JP4101133B2 - Self-diagnosis device for air-fuel ratio control device of internal combustion engine - Google Patents

Self-diagnosis device for air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP4101133B2
JP4101133B2 JP2003282867A JP2003282867A JP4101133B2 JP 4101133 B2 JP4101133 B2 JP 4101133B2 JP 2003282867 A JP2003282867 A JP 2003282867A JP 2003282867 A JP2003282867 A JP 2003282867A JP 4101133 B2 JP4101133 B2 JP 4101133B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
change
fuel
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003282867A
Other languages
Japanese (ja)
Other versions
JP2004003513A (en
Inventor
康夫 匂坂
昌昭 中山
弥寿夫 向井
幸宏 山下
寿 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003282867A priority Critical patent/JP4101133B2/en
Publication of JP2004003513A publication Critical patent/JP2004003513A/en
Application granted granted Critical
Publication of JP4101133B2 publication Critical patent/JP4101133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関(以下「エンジン」という)に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断する内燃機関の空燃比制御装置の自己診断装置に関するものである。   The present invention relates to a self-diagnosis device for an air-fuel ratio control device for an internal combustion engine that self-diagnose an abnormality in an air-fuel ratio control device that feedback-controls the air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine (hereinafter referred to as “engine”). .

自動車のエンジンに供給する混合気の空燃比をフィードバック制御する空燃比制御装置では、排気管に、排気ガス中の酸素濃度を検出する酸素センサを取り付け、この酸素センサの出力電圧を理論空燃比に相当する基準電圧と比較して、空燃比フィードバック補正係数を増減することで、空燃比を理論空燃比近傍に制御するようにしている。このような空燃比フィードバック制御システムでは、酸素センサの出力が特性劣化や故障により正常値からずれると、空燃比の制御性が悪くなる。そこで、酸素センサの故障を検出するため、燃料カット開始から一定時間経過した後に酸素センサの出力電流を故障判定レベルと比較することで、酸素センサの故障の有無を診断するようにしたものがある(特許文献1参照)。
特開昭60−233343号公報
In an air-fuel ratio control apparatus that feedback-controls the air-fuel ratio of an air-fuel mixture supplied to an automobile engine, an oxygen sensor that detects the oxygen concentration in exhaust gas is attached to the exhaust pipe, and the output voltage of this oxygen sensor is adjusted to the stoichiometric air-fuel ratio. The air-fuel ratio is controlled in the vicinity of the theoretical air-fuel ratio by increasing or decreasing the air-fuel ratio feedback correction coefficient as compared with the corresponding reference voltage. In such an air-fuel ratio feedback control system, if the output of the oxygen sensor deviates from a normal value due to characteristic deterioration or failure, the controllability of the air-fuel ratio becomes worse. Therefore, in order to detect the failure of the oxygen sensor, there is one that diagnoses the presence or absence of the failure of the oxygen sensor by comparing the output current of the oxygen sensor with the failure determination level after a certain time has elapsed since the start of fuel cut. (See Patent Document 1).
JP-A-60-233343

しかしながら、上記特許文献1の自己診断方法では、燃料カット開始から一定時間経過後のセンサ電流を故障判定レベルと比較するようにしているが、燃料カット直前の空燃比の状態によっては、同じ酸素センサでも燃料カット開始時のセンサ電流が異なり、それによって燃料カット開始からセンサ電流が故障判定レベルに到達するまでの時間も異なる。従って、燃料カット開始から一定時間経過後のセンサ電流で故障を診断したのでは、燃料カット直前の空燃比の状態によって故障診断が大きく影響されてしまい、酸素センサの故障又は劣化を正確に診断できないことがあり、診断精度が低いという欠点がある。   However, in the self-diagnosis method of Patent Document 1 described above, the sensor current after a certain time has elapsed from the start of fuel cut is compared with the failure determination level. However, depending on the air-fuel ratio state immediately before the fuel cut, the same oxygen sensor is used. However, the sensor current at the start of the fuel cut is different, and accordingly, the time from the start of the fuel cut until the sensor current reaches the failure determination level is also different. Therefore, if a failure is diagnosed with a sensor current after a certain time has elapsed since the start of fuel cut, the failure diagnosis is greatly affected by the state of the air-fuel ratio immediately before the fuel cut, and the failure or deterioration of the oxygen sensor cannot be accurately diagnosed. In some cases, the diagnostic accuracy is low.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、診断開始前の空燃比の状態に影響されずに空燃比センサの異常の有無を診断することができて、診断精度を向上することができる内燃機関の空燃比制御装置の自己診断装置を提供することにある。   The present invention has been made in view of such circumstances, and therefore the object of the present invention is to diagnose the presence or absence of an abnormality of the air-fuel ratio sensor without being affected by the state of the air-fuel ratio before the start of diagnosis, It is an object of the present invention to provide a self-diagnosis device for an air-fuel ratio control device for an internal combustion engine that can improve diagnosis accuracy.

上記目的を達成するために、本発明の請求項1の内燃機関の空燃比制御装置の自己診断装置は、内燃機関の排気ガスの空燃比(A/F)に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、前記内燃機関への燃料供給量の変化を検出する検出手段と、この検出手段により燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を、前記記憶された空燃比センサ出力と、前記記憶された空燃比センサ出力からセンサ出力が所定値まで変化するのに要した時間とに基づいて求める変化率判定手段と、この変化率判定手段により求めた前記空燃比センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、前記検出手段は、燃料カット開始又は燃料カット復帰を燃料供給量の変化として検出する。 In order to achieve the above object, the self-diagnosis device for an air-fuel ratio control device for an internal combustion engine according to claim 1 of the present invention continuously changes the output according to the air-fuel ratio (A / F) of the exhaust gas of the internal combustion engine. Detecting a change in the amount of fuel supplied to the internal combustion engine, wherein self-diagnosis of an abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor , the storing output of the air-fuel ratio sensor, the rate of change of the output of the air-fuel ratio sensor after the detection of a change in the fuel supply amount when the change in the fuel supply amount is detected by the detection means, said memory and air-fuel ratio sensor output that is, the change rate determining means for the sensor output from the air-fuel ratio sensor output which is the storage is determined based on the time required for the change to the predetermined value, determined by the rate of change judging means An abnormality determining means for determining whether the air-fuel ratio sensor is abnormal based on a rate of change in the output of the air-fuel ratio sensor, and the detecting means detects a fuel cut start or a fuel cut return as a change in fuel supply amount To do.

また、請求項2のように、前記変化率判定手段は、前記空燃比センサの出力の変化率として単位時間当たりの変化量を求めるようにしても良い。   According to a second aspect of the present invention, the change rate determination means may obtain a change amount per unit time as a change rate of the output of the air-fuel ratio sensor.

或は、請求項3のように、前記変化率判定手段は、前記燃料供給量が変化した後に前記センサの出力が前記記憶された空燃比センサの出力から所定量変化するまでの時間を計測し、その計測時間の長短によって前記空燃比センサの出力の変化率を判定するようにしても良い。 Alternatively, according to a third aspect of the present invention, the change rate determination means measures a time until the output of the sensor changes from the stored output of the air-fuel ratio sensor by a predetermined amount after the fuel supply amount changes. The rate of change in the output of the air-fuel ratio sensor may be determined based on the length of the measurement time.

或は、請求項4のように、前記変化率判定手段は、前記燃料供給量が変化した後の所定時間内に変化する、前記記憶された空燃比センサの出力からの前記空燃比センサの出力の変化量を求め、その変化量の大小によって前記空燃比センサの出力の変化率を判定するようにしても良い。 Alternatively, according to a fourth aspect of the present invention, the rate-of-change determination means changes the output of the air-fuel ratio sensor from the stored output of the air-fuel ratio sensor that changes within a predetermined time after the fuel supply amount changes. The change rate of the air-fuel ratio sensor may be determined based on the amount of change.

また、請求項5のように、上述した変化率判定手段に代えて、燃料供給量の変化が検出されたときの空燃比センサの出力を記憶し、燃料供給量が変化した後に記憶された空燃比センサの出力から空燃比センサの出力が変化し始めるまでの応答遅れ時間を計測する計時手段を設け、この計時手段により測定した応答遅れ時間に基づいて前記空燃比センサの異常の有無を判定する異常判定手段を設けた構成としても良い。 Furthermore, as according to claim 5, in place of the change rate determining means described above, the change in the fuel supply amount is stored the output of the air-fuel ratio sensor when it is detected, the fuel supply amount is stored after the change in air Time measuring means for measuring a response delay time from the output of the fuel ratio sensor until the output of the air fuel ratio sensor starts to change is provided, and the presence / absence of abnormality of the air / fuel ratio sensor is determined based on the response delay time measured by the time measuring means. It is good also as a structure which provided the abnormality determination means.

また、請求項6のように、異常判定手段による前記空燃比センサの正常/異常の判定に応じて前記空燃比フィードバック制御の空燃比フィードバックゲインを切り換えるようにしても良い。   According to another aspect of the present invention, the air-fuel ratio feedback gain of the air-fuel ratio feedback control may be switched according to the normality / abnormality determination of the air-fuel ratio sensor by the abnormality determination means.

また、請求項7のように、空燃比センサの出力として出力電流を用いても良い。   Further, as described in claim 7, an output current may be used as an output of the air-fuel ratio sensor.

本発明の請求項1の構成によれば、内燃機関(以下「エンジン」という)への燃料供給量の変化を検出手段により検出した時点で、診断処理を開始し、燃料供給量の変化が検出されたときの空燃比センサの出力を記憶し、燃料供給量の変化を検出した後の記憶された空燃比センサの出力からの空燃比センサ出力の変化率を変化率判定手段により求める。そして、変化率判定手段により求めた空燃比センサ出力の変化率に基づいて空燃比センサの異常の有無を異常判定手段により判定する。この場合、診断開始前(燃料供給量変化検出前)の空燃比の状態によって診断開始当初(燃料供給量変化検出当初)の空燃比センサ出力が変化するという事情があっても、診断開始後のセンサ出力の変化率は、診断開始前の空燃比の影響をほとんど受けずに済む。従って、空燃比センサ出力の変化率に基づいて空燃比センサの異常の有無を診断することで、診断開始前の空燃比の状態に影響されずに空燃比センサの異常の有無を診断することが可能となる。 According to the first aspect of the present invention, when the change in the fuel supply amount to the internal combustion engine (hereinafter referred to as the “engine”) is detected by the detecting means, the diagnostic process is started and the change in the fuel supply amount is detected. The output of the air-fuel ratio sensor at this time is stored, and the rate of change of the air-fuel ratio sensor output from the stored output of the air-fuel ratio sensor after detecting the change in the fuel supply amount is obtained by the change rate determination means. Then, based on the change rate of the air-fuel ratio sensor output obtained by the change rate determination means, the abnormality determination means determines whether the air-fuel ratio sensor is abnormal. In this case, even if there is a situation in which the air-fuel ratio sensor output at the beginning of diagnosis (initial detection of fuel supply amount change) changes depending on the air-fuel ratio state before the diagnosis starts (before fuel supply amount change detection), The change rate of the sensor output is hardly affected by the air-fuel ratio before the diagnosis is started. Therefore, by diagnosing the presence / absence of abnormality of the air / fuel ratio sensor based on the rate of change of the air / fuel ratio sensor output, it is possible to diagnose the presence / absence of abnormality of the air / fuel ratio sensor without being affected by the state of the air / fuel ratio before the diagnosis is started. It becomes possible.

ところで、燃料供給量が変化する原因として、例えば燃料カット開始・燃料カット復帰があり、燃料カット開始により燃料供給が停止され、燃料カット復帰により燃料供給が再開されるため、燃料カット開始・燃料カット復帰により燃料供給量に大きな変化が起こる。   By the way, the cause of the change in the fuel supply amount is, for example, fuel cut start / fuel cut return, fuel supply is stopped by fuel cut start, and fuel supply is restarted by fuel cut return. A major change in the fuel supply occurs due to the return.

そこで、請求項1では更に、検出手段により燃料カット開始又は燃料カット復帰を検出し、それによって燃料供給量の変化を間接的に検出する。燃料カット開始・燃料カット復帰のタイミングは、エンジン制御装置が制御するものであり、正確に分かる。   Accordingly, in the first aspect of the invention, the fuel cut start or the fuel cut return is further detected by the detecting means, thereby detecting the change in the fuel supply amount indirectly. The timing of the start of fuel cut and the return of fuel cut is controlled by the engine control device and can be accurately determined.

また、請求項2では、変化率判定手段により空燃比センサ出力の変化率として単位時間当たりの変化量を求める。ここで、単位時間当たりの変化量は、所定時間内の変化量を当該所定時間で割り算して求めたり、所定変化量を、その変化に要した時間で割り算して求めたり、或は、空燃比センサ出力の変化率(傾き)をハード的に検出する検出回路を設けるようにしても良い。   According to a second aspect of the present invention, the change amount per unit time is obtained as the change rate of the air-fuel ratio sensor output by the change rate determination means. Here, the amount of change per unit time is obtained by dividing the amount of change within a predetermined time by the predetermined time, or by dividing the predetermined amount of change by the time required for the change, or empty. You may make it provide the detection circuit which detects the change rate (inclination) of a fuel ratio sensor output by hardware.

また、請求項3では、変化率判定手段は、燃料カット開始又は燃料カット復帰の燃料供給量が変化した後に空燃比センサ出力が記憶された空燃比センサの出力から所定量変化するまでの時間を計測し、その計測時間の長短によって空燃比センサ出力の変化率を間接的に判定する。つまり、計測時間が長ければ、空燃比センサ出力の変化率が小さく、計測時間が短くなるほど、空燃比センサ出力の変化率が大きくなるという関係を利用するものである。この場合には、空燃比センサ出力の変化量を計測時間で割り算する必要はない。 According to a third aspect of the present invention, the rate-of-change determination means determines a time from when the fuel supply amount at the start of fuel cut or after fuel cut is changed to when the output of the air-fuel ratio sensor changes to a predetermined amount from the stored output of the air-fuel ratio sensor. Measurement is performed, and the rate of change of the air-fuel ratio sensor output is indirectly determined based on the length of the measurement time. In other words, the longer the measurement time, the smaller the change rate of the air-fuel ratio sensor output, and the shorter the measurement time, the larger the change rate of the air-fuel ratio sensor output. In this case, it is not necessary to divide the change amount of the air-fuel ratio sensor output by the measurement time.

一方、請求項4では、変化率判定手段は、燃料カット開始又は燃料カット復帰の燃料供給量が変化した後の所定時間内に変化する、記憶された空燃比センサの出力からの空燃比センサ出力の変化量を求め、その変化量の大小によって空燃比センサの出力の変化率を間接的に判定する。つまり、所定時間内の変化量が大きくなれば、空燃比センサ出力の変化率が大きくなり、所定時間内の変化量が小さくなるほど、空燃比センサ出力の変化率が小さくなるという関係を利用するものである。この場合も、請求項3の場合と同じく、変化量を時間で割り算する必要はない。 On the other hand, in the fourth aspect, the change rate determination means changes the air-fuel ratio sensor output from the stored output of the air-fuel ratio sensor, which changes within a predetermined time after the fuel supply amount at the start or return of fuel cut changes. The change rate of the air-fuel ratio sensor is indirectly determined based on the magnitude of the change amount. In other words, the change rate of the air-fuel ratio sensor output increases as the change amount within the predetermined time increases, and the change rate of the air-fuel ratio sensor output decreases as the change amount within the predetermined time decreases. It is. Also in this case, it is not necessary to divide the amount of change by time, as in the case of claim 3.

ところで、空燃比センサの特性が劣化すると、空燃比センサの応答性が悪くなり、燃料供給量が変化した後に空燃比センサの出力が変化し始めるまでの応答遅れ時間が長くなる傾向がある。そこで、請求項5では、上述した空燃比センサ出力の変化率に代えて、燃料カット開始又は燃料カット復帰の燃料供給量が変化した後に記憶された空燃比センサの出力から空燃比センサの出力が変化し始めるまでの応答遅れ時間を計時手段により測定し、この計時手段により測定した応答遅れ時間に基づいてセンサの異常の有無を異常判定手段により判定する。このように、応答遅れ時間に基づいて診断しても、診断開始前の空燃比の状態に影響されずにセンサの異常の有無を診断することが可能となる。 By the way, when the characteristics of the air-fuel ratio sensor deteriorate, the responsiveness of the air-fuel ratio sensor deteriorates, and the response delay time until the output of the air-fuel ratio sensor starts to change after the fuel supply amount changes tends to become longer. Therefore, in claim 5, instead of the rate of change of the air-fuel ratio sensor output described above, the output of the air-fuel ratio sensor is changed from the stored output of the air-fuel ratio sensor after the fuel supply amount at the start of fuel cut or the return of fuel cut changes. The response delay time until the change starts is measured by the time measuring means, and based on the response delay time measured by the time measuring means, the presence or absence of abnormality of the sensor is determined by the abnormality determining means. Thus, even if a diagnosis is made based on the response delay time, it is possible to diagnose the presence or absence of a sensor abnormality without being affected by the state of the air-fuel ratio before the diagnosis is started.

また、請求項6では、異常判定手段による前記空燃比センサの正常/異常の判定に応じて前記空燃比フィードバック制御の空燃比フィードバックゲインを切り換える。これにより、空燃比センサ異常(劣化)時の空燃比の発散やハンチングを防止することができる。   According to a sixth aspect of the present invention, the air-fuel ratio feedback gain of the air-fuel ratio feedback control is switched according to the normality / abnormality determination of the air-fuel ratio sensor by the abnormality determination means. Thereby, divergence and hunting of the air-fuel ratio when the air-fuel ratio sensor is abnormal (deterioration) can be prevented.

また、請求項7のように、空燃比センサの出力として出力電流を用いても良い。   Further, as described in claim 7, an output current may be used as an output of the air-fuel ratio sensor.

[実施例1]     [Example 1]

以下、本発明の実施例1を図1乃至図7に基づいて説明する。まず、図1に基づいてエンジン制御系システム全体の概略構成を説明する。エンジン10(内燃機関)の吸気ポート11に接続された吸気管12の最上流部にはエアクリーナ13が設けられ、このエアクリーナ13の下流に吸気温センサ14が設けられている。また、吸気管12の途中部には、スロットルバルブ15が設けられ、このスロットルバルブ15をバイパスするバイパス路16にはアイドルスピードコントロールバルブ17が設けられている。上記スロットルバルブ15の開度は、スロットル開度センサ18によって検出され、スロットルバルブ15の下流側の吸気管圧力は、吸気管圧力センサ19によって検出される。   A first embodiment of the present invention will be described below with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 connected to the intake port 11 of the engine 10 (internal combustion engine), and an intake air temperature sensor 14 is provided downstream of the air cleaner 13. A throttle valve 15 is provided in the middle of the intake pipe 12, and an idle speed control valve 17 is provided in a bypass path 16 that bypasses the throttle valve 15. The opening degree of the throttle valve 15 is detected by a throttle opening degree sensor 18, and the intake pipe pressure downstream of the throttle valve 15 is detected by an intake pipe pressure sensor 19.

また、吸気ポート12の近傍には、燃料タンク21から供給される燃料を噴射する燃料噴射弁20が設けられている。燃料タンク21内の燃料は燃料ポンプ22→燃料フィルタ23→プレッシャレギュレータ24の経路を経て燃料噴射弁20に供給され、プレッシャレギュレータ24により燃料圧力が吸気管圧力に対して一定圧力に保たれると共に、余分な燃料がリターン配管25を通して燃料タンク21内に戻される。   A fuel injection valve 20 that injects fuel supplied from the fuel tank 21 is provided near the intake port 12. The fuel in the fuel tank 21 is supplied to the fuel injection valve 20 through a path of the fuel pump 22 → the fuel filter 23 → the pressure regulator 24, and the fuel pressure is maintained at a constant pressure with respect to the intake pipe pressure by the pressure regulator 24. Excess fuel is returned to the fuel tank 21 through the return pipe 25.

一方、エンジン10の排気ポート26に接続された排気管27には、排出ガス中の空燃比(A/F)に応じて連続的に出力電流が変化する空燃比センサ28や排出ガス浄化用の三元触媒(図示せず)が設けられている。エンジン10を冷却するウォータジャケット29には、冷却水温を検出する水温センサ30が取り付けられている。また、エンジン10の各シリンダの点火プラグ31に高圧電流を配給するディストリビュータ32には、特定気筒のクランク角基準位置を判別するための気筒判別センサ33と、エンジン回転数に応じた周波数のパルス信号を出力するクランク角センサ34とが設けられている。上記ディストリビュータ32にはイグナイタ35の高圧二次電流が供給される。   On the other hand, an exhaust pipe 27 connected to the exhaust port 26 of the engine 10 has an air-fuel ratio sensor 28 whose output current continuously changes in accordance with the air-fuel ratio (A / F) in the exhaust gas, and an exhaust gas purifying apparatus. A three-way catalyst (not shown) is provided. A water temperature sensor 30 for detecting the coolant temperature is attached to a water jacket 29 that cools the engine 10. A distributor 32 that distributes a high-voltage current to the ignition plug 31 of each cylinder of the engine 10 includes a cylinder discrimination sensor 33 for discriminating a crank angle reference position of a specific cylinder, and a pulse signal having a frequency corresponding to the engine speed. Is provided. The distributor 32 is supplied with the high-voltage secondary current of the igniter 35.

上述した各種センサの出力信号は、エンジン制御回路(以下「ECU」という)36に入力され、エンジン制御データとして用いられる。ECU36は、バッテリ37を電源として動作し、イグニッションスイッチ38のオン信号によりエンジン10を始動させると共に、エンジン10の運転中は、空燃比センサ28の出力信号に基づいて図5に示すように空燃比フィードバック補正係数を増減することで、空燃比を理論空燃比近傍にフィードバック制御する。   The output signals of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 36 and used as engine control data. The ECU 36 operates with the battery 37 as a power source, and starts the engine 10 by an ON signal of the ignition switch 38. During operation of the engine 10, the air-fuel ratio is shown in FIG. 5 based on the output signal of the air-fuel ratio sensor 28. By increasing or decreasing the feedback correction coefficient, the air-fuel ratio is feedback-controlled in the vicinity of the theoretical air-fuel ratio.

また、ECU36は、図2に示すセンサ異常診断ルーチンによって空燃比センサ28の異常の有無を診断し、異常時には警告ランプ39(警告手段)を点灯して運転者に知らせる。このセンサ異常診断ルーチンは、メインルーチン実行毎(例えば8ms毎)に処理され、減速時の燃料カット開始後の空燃比センサ28の出力電流の変化率ΔIを求め、その変化率ΔIが異常判定値Ifcより小さいときにセンサ異常と判定する。このセンサ異常診断ルーチンを実行した場合の処理の流れを示すタイムチャートが図3に示されている。   Further, the ECU 36 diagnoses the presence or absence of abnormality of the air-fuel ratio sensor 28 by the sensor abnormality diagnosis routine shown in FIG. 2, and informs the driver by lighting a warning lamp 39 (warning means) at the time of abnormality. This sensor abnormality diagnosis routine is processed every time the main routine is executed (for example, every 8 ms) to obtain the change rate ΔI of the output current of the air-fuel ratio sensor 28 after the start of fuel cut at the time of deceleration, and the change rate ΔI is an abnormality determination value. When it is smaller than Ifc, it is determined that the sensor is abnormal. FIG. 3 shows a time chart showing the flow of processing when this sensor abnormality diagnosis routine is executed.

このセンサ異常診断ルーチンでは、まず、ステップ101で、燃料カット開始か否かを判定する。ここで、燃料カットの実行時期は、図6に示す燃料カット判定ルーチンによって制御され、その処理の流れを示すタイムチャートが図7に示されている。この燃料カット判定ルーチンも、メインルーチン実行毎(例えば8ms毎)に処理され、処理が開始されると、まず、ステップ121で、減速時の燃料カットによるショックを低減するために、スロットル全閉状態(図示しないスロットル全閉スイッチのオン状態)が所定時間To 経過したか否かを判定し、所定時間To 経過していれば、ステップ122に進んで、エンジン回転数NEが燃料カット開始回転数NFCより高いか否かを判定する。もし、NE>NFCであれば、ステップ126に進んで、燃料カット実行フラグXFCを“1”にセットし、燃料カットを実行する。尚、燃料カット開始回転数NFCは、アイドル状態で燃料カットに入らないように冷却水温が低いほど高く設定される。   In this sensor abnormality diagnosis routine, first, in step 101, it is determined whether or not a fuel cut is started. Here, the fuel cut execution timing is controlled by the fuel cut determination routine shown in FIG. 6, and a time chart showing the flow of the processing is shown in FIG. This fuel cut determination routine is also processed every time the main routine is executed (for example, every 8 ms). When the process is started, first, in step 121, in order to reduce the shock caused by the fuel cut during deceleration, the throttle is fully closed. It is determined whether or not a predetermined time To has elapsed (the throttle fully closed switch (not shown) is on). If the predetermined time To has elapsed, the routine proceeds to step 122 where the engine speed NE becomes the fuel cut start speed NFC. Determine if it is higher. If NE> NFC, the routine proceeds to step 126, where the fuel cut execution flag XFC is set to "1" and the fuel cut is executed. The fuel cut start rotational speed NFC is set higher as the cooling water temperature is lower so as not to enter the fuel cut in the idle state.

一方、ステップ121,122のいずれかで「No」と判定された場合、つまり、スロットル全閉状態が所定時間To 経過していない場合、又は、エンジン回転数NEが燃料カット開始回転数NFC以下の場合には、ステップ123に進んで、前回の処理で燃料カットが実行されたか否かを判定し、前回の処理で燃料カットが実行されていれば、ステップ124に進んで、エンジン回転数NEが燃料カット復帰回転数NRT以下に低下したかか否かを判定し、燃料カット復帰回転数NRT以下に低下していれば、ステップ125に進んで、燃料カット実行フラグXFCを“0”にセットして燃料カットから復帰し、燃料噴射を再開する。上記ステップ124で、エンジン回転数NEが燃料カット復帰回転数NRT以下に低下していないと判定されれば、ステップ126に進み、引き続き燃料カットを継続する。尚、ステップ123で「No」の場合、つまり、前回の処理で燃料カットが実行されていない場合には、ステップ125に済み、引き続き燃料噴射を実行する。   On the other hand, when it is determined as “No” in any of steps 121 and 122, that is, when the throttle fully closed state has not passed the predetermined time To, or the engine speed NE is equal to or less than the fuel cut start speed NFC. In this case, the routine proceeds to step 123, where it is determined whether or not the fuel cut has been executed in the previous process. If the fuel cut has been executed in the previous process, the routine proceeds to step 124 where the engine speed NE is set. It is determined whether or not the fuel cut return rotational speed NRT has fallen below. If it has fallen below the fuel cut return rotational speed NRT, the routine proceeds to step 125 and the fuel cut execution flag XFC is set to “0”. Then return from the fuel cut and restart fuel injection. If it is determined in step 124 that the engine speed NE has not decreased below the fuel cut return speed NRT, the process proceeds to step 126 and fuel cut is continued. If “No” in step 123, that is, if the fuel cut has not been executed in the previous process, the process is finished in step 125 and fuel injection is continued.

前述したように、図2に示すセンサ異常診断ルーチンでは、まず、ステップ101で、燃料カットを開始したか否かを判定し、燃料カットが開始されていなければ、以降の処理を行わずに、センサ異常診断ルーチンを終了する。このステップ101の処理がエンジン10への燃料供給量の変化を検出する検出手段に相当する。前記燃料カット判定ルーチンの処理により燃料カットが開始された時点でステップ101で「Yes」と判定され、ステップ102に進んで、燃料カット開始時の空燃比センサ28の出力(以下「センサ出力」という)I1 を読み込んで記憶すると共に、タイマを作動させて燃料カット開始後の経過時間をカウントする。次いで、ステップ103で、センサ出力がI2 まで上昇したか否かを判定し、センサ出力がI2 に上昇するまで待機する。   As described above, in the sensor abnormality diagnosis routine shown in FIG. 2, first, at step 101, it is determined whether or not the fuel cut has been started. If the fuel cut has not been started, the subsequent processing is not performed. The sensor abnormality diagnosis routine is terminated. The processing in step 101 corresponds to detection means for detecting a change in the amount of fuel supplied to the engine 10. When fuel cut is started by the process of the fuel cut determination routine, “Yes” is determined in step 101 and the process proceeds to step 102 to output the air-fuel ratio sensor 28 at the start of fuel cut (hereinafter referred to as “sensor output”). ) I1 is read and stored, and the timer is activated to count the elapsed time after the start of fuel cut. Next, in step 103, it is determined whether or not the sensor output has increased to I2, and the process waits until the sensor output has increased to I2.

その後、センサ出力がI2 まで上昇すると、ステップ104に進み、燃料カット開始からセンサ出力がI2 に上昇するまでの時間T1 を前述したタイマのカウント値から読み取って記憶した後、ステップ105に進んで、センサ出力の変化率ΔIを次式により算出する。   Thereafter, when the sensor output rises to I2, the process proceeds to step 104, and after reading and storing the time T1 from the start of fuel cut until the sensor output rises to I2 from the count value of the timer, the process proceeds to step 105. The sensor output change rate ΔI is calculated by the following equation.

ΔI=(I2 −I1 )/T1
このステップ105の処理が特許請求の範囲でいう変化率判定手段として機能する。
ΔI = (I2−I1) / T1
The processing in step 105 functions as a change rate determination means in the claims.

続くステップ106で、上式により算出したセンサ出力の変化率ΔIを異常判定値Ifcと比較し、センサ出力の変化率ΔIが異常判定値Ifc以上であれば、空燃比センサ28の応答性は劣化しておらず、センサ出力は正常であるので、本ルーチンを終了する。しかし、空燃比センサ28の応答性が劣化するに従って、センサ出力の変化率ΔIが小さくなることから、センサ出力の変化率ΔIが異常判定値Ifcに満たない場合には、空燃比センサ28の異常(劣化)有りと判定される。この場合には、ステップ107に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。上記ステップ106の処理が特許請求の範囲でいう異常判定手段として機能する。   In subsequent step 106, the sensor output change rate ΔI calculated by the above equation is compared with the abnormality determination value Ifc. If the sensor output change rate ΔI is equal to or greater than the abnormality determination value Ifc, the responsiveness of the air-fuel ratio sensor 28 is degraded. Since the sensor output is normal, this routine is terminated. However, since the rate of change ΔI of the sensor output decreases as the responsiveness of the air-fuel ratio sensor 28 deteriorates, if the rate of change ΔI of the sensor output is less than the abnormality determination value Ifc, the abnormality of the air-fuel ratio sensor 28 is detected. It is determined that there is (deterioration). In this case, the routine proceeds to step 107, where the sensor abnormality is stored in the memory of the ECU 36, and the warning lamp 39 is lit to notify the driver. The processing in step 106 functions as an abnormality determination means in the claims.

更に、本実施例では、センサ異常(劣化)時の空燃比の発散やハンチングを防ぐために、図4に空燃比フィードバックゲイン切替ルーチンによりセンサ正常/異常に応じて空燃比フィードバックゲインを切り替える。即ち、ステップ111で、図2のセンサ異常診断ルーチンの診断結果がセンサ異常か否かを判定し、センサ正常時には、ステップ113に進んで、空燃比フィードバックゲイン(積分定数,スキップ値等)を通常値とするが、センサ異常(劣化)時には、ステップ112に進んで、空燃比フィードバックゲインを通常値よりも小さくする。これにより、図5に示すように、センサ異常(劣化)時には空燃比フィードバック補正係数の振幅がセンサ正常時よりも小さくなり、空燃比の発散やハンチングが抑えられる。   Further, in this embodiment, in order to prevent the divergence and hunting of the air-fuel ratio at the time of sensor abnormality (deterioration), the air-fuel ratio feedback gain is switched according to the normality / abnormality of the sensor by the air-fuel ratio feedback gain switching routine in FIG. That is, at step 111, it is determined whether or not the diagnosis result of the sensor abnormality diagnosis routine of FIG. 2 is a sensor abnormality. When the sensor is normal, the routine proceeds to step 113 where the air-fuel ratio feedback gain (integral constant, skip value, etc.) is set to normal. However, when the sensor is abnormal (deteriorated), the routine proceeds to step 112 where the air-fuel ratio feedback gain is made smaller than the normal value. As a result, as shown in FIG. 5, when the sensor is abnormal (deteriorated), the amplitude of the air-fuel ratio feedback correction coefficient becomes smaller than when the sensor is normal, and divergence and hunting of the air-fuel ratio are suppressed.

以上説明した実施例1のように、燃料カット開始後(燃料供給量変化検出後)のセンサ出力の変化率ΔIを求め、その変化率ΔIが異常判定値Ifcより小さいか否かによってセンサ異常の有無を判定するようにすれば、診断開始前(燃料カット開始前)の空燃比の状態によって診断開始当初(燃料カット開始当初)のセンサ出力が変化するという事情があっても、診断開始後のセンサ出力の変化率ΔIは、診断開始前の空燃比の影響をほとんど受けないので、診断開始前の空燃比の状態に影響されずにセンサの異常の有無を診断することができ、診断開始前の空燃比の影響を受けやすい従来の診断方法と比較して、わずかなセンサ異常(特性劣化)も検出することができて、診断精度を向上することができる。これにより、センサ異常(特性劣化)によるドライビリティ低下やエミッション悪化を未然に防ぐことができる。
[実施例2]
As in the first embodiment described above, the sensor output change rate ΔI after the start of the fuel cut (after the fuel supply amount change is detected) is obtained, and the sensor abnormality is determined depending on whether the change rate ΔI is smaller than the abnormality determination value Ifc. If the presence or absence is determined, the sensor output at the beginning of diagnosis (initially at the start of fuel cut) changes depending on the air-fuel ratio before the diagnosis is started (before the fuel cut is started). Since the change rate ΔI of the sensor output is hardly affected by the air-fuel ratio before the start of diagnosis, it can be diagnosed whether there is an abnormality in the sensor without being affected by the state of the air-fuel ratio before the start of diagnosis. Compared with the conventional diagnosis method that is easily affected by the air-fuel ratio, a slight sensor abnormality (characteristic deterioration) can be detected, and the diagnosis accuracy can be improved. Thereby, it is possible to prevent a decrease in dryness and a deterioration in emissions due to a sensor abnormality (characteristic deterioration).
[Example 2]

上記実施例1では、診断開始条件となる燃料供給量の変化として燃料カット開始を検出したが、これとは反対に、燃料カット復帰を条件に診断処理(センサ出力の変化率の判定)を開始するようにしても良い。以下、これを具体化した本発明の実施例2を図8及び図9に基づいて説明する。図8に示すセンサ異常診断ルーチンは、メインルーチン実行毎(例えば8ms毎)に処理され、燃料カット復帰後のセンサ出力の変化率ΔIを求め、その変化率ΔIを異常判定値Ifrと比較してセンサ異常の有無を判定する。このセンサ異常診断ルーチンを実行した場合の処理の流れを示すタイムチャートが図9に示されている。   In the first embodiment, the start of fuel cut is detected as a change in the fuel supply amount serving as a diagnosis start condition. On the contrary, diagnosis processing (determination of the rate of change in sensor output) is started on the condition that fuel cut is restored. You may make it do. A second embodiment of the present invention that embodies this will be described below with reference to FIGS. The sensor abnormality diagnosis routine shown in FIG. 8 is processed every time the main routine is executed (for example, every 8 ms), and a change rate ΔI of the sensor output after returning from the fuel cut is obtained, and the change rate ΔI is compared with the abnormality determination value Ifr. Determine whether there is a sensor abnormality. FIG. 9 shows a time chart showing the flow of processing when this sensor abnormality diagnosis routine is executed.

この実施例2のセンサ異常診断ルーチンでは、まず、ステップ201で、燃料カット復帰(燃料噴射再開)か否かを判定し、燃料カット復帰でなければ、以降の処理を行わずに、センサ異常診断ルーチンを終了する。その後、燃料カット復帰が行われた時点で、ステップ101で「Yes」と判定され、ステップ202に進んで、燃料カット復帰時のセンサ出力I3 を読み込んで記憶すると共に、タイマを作動させて燃料カット復帰後の経過時間をカウントする。続くステップ203で、センサ出力がI4 まで低下したか否かを判定し、センサ出力がI4 に低下するまで待機する。   In the sensor abnormality diagnosis routine of the second embodiment, first, at step 201, it is determined whether or not the fuel cut is restored (restarting fuel injection). If the fuel cut is not restored, the sensor abnormality diagnosis is performed without performing the subsequent processing. End the routine. Thereafter, when fuel cut return is performed, “Yes” is determined in step 101 and the process proceeds to step 202 where the sensor output I3 at the time of fuel cut return is read and stored, and a timer is activated to cut the fuel cut. The elapsed time after returning is counted. In subsequent step 203, it is determined whether or not the sensor output has decreased to I4, and the process waits until the sensor output decreases to I4.

その後、センサ出力がI4 まで低下すると、ステップ204に進み、燃料カット開始からセンサ出力がI4 に低下するまでの時間T2 を前述したタイマのカウント値から読み取って記憶した後、ステップ205に進んで、センサ出力の変化率ΔIを次式により算出する。   Thereafter, when the sensor output decreases to I4, the process proceeds to step 204. After reading and storing the time T2 from the start of fuel cut to the sensor output decreasing to I4 from the count value of the timer, the process proceeds to step 205. The sensor output change rate ΔI is calculated by the following equation.

ΔI=(I4 −I3 )/T2
続くステップ206で、上式により算出したセンサ出力の変化率ΔIを異常判定値Ifrと比較し、センサ出力の変化率ΔIが異常判定値Ifr以下の場合(絶対値の比較では|ΔI|≧|Ifr|の場合)には、空燃比センサ28の応答性は劣化しておらず、センサ出力は正常であるので、本ルーチンを終了する。しかし、空燃比センサ28の応答性が劣化するに従って、センサ出力の変化率ΔIの絶対値が小さくなることから、センサ出力の変化率ΔIが異常判定値Ifcより大きくなった場合(絶対値の比較では|ΔI|<|Ifr|となった場合)には、空燃比センサ28の異常(劣化)有りと判定される。この場合には、ステップ107に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。
ΔI = (I4−I3) / T2
In subsequent step 206, the sensor output change rate ΔI calculated by the above equation is compared with the abnormality determination value Ifr. If the sensor output change rate ΔI is equal to or less than the abnormality determination value Ifr (in the absolute value comparison, | ΔI | ≧ | In the case of Ifr |), the responsiveness of the air-fuel ratio sensor 28 has not deteriorated and the sensor output is normal, so this routine is terminated. However, since the absolute value of the sensor output change rate ΔI decreases as the responsiveness of the air-fuel ratio sensor 28 deteriorates, the sensor output change rate ΔI becomes greater than the abnormality determination value Ifc (absolute value comparison). If | ΔI | <| Ifr |), it is determined that the air-fuel ratio sensor 28 is abnormal (deteriorated). In this case, the routine proceeds to step 107, where the sensor abnormality is stored in the memory of the ECU 36, and the warning lamp 39 is lit to notify the driver.

以上説明した実施例1及び実施例2では、診断開始条件となる燃料供給量の変化として燃料カット開始又は燃料カット復帰を検出するようにしたが、燃料供給量の変化をもたらす目標空燃比の変化又は燃料増量値・燃料減量値の変化を診断開始条件とするようにしても良い。   In the first embodiment and the second embodiment described above, the fuel cut start or the fuel cut return is detected as a change in the fuel supply amount serving as a diagnosis start condition. However, a change in the target air-fuel ratio that causes a change in the fuel supply amount. Alternatively, a change in the fuel increase value / fuel decrease value may be used as the diagnosis start condition.

また、実施例1及び実施例2では、センサ出力が所定値I2 ,I4 に変化するまでの時間T1 ,T2 を計測して、センサ出力の所定変化量を時間T1 ,T2 で割り算してセンサ出力の変化率ΔIを求めるようにしたが、所定時間内の変化量を計測して、この変化量を当該所定時間で割り算してセンサ出力の変化率ΔIを求めるようにしても良い。これを具体化したのが図10及び図11に示す本発明の実施例3と図12及び図13に示す本発明の実施例4である。
[実施例3]
In the first and second embodiments, the time T1 and T2 until the sensor output changes to the predetermined values I2 and I4 are measured, and the predetermined change amount of the sensor output is divided by the times T1 and T2 to output the sensor output. However, the change rate ΔI of the sensor output may be calculated by measuring the change amount within a predetermined time and dividing the change amount by the predetermined time. This is embodied in the third embodiment of the present invention shown in FIGS. 10 and 11 and the fourth embodiment of the present invention shown in FIGS.
[Example 3]

図10及び図11に示す本発明の実施例3は、燃料カット開始後のセンサ出力の変化率ΔIを求める実施例1に対応する実施例であり、ステップ303,304の処理が実施例1と異なるのみであり、これ以外の処理は実施例1と実質的に同じである。この実施例3では、燃料カット開始時のセンサ出力I5を読み込んで記憶し(ステップ302)、その後、所定時間T3 経過した時点のセンサ出力I6 を読み込んで記憶し(ステップ303,304)、センサ出力の変化率ΔIを次式により算出する(ステップ305)。   The third embodiment of the present invention shown in FIGS. 10 and 11 is an embodiment corresponding to the first embodiment for obtaining the change rate ΔI of the sensor output after the start of the fuel cut, and the processing of steps 303 and 304 is the same as the first embodiment. Only the process is different, and the other processes are substantially the same as those in the first embodiment. In this third embodiment, the sensor output I5 at the start of fuel cut is read and stored (step 302), and then the sensor output I6 when the predetermined time T3 has elapsed is read and stored (steps 303 and 304). Is calculated by the following equation (step 305).

ΔI=(I6 −I5 )/T3
[実施例4]
ΔI = (I6−I5) / T3
[Example 4]

一方、図12及び図13に示す本発明の実施例4は、燃料カット復帰後のセンサ出力の変化率ΔIを求める実施例2に対応する実施例であり、ステップ403,404の処理が実施例2と異なるのみであり、これ以外の処理は実施例2と実質的に同じである。この実施例4では、燃料カット復帰時のセンサ出力I7 を読み込んで記憶し(ステップ402)、その後、所定時間T4 経過した時点のセンサ出力I8 を読み込んで記憶し(ステップ403,404)、センサ出力の変化率ΔIを次式により算出する(ステップ405)。   On the other hand, the fourth embodiment of the present invention shown in FIGS. 12 and 13 is an embodiment corresponding to the second embodiment for obtaining the change rate ΔI of the sensor output after returning from the fuel cut, and the processing of steps 403 and 404 is the embodiment. The other processes are substantially the same as those in the second embodiment. In the fourth embodiment, the sensor output I7 when the fuel cut is restored is read and stored (step 402), and then the sensor output I8 when the predetermined time T4 has elapsed is read and stored (steps 403 and 404). The change rate ΔI is calculated by the following equation (step 405).

ΔI=(I8 −I7 )/T4
[実施例5]
ΔI = (I8−I7) / T4
[Example 5]

ところで、図3に示すように、燃料カット開始からセンサ出力が変化し始めるまでに応答遅れ時間T5 がある。空燃比センサ28の特性が劣化すると、応答性が遅くなり、応答遅れ時間T5 が長くなる傾向がある。   Incidentally, as shown in FIG. 3, there is a response delay time T5 from the start of fuel cut until the sensor output starts to change. When the characteristics of the air-fuel ratio sensor 28 are deteriorated, the response is delayed and the response delay time T5 tends to become longer.

そこで、図14及び図15に示す本発明の実施例5では、燃料カット開始からセンサ出力が変化し始めるまでの応答遅れ時間T9 を測定し、この応答遅れ時間T9 を異常判定値Tfcと比較してセンサ異常の有無を判定する。具体的には、ステップ501,502で、燃料カット開始時のセンサ出力I9 を読み込んで記憶すると共に、タイマを作動させて燃料カット開始後の経過時間をカウントする。   Accordingly, in the fifth embodiment of the present invention shown in FIGS. 14 and 15, the response delay time T9 from the start of fuel cut until the sensor output starts to change is measured, and this response delay time T9 is compared with the abnormality determination value Tfc. To determine if there is a sensor abnormality. Specifically, in steps 501 and 502, the sensor output I9 at the start of fuel cut is read and stored, and a timer is activated to count the elapsed time after the start of fuel cut.

次いで、ステップ503にて、センサ出力がI9+Δi(ここでΔiは出力上昇と認められる変化幅)に上昇するまで待機し、センサ出力がI9+Δiに上昇した時点で、ステップ504に進んで、燃料カット開始からセンサ出力がI9+Δiに上昇するまでの応答遅れ時間T9を前述したタイマのカウント値から読み取る。この後、ステップ505で、応答遅れ時間T9を異常判定値Tfcと比較し、T9≦Tfcであれば、空燃比センサ28の応答性は劣化しておらず、センサ出力は正常であるので、本ルーチンを終了する。
Next, in step 503, the process waits until the sensor output rises to I9 + Δi (where Δi is a change width that is recognized as an increase in output). When the sensor output rises to I9 + Δi, the process proceeds to step 504 to start fuel cut. The response delay time T9 until the sensor output increases to I9 + Δi is read from the count value of the timer described above. Thereafter, in step 505, the response delay time T9 is compared with the abnormality determination value Tfc. If T9 ≦ Tfc, the responsiveness of the air-fuel ratio sensor 28 is not deteriorated and the sensor output is normal. End the routine.

しかし、T9 >Tfcであれば、空燃比センサ28の応答性が劣化しているので、空燃比センサ28の異常(劣化)有りと判定され、ステップ506に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。この場合、ステップ503,504の処理が特許請求の範囲でいう計時手段として機能する。
[実施例6]
However, if T9> Tfc, the responsiveness of the air-fuel ratio sensor 28 has deteriorated, so it is determined that there is an abnormality (deterioration) of the air-fuel ratio sensor 28, and the routine proceeds to step 506 where the sensor abnormality is detected in the memory of the ECU 36. At the same time, the warning lamp 39 is lit to notify the driver. In this case, the processing of steps 503 and 504 functions as time measuring means in the claims.
[Example 6]

一方、図16及び図17に示す本発明の実施例6では、燃料カット開始後、応答遅れ時間T10経過後にセンサ出力の変化率ΔIの測定を開始することで、変化率ΔIの測定精度を高めるものである。この実施例6は、所定時間内のセンサ出力の変化量を当該所定時間で割り算して変化率ΔIを求める実施例3(図10,図11)に対応するものであり、以下、図17のタイムチャート中の符号を引用しながら図16のフローチャートを説明する。   On the other hand, in the sixth embodiment of the present invention shown in FIGS. 16 and 17, the measurement accuracy of the change rate ΔI is improved by starting the measurement of the change rate ΔI of the sensor output after the response delay time T10 has elapsed after the start of the fuel cut. Is. The sixth embodiment corresponds to the third embodiment (FIGS. 10 and 11) in which the change rate ΔI is calculated by dividing the change amount of the sensor output within a predetermined time by the predetermined time. The flowchart of FIG. 16 will be described with reference to the reference numerals in the time chart.

ステップ601〜604の処理は、図14のステップ501〜504の処理と同じであり、燃料カット開始時のセンサ出力I10を求めて記憶すると共に、燃料カット開始からセンサ出力がI10+Δiに上昇するまでの応答遅れ時間T10を測定して記憶する。続くステップ605で、センサ出力がI10+Δiに上昇してから所定時間Δt経過するまで待機し、所定時間Δt経過後にセンサ出力I11を読み込んで記憶する(ステップ606)。続くステップ607で、センサ出力の変化率ΔIを次式により算出する。   The processing in steps 601 to 604 is the same as the processing in steps 501 to 504 in FIG. 14, and the sensor output I10 at the start of fuel cut is obtained and stored, and from the start of fuel cut until the sensor output increases to I10 + Δi. The response delay time T10 is measured and stored. In the subsequent step 605, the process waits until the predetermined time Δt has elapsed since the sensor output increased to I10 + Δi, and after the predetermined time Δt has elapsed, the sensor output I11 is read and stored (step 606). In the subsequent step 607, the sensor output change rate ΔI is calculated by the following equation.

ΔI={I11−(I10+Δi)}/Δt
この後、ステップ608で、センサ出力の変化率ΔIを異常判定値Icf2 と比較し、ΔI<Icf2 であれば、空燃比センサ28の異常(劣化)有りと判定され、ステップ609に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。
ΔI = {I11− (I10 + Δi)} / Δt
Thereafter, in step 608, the rate of change ΔI of the sensor output is compared with the abnormality determination value Icf2, and if ΔI <Icf2, it is determined that the air-fuel ratio sensor 28 is abnormal (deteriorated), the process proceeds to step 609, and the ECU 36 The sensor abnormality is stored in the memory and the warning lamp 39 is lit to notify the driver.

尚、実施例1についても、燃料カット開始後、応答遅れ時間T10の経過後にセンサ出力の変化率ΔIの測定を開始するようにしても良い。また、実施例5及び実施例6の各実施例の考え方は、燃料カット開始時に限らず、燃料カット復帰時等、他の燃料供給量変化を検出する場合にも適用可能である。   In the first embodiment, measurement of the sensor output change rate ΔI may be started after the response delay time T10 has elapsed after the fuel cut is started. The concept of each of the fifth and sixth embodiments is not limited to when the fuel cut is started, but can also be applied when detecting other fuel supply amount changes such as when the fuel cut is restored.

また、実施例5を除く各実施例では、いずれもセンサ出力の変化量を時間で割り算して単位時間当たりの変化量をセンサ出力の変化率ΔIとして求めるようにしたが、センサ出力の変化率ΔIを直接算出せずに、次のようにして間接的にセンサ出力の変化率を判定するようにしても良い。   In each of the embodiments except for the fifth embodiment, the change amount of the sensor output is divided by the time to obtain the change amount per unit time as the change rate ΔI of the sensor output. Instead of directly calculating ΔI, the sensor output change rate may be indirectly determined as follows.

(1)燃料供給量が変化した後にセンサ出力が所定量変化するまでの時間を計測し、その計測時間の長短によってセンサ出力の変化率を間接的に判定する。つまり、計測時間が長ければ、センサ出力の変化率が小さく、計測時間が短くなるほど、センサ出力の変化率が大きくなるという関係を利用するものである。この場合には、センサ出力の変化量を計測時間で割り算する必要はない。   (1) The time until the sensor output changes by a predetermined amount after the fuel supply amount changes is measured, and the change rate of the sensor output is indirectly determined based on the length of the measurement time. That is, the relationship is such that the longer the measurement time, the smaller the change rate of the sensor output, and the shorter the measurement time, the greater the change rate of the sensor output. In this case, it is not necessary to divide the change amount of the sensor output by the measurement time.

(2)燃料供給量が変化した後の所定時間内に変化するセンサ出力の変化量を求め、その変化量の大小によってセンサの出力の変化率を間接的に判定する。つまり、所定時間内の変化量が大きくなれば、センサ出力の変化率が大きくなり、所定時間内の変化量が小さくなるほど、センサ出力の変化率が小さくなるという関係を利用するものである。この場合も、上述の場合と同じく、変化量を時間で割り算する必要はない。   (2) A change amount of the sensor output that changes within a predetermined time after the fuel supply amount changes is obtained, and the change rate of the sensor output is indirectly determined based on the magnitude of the change amount. That is, the change rate of the sensor output increases as the change amount within the predetermined time increases, and the change rate of the sensor output decreases as the change amount within the predetermined time decreases. In this case as well, it is not necessary to divide the amount of change by time, as in the case described above.

上記(1)又は(2)の方法を用いれば、センサ出力の変化量を時間で割り算する必要が無いので、演算負荷が少なくて済む利点がある。また、センサ出力の変化率(傾き)をハード的に検出する検出回路を設けるようにしても良い。   If the method (1) or (2) is used, there is no need to divide the change amount of the sensor output by time, and there is an advantage that the calculation load can be reduced. Further, a detection circuit that detects the change rate (slope) of the sensor output in hardware may be provided.

尚、燃料供給量の変化の判定やセンサ出力の変化率の判定は、前記した各例を適宜組み合わせて実施するようにしても良く、例えば燃料カット開始時と燃料カット復帰時の双方でセンサ異常の判定を行うようにしても良い。   The determination of the change in the fuel supply amount and the determination of the rate of change in the sensor output may be performed by appropriately combining the above examples. For example, sensor abnormality occurs both at the start of fuel cut and at the return of fuel cut. You may make it perform determination of.

また、前記実施例では、排気ガス中の空燃比に応じて連続的に出力が変化する空燃比センサ28を用いたが、排気ガス中の酸素濃度に応じて出力がステップ的に変化する酸素センサを用いるようにしても良い。   In the above embodiment, the air-fuel ratio sensor 28 whose output continuously changes according to the air-fuel ratio in the exhaust gas is used. However, the oxygen sensor whose output changes stepwise according to the oxygen concentration in the exhaust gas. May be used.

また、前記実施例では、センサ異常時に運転者に警告する警告手段として警告ランプ39を用いたが、ブザー等、音で警告したり、燃料供給又は点火時期を周期的に変化させてエンジン回転数をラフにすることで運転者にセンサ異常を警告するようにしても良い。   Further, in the above embodiment, the warning lamp 39 is used as a warning means for warning the driver when the sensor is abnormal. However, a warning such as a buzzer or the like is used, or the engine speed is changed by periodically changing the fuel supply or ignition timing. The driver may be warned of sensor abnormality by roughening.

本発明の実施例1を示すエンジン制御システム全体の概略構成図1 is a schematic configuration diagram of an entire engine control system showing Embodiment 1 of the present invention. 実施例1のセンサ異常診断ルーチンの処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the sensor abnormality diagnosis routine of Example 1. 実施例1の異常診断処理の流れを示すタイムチャートTime chart showing the flow of abnormality diagnosis processing of the first embodiment 空燃比フィードバックゲイン切替ルーチンの流れを示すフローチャートA flowchart showing the flow of the air-fuel ratio feedback gain switching routine 空燃比フィードバック補正係数の経時的変化を示す図A diagram showing the change over time of the air-fuel ratio feedback correction coefficient 燃料カット判定ルーチンの処理の流れを示すフローチャートFlow chart showing the flow of processing of the fuel cut determination routine 燃料カットの作動を示すフローチャートFlow chart showing fuel cut operation 本発明の実施例2のセンサ異常診断ルーチンの処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the sensor abnormality diagnosis routine of Example 2 of this invention. 実施例2の異常診断処理の流れを示すタイムチャートTime chart showing the flow of abnormality diagnosis processing of the second embodiment 本発明の実施例3のセンサ異常診断ルーチンの処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the sensor abnormality diagnosis routine of Example 3 of this invention. 実施例3の異常診断処理の流れを示すタイムチャートTime chart showing the flow of abnormality diagnosis processing of Example 3 本発明の実施例4のセンサ異常診断ルーチンの処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the sensor abnormality diagnosis routine of Example 4 of this invention. 実施例4の異常診断処理の流れを示すタイムチャートTime chart showing the flow of abnormality diagnosis processing of Example 4 本発明の実施例5のセンサ異常診断ルーチンの処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the sensor abnormality diagnosis routine of Example 5 of this invention. 実施例5の異常診断処理の流れを示すタイムチャートTime chart showing the flow of abnormality diagnosis processing of Example 5 本発明の実施例6のセンサ異常診断ルーチンの処理の流れを示すフローチャートThe flowchart which shows the flow of a process of the sensor abnormality diagnosis routine of Example 6 of this invention. 実施例5の異常診断処理の流れを示すタイムチャートTime chart showing the flow of abnormality diagnosis processing of Example 5

符号の説明Explanation of symbols

10…エンジン(内燃機関)、
20…燃料噴射弁、
27…排気管、
28…空燃比センサ、
36…エンジン制御回路(検出手段,変化率判定手段,異常判定手段)、
39…警告ランプ(警告手段)。
10: Engine (internal combustion engine),
20 ... Fuel injection valve,
27 ... exhaust pipe,
28: Air-fuel ratio sensor,
36 ... Engine control circuit (detection means, change rate determination means, abnormality determination means),
39 ... Warning lamp (warning means).

Claims (7)

内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を、前記記憶された空燃比センサ出力と、前記記憶された空燃比センサ出力からセンサ出力が所定値まで変化するのに要した時間とに基づいて求める変化率判定手段と、
この変化率判定手段により求めた前記センサの出力の変化率が所定値よりも小さいときに前記空燃比センサが異常であると判定する異常判定手段とを備え、
前記検出手段は、燃料カット開始又は燃料カット復帰を燃料供給量の変化として検出することを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In the self-diagnosis of the abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
The output of the air-fuel ratio sensor when a change in the fuel supply amount is detected by the detection means is stored, and the change rate of the output of the air-fuel ratio sensor after the change in the fuel supply amount is detected is stored. A rate-of-change determination means that is determined based on the air-fuel ratio sensor output and the time required for the sensor output to change from the stored air-fuel ratio sensor output to a predetermined value ;
An abnormality determination unit that determines that the air-fuel ratio sensor is abnormal when the rate of change of the output of the sensor obtained by the change rate determination unit is smaller than a predetermined value;
The self-diagnosis device for an air-fuel ratio control apparatus for an internal combustion engine, wherein the detection means detects start of fuel cut or return of fuel cut as a change in fuel supply amount.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料カット開始又は燃料カット復帰の燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を、前記記憶された空燃比センサ出力と、前記記憶された空燃比センサ出力からセンサ出力が所定値まで変化するのに要した時間とに基づいて求める変化率判定手段と、
この変化率判定手段により求めた前記センサの出力の変化率が所定値よりも小さいときに前記空燃比センサが異常であると判定する異常判定手段とを備え、
前記変化率判定手段は、前記センサの出力の変化率として単位時間当たりの変化量を求めることを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In the self-diagnosis of the abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
Storing the output of the air-fuel ratio sensor when the change in the fuel supply amount of more fuel cut start or fuel cut recovery is detected in this detection means, the air-fuel ratio sensor after the detection of a change in the fuel supply amount A rate-of-change determination means for obtaining a rate of change in output based on the stored air-fuel ratio sensor output and a time required for the sensor output to change from the stored air-fuel ratio sensor output to a predetermined value ;
An abnormality determination unit that determines that the air-fuel ratio sensor is abnormal when the rate of change of the output of the sensor obtained by the change rate determination unit is smaller than a predetermined value;
The self-diagnosis device for an air-fuel ratio control apparatus for an internal combustion engine, wherein the change rate determination means obtains a change amount per unit time as a change rate of the output of the sensor.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料カット開始又は燃料カット復帰の燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
この変化率判定手段により求めた前記センサの出力の変化率が所定値よりも小さいときに前記空燃比センサが異常であると判定する異常判定手段とを備え、
前記変化率判定手段は、前記燃料供給量が変化した後に前記センサの出力が前記記憶された空燃比センサの出力から所定量変化するまでの時間を計測し、その計測時間の長短によって前記センサの出力の変化率を判定することを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In the self-diagnosis of the abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
The output of the air-fuel ratio sensor when a change in the fuel supply amount at the start of fuel cut or the return of fuel cut is detected by this detecting means is stored, and the output of the air-fuel ratio sensor after detecting the change in the fuel supply amount A rate-of-change determination means for obtaining a rate of change of
An abnormality determination unit that determines that the air-fuel ratio sensor is abnormal when the rate of change of the output of the sensor obtained by the change rate determination unit is smaller than a predetermined value;
The rate-of-change determination means measures a time from when the fuel supply amount changes until the output of the sensor changes by a predetermined amount from the stored output of the air-fuel ratio sensor, and determines the sensor output according to the length of the measurement time. A self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, characterized in that an output change rate is determined.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料カット開始又は燃料カット復帰の燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
この変化率判定手段により求めた前記センサの出力の変化率が所定値よりも小さいときに前記空燃比センサが異常であると判定する異常判定手段とを備え、
前記変化率判定手段は、前記燃料供給量が変化した後の所定時間内に変化する、前記記憶された空燃比センサの出力からの前記センサの出力の変化量を求め、その変化量の大小によって前記センサの出力の変化率を判定することを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In the self-diagnosis of the abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
Storing the output of the air-fuel ratio sensor when the change in the fuel supply amount of more fuel cut start or fuel cut recovery is detected in this detection means, the air-fuel ratio sensor after the detection of a change in the fuel supply amount A rate-of-change determination means for obtaining a rate of change in output;
An abnormality determination unit that determines that the air-fuel ratio sensor is abnormal when the rate of change of the output of the sensor obtained by the change rate determination unit is smaller than a predetermined value;
The change rate determination means obtains a change amount of the sensor output from the stored output of the air-fuel ratio sensor , which changes within a predetermined time after the fuel supply amount changes, and depends on the magnitude of the change amount. A self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, wherein a rate of change in output of the sensor is determined.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料カット開始又は燃料カット復帰の燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後に前記記憶された空燃比センサの出力から前記センサの出力が変化し始めるまでの応答遅れ時間を前記記憶された空燃比センサの出力から、出力上昇したと認められる変化幅分変化するまでの時間として計測する計時手段と、
この計時手段により測定した応答遅れ時間に基づいて前記センサの異常の有無を判定する異常判定手段とを備えたことを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In the self-diagnosis of the abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
Air-fuel ratio sensor, wherein storing the output of the air-fuel ratio sensor, said stored after detecting a change in the fuel supply amount when the change in the fuel supply amount of the fuel cut start or fuel cut recovery is detected by the detection means A time delay means for measuring a response delay time from the output of the sensor until the output of the sensor starts to change as a time from the stored output of the stored air-fuel ratio sensor to a change corresponding to a change width recognized as an increase in output ,
A self-diagnosis device for an air-fuel ratio control apparatus for an internal combustion engine, comprising: an abnormality determination unit that determines whether the sensor is abnormal based on a response delay time measured by the time measuring unit.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料カット開始又は燃料カット復帰の燃料供給量の変化が検出されたときの前記空燃比センサの出力を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を、前記記憶された空燃比センサ出力と、前記記憶された空燃比センサ出力からセンサ出力が所定値まで変化するのに要した時間とに基づいて求める変化率判定手段と、
この変化率判定手段により求めた前記センサの出力の変化率が所定値よりも小さいときに前記空燃比センサが異常であると判定する異常判定手段とを備え、
前記異常判定手段による前記空燃比センサの正常/異常の判定に応じて前記空燃比フィードバック制御の空燃比フィードバックゲインを切り換えることを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In the self-diagnosis of the abnormality of the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
Storing the output of the air-fuel ratio sensor when the change in the fuel supply amount of more fuel cut start or fuel cut recovery is detected in this detection means, the air-fuel ratio sensor after the detection of a change in the fuel supply amount A rate-of-change determination means for obtaining a rate of change in output based on the stored air-fuel ratio sensor output and a time required for the sensor output to change from the stored air-fuel ratio sensor output to a predetermined value ;
An abnormality determination unit that determines that the air-fuel ratio sensor is abnormal when the rate of change of the output of the sensor obtained by the change rate determination unit is smaller than a predetermined value;
A self-diagnosis device for an air-fuel ratio control apparatus for an internal combustion engine, wherein the air-fuel ratio feedback gain of the air-fuel ratio feedback control is switched in accordance with the normality / abnormality of the air-fuel ratio sensor by the abnormality determination means.
内燃機関の排気ガスの空燃比に応じて出力電流が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
前記内燃機関への燃料供給量の変化を検出する検出手段と、
この検出手段により燃料カット開始又は燃料カット復帰の燃料供給量の変化が検出されたときの前記空燃比センサの出力電流を記憶し、前記燃料供給量の変化を検出した後の前記空燃比センサの出力電流の変化率を、前記記憶された空燃比センサ出力電流と、前記記憶された空燃比センサ出力電流から前記空燃比センサの出力電流が所定値まで変化するのに要した時間とに基づいて求める変化率判定手段と、
この変化率判定手段により求めた前記空燃比センサの出力電流の変化率が所定値よりも小さいときに前記空燃比センサが異常であると判定する異常判定手段とを備えたことを特徴とする内燃機関の空燃比制御装置の自己診断装置。
Self-diagnosis of an abnormality in the air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of the air-fuel ratio sensor whose output current continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine In
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine;
The air-fuel ratio sensor after the more change in the fuel supply amount of the fuel cut start or the fuel cut recovery is to store the output current of the air-fuel ratio sensor when it is detected, detects a change in the fuel supply quantity to the detection means The change rate of the output current is based on the stored air-fuel ratio sensor output current and the time required for the output current of the air-fuel ratio sensor to change from the stored air-fuel ratio sensor output current to a predetermined value. Change rate determination means to obtain,
An internal combustion engine characterized by comprising: an abnormality determination unit that determines that the air-fuel ratio sensor is abnormal when the change rate of the output current of the air-fuel ratio sensor obtained by the change rate determination unit is smaller than a predetermined value. Self-diagnosis device for engine air-fuel ratio control device.
JP2003282867A 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine Expired - Lifetime JP4101133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282867A JP4101133B2 (en) 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282867A JP4101133B2 (en) 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6328086A Division JPH08177575A (en) 1994-12-28 1994-12-28 Self-diagnostic device for air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004003513A JP2004003513A (en) 2004-01-08
JP4101133B2 true JP4101133B2 (en) 2008-06-18

Family

ID=30438738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282867A Expired - Lifetime JP4101133B2 (en) 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4101133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206091A1 (en) * 2020-04-07 2021-10-14 ヤマハ発動機株式会社 Vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218601B2 (en) 2004-06-29 2009-02-04 トヨタ自動車株式会社 Air-fuel ratio sensor deterioration judgment system for compression ignition internal combustion engine
JP4894521B2 (en) * 2007-01-11 2012-03-14 日産自動車株式会社 Air-fuel ratio sensor deterioration diagnosis device
JP4736058B2 (en) 2007-03-30 2011-07-27 株式会社デンソー Air-fuel ratio control device for internal combustion engine
JP5035140B2 (en) * 2008-06-26 2012-09-26 日産自動車株式会社 Air-fuel ratio sensor abnormality diagnosis device
JP5446759B2 (en) * 2009-11-13 2014-03-19 マツダ株式会社 Engine abnormality detection method and abnormality detection apparatus
JP6551386B2 (en) 2016-12-26 2019-07-31 トヨタ自動車株式会社 Exhaust sensor diagnostic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206091A1 (en) * 2020-04-07 2021-10-14 ヤマハ発動機株式会社 Vehicle

Also Published As

Publication number Publication date
JP2004003513A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US5672817A (en) Self-diagnostic apparatus of air-fuel ratio control system of internal combustion engine
US7954364B2 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
US7513105B2 (en) Exhaust gas purifying system and abnormality determining method therefor
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
JP4161771B2 (en) Oxygen sensor abnormality detection device
JP2009036024A (en) Air-fuel ratio control device of internal combustion engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP5533471B2 (en) Catalyst deterioration diagnosis device
JP2005188309A (en) Abnormality determination device of throttle system
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP2006177371A (en) Internal combustion engine control device
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4069924B2 (en) Catalyst deterioration detection device for exhaust gas purification
JP2005042676A (en) Failure detecting device for oxygen concentration sensor
JP4395890B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2009108681A (en) Abnormality diagnostic device for exhaust gas sensor
EP4238634A1 (en) Control device for internal combustion engine and catalyst deterioration diagnosis method
JP2000205032A (en) Anomaly diagnostic system of internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP2005282475A (en) Abnormality diagnosis device for air fuel ratio sensor
JP4736797B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP2006009624A (en) Air-fuel ratio control device of engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070712

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term