the conditions of each apparatus, a continuous operation is started.
First, waste liquid (water to be treated) such as alcohol fermentation is introduced into the first sedimentation tank 11 and then into the
The water to be treated from which the solid matter has been removed by precipitation is supplied to the
When the solid content is not contained in the water to be treated, the water to be treated may be supplied directly to the
[0023]
The water to be treated whose water temperature, pH and the like are adjusted is sent to the first
The water to be treated that has been subjected to anaerobic treatment is sent to the
[0024]
The treated water continuously supplied from the
[0025]
The water to be treated that has been subjected to the adsorption treatment in the second
[0026]
The water to be treated that has been subjected to the adsorption treatment in the fourth
[0027]
During continuous operation, the adsorbent is continuously supplied from the
[0028]
Here, the collection of the adsorbent from the adsorption processing apparatus is preferably performed intermittently in order to reduce the amount of water to be treated as much as possible. The adsorbent recovered from the first
[0029]
As the adsorbent, synthetic zeolite, natural zeolite, artificial zeolite or the like can be used when the target substance is a nitrogen compound such as ammoniacal nitrogen, a dye, or an odor substance. When the target substance is a phosphorus compound, an inorganic flocculant, titanium oxide, diverted activated alumina, titanium silicate, or the like can be used. Since the surface area of the adsorbent increases as the particle size decreases, it is preferable that the adsorbent has an average particle size of 0.01 to 50 μm.
The amount of adsorbent input (input speed) is the adsorption capacity of the adsorbent, the target concentration of the target substance contained in the treated water after the adsorption treatment, the target concentration of the target substance contained in the treated water obtained by the water treatment system, It is determined appropriately depending on the processing capacity of the biological treatment means.
[0030]
As the aggregating agent for aggregating the adsorbent, an inorganic aggregating agent, an organic polymer aggregating agent, and an aggregating aid can be used. Among them, iron-based inorganic flocculants are suitable because spent zeolite can be reduced to soil and no waste is generated.
In the case of an inorganic flocculant, the amount of flocculant input (input speed) is such as the sedimentation property of zeolite as an adsorbent, the phosphorus concentration in the water to be treated, and the target concentration of phosphorus contained in the treated water obtained by the water treatment system. What is necessary is just to determine suitably according to conditions.
The organic polymer flocculant is preferably used in combination with an inorganic flocculant, and the amount of the organic polymer flocculant may be appropriately determined as in the case of the inorganic flocculant.
[0031]
What is necessary is just to determine suitably the residence time of the to-be-processed water in the 1st settling tank 11 and the
Moreover, what is necessary is just to determine suitably the temperature of the to-be-processed water in the
Moreover, what is necessary is just to determine the temperature of the to-be-processed water in the
[0032]
The residence time of the water to be treated in the first multistage
Further, the residence time of the water to be treated in the
[0033]
In the water treatment system described above, the first multi-stage
[0034]
For the water to be treated having an ammonium ion concentration of 1000 mg / L or more, the removal rate of ammonium ions by multi-stage formation based on the adsorption equilibrium concentration and the adsorption amount per unit mass of the adsorbent is obtained as shown in FIG. About 65% in the process, about 72% with the same adsorbent amount in the two-stage process shown in FIG. 7, about 73% with the same adsorbent quantity in the three-stage process shown in FIG. 8, and the same adsorption in the four-stage process shown in FIG. The amount is about 73%. Here, reference numeral 1 is an adsorption processing apparatus,
[0035]
In addition, for each multi-stage adsorption treatment apparatus, an adsorbent input apparatus for introducing the adsorbent into the water to be treated of the latter-stage adsorption treatment apparatus, and an adsorbent used in the latter-stage adsorption treatment apparatus for the former-stage adsorption treatment apparatus. Therefore, the adsorbent can be used more efficiently for the following reasons. That is, zeolite that is an adsorbent tends to increase the amount of adsorption of ammonium ions per unit mass when the concentration of ammonium ions is low. Therefore, the adsorption efficiency of ammonium ions is better when a fresh adsorbent is used in the second adsorption treatment device 19 (fourth adsorption treatment device 22) having a relatively low ammonium ion concentration. Since the adsorption capacity of the adsorbent used in the second adsorption treatment device 12 (fourth adsorption treatment device 22) has not reached saturation, this is referred to as the first adsorption treatment device 18 (third adsorption treatment device). 21), and the adsorbent can be used more efficiently.
[0036]
Moreover, in the water treatment method demonstrated above, since it has two or more sets of the multistage adsorption treatment process which made the adsorption treatment process to adsorb | suck the target substance in to-be-processed water to adsorption agent in two steps, The target substance in the water to be treated containing the target substance at a high concentration can be removed at a low cost. Also, in each multi-stage adsorption treatment process, an adsorbent is introduced into the water to be treated in the adsorption process step on the post-process side, and the adsorbent used in the adsorption process step on the post-stage side is reused in the adsorption treatment process on the pre-process side. Therefore, more efficient use of the adsorbent is possible.
[0037]
Such a combination of adsorption treatment devices (adsorption treatment steps) is a treatment of wastewater in which the concentration of the nitrogen component relative to the hydrogen donor component (BOD component) is too high, for example, treated water after anaerobic treatment of alcohol wastewater. It is suitable for the process. Moreover, the to-be-processed water processed by the combination of such an adsorption treatment apparatus (adsorption treatment process) has a good balance of a BOD component and a nitrogen component, and is suitable for biological treatment.
[0038]
(Example 2)
In addition, the biological treatment means in this invention is not limited to the apparatus (contact oxidation apparatus 24) by the above-mentioned contact oxidation method, Standard activated sludge method, membrane separation type activated sludge method, oxidation ditch method (OD method) An apparatus using a nitrification denitrification method such as can be used. Hereinafter, an example using the apparatus of the membrane separation type activated sludge method will be described.
[0039]
FIG. 2 is a schematic configuration diagram showing another embodiment of the water treatment system of the present invention. This water treatment system is used in place of the
The submerged
The hollow
[0040]
Next, a water treatment method using the illustrated water treatment system will be described.
Since the process up to the adsorption process is the same as that in the case of using the water treatment system of the first embodiment, the description is omitted.
The water to be treated that has been subjected to the adsorption treatment in the fourth
[0041]
(Example 3)
Moreover, the biological treatment means in the present invention may be a combination of a submerged
[0042]
(Other forms)
The water treatment system of the present invention is not limited to the example shown in the figure, and includes at least two sets of multi-stage adsorption treatment means in which two sets of adsorption treatment means are provided, and each multi-stage adsorption treatment means has a rear stage side. An adsorbent input means for introducing adsorbent into the water to be treated of the adsorption treatment means, and an adsorbent transfer means for transferring the adsorbent used in the adsorption treatment means on the rear stage to the adsorption treatment means on the front stage. If it is,
For example, the two adsorption processing units in each multi-stage adsorption processing unit do not have to be adjacent to each other as shown in FIG. 1, but the third
Further, three or more sets of multi-stage adsorption processing means in which two sets of adsorption processing means are provided may be provided.
[0043]
The settling tank is not limited to a two-stage tank as in the illustrated example, and the number of stages is appropriately designed according to the type of water to be treated, the target concentration of the target substance in the obtained treated water, and the like.
In addition, the adjustment tank is not limited to a two-stage tank as in the illustrated example, and the number of stages is appropriately designed according to the type of water to be treated, the target concentration of the target substance in the obtained treated water, and the like.
Further, the anaerobic treatment means is not limited to two stages as in the illustrated example, and the number of stages is appropriately designed according to the type of water to be treated, the amount of water, and the like. The anaerobic treatment means is preferably two-stage because it can perform acid generation and methane generation.
[0044]
In addition, in the illustrated example, the water to be treated between the adsorption treatment devices and the water to be treated from the fourth
[0045]
In the submerged
[0046]
Moreover, when using a membrane separation apparatus, as a separation membrane used for this, various separation membranes, such as a flat membrane, a tubular membrane, a ceramic membrane, a metal membrane, can be used besides a hollow fiber membrane. The material of the separation membrane may be any material that can be solid-liquid separated, and can be selected from polymers, metals, ceramics, and the like.
In order to prevent the adsorbent from flowing into the secondary side of the separation membrane, the average pore size of the separation membrane is preferably smaller than the average particle size of the adsorbent.
Further, instead of the pressurized
[0047]
【Example】
Specific examples will be described below.
[Example 1]
The water to be treated containing ammonium ions was treated using the water treatment system shown in FIG. As the water to be treated to be supplied to the first settling tank 11, alcohol fermentation effluent from a fermented liquor manufacturing factory using soybean and rice as raw materials was used. As the water to be treated supplied to the
As the adsorbent, zeolite having an action of adsorbing ammonium ions (average particle size: 4.0 μm) was used, and PFC (polyiron chloride) was used as the flocculant for aggregating the adsorbent.
[0048]
[Table 1]
[0049]
In the table, CODcr (Chemical Oxygen Demand) is the chemical oxygen demand according to the measurement method using potassium dichromate, SS (Suspended Solids) is the suspended solid, VSS (Volatile Suspended Solids) is the soluble suspended matter, VFA (VolatileFidile Fatty) ) Is the amount of volatile fatty acid, TN is total nitrogen, and P is a phosphorus component.
[0050]
The operating conditions of the water treatment system are as follows.
(1) Processing volume: 48L / day
(2) Residence time of water to be treated in the first sedimentation tank 11: 2 hours
(3) Residence time of the water to be treated in the second sedimentation tank 12: 12 hours
(4) pH of the water to be treated after adjustment in the second adjustment tank 14: 6.8-7.5
(5) Water temperature of the treated water after adjustment in the second adjustment tank 14: 35 ° C
(6) Residence time of treated water in the first anaerobic treatment device 15: 36 hours
(7) Residence time of the water to be treated in the second anaerobic treatment device 16: 24 hours
(8) Temperature of water to be treated after adjustment in the secondary adjustment tank 17: 30 ° C
(9) Retention time of water to be treated in each multistage adsorption treatment apparatus: 1.5 hours each
(10) Zeolite concentration in the first multistage adsorption treatment apparatus 20: 30000 mg / L
(11) Zeolite concentration in the second multistage adsorption treatment apparatus 23: 7500 mg / L
(12) The introduction of PFC (polyiron chloride) into the first multistage
(13) The introduction of PFC (polyiron chloride) into the second multistage
(14) Residence time of water to be treated in the contacted oxidizer 24: 14 hours
(15) Residence time of the water to be treated in the pressure flotation separator 25: 4 hours
[0051]
Under the above conditions, the water treatment system was steadily operated to obtain treated water. The CODcr of the treated water was 270 mg / L, the ammonium concentration was 8.5 mg / L, and the phosphorus concentration was 3 mg / L.
[0052]
[Example 2]
The treated water was treated in the same manner as in Example 1 except that the water treatment system was changed to that shown in FIG. The hollow fiber membrane module which has a 0.4 micrometer fraction was used, and the residence time of the to-be-processed water in the immersion
Under the above conditions, the water treatment system was steadily operated to obtain treated water. The CODcr of the treated water was 250 mg / L, the ammonium concentration was 8 mg / L, and the phosphorus concentration was 2.5 mg / L.
[0053]
[Example 3]
The treated water was treated in the same manner as in Example 1 except that the water treatment system was changed to that shown in FIG. A hollow fiber membrane module having a fraction of 0.4 μm was used, the sludge concentration in the submerged
Under the above conditions, the water treatment system was steadily operated to obtain treated water. The CODcr of the treated water was 200 mg / L, the ammonium concentration was 7 mg / L, and the phosphorus concentration was 2 mg / L.
[0054]
[Example 4]
The water to be treated was treated in the same manner as in Example 3 except that the arrangement of the adsorption treatment apparatuses was changed to the arrangement shown in FIG. 4 and the conditions were changed as follows.
(10) Zeolite concentration in the first multistage adsorption treatment apparatus 20: 7500 mg / L
(11) Zeolite concentration in the second multistage adsorption treatment apparatus 23: 30000 mg / L
(12) The introduction of PFC (polyiron chloride) into the first multistage
(13) The introduction of PFC (polyiron chloride) into the second multistage
Under the above conditions, the water treatment system was steadily operated to obtain treated water. The CODcr of the treated water was 220 mg / L, the ammonium concentration was 7.5 mg / L, and the phosphorus concentration was 2.5 mg / L.
[0055]
【The invention's effect】
As described above, the water treatment system of the present invention includes two or more sets of multistage adsorption treatment means in which two sets of adsorption treatment means for adsorbing the target substance in the water to be treated to the adsorbent, each multistage. For each adsorption processing means, an adsorbent input means for introducing the adsorbent into the water to be treated of the adsorption processing means on the rear stage side, and an adsorption for transferring the adsorbent used in the adsorption processing means on the rear stage side to the adsorption processing means on the front stage side Since the agent transfer means is provided, the target substance in the water to be treated containing the target substance at a high concentration can be removed at low cost.
[0056]
In addition, the water treatment method of the present invention has two or more multi-stage adsorption treatment steps in which the adsorption treatment step for adsorbing the target substance in the treated water to the adsorbent is made into two sets, and each multi-stage adsorption treatment step. Since the adsorbent is introduced into the water to be treated in the adsorption process on the subsequent process side and the adsorbent used in the adsorption process on the subsequent stage is reused in the adsorption process on the previous process side, The target substance in the water to be treated contained in a high concentration can be removed at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a water treatment system of the present invention.
FIG. 2 is a schematic configuration diagram showing another example of the water treatment system of the present invention.
FIG. 3 is a schematic configuration diagram showing another example of the water treatment system of the present invention.
FIG. 4 is a schematic configuration diagram showing another example of how the adsorption treatment means are arranged in the water treatment system of the present invention.
FIG. 5 is a schematic configuration diagram showing another example of how the adsorption treatment means are arranged in the water treatment system of the present invention.
FIG. 6 is a schematic configuration diagram illustrating an example of an adsorption treatment unit in a water treatment system other than the present invention.
FIG. 7 is a schematic configuration diagram showing an example of multistage adsorption processing means in a water treatment system other than the present invention.
FIG. 8 is a schematic configuration diagram showing another example of the multistage adsorption processing means in the water treatment system other than the present invention.
FIG. 9 is a schematic configuration diagram showing another example of the multistage adsorption treatment means in the water treatment system other than the present invention.
[Explanation of symbols]
15 First anaerobic treatment device (anaerobic treatment means)
16 Second anaerobic treatment device (anaerobic treatment means)
18 1st adsorption processing device (adsorption processing means)
19 Second adsorption processing device (adsorption processing means)
20 1st multistage adsorption processing apparatus (multistage adsorption processing means)
21 3rd adsorption processing apparatus (adsorption processing means)
22 4th adsorption processing apparatus (adsorption processing means)
23 Second multi-stage adsorption processing device (multi-stage adsorption processing means)
24 Catalytic oxidation equipment (biological treatment means)
26 1st adsorbent input device (adsorbent input means)
27 Second adsorbent charging device (adsorbent charging means)
28 First adsorbent transfer device (adsorbent transfer means)
29 Second adsorbent transfer device (adsorbent transfer means)
50 Submerged membrane separator (biological treatment means)
Claims (4)
各多段吸着処理手段ごとに、後段側の吸着処理手段の被処理水に吸着剤を投入する吸着剤投入手段と、後段側の吸着処理手段で使用した吸着剤を前段側の吸着処理手段に移送する吸着剤移送手段とが設けられていることを特徴とする水処理システム。2 or more sets of multi-stage adsorption treatment means comprising two sets of adsorption treatment means for adsorbing ammonium ions in the water to be treated to the adsorbent,
For each multi-stage adsorption treatment means, adsorbent input means for introducing the adsorbent into the water to be treated of the latter-stage adsorption treatment means, and the adsorbent used in the latter-stage adsorption treatment means are transferred to the previous-stage adsorption treatment means. And an adsorbent transfer means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055512A JP4102681B2 (en) | 2003-03-03 | 2003-03-03 | Water treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055512A JP4102681B2 (en) | 2003-03-03 | 2003-03-03 | Water treatment system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004261730A JP2004261730A (en) | 2004-09-24 |
JP2004261730A5 JP2004261730A5 (en) | 2006-04-13 |
JP4102681B2 true JP4102681B2 (en) | 2008-06-18 |
Family
ID=33119507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003055512A Expired - Fee Related JP4102681B2 (en) | 2003-03-03 | 2003-03-03 | Water treatment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4102681B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4996516B2 (en) * | 2008-03-24 | 2012-08-08 | メタウォーター株式会社 | Reclaimed water production method |
JP6046875B2 (en) * | 2009-08-05 | 2016-12-21 | 三菱レイヨン株式会社 | Removal method of coloring components |
JP5566147B2 (en) * | 2010-03-23 | 2014-08-06 | 株式会社前川製作所 | Rice processing wastewater treatment method and equipment |
CN103613208B (en) * | 2013-12-12 | 2015-04-01 | 北京师范大学 | Adsorption plate with high-efficient adsorption and enhanced biodegradation of petroleum hydrocarbon pollutants and preparation method thereof |
JP2015226892A (en) * | 2014-06-02 | 2015-12-17 | 株式会社ウェルシィ | Ammonia nitrogen-containing water treatment method |
-
2003
- 2003-03-03 JP JP2003055512A patent/JP4102681B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004261730A (en) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5867796B2 (en) | Waste water treatment method and waste water treatment system | |
CN111762970A (en) | Method for treating leachate of garbage transfer station | |
CN106430845A (en) | Kitchen garbage wastewater treatment apparatus | |
KR101018587B1 (en) | Membrane treatment device for eliminating nitrogen and/or phosphorus | |
CN103288311B (en) | Slack coal pressure gasification wastewater resourceful treatment method and treatment system as well as application | |
CN108341553A (en) | A kind of method of biofilm combination BAF group technologies processing high ammonia-nitrogen wastewater | |
CN111559836B (en) | Sewage treatment system and process based on carbon capture energy recovery and for denitrification | |
JP2016172236A (en) | Apparatus and method for treating water | |
KR102108870B1 (en) | Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus | |
KR20100128121A (en) | Method and apparatus for treating anaerobic digestive fluid | |
CN108706829B (en) | Integrated nitrogen and phosphorus removal authigenic dynamic membrane sewage treatment device and process | |
US20140209526A1 (en) | Dual stage bioreactor system for removing selenium from water | |
JP4102681B2 (en) | Water treatment system | |
CN203360228U (en) | Tobacco wastewater treatment system | |
JP3841394B2 (en) | High concentration organic wastewater treatment method and equipment | |
CN219823906U (en) | Garbage leachate and kitchen sewage cooperative treatment system | |
CN109534612B (en) | Bio-ethanol anaerobic waste water denitrification system | |
JP4105006B2 (en) | Water treatment system and water treatment method | |
CN116693112A (en) | Treatment method of landfill leachate with low carbon nitrogen ratio | |
JP2016123920A (en) | Wastewater treatment apparatus and method | |
CN104743751A (en) | A/O (anaerobic/aerobiotic) sewage treatment process device and technique thereof | |
CN207405031U (en) | A kind of high-concentration organic wastewater treatment system | |
CN211445406U (en) | Landfill leachate treatment device | |
JP3607088B2 (en) | Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater | |
CN209468283U (en) | Chilled processing waste water processing unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080324 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140328 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |