JP4084509B2 - Photosynthetic bacterial strain - Google Patents

Photosynthetic bacterial strain Download PDF

Info

Publication number
JP4084509B2
JP4084509B2 JP26060899A JP26060899A JP4084509B2 JP 4084509 B2 JP4084509 B2 JP 4084509B2 JP 26060899 A JP26060899 A JP 26060899A JP 26060899 A JP26060899 A JP 26060899A JP 4084509 B2 JP4084509 B2 JP 4084509B2
Authority
JP
Japan
Prior art keywords
strain
reactor
hydrogen generation
light
photosynthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26060899A
Other languages
Japanese (ja)
Other versions
JP2001078754A (en
Inventor
利彦 近藤
正泰 荒川
敏郎 平井
淳 三宅
正人 三宅
泰男 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Telegraph and Telephone Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26060899A priority Critical patent/JP4084509B2/en
Publication of JP2001078754A publication Critical patent/JP2001078754A/en
Application granted granted Critical
Publication of JP4084509B2 publication Critical patent/JP4084509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光エネルギーを利用して有機酸等を含有する有機性水溶液から水素を発生させる場合に用いられる光合成細菌の菌株に関する。
【0002】
【従来の技術】
従来から光合成細菌の光合成能力を利用して有機性廃水を分解させ、次世代クリーンエネルギーとして有望視されている水素を発生させる試みがなされている。実際に水素発生を行う場合において、アクリル板若しくはガラス板等の光透過性の高い材料で平板型光合成リアクターを構成し、当該リアクター内に光合成細菌とともに光合成細菌育成のための栄養分(無機塩、窒素源)を含む培養液及び水素発生のための基質である有機性廃水、例えば有機酸を注入する。光合成細菌として、安定した高い水素発生能力を有するロドバクター スフェロイデス(Rhodobacter sphaeroides ) RV株(工業技術院生命工学技術研究所 寄託番号第7254号)がよく利用されている。ここに光、例えば太陽光等を照射することにより、当該リアクター内に光エネルギーを供給して水素発生を行っている。平板型リアクターは非常に簡単な構造を有しているため、製造が容易でありかつ設置コストも低く抑えることができる。しかし、光合成細菌はその光合成色素により光を吸収するので、光強度はリアクターの受光面から離れるにつれて著しく減少し、リアクターの深部では水素発生に最小限必要な光エネルギーが十分に供給されず、結果として水素発生速度の低下が観測される(自己遮蔽効果)。
【0003】
近年、光合成細菌を利用した光水素発生における水素発生速度向上を目指して、菌体の改変及びリアクターの改良に関する種々の研究がなされている。
前述のように、自己遮蔽効果のためにリアクター内では光合成細菌が有する本来の水素発生能力を十分引き出すことができず、特にリアクターをスケールアップした場合にはリアクター全体としての水素発生速度が大幅に低下してしまう。従来のロドバクター スフェロイデス RV株を用いた場合には自己遮蔽効果の影響が大きく現れており、上記欠点を排除したさらに水素発生能力の高い光合成細菌が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、上述の点に鑑みてなされたものであり、本発明は光合成リアクター内に生じる自己遮蔽効果により、リアクター内での光合成細菌の水素発生能力が低下するという点を解決させた光合成細菌の菌株を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的は、高い水素発生能力を有するロドバクター スフェロイデス MTP4菌株(FERM P−17549)によって達成される。
【0006】
前記菌株は、光合成細菌ロドバクター スフェロイデス RV株に紫外線照射して突然変異を誘発させ、350nm〜1000nmの光に対する光透過率が光合成細菌ロドバクター スフェロイデス RV株よりも高く、光合成細菌の光合成色素であるバクテリオクロロフィル及びカロチノイドによる吸収が光合成細菌ロドバクター スフェロイデス RV株と比較して、夫々35〜40%及び25〜30%減少している菌株である。
【0007】
合成リアクター内で水素発生を行う場合には、自己遮蔽効果のため光合成細菌の菌体個々の水素発生能力に加えて、水素発生を行うために最小限必要な光エネルギーが供給されている菌体の数が、リアクター当たりの水素発生速度に大きく影響を与えると考えられる。
【0008】
すなわち、菌体の光合成色素量を減らすほど菌体の光透過率が増加し、自己遮蔽効果が小さくなるので、リアクターのより深部にまで水素発生に最小限必要な光エネルギーが供給される。よって、水素発生を実際に行う菌体の数がより多くなり、リアクター当たりの水素発生速度は増大する。しかし、光合成色素量を必要以上に減らすと光エネルギー獲得能力が小さくなるため菌体個々の水素発生能力が著しく低下し、たとえ光透過率が優れていてもリアクター当たりの水素発生速度は減少してしまう。
【0009】
本発明の光合成細菌の色素欠損株は、その光合成細菌の光合成色素量が水素発生にそれほど悪影響を与えない程度に減少しているため、菌体個々の水素発生能力の低下は最小限に抑えられている。一方で、光透過率が優れているためリアクター内における自己遮蔽効果が低減され、水素発生を行うために最小限必要な光エネルギーが供給される菌体の数をロドバクター スフェロイデス RV株の場合より増加させることができる。
【0010】
以上のように光合成色素量の減少による水素発生能力の低下よりも、自己遮蔽効果の低減によるリアクター当たりの水素発生能力の増大の方がより強く作用しているために、本発明の色素欠損株は光合成細菌ロドバクター スフェロイデスRV株に比較して、リアクター当たりの水素発生能力は大きくなるものと考えられる。
【0011】
さらに本発明の色素欠損株による水素発生能力は、利用した光源の光強度に依存する傾向がある。本発明の色素欠損株である菌株は光強度が強いほど水素発生速度が大きくなる傾向を利用して、光源に近い前層に本発明の色素欠損株を、光源から離れた後層に親株であるロドバクター スフェロイデス RV株を積層させた二層型リアクターを作製したところ、その二層型リアクターの水素の発生能力は各単独株によるリアクターよりも高く、さらに高効率な水素発生系が得られる。
【0012】
【発明の実施の形態】
本発明者らは光合成細菌を利用した光水素発生システムにおける水素発生速度の向上を目指して、光合成細菌の菌体の改変に着目した。特に光合成細菌の光合成色素量を減らした色素欠損株である菌株を単離し、菌体の自己遮蔽効果を減少させることにより光合成リアクター内部への効率的な光照射を実現し、リアクター当たりの水素発生速度を増大させることを検討課題とした。
【0013】
光合成細菌であるロドバクター スフェロイデス RV株の突然変異を誘発させるために、254nmの紫外線照射による方法を利用した。紫外線照射による突然変異により5種類の突然変異体が生成したが、その中で、特にバクテリオクロロフィル及びカロチノイドの量を適度に減少させた色素欠損株である新規菌株(本願では以下にMTP4という)が安定であり, 良好な水素発生能力を有することから注目した。
【0014】
以下に本発明についての実施例を挙げて具体的に説明する。
1)MTP4株の単離
ロドバクター スフェロイデス RV株を対数増殖期後期までaSy培地で培養した後、その懸濁溶液(0. 5ml)をaSy平板培地(シャーレ直径9cm)に植菌し、紫外線(波長254nm、強度710μW/ cm2 )を10秒間照射した後、暗好気条件下、30℃で24時間培養した。aSy培地の組成を下記表1に示す。続いて、タングステンランプ照射(90W/ m2 )の明嫌気条件下で3日間培養を行い、形成した約6000個のコロニーの中から色調がロドバクター スフェロイデス RV株と異なるものを視覚的に選択し、これを再びaSy平板培地に植菌した。形成したコロニーを実体顕微鏡で観察し、雑菌等を含まないMTP4株の単一コロニーとなるまで選択、植菌を繰り返した。最後に、得られたMTP4株の単一コロニーをaSy試験管培地(17ml)に植菌し純粋培養した。
【0015】
【表1】

Figure 0004084509
【0016】
2) 吸収スペクトルの測定
図1にaSy培地で培養したロドバクター スフェロイデス RV株及び上記調製されたMTP4株の菌体懸濁溶液の紫外- 可視吸収スペクトルを示す。いずれの菌株の場合にも、バクテリオクロロフィルによる吸収が800nm付近と850nm付近に、またカロチノイドによる吸収が450nm〜500nmの領域に観測された。MTP4株のスペクトルの形はロドバクタースフェロイデス RV株と同様であるが、その吸光度が350nm〜1000nmの全領域にわたって小さくなっていることが認められ、ある特定の色素タンパク質が欠損しているのではなく、色素タンパク質集合体のユニット全体が減少した変異株であると考えられる。
【0017】
さらにこのことは、MTP4株の光透過率がロドバクター スフェロイデス RV株よりも高いことを示している。
次にMTP4株の光合成色素欠損の度合いを、アセトン- メタノール混合溶媒を用いて、菌体から抽出した色素の紫外- 可視吸収スペクトルより求めた。その結果、親株であるロドバクター スフェロイデス RV株と比較して、バクテリオクロロフィルが35〜40%、カロチノイドが25〜30%減少していることが確認された。
【0018】
3) リアクター内部の光分布
親株と本発明の菌株を用いて、水素発生を行った場合のリアクター内部の光分布について説明する。リアクター内にMTP4株の菌体懸濁溶液を入れた場合のリアクター内部の光分布のシミュレーションを行った。受光面からの距離5〜20mmにおける波長と相対エネルギーの関係を図2に示す。菌体濃度はいずれの菌株においても1. 5mg/ mlとした。ここで相対エネルギーは恒温槽の受光部分におけるタングステンランプの波長1000nmの成分の光エネルギーを1とした場合の相対値である。また実線はロドバクター スフェロイデス RV株を、破線はMTP4株の場合を示している。
【0019】
いずれの菌株を用いた場合にも、リアクターの受光面からの距離が増すにつれて到達する光エネルギーは減衰していくが、減衰の度合いはMTP4株で小さく、より深部にまで光が到達していることがわかった。すなわち、MTP4株を用いれば自己遮蔽効果が低減されるということが示唆された。
4) 水素発生挙動
リアクターの厚さ(光路長)が5、25、60mmの3種類の平板型リアクターを用いて水素発生実験を以下に説明する。対数増殖期後期までaSy培地で培養した菌体懸濁溶液(18ml)をアルゴンバブルで脱気したgL培地に植菌し、明嫌気条件下、30℃で24時間本培養を行った。gL培地の組成を下記表2に示す。リアクターの容量の1/ 4にあたる本培養菌体懸濁溶液を入れ、次いで容量の3/ 4にあたるgL培地をアルゴンバブルで脱気した後注いだ。この際、菌体量が同株で同量になるように植菌量を調整した。光源としてタングステンランプを用い、リアクター受光面の光強度を300W/ m2 に設定し、明嫌気条件下、30℃で水素発生を行った。発生したガスは20%水酸化ナトリウム水溶液に通じ、二酸化炭素を取除いた後、水上置換によりメスシリンダー内に捕集した。
【0020】
図3には、菌体濃度cとリアクターの厚さdの積cxdと相対水素発生速度の関係を示す。ここでいう相対水素発生速度とは、ロドバクター スフェロイデスRV株に対するMTP4株による相対水素発生速度のことである。cxdの値が大きくなるにつれて、0.5〜1.15までは相対速度は急激に増加し、それ以降は徐々に減少するという傾向が観察された。
【0021】
以上のように、菌体濃度とリアクターの厚さの積が0.5〜1.15の場合に光合成色素を減少させたことに起因する水素発生速度増大効果が最大となり、MTP4株の水素発生速度はロドバクター スフェロイデス RV株に比較して最大1.6倍に増大した。
【0022】
【表2】
Figure 0004084509
【0023】
表1及び表2に示す基本培地の組成を表3に示す。
【0024】
【表3】
Figure 0004084509
【0025】
5) 二層型リアクターにおける光合成細菌の水素発生
本発明の色素欠損株であるMTP4株は、親株であるロドバクター スフェロイデス RV株に比較して水素発生速度が優れていることは上記例にて確認された。さらにMTP4株による水素発生は照射される光強度に依存し、ロドバクター スフェロイデス RV株と比べて光強度が強い程、その水素発生速度は大きい。そこで、二層型リアクターによる光合成細菌の水素発生挙動を検討した。各株は4)と同じ手順にしたがって調製された。図4に示すような形で、光源に近い前層と後層に各25mmの層厚で(A)、(B)及び(C)の二層型リアクターを調製した。リアクター受光面の光強度を500W/ m2 に設定し、4)にて説明したのと同じ方法で水素発生量を求め、その結果を図5に示す。図5から、後層における水素発生量は、前層に比較して供給される光エネルギーが少ないために水素発生量は少ない。前層にMTP4株を、後層にロドバクター スフェロイデス RV株を配置させた系において、全水素発生量は各株単独による系よりも水素発生量は増加した。
【0026】
【発明の効果】
上述の如く、本発明によれば、光エネルギーを利用して有機酸等を含有する有機性水溶液から水素を発生させる場合に用いられる光合成細菌ロドバクター スフェロイデス RV株において、光合成色素であるバクテリオクロロフィル及びカロチノイドを適度に減少させた本発明のMTP4株は、菌体個々の水素発生能力の低下を最小限に抑えつつ、リアクター内における自己遮蔽効果が低減され、水素発生を行うために最小限必要な光エネルギーが供給される菌体の数を増加させることができる。よって、リアクターをスケールアップした場合にも菌体の能力低下を抑えることが可能となり、リアクター当たりの水素発生速度が増大するという効果が得られる。
【図面の簡単な説明】
【図1】菌体懸濁溶液の紫外- 可視吸収スペクトルを示す図である。
【図2】リアクター内部の光分布を示す図である。
【図3】菌体濃度cとリアクターの厚さdの積cxdとロドバクター スフェロイデスRV株に対するMTP4株の相対水素発生速度の関係を示す図である。
【図4】(A)は、光源に近い前層にロドバクター スフェロイデス RV株を、光源から離れた後層にもロドバクター スフェロイデス RV株を配置させたリアクターを示す図である。
(B)は、光源に近い前層にMTP4株を、光源から離れた後層にもMTP4株を配置させたリアクターを示す図である。
(C)は、光源に近い前層にMTP4株を、光源から離れた後層にロドバクター スフェロイデス RV株を配置させた二層型リアクターを示す図である。
【図5】二層型リアクターにおける各層及び全層からの水素発生量を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a strain of photosynthetic bacteria used in the case of generating hydrogen from an organic aqueous solution containing an organic acid or the like using light energy.
[0002]
[Prior art]
Conventional attempts have been made to decompose organic wastewater by utilizing the photosynthetic ability of photosynthetic bacteria to generate hydrogen, which is considered promising as next-generation clean energy. When actually generating hydrogen, a plate-type photosynthetic reactor is composed of a highly light-transmitting material such as an acrylic plate or glass plate, and nutrients (inorganic salts, nitrogen, etc.) for growing the photosynthetic bacteria together with the photosynthetic bacteria in the reactor. Source) and organic waste water, eg, organic acid, which is a substrate for hydrogen generation. As a photosynthetic bacterium, Rhodobacter sphaeroides RV strain (Accessory No. 7254, National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology) having a stable and high hydrogen generation ability is often used. By irradiating light, such as sunlight, here, hydrogen energy is generated by supplying light energy into the reactor. Since the flat reactor has a very simple structure, it is easy to manufacture and the installation cost can be kept low. However, since photosynthetic bacteria absorb light with their photosynthetic dyes, the light intensity decreases significantly with distance from the light receiving surface of the reactor, and the light energy necessary for hydrogen generation is not sufficiently supplied deep in the reactor, resulting in a result. As a result, a decrease in hydrogen generation rate is observed (self-shielding effect).
[0003]
In recent years, various studies on modification of cells and improvement of reactors have been made with the aim of improving the hydrogen generation rate in photohydrogen generation using photosynthetic bacteria.
As mentioned above, the inherent hydrogen generation capability of photosynthetic bacteria cannot be fully exploited in the reactor due to the self-shielding effect. Especially when the reactor is scaled up, the hydrogen generation rate of the reactor as a whole is greatly increased. It will decline. When the conventional Rhodobacter spheroides RV strain is used, the influence of the self-shielding effect appears greatly, and a photosynthetic bacterium having a higher hydrogen generation ability that eliminates the above-described drawbacks is desired.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and the present invention is a photosynthetic bacterium in which the hydrogen generation ability of the photosynthetic bacterium in the reactor is reduced due to the self-shielding effect generated in the photosynthetic reactor. It aims at providing the strain of this.
[0005]
[Means for Solving the Problems]
The above objective is accomplished by Rhodobacter spheroides MTP4 strain (FERM P-17549) which has a high hydrogen generation capacity .
[0006]
The strain is a bacteriochlorophyll that is a photosynthetic bacterium photosynthesis bacterium Rhodobacter spheroides RV strain is induced by irradiating with ultraviolet rays to induce mutation, and has a light transmittance higher than that of the photosynthetic bacterium Rhodobacter spheroides RV strain. And the absorption by carotenoids is 35-40% and 25-30% decreased compared to the photosynthetic bacterium Rhodobacter spheroides RV strain, respectively.
[0007]
Bacteria when performing hydrogen generation in optical synthetic reactor, in addition to the cell individual hydrogen generation capability of photosynthetic bacteria for self-shielding effect, the minimum necessary light energy in order to perform a hydrogen generation is supplied It is thought that the number of bodies greatly affects the rate of hydrogen generation per reactor.
[0008]
That is, as the amount of photosynthetic pigment in the microbial cells is reduced, the light transmittance of the microbial cells increases and the self-shielding effect is reduced, so that light energy necessary for hydrogen generation is supplied deeper into the reactor. Therefore, the number of bacterial cells that actually generate hydrogen increases, and the hydrogen generation rate per reactor increases. However, if the amount of photosynthetic pigment is reduced more than necessary, the ability to acquire light energy decreases, so the hydrogen generation capacity of each cell decreases significantly, and even if the light transmittance is excellent, the hydrogen generation rate per reactor decreases. End up.
[0009]
Since the pigment-deficient strain of the photosynthetic bacterium of the present invention has the amount of photosynthetic pigment of the photosynthetic bacterium decreased to such an extent that it does not adversely affect hydrogen generation, the decrease in hydrogen generation capacity of each cell can be minimized. ing. On the other hand, since the light transmittance is excellent, the self-shielding effect in the reactor is reduced, and the number of cells supplied with the minimum light energy necessary for hydrogen generation is increased compared to the case of Rhodobacter spheroides RV strain. Can be made.
[0010]
As described above, since the increase in the hydrogen generation capacity per reactor due to the reduction of the self-shielding effect is acting more strongly than the decrease in the hydrogen generation capacity due to the decrease in the amount of photosynthetic pigment, the dye-deficient strain of the present invention Compared with the photosynthetic bacterium Rhodobacter spheroides RV, the hydrogen generation capacity per reactor is considered to increase.
[0011]
Furthermore, the hydrogen generation ability of the dye-deficient strain of the present invention tends to depend on the light intensity of the light source used. The strain which is a dye-deficient strain of the present invention utilizes the tendency that the hydrogen generation rate increases as the light intensity increases, so that the dye-deficient strain of the present invention is the front layer close to the light source and the parent strain is the rear layer away from the light source. When a two-layer reactor in which a certain Rhodobacter spheroides RV strain was laminated was produced, the hydrogen generation capacity of the two-layer reactor was higher than that of a reactor with each single strain, and a more efficient hydrogen generation system was obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors paid attention to modification of cells of the photosynthetic bacteria with the aim of improving the hydrogen generation rate in the photohydrogen generation system using the photosynthetic bacteria. In particular, we isolated a strain that is a pigment-deficient strain with a reduced amount of photosynthetic pigment in photosynthetic bacteria, and reduced the self-shielding effect of the cells to achieve efficient light irradiation inside the photosynthetic reactor, generating hydrogen per reactor. Increasing the speed was the subject of study.
[0013]
In order to induce mutation of the photosynthetic bacterium Rhodobacter spheroides RV, a method using ultraviolet irradiation at 254 nm was used. Five types of mutants were generated by the mutation caused by ultraviolet irradiation. Among them, a new strain (hereinafter referred to as MTP4 in the present application), which is a pigment-deficient strain in which the amount of bacteriochlorophyll and carotenoid was reduced appropriately, among others, was generated. It was noted because it is stable and has good hydrogen generation ability.
[0014]
Examples of the present invention will be specifically described below.
1) Isolation of MTP4 strain Rhodobacter spheroides RV strain was cultured in aSy medium until the late logarithmic growth phase, and its suspension (0.5 ml) was inoculated into aSy plate medium (Petri dish diameter 9 cm), and ultraviolet light (wavelength) (Irradiation at 254 nm, intensity 710 μW / cm 2 ) for 10 seconds, followed by culturing at 30 ° C. for 24 hours under dark aerobic conditions. The composition of the aSy medium is shown in Table 1 below. Subsequently, the cells were cultured for 3 days under tungsten lamp irradiation (90 W / m 2 ) under clear anaerobic conditions, and visually selected from the approximately 6000 colonies that formed were different in color from Rhodobacter spheroides RV strain, This was again inoculated into aSy plate medium. The formed colonies were observed with a stereomicroscope, and selection and inoculation were repeated until a single colony of MTP4 strain containing no germs was obtained. Finally, a single colony of the obtained MTP4 strain was inoculated into aSy test tube medium (17 ml) and purely cultured.
[0015]
[Table 1]
Figure 0004084509
[0016]
2) Measurement of absorption spectrum FIG. 1 shows UV-visible absorption spectra of the suspension of Rhodobacter spheroides RV cultured in aSy medium and the above prepared MTP4 strain. In any of the strains, absorption by bacteriochlorophyll was observed in the vicinity of 800 nm and 850 nm, and absorption by carotenoid was observed in the region of 450 nm to 500 nm. The spectrum shape of the MTP4 strain is the same as that of the Rhodobacter sphaeroides RV strain, but its absorbance is observed to be small over the entire region of 350 nm to 1000 nm, and a specific chromoprotein is missing. Rather, it is considered to be a mutant strain in which the entire unit of the chromoprotein assembly is reduced.
[0017]
This further indicates that the light transmittance of the MTP4 strain is higher than that of the Rhodobacter spheroides RV strain.
Next, the degree of photosynthetic pigment deficiency of the MTP4 strain was determined from the ultraviolet-visible absorption spectrum of the pigment extracted from the cells using an acetone-methanol mixed solvent. As a result, it was confirmed that bacteriochlorophyll was reduced by 35-40% and carotenoids were reduced by 25-30%, compared with the parent strain Rhodobacter spheroides RV.
[0018]
3) Light distribution inside the reactor The light distribution inside the reactor when hydrogen is generated using the parent strain and the strain of the present invention will be described. The light distribution inside the reactor was simulated when the cell suspension of MTP4 strain was placed in the reactor. FIG. 2 shows the relationship between the wavelength and the relative energy at a distance of 5 to 20 mm from the light receiving surface. The bacterial cell concentration was 1.5 mg / ml in all strains. Here, the relative energy is a relative value when the light energy of the component having a wavelength of 1000 nm of the tungsten lamp in the light receiving portion of the thermostat is 1. The solid line shows the case of Rhodobacter spheroides RV strain, and the broken line shows the case of MTP4 strain.
[0019]
In any of the strains, the light energy that arrives decreases as the distance from the light receiving surface of the reactor increases, but the degree of attenuation is small in the MTP4 strain, and the light reaches deeper. I understood it. That is, it was suggested that the use of the MTP4 strain reduces the self-shielding effect.
4) Hydrogen generation behavior A hydrogen generation experiment will be described below using three types of flat plate reactors whose thickness (optical path length) is 5, 25, and 60 mm. A cell suspension solution (18 ml) cultured in an aSy medium until the late logarithmic growth phase was inoculated into a gL medium deaerated with an argon bubble, and main culture was performed at 30 ° C. for 24 hours under light and anaerobic conditions. The composition of the gL medium is shown in Table 2 below. A suspension solution of the main culture cells corresponding to 1/4 of the volume of the reactor was put, and then gL medium corresponding to 3/4 of the volume of the reactor was degassed with an argon bubble and then poured. At this time, the amount of inoculated cells was adjusted so that the amount of cells was the same for the same strain. A tungsten lamp was used as the light source, the light intensity of the reactor light-receiving surface was set to 300 W / m 2 , and hydrogen was generated at 30 ° C. under bright and anaerobic conditions. The generated gas was passed through a 20% aqueous sodium hydroxide solution to remove carbon dioxide, and then collected in a graduated cylinder by water replacement.
[0020]
FIG. 3 shows the relationship between the product cxd of the bacterial cell concentration c and the reactor thickness d and the relative hydrogen generation rate. The relative hydrogen generation rate here is the relative hydrogen generation rate by the MTP4 strain relative to the Rhodobacter spheroides RV strain. As the value of cxd was increased, a tendency was observed that the relative speed increased rapidly from 0.5 to 1.15 and gradually decreased thereafter.
[0021]
As described above, when the product of the bacterial cell concentration and the reactor thickness is 0.5 to 1.15, the effect of increasing the hydrogen generation rate due to the decrease in the photosynthetic pigment is maximized, and the hydrogen generation of the MTP4 strain The rate increased up to 1.6 times compared to the Rhodobacter spheroides RV strain.
[0022]
[Table 2]
Figure 0004084509
[0023]
Table 3 shows the composition of the basic medium shown in Tables 1 and 2.
[0024]
[Table 3]
Figure 0004084509
[0025]
5) Hydrogen generation of photosynthetic bacteria in a two-layer reactor It was confirmed in the above example that the MTP4 strain, which is a dye-deficient strain of the present invention, has a higher hydrogen generation rate than the parent strain Rhodobacter sphaeroides RV. It was. Furthermore, hydrogen generation by the MTP4 strain depends on the intensity of the irradiated light, and the hydrogen generation rate increases as the light intensity increases as compared to the Rhodobacter spheroides RV strain. Therefore, we investigated the hydrogen generation behavior of photosynthetic bacteria in a two-layer reactor. Each strain was prepared according to the same procedure as 4). In the form shown in FIG. 4, a two-layer reactor (A), (B) and (C) was prepared with a layer thickness of 25 mm for each of the front layer and the rear layer close to the light source. The light intensity of the reactor light-receiving surface is set to 500 W / m 2 , the amount of hydrogen generation is determined by the same method as described in 4), and the result is shown in FIG. From FIG. 5, the hydrogen generation amount in the rear layer is small because the amount of light energy supplied is smaller than that in the front layer. In the system in which the MTP4 strain was placed in the front layer and the Rhodobacter spheroides RV strain was placed in the rear layer, the total hydrogen generation amount was higher than that in the system using each strain alone.
[0026]
【The invention's effect】
As described above, according to the present invention, bacteriochlorophyll and carotenoids that are photosynthetic pigments in the photosynthetic bacterium Rhodobacter spheroides RV strain used in the case of generating hydrogen from an organic aqueous solution containing an organic acid or the like using light energy. The MTP4 strain of the present invention with a moderate decrease in the amount of light reduces the self-shielding effect in the reactor while minimizing the decrease in the hydrogen generation capacity of each cell, and minimizes the light required for hydrogen generation. The number of bacterial cells to which energy is supplied can be increased. Therefore, even when the reactor is scaled up, it is possible to suppress the decrease in the ability of the bacterial cells, and the effect of increasing the hydrogen generation rate per reactor can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an ultraviolet-visible absorption spectrum of a cell suspension solution.
FIG. 2 is a diagram showing a light distribution inside a reactor.
FIG. 3 is a graph showing the relationship between the product cxd of the bacterial cell concentration c and the reactor thickness d and the relative hydrogen generation rate of the MTP4 strain relative to the Rhodobacter spheroides RV strain.
FIG. 4 (A) is a view showing a reactor in which Rhodobacter spheroides RV strain is placed in the front layer near the light source, and Rhodobacter spheroides RV strain is placed in the rear layer away from the light source.
(B) is a view showing a reactor in which the MTP4 strain is arranged in the front layer close to the light source, and the MTP4 strain is also arranged in the rear layer away from the light source.
(C) is a diagram showing a two-layer reactor in which the MTP4 strain is disposed in the front layer close to the light source, and the Rhodobacter spheroides RV strain is disposed in the rear layer away from the light source.
FIG. 5 is a diagram showing the amount of hydrogen generated from each layer and all layers in a two-layer reactor.

Claims (4)

高い水素発生能力を有するロドバクター スフェロイデス MTP4菌株(FERM P−17549) Rhodobacter spheroides MTP4 strain (FERM P-17549) having high hydrogen generation ability . 350nm〜1000nmの光に対する光透過率が光合成細菌ロドバクター スフェロイデス RV株よりも高いことを特徴とする請求項1に記載の菌株。2. The strain according to claim 1, wherein the light transmittance for light of 350 nm to 1000 nm is higher than that of the photosynthetic bacterium Rhodobacter spheroides RV. 光合成細菌の光合成色素であるバクテリオクロロフィル及びカロチノイドによる吸収が光合成細菌ロドバクター スフェロイデス RV株と比較して、夫々35〜40%及び25〜30%減少していることを特徴とする請求項1又は2に記載の菌株。Absorption by bacteriochlorophyll and carotenoid is a photosynthetic pigment photosynthetic bacteria compared to photosynthetic bacteria Rhodobacter sphaeroides RV strains to claim 1 or 2, characterized in that it decreases respectively 35% to 40% and 25-30 percent The described strain. 光源に近い前層に請求項1記載の菌株を、光源から離れた後層にロドバクター スフェロイデス RV株を夫々設置させて二重構造とし、光エネルギーを利用して有機酸等を含有する有機性水溶液から水素を発生させる二層型光合成リアクター。  An organic aqueous solution containing the organic acid and the like using light energy by forming the strain of claim 1 in the front layer close to the light source and the Rhodobacter spheroides RV strain in the rear layer away from the light source, respectively. -Layer photosynthesis reactor that generates hydrogen from water.
JP26060899A 1999-09-14 1999-09-14 Photosynthetic bacterial strain Expired - Lifetime JP4084509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26060899A JP4084509B2 (en) 1999-09-14 1999-09-14 Photosynthetic bacterial strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26060899A JP4084509B2 (en) 1999-09-14 1999-09-14 Photosynthetic bacterial strain

Publications (2)

Publication Number Publication Date
JP2001078754A JP2001078754A (en) 2001-03-27
JP4084509B2 true JP4084509B2 (en) 2008-04-30

Family

ID=17350307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26060899A Expired - Lifetime JP4084509B2 (en) 1999-09-14 1999-09-14 Photosynthetic bacterial strain

Country Status (1)

Country Link
JP (1) JP4084509B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755507B1 (en) * 2005-04-19 2007-09-04 한국에너지기술연구원 Method for Producing Hydrogen Gas Using Novel Strain of Rhodobacter sphaeroides Having High productivity of Hydrogen and Capable of Photosynthesis in High Concentration of Salts
US8093041B1 (en) 2007-01-23 2012-01-10 Arrowhead Center, Inc. Method and apparatus for membrane-based, two-stage gas production from solid biomaterials
KR101060640B1 (en) * 2008-07-03 2011-08-31 한국에너지기술연구원 Photosynthetic bacterial strain production method that can produce hydrogen at the same time day and night, the mutant strain and hydrogen production method using the same

Also Published As

Publication number Publication date
JP2001078754A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
Wang et al. The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae
Chen et al. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers
Sasikala et al. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides OU 001
McInerney et al. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens
Chen et al. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors
Kondo et al. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment
Wang et al. Selection of microalgae for simultaneous biogas upgrading and biogas slurry nutrient reduction under various photoperiods
EP1099762A4 (en) Microbial process for producing hydrogen
Imhoff Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov.
Oren et al. Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea
Li et al. A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria
Muzziotti et al. H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities
Park et al. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures
Kim et al. Semi-continuous photo-fermentative H2 production by Rhodobacter sphaeroides: effect of decanting volume ratio
JP4084509B2 (en) Photosynthetic bacterial strain
Herbert et al. The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sediments
Wang et al. Simultaneous nutrient and carbon removal from azo dye wastewater using a photorotating biological contactor reactor
Prasertsan et al. Isolation, identification and growth conditions of photosynthetic bacteria found in seafood processing wastewater
CN110684688A (en) Shewanella ST2 and application thereof in azo dye degradation
Pongpadung et al. Stimulation of Hydrogen Photoproduction in Chlorella sorokiniana Subjected to Simultaneous Nitrogen Limitation and Sulfur-and/or Phosphorus-Deprivation.
CN108676817A (en) Utilize the method and its application of bacillus licheniformis biosynthesis nano tellurium
Herbert Development of mass blooms of photosynthetic bacteria on sheltered beaches in Scapa Flow, Orkney Islands
DÖNMEZ et al. Properties of the Rhodopseudomonas palustrisStrains Isolated From an Alkaline Lake in Turkey
Lata et al. Effect of light on generation of hydrogen by Halobacterium halobium NCIM 2852
Lunina et al. Anoxygenic phototrophic bacterial community of Lake Shira (Khakassia)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Ref document number: 4084509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term