JP4058828B2 - Lipoprotein analyzer - Google Patents

Lipoprotein analyzer Download PDF

Info

Publication number
JP4058828B2
JP4058828B2 JP01677999A JP1677999A JP4058828B2 JP 4058828 B2 JP4058828 B2 JP 4058828B2 JP 01677999 A JP01677999 A JP 01677999A JP 1677999 A JP1677999 A JP 1677999A JP 4058828 B2 JP4058828 B2 JP 4058828B2
Authority
JP
Japan
Prior art keywords
cholesterol
reaction reagent
sample
triglyceride
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01677999A
Other languages
Japanese (ja)
Other versions
JP2000214150A (en
Inventor
祐史 広渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP01677999A priority Critical patent/JP4058828B2/en
Publication of JP2000214150A publication Critical patent/JP2000214150A/en
Application granted granted Critical
Publication of JP4058828B2 publication Critical patent/JP4058828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術】
本発明は、血清、血漿、細胞培養上清などの試料中に含まれるリポ蛋白質を分析するための装置に関する。
【0002】
【従来の技術】
リポ蛋白質は、コレステロール、トリグリセリド(中性脂肪)、リン脂質及びアポ蛋白質が会合した物質で、時としてビタミンE等も会合している複雑な複合体である。リポ蛋白質は、その粒径や含有されるアポ蛋白質の種類に基づき、カイロミクロン(以下「CM」と記載する)、超低比重リポ蛋白質(以下「VLDL」と記載する)、低比重リポ蛋白質(以下「LDL」と記載する)、高比重リポ蛋白質(以下「HDL」と記載する)等に分類される。そして、例えばヒト血液試料中のCM、VLDL、LDL等に含まれるコレステロール、トリグリセリド(中性脂肪)及びリン脂質の含有量について量比を分析することが、虚血性心疾患、肝疾患、糖尿病等の疾病と脂質代謝異常との関連を解明する上で重要になっている。
【0003】
CM、VLDL、LDL等の量比を分析するためには、血液試料等をゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー又は逆相クロマトグラフィー等の液体クロマトグラフに供してリポ蛋白質を粒径、電荷又は疎水性等に基づきCM、VLDL及びLDL等に分離した後、各分離画分中のコレステロール、トリグリセリド(中性脂肪)又はリン脂質等を検出・測定して分析するという、簡便で再現性の良い液体クロマトグラフ法を用いるのが一般的である。液体クロマトグラフ法では、分離カラムによる分離の後に、コレステロール、リン脂質又はトリグリセリドと反応する反応試薬を混合し、反応コイルで反応させてから検出器で検出・測定してクロマトグラムを得、このクロマトグラムから分析を行う。
【0004】
【発明が解決しようとする課題】
前記の通り、現在のところでは、液体クロマトグラフ法を用いて液試料中に含まれるCM、VLDL、LDL等のリポ蛋白質についてコレステロール、トリグリセリド(中性脂肪)又はリン脂質等の量比を分析することで虚血性心疾患、肝疾患、糖尿病等の疾病と脂質代謝異常との関連の解明が進められている。ところが、一度の液体クロマトグラフ操作によりリポ蛋白質を粒径、電荷又は疎水性に基づきCM、VLDL、LDL等に分離することは容易であるが、これら各分離画分中のコレステロール量、トリグリセリド(中性脂肪)量及びリン脂質量を同時に検出・測定しようとすると、例えばコレステロールの検出・測定のための反応試薬がトリグリセリド(中性脂肪)やリン脂質の検出・測定に影響を与えてしまうという課題がある。
【0005】
このため、液体クロマトグラフで分離される分離画分毎にコレステロール、リン脂質、トリグリセリド(中性脂肪)を測定するためには、同一試料を最低3回液体クロマトグラフに供し、第1回目の操作ではコレステロールを、第2回目の操作ではトリグリセリド(中性脂肪)を、そして第3回目の操作ではリン脂質を測定するための反応試薬を混合、反応させ、検出器で検出・測定してクロマトグラムを得る必要があった。
【0006】
この結果、各クロマトグラフ操作に先立って、分離カラムから溶出する成分に混合、反応させる反応試薬を準備、交換等するか、あるいは液体クロマトグラフ装置を複数台(例えば3台)用意し、各装置に異なる反応試薬をセットしておき、順次又は一度に全装置を用いて分析を行う必要があった。
【0007】
上記のようにしてリポ蛋白質の分析を行った場合には、分析準備に時間がかかり又は分析に用いる装置台数が増えるという課題以外に、試料を複数回の液体クロマトグラフ操作に供さなければならないために比較的大量の試料が必要になるという課題もある。また更には、1台の液体クロマトグラフを用いて複数回の操作を行う場合には各操作を均一に行なわないと得られたクロマトグラム同士を比較することができなくなる可能性が生じる。複数台の液体クロマトグラフ装置を使用する場合にも、装置間、例えば分離カラムの劣化状態、送液量、検出器の検出感度等を均一に保たないと同様の課題が生じる。
【0008】
そこで本発明の目的は、反応試薬の交換を行う必要がなく、1台の液体クロマトグラフ装置を使用した一回の液体クロマトグラフ操作で、試料中に含まれるCM、VLDL、LDL等のリポ蛋白質についてコレステロール、トリグリセリド(中性脂肪)、リン脂質等の量比を分析し得る液体クロマトグラフィー装置を提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するために成された本発明は、試料中のリポ蛋白質を分析する液体クロマトグラフィー装置であって、単一流路を用いて試料を分離カラムに導入し、分離カラムから溶出した成分を分割してそれぞれが検出器を備える複数の流路に導き、各流路に導かれた成分ごとに前記検出器を用いてリポ蛋白質の検出・測定を行うようにした装置である。以下、本発明の試料中のリポ蛋白質を分析する液体クロマトグラフィー装置(以下単に「本発明の装置」等と記載する)を詳細に説明する。
【0010】
本発明の装置には、試料中のリポ蛋白質を粒径、電荷又は疎水性に基づいてCM、VLDL又はLDL等に分離するための分離カラムが装備される。分離カラムは、例えばリポ蛋白質の粒径に基づいてリポ蛋白質を分離しようとする場合にはゲルろ過用カラム、リポ蛋白質の電荷に基づいてリポ蛋白質を分離しようとする場合にはイオン交換カラム、そしてリポ蛋白質の疎水性に基づいてリ分離しようとする場合には逆相カラムを用いればよい。各種のカラムとしては市販されているもの(例えばゲルろ過用カラムであれば、東ソー(株)製、商品名TSKgel Lipopropak XL等)を使用することが例示できる。
【0011】
本発明の装置では、血清、血漿、細胞培養上清等の試料を単一流路を用いて分離カラムに導入する。ここで試料を液体クロマトグラフ装置に導入するには通常のオートサンプラー等を、試料や溶離液の送液には通常のポンプを、単一流路を形成する管には通常の液体クロマトグラフィーで用いるもののうちリポ蛋白質や後述する反応試薬に対して不活性なものを、それぞれ使用することができる。なお、溶離液は、用いる分離カラムの種類に応じて適宜決定する。例えばゲル濾過用カラムを用いるのであれば、100mM以上の塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、酢酸ナトリウム、過塩素酸ナトリウム、硝酸アンモニウム等の塩成分をイオン的相互作用の低減を目的として加えることが例示できる。
【0012】
本発明の装置では、分離カラムから溶出した成分を2以上に分割して、それぞれが検出器を備える複数の流路に導き、各流路に導かれた成分ごとにこの検出器を用いてリポ蛋白質の検出・測定を行うようにした点に特徴を有する。ここで本発明の装置における分割とは、試料に含まれるリポ蛋白質を粒径、電荷又は疎水性に基づいて分離した状態で2以上に分けることを意味する。従って、分割された成分は完全に同一の組成であり、かつ、各組成の比率完全に同一である。
【0013】
分離カラムから溶出した成分を分割してそれぞれが検出器を備える複数の流路に導くために、分離カラムの後ろ(下流)側にはスプリッターが配置される。スプリッターは、分離カラムからの溶出成分を2以上に分割できるものであれば良いが、分割する比率を調整できるスプリッター(例えばUPCHURCH SCIENTIFIC INC.製、商品名マイクロスプリッターP−450)を用いることが好ましい。かかる分割比率を調整できるスプリッターであれば、例えば、比較的高感度で検出・測定ができるものについて検出・測定を行う流路への流量を少なく、逆に比較的感度の低い検出・測定を行う流路への流量を多くすることが可能となるからである。また本発明において流路を3分割する場合には、3分割用のスプリッターを用いる以外に2分割用のスプリッターを2台接続して使用することもできる。
【0014】
スプリッターの後ろ(下流)側に接続する流路には、前記同様、通常の液体クロマトグラフィーで使用する管を用いることができる。流路の数は、2本以上であれば良いが、分離カラムでリポ蛋白質の粒径、電荷又は疎水性に基づいて分離したCM、VLDL又はLDL等について、後に何種類の測定を行うかにより適宜決定できる。現在のところ、コレステロール、トリグリセリド(中性脂肪)及びリン脂質の量比に関する知見が虚血性心疾患、肝疾患、糖尿病等の疾病と脂質代謝異常との関連の解明するうえで重要であるとされていることから、分離カラムから溶出した成分を3分割して3本の流路に導き、各流露に導かれた成分ごとにコレステロール、トリグリセリド(中性脂肪)又はリン脂質の測定を行い得るように3本の流路をスプリッターに接続することが特に好ましい。むろん、前記以外に、例えばビタミンE等の検出・測定が必要となった場合には、スプリッターに接続する流路の本数を4本以上に増やせば良い。
【0015】
各流路に導かれた成分ごとに行うコレステロール、トリグリセリド(中性脂肪)又はリン脂質の測定は、分割後、各流路に導かれた成分に対し、コレステロール反応試薬、トリグリセリド(中性脂肪)反応試薬又はリン脂質反応試薬等を混合、反応させた後に検出器に導入し、各反応試薬との反応の様子を測定することが例示できる。即ち、例えば分離カラムから溶出した成分を3分割して第1、第2又は第3の流路に導き、第1の流路についてはコレステロール反応試薬を混合、反応させて測定を行い、第2の流路についてはトリグリセリド(中性脂肪)反応試薬を混合、反応させて測定を行い、そして第3の流路についてはリン脂質反応試薬を混合、反応させて測定を行うことが具体的に例示できる。
【0016】
上記具体例を実施するためには、例えば、各流路の検出器に至る前の部分に反応コイルを配置し、この反応コイルの直前に、各反応試薬を貯蔵する液溜めからの流路を送液ポンプを介して接続する等すれば良い。
【0017】
上記各反応試薬について一例を記載すれば、コレステロール反応試薬ではコレステロールオキシダーゼ、コレステロールエステラーゼを含む試薬液を、トリグリセリド(中性脂肪)反応試薬ではリポプロテインリパーゼ、グリセロールオキシダーゼを含む試薬液を、リン脂質反応試薬ではホスホリパーゼ、コリンオキシダーゼを含む試薬液を例示できる。ここで反応試薬は、リポ蛋白質を分解してコレステロール、トリグリセリド又はリン脂質を対応する反応試薬と反応可能な状態とするための界面活性剤を含むことが好ましい。かかる好ましい各反応試薬として、市販の試薬(コレステロール反応試薬では、協和メディクス(株)製・商品名デタミナーLTC、東洋紡(株)製・商品名コラスカラーリキッド、第一化学薬品(株)製・商品名ピュアオートS CHO−N;トリグリセリド(中性脂肪)反応試薬では、協和メディクス(株)製・商品名デタミナーTG、第一化学薬品(株)製・ピュアオートS TG−N)を用いることもできる。
【0018】
各流路が装備する検出器は、コレステロール、トリグリセリド(中性脂肪)、リン脂質等の成分を検出してその量を測定し得るものであれば特に制限はない。例えば前記したようにコレステロール反応試薬、トリグリセリド(中性脂肪)反応試薬又はリン脂質反応試薬等を混合、反応させた後に検出・測定を行うのであれば、同一の吸光度検出器等を2台以上用いることも可能である。
【0019】
本発明の装置では、分離カラムからの溶出成分を分割する数(即ちスプリッターに接続する流露の本数)、分割後のコレステロール等の検出・測定方式、そして各流路が備える検出器の検出感度等を考慮したうえで、分析に供する試料の量を決定することが好ましい。例えば前記したような反応試薬を用いる場合であって、流路を2分割するのであれば、少なくとも15μl、好ましくは20μl程度の試料を用いることが好ましい。このように、分離カラムからの溶出成分を均等に分割するのであれば、各流路に10μlの成分が導かれるように、流路の本数×10μlの試料を用いることが一応の目安として例示できる。
【0020】
【発明の実施の形態】
以下、本発明を図面に記載した実施の形態及び実施例を用いてより詳細に説明するが、本発明はこれらに限定されるものではない。
【0021】
図1は、本発明装置の概略を説明するための図である。1は溶離液溜め、2は脱気装置(デガッサ)、3は送液ポンプ、4はオートサンプラー、5はフィルター、6は分離カラム(本例では2本のカラムを直列に配置して分離能を向上した)、7はカラムオーブン、8は流路2分割用のスプリッター、9は抵抗管、10及び11は反応コイル、13及び14は検出器、15は反応試薬用送液ポンプ、16はエアートラップ、17はコレステロール反応試薬溜め、18はトリグリセリド反応試薬溜めをそれぞれ示す。
【0022】
オートサンプラーによって分離カラムに至るまでの単一流路に導入された試料は、分離カラムでリポ蛋白質の粒径、電荷又は疎水性に基づき分離され、溶出する。溶出した成分はスプリッターにて2分割され、それぞれ異なる流路に導入される。一方の流路では、分割された成分に対してコレステロール反応試薬が混合され、反応コイルで反応された後、検出器に導かれてコレステロールの検出・測定が行われる。他方の流路では分割された成分に対してトリグリセリド反応試薬が混合され、反応コイルで反応された後、検出器に導かれてトリグリセリドの検出・測定が行われる。
【0023】
実施例1
図1に示した装置を用いて、ヒト血清中のリポ蛋白質分析を行った。なお、図1における送液ポンプ3としては市販の製品(東ソー(株)製、商品名CCPS)、反応試薬用送液ポンプ15としては市販の製品(東ソー(株)製、商品名CCPM−2)、オートサンプラー4としては市販の製品(東ソー(株)製、商品名AS−8020)、フィルター5としては市販の製品(東ソー(株)製、フィルターK)、カラム6としては市販の製品(東ソー(株)製、TSKgel Lipopropak XL、カラムサイズ;7.8mmI.D.×30cm)を用いた。
【0024】
抵抗管9としては0.2mmI.D.×2mサイズのステンレス製管を、反応コイル10、11としてはそれぞれ0.4mmI.D.×7.5m、0.4mmI.D.×40mのサイズのテフロン製管を用いた。
【0025】
カラムオ−ブン7とリアクター12としては共に市販の製品(東ソー(株)製、商品名CO−8020)を用い、それぞれの設定温度を25℃、37℃とした。検出器13、14としてはそれぞれ市販の製品(東ソー(株)製、商品名UV−8020、UV−8000)を用い、それぞれの検出波長を共に550nmとした。
【0026】
エアートラップ16としては市販の製品(東ソー(株)製、商品名エアートラップG)、デガッサー2としては市販の製品(東ソー(株)製、商品名SD−8022)を用いた。
【0027】
溶離液1としては50mM トリス及び300mM酢酸ナトリウムを含むpH8.0の溶液を用い、流速は0.60ml/分とした。スプリッター8としては市販の製品(UPCHURCH SCIENTIFIC INC.製、商品名マイクロスプリッターP−450)を用い、カラム分離後の溶出液を等量に分割するように調整した。
【0028】
コレステロール反応試薬17については、市販の試薬(第一化学薬品(株)製、商品名ピュアオートS CHO−Nの試薬1と2をあらかじめ2対1の割合で混合した反応試薬)を用い、その流速は0.15ml/分とした。トリグリセリド(中性脂肪)反応試薬18については、(第一化学薬品(株)製、商品名ピュアオートS TG−Nの試薬1と2をあらかじめ2対1の割合で混合した反応試薬)用い、その流速は0.30ml/分とした。
【0029】
正常人血清をオートサンプラー4にて15μl装置に供してカラム6で分離し、スプリッター8で等量に分割した。うち一方をコレステロール反応試薬と混合し反応コイル10にて反応させ、検出器13により550nmの波長で検出・測定した。分割した他方をトリグリセリド(中性脂肪)反応試薬と混合し反応コイル11にて反応させ、検出器14により550nmの波長で検出・測定した。結果を図2及び図3に示す。
【0030】
図2はコレステロールに関する検出・測定結果(クロマトグラム)を示すものである。LDLとHDLのピークは良好に確認でき、分析に供した試料が15μlと微量であったにもかかわらず、VLDLについてもLDLのピーク前部分に分離が不完全ではあるが、ピークが確認できた。
【0031】
図3はトリグリセリド(中性脂肪)の検出・測定結果(クロマトグラム)を示すものである。CM、LDL、HDL、FG(遊離グリセロール)のピークは良好に確認でき、分析に供した試料が15μlと微量であったにもかかわらず、VLDLについてもLDLのピーク前部分に分離が不完全ではあるが、ピークが確認できた。
【0032】
【発明の効果】
本発明によれば、反応試薬の交換を行う必要がなく、1台の液体クロマトグラフ装置を使用した一回の液体クロマトグラフ操作で試料中に含まれるCM、VLDL、LDL等リポ蛋白質について、コレステロール、トリグリセリド(中性脂肪)又はリン脂質の量を検出・測定し、分析し得る液体クロマトグラフィー装置が提供される。
【0033】
この結果、リポ蛋白質を分離カラムにて分離した後、溶出した成分を複数の流路に導き、各流路ごとに装備された検出器を用いて検出・測定を行う本発明の分析装置によれば、1台の装置のみを用いた場合であっても、反応試薬の交換を行うことなく、一回の操作で試料中に含まれるリポ蛋白質についてコレステロール量、リン脂質量、トリグリセリド(中性脂肪)量を検出・測定し、最終的には試料中にCM、VLDL又はLDLといったリポ蛋白質毎にコレステロール、トリグリセリド(中性脂肪)又はリン脂質がいかなる量比で存在しているのかという分析を可能にすることができる。
【0034】
従って本発明の装置によれば、同様の分析結果を得るために複数回のクロマトグラフィ操作を行ったり複数台の液体クロマトグラフ装置を用いなければならない従来の方法と比較して、より短時間に、より少ない試料を用いるのみで分析結果を得ることが可能となる。
【図面の簡単な説明】
【図1】図1は、本発明の装置の概略を説明するための図である。
【図2】図2は、実施例1におけるコレステロール検出・測定の結果(クロマトグラム)であり、横軸は試料を装置に供してからの時間(分)を示す。図中のVLDL、LDL、HDLは、それぞれ超低比重リポ蛋白質、低比重リポ蛋白質、高比重リポ蛋白質を示す。
【図3】図3は、実施例1におけるトリグリセリド(中性脂肪)検出・測定の結果(クロマトグラム)であり、横軸は試料を装置に供してからの時間(分)を示す。図中のCM、VLDL、LDL、HDL、FGは、それぞれカイロミクロン、超低比重リポ蛋白質、低比重リポ蛋白質、高比重リポ蛋白質、遊離グリセロールを示す。
【符号の説明】
1溶離液、2デガッサー、3送液ポンプ、4オートサンプラー、5フィルター、6分離カラム、7カラムオーブン(恒温器)、8スプリッター、9抵抗管、10・11反応コイル、12リアクター(恒温器)、13・14検出器、15反応試薬用送液ポンプ、16エアートラップ、17コレステロール反応試薬、18トリグリセリド反応試薬
[0001]
[Technology to which the invention belongs]
The present invention relates to an apparatus for analyzing lipoproteins contained in samples such as serum, plasma, and cell culture supernatant.
[0002]
[Prior art]
Lipoprotein is a substance in which cholesterol, triglyceride (neutral fat), phospholipid and apoprotein are associated, and is a complex complex in which vitamin E and the like are sometimes associated. Lipoprotein is based on its particle size and the type of apoprotein contained, chylomicron (hereinafter referred to as “CM”), very low density lipoprotein (hereinafter referred to as “VLDL”), low density lipoprotein ( Hereinafter, it is classified as “LDL”), high specific gravity lipoprotein (hereinafter referred to as “HDL”), and the like. And, for example, analyzing the quantitative ratio for the content of cholesterol, triglyceride (neutral fat) and phospholipid contained in CM, VLDL, LDL, etc. in human blood samples ischemic heart disease, liver disease, diabetes, etc. It is important to elucidate the relationship between diseases and abnormal lipid metabolism.
[0003]
In order to analyze the quantitative ratio of CM, VLDL, LDL, etc., a blood sample or the like is subjected to liquid chromatography such as gel filtration chromatography, ion exchange chromatography or reverse phase chromatography, and the lipoprotein is reduced in particle size, charge or After separation into CM, VLDL, LDL, etc. based on hydrophobicity, etc., the cholesterol, triglyceride (neutral fat) or phospholipid, etc. in each separated fraction is detected and measured and analyzed with good reproducibility. It is common to use liquid chromatography. In the liquid chromatographic method, after separation by a separation column, a reaction reagent that reacts with cholesterol, phospholipid, or triglyceride is mixed, reacted with a reaction coil, and then detected and measured with a detector to obtain a chromatogram. Perform analysis from gram.
[0004]
[Problems to be solved by the invention]
As described above, at present, the liquid chromatographic method is used to analyze the quantitative ratio of cholesterol, triglyceride (neutral fat), phospholipid, and the like for lipoproteins such as CM, VLDL, and LDL contained in the liquid sample. Therefore, elucidation of the relationship between diseases such as ischemic heart disease, liver disease and diabetes and abnormal lipid metabolism has been promoted. However, it is easy to separate lipoproteins into CM, VLDL, LDL, etc. based on particle size, charge or hydrophobicity by a single liquid chromatographic operation. However, the amount of cholesterol, triglycerides (medium If you try to detect and measure the amount of sexual lipids) and the amount of phospholipids at the same time, for example, the reaction reagent for detecting and measuring cholesterol will affect the detection and measurement of triglycerides (neutral fats) and phospholipids. There is.
[0005]
For this reason, in order to measure cholesterol, phospholipid, and triglyceride (neutral fat) for each separated fraction separated by liquid chromatography, the same sample is subjected to liquid chromatography at least three times, and the first operation is performed. Then, in the second operation, triglyceride (neutral fat) is mixed, and in the third operation, a reaction reagent for measuring phospholipid is mixed and reacted. Had to get.
[0006]
As a result, prior to each chromatographic operation, prepare or replace reaction reagents to be mixed and reacted with the components eluted from the separation column, or prepare a plurality of (for example, three) liquid chromatograph devices. It was necessary to set different reaction reagents in the sample and perform analysis using all the devices in sequence or at a time.
[0007]
When the analysis of lipoproteins is performed as described above, the sample must be subjected to multiple liquid chromatograph operations in addition to the problem that it takes time to prepare for the analysis or the number of devices used for the analysis increases. Therefore, there is a problem that a relatively large amount of sample is required. Furthermore, when a plurality of operations are performed using a single liquid chromatograph, there is a possibility that the obtained chromatograms cannot be compared unless each operation is performed uniformly. Even when a plurality of liquid chromatograph apparatuses are used, the same problem arises if the degradation state of the separation column, the amount of liquid transport, the detection sensitivity of the detector, and the like are not kept uniform.
[0008]
Accordingly, an object of the present invention is to eliminate the need for exchanging reaction reagents, and to perform lipoproteins such as CM, VLDL, and LDL contained in a sample by a single liquid chromatograph operation using a single liquid chromatograph apparatus. An object of the present invention is to provide a liquid chromatography apparatus capable of analyzing the quantitative ratio of cholesterol, triglyceride (neutral fat), phospholipid and the like.
[0009]
[Means for Solving the Problems]
The present invention made to achieve the above object is a liquid chromatography apparatus for analyzing lipoproteins in a sample, wherein the sample is introduced into the separation column using a single channel, and the components eluted from the separation column Are each led to a plurality of flow paths provided with detectors, and the detection and measurement of lipoproteins are performed using the detector for each component led to each flow path. Hereinafter, a liquid chromatography apparatus (hereinafter simply referred to as “the apparatus of the present invention”) for analyzing lipoproteins in a sample of the present invention will be described in detail.
[0010]
The apparatus of the present invention is equipped with a separation column for separating lipoproteins in a sample into CM, VLDL, LDL or the like based on particle size, charge or hydrophobicity. The separation column is, for example, a gel filtration column when separating the lipoprotein based on the particle size of the lipoprotein, an ion exchange column when separating the lipoprotein based on the charge of the lipoprotein, and A reverse phase column may be used when reseparating based on the hydrophobicity of the lipoprotein. Examples of the various columns include those commercially available (for example, if it is a gel filtration column, manufactured by Tosoh Corporation, trade name TSKgel Lipopropak XL).
[0011]
In the apparatus of the present invention, samples such as serum, plasma, and cell culture supernatant are introduced into a separation column using a single channel. Here, a normal autosampler or the like is used for introducing the sample into the liquid chromatograph, a normal pump is used for feeding the sample or the eluent, and a normal liquid chromatography is used for the tube forming the single flow path. Among them, those inactive with respect to lipoproteins and reaction reagents described later can be used. The eluent is appropriately determined according to the type of separation column used. For example, if a column for gel filtration is used, adding 100 mM or more of salt components such as sodium sulfate, sodium sulfate, sodium nitrate, sodium acetate, sodium perchlorate, ammonium nitrate for the purpose of reducing ionic interactions is an example. it can.
[0012]
In the apparatus of the present invention, the component eluted from the separation column is divided into two or more, each led to a plurality of flow paths equipped with detectors, and this detector is used for each component guided to each flow path. It is characterized in that it detects and measures proteins. Here, the division in the apparatus of the present invention means that the lipoprotein contained in the sample is divided into two or more in a state of being separated based on the particle size, charge or hydrophobicity. Therefore, the divided components have completely the same composition, and the ratio of each composition is completely the same.
[0013]
In order to divide the components eluted from the separation column and guide them to a plurality of flow paths each equipped with a detector, a splitter is disposed behind (downstream) the separation column. The splitter is not particularly limited as long as it can divide the elution components from the separation column into two or more, but it is preferable to use a splitter (for example, product name: Microsplitter P-450, manufactured by UPCHURCH SCIENTIFIC INC.) Capable of adjusting the split ratio. . If the splitter is capable of adjusting the division ratio, for example, for those that can be detected and measured with relatively high sensitivity, the flow rate to the flow path for detecting and measuring is small, and conversely, detection and measurement with relatively low sensitivity is performed This is because the flow rate to the flow path can be increased. Further, when the flow path is divided into three in the present invention, two splitting splitters can be connected and used in addition to using the splitting splitter.
[0014]
As the flow path connected to the rear (downstream) side of the splitter, a tube used in normal liquid chromatography can be used as described above. The number of channels may be two or more, but depending on how many types of measurements are performed later on CM, VLDL, LDL, etc. separated on the separation column based on lipoprotein particle size, charge or hydrophobicity. It can be determined as appropriate. At present, knowledge about the quantitative ratio of cholesterol, triglyceride (neutral fat) and phospholipid is considered to be important in elucidating the relationship between diseases such as ischemic heart disease, liver disease and diabetes and abnormal lipid metabolism. Therefore, the component eluted from the separation column is divided into three parts and led to three flow paths, so that cholesterol, triglyceride (neutral fat) or phospholipid can be measured for each component led to each dew. It is particularly preferable to connect three flow paths to the splitter. Of course, in addition to the above, for example, when detection and measurement of vitamin E or the like is necessary, the number of channels connected to the splitter may be increased to four or more.
[0015]
Cholesterol, triglyceride (neutral fat) or phospholipid is measured for each component led to each channel. After splitting, the cholesterol reaction reagent and triglyceride (neutral fat) are measured for the components led to each channel. It can be exemplified that a reaction reagent, a phospholipid reaction reagent or the like is mixed and reacted and then introduced into a detector, and the state of reaction with each reaction reagent is measured. That is, for example, the component eluted from the separation column is divided into three parts and led to the first, second or third flow path, and the first flow path is mixed and reacted with the cholesterol reaction reagent to perform the measurement. Specifically, the triglyceride (neutral fat) reaction reagent is mixed and reacted for the flow path of, and the measurement is performed by mixing and reacting the phospholipid reaction reagent for the third flow path. it can.
[0016]
In order to implement the above specific example, for example, a reaction coil is arranged in a part of each flow path before reaching the detector, and a flow path from a liquid reservoir for storing each reaction reagent is provided immediately before this reaction coil. What is necessary is just to connect via a liquid feeding pump.
[0017]
If an example is described about each said reaction reagent, the reagent liquid containing cholesterol oxidase and cholesterol esterase will be used for the cholesterol reaction reagent, and the reagent liquid containing lipoprotein lipase and glycerol oxidase will be used for the triglyceride (neutral fat) reaction reagent. Examples of the reagent include a reagent solution containing phospholipase and choline oxidase. Here, the reaction reagent preferably contains a surfactant for decomposing lipoproteins so that cholesterol, triglyceride or phospholipid can be reacted with the corresponding reaction reagent. As such preferable reaction reagents, commercially available reagents (for cholesterol reaction reagents, Kyowa Medix Co., Ltd., trade name Determiner LTC, Toyobo Co., Ltd., trade name Chorus Color Liquid, Daiichi Chemicals Co., Ltd. Name Pure Auto S CHO-N; Triglyceride (neutral fat) reaction reagent may be Kyowa Medics Co., Ltd., trade name Determiner TG, Daiichi Chemical Co., Ltd., Pure Auto S TG-N) it can.
[0018]
The detector equipped in each flow path is not particularly limited as long as it can detect components such as cholesterol, triglyceride (neutral fat), phospholipid and the like and measure the amount thereof. For example, as described above, if detection / measurement is performed after mixing and reacting a cholesterol reaction reagent, a triglyceride (neutral fat) reaction reagent, or a phospholipid reaction reagent, two or more of the same absorbance detector are used. It is also possible.
[0019]
In the apparatus of the present invention, the number of the elution components from the separation column (that is, the number of dew connected to the splitter), the detection / measurement method of the cholesterol after the division, the detection sensitivity of the detector provided in each flow path, etc. In consideration of the above, it is preferable to determine the amount of the sample to be subjected to the analysis. For example, in the case where the reaction reagent as described above is used and the flow path is divided into two, it is preferable to use a sample of at least 15 μl, preferably about 20 μl. In this way, if the eluted components from the separation column are evenly divided, it is possible to exemplify using a sample of the number of channels × 10 μl so that 10 μl of the components are guided to each channel. .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although this invention is demonstrated in detail using embodiment and Example described in drawing, this invention is not limited to these.
[0021]
FIG. 1 is a diagram for explaining the outline of the device of the present invention. 1 is an eluent reservoir, 2 is a degassing device (degasser), 3 is a liquid feed pump, 4 is an autosampler, 5 is a filter, and 6 is a separation column (in this example, two columns are arranged in series for separation performance) 7 is a column oven, 8 is a splitter for dividing the flow path, 9 is a resistance tube, 10 and 11 are reaction coils, 13 and 14 are detectors, 15 is a reaction reagent feed pump, and 16 is An air trap, 17 represents a cholesterol reaction reagent reservoir, and 18 represents a triglyceride reaction reagent reservoir.
[0022]
The sample introduced into the single flow path leading to the separation column by the autosampler is separated and eluted on the separation column based on the particle size, charge or hydrophobicity of the lipoprotein. The eluted component is divided into two by a splitter and introduced into different flow paths. In one channel, a cholesterol reaction reagent is mixed with the divided components, reacted in a reaction coil, and then guided to a detector to detect and measure cholesterol. In the other channel, the triglyceride reaction reagent is mixed with the divided components, reacted in the reaction coil, and then guided to the detector to detect and measure triglyceride.
[0023]
Example 1
Lipoprotein analysis in human serum was performed using the apparatus shown in FIG. In addition, as a liquid feeding pump 3 in FIG. 1, a commercial product (product name CCPS, manufactured by Tosoh Corporation), and as a liquid reagent pump 15 for a reaction reagent, a commercially available product (trade name CCPM-2, manufactured by Tosoh Corporation). ), A commercially available product (manufactured by Tosoh Corporation, trade name AS-8020) as the autosampler 4, a commercially available product (manufactured by Tosoh Corporation, filter K) as the filter 5, and a commercially available product (as column 6). A Tosoh Co., Ltd. product, TSKgel Lipopropak XL, column size; 7.8 mm ID × 30 cm) was used.
[0024]
The resistance tube 9 is 0.2 mmI. D. A stainless steel tube having a size of 2 m is used as the reaction coils 10 and 11, respectively. D. × 7.5 m, 0.4 mm I.D. D. A Teflon tube having a size of 40 m was used.
[0025]
As the column oven 7 and the reactor 12, commercially available products (trade name CO-8020, manufactured by Tosoh Corporation) were used, and the set temperatures were 25 ° C. and 37 ° C., respectively. As the detectors 13 and 14, commercially available products (trade names UV-8020 and UV-8000, manufactured by Tosoh Corporation) were used, and the detection wavelengths were both 550 nm.
[0026]
A commercially available product (trade name Air Trap G, manufactured by Tosoh Corporation) was used as the air trap 16, and a commercially available product (trade name SD-8022, manufactured by Tosoh Corporation) was used as the degasser 2.
[0027]
As eluent 1, a pH 8.0 solution containing 50 mM Tris and 300 mM sodium acetate was used, and the flow rate was 0.60 ml / min. A commercial product (manufactured by UPCHURCH SCIENTIFIC INC., Trade name: Microsplitter P-450) was used as the splitter 8, and the eluate after column separation was adjusted so as to be divided into equal parts.
[0028]
For the cholesterol reaction reagent 17, a commercially available reagent (Daiichi Chemical Co., Ltd., trade name Pure Auto S CHO-N Reagents 1 and 2 previously mixed in a ratio of 2 to 1) was used. The flow rate was 0.15 ml / min. For the triglyceride (neutral fat) reaction reagent 18 (Daiichi Chemical Co., Ltd., trade name Pure Auto S TG-N Reagents 1 and 2 previously mixed in a ratio of 2 to 1), The flow rate was 0.30 ml / min.
[0029]
Normal human serum was subjected to a 15 μl apparatus using an autosampler 4 and separated by a column 6 and then divided into equal parts by a splitter 8. One of them was mixed with a cholesterol reaction reagent, reacted in the reaction coil 10, and detected and measured by the detector 13 at a wavelength of 550 nm. The other part was mixed with a triglyceride (neutral fat) reaction reagent, reacted in the reaction coil 11, and detected and measured by the detector 14 at a wavelength of 550 nm. The results are shown in FIGS.
[0030]
FIG. 2 shows the detection / measurement results (chromatogram) for cholesterol. The peaks of LDL and HDL could be confirmed well, and although the sample used for analysis was as small as 15 μl, the peaks were confirmed even though VLDL was incompletely separated in the part before the peak of LDL. .
[0031]
FIG. 3 shows the results of detection and measurement (chromatogram) of triglycerides (neutral fat). The peaks of CM, LDL, HDL, and FG (free glycerol) can be confirmed well. Even though the sample used for analysis was as small as 15 μl, the separation of VLDL was not complete before the peak of LDL. There was a peak.
[0032]
【The invention's effect】
According to the present invention, there is no need to exchange reaction reagents, and cholesterol, such as CM, VLDL, and LDL, contained in a sample by a single liquid chromatographic operation using a single liquid chromatograph, A liquid chromatography apparatus capable of detecting, measuring and analyzing the amount of triglyceride (neutral fat) or phospholipid is provided.
[0033]
As a result, after separating the lipoprotein by the separation column, the eluted component is guided to a plurality of flow paths, and the analysis apparatus of the present invention performs detection / measurement using a detector provided for each flow path. For example, even when only one device is used, the amount of cholesterol, phospholipids, triglycerides (neutral fats) of lipoproteins contained in a sample in one operation without exchanging reaction reagents. ) Detect and measure the amount, and finally analyze the amount of cholesterol, triglyceride (neutral fat) or phospholipid present in each sample for each lipoprotein such as CM, VLDL or LDL Can be.
[0034]
Therefore, according to the apparatus of the present invention, compared to the conventional method in which a plurality of chromatographic operations or a plurality of liquid chromatograph apparatuses must be used in order to obtain a similar analysis result, in a shorter time, An analysis result can be obtained by using a smaller number of samples.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the outline of an apparatus of the present invention.
FIG. 2 is a result (chromatogram) of cholesterol detection / measurement in Example 1, and the horizontal axis represents the time (minutes) after the sample was applied to the apparatus. In the figure, VLDL, LDL, and HDL indicate ultra low density lipoprotein, low density lipoprotein, and high density lipoprotein, respectively.
FIG. 3 is a result (chromatogram) of detection and measurement of triglyceride (neutral fat) in Example 1, and the horizontal axis indicates the time (minutes) after the sample was applied to the apparatus. CM, VLDL, LDL, HDL, and FG in the figure indicate chylomicron, ultra-low density lipoprotein, low density lipoprotein, high density lipoprotein, and free glycerol, respectively.
[Explanation of symbols]
1 eluent, 2 degasser, 3 feed pump, 4 autosampler, 5 filter, 6 separation column, 7 column oven (incubator), 8 splitter, 9 resistance tube, 10 · 11 reaction coil, 12 reactor (incubator) , 13.14 detector, 15 reaction reagent feed pump, 16 air trap, 17 cholesterol reaction reagent, 18 triglyceride reaction reagent

Claims (1)

試料中のリポ蛋白質を分析する液体クロマトグラフィー装置であって、単一流路を用いて試料を分離カラムに導入し、分離カラムからの溶出成分をn(nは2又は3である)分割してそれぞれが検出器を備えるn本の流路に導き、各流路に導かれた成分に対してコレステロール反応試薬、トリグリセリド(中性脂肪)反応試薬又はリン脂質反応試薬の中から選ばれるn種の反応試薬のうち、流路ごとにどれか1つを選択した上で混合、反応させた後、各流路ごとに検出器を用いてリポ蛋白質の検出・測定を行うようにした液体クロマトグラフィー装置。A liquid chromatography apparatus for analyzing lipoproteins in a sample, wherein the sample is introduced into the separation column using a single flow path, and the elution component from the separation column is divided into n (n is 2 or 3). Each led to n flow paths equipped with detectors, and n kinds of components selected from cholesterol reaction reagent, triglyceride (neutral fat) reaction reagent or phospholipid reaction reagent for the components led to each flow path Liquid chromatography device that detects and measures lipoproteins using a detector for each flow channel after selecting and mixing one of the reaction reagents for each flow channel .
JP01677999A 1999-01-26 1999-01-26 Lipoprotein analyzer Expired - Fee Related JP4058828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01677999A JP4058828B2 (en) 1999-01-26 1999-01-26 Lipoprotein analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01677999A JP4058828B2 (en) 1999-01-26 1999-01-26 Lipoprotein analyzer

Publications (2)

Publication Number Publication Date
JP2000214150A JP2000214150A (en) 2000-08-04
JP4058828B2 true JP4058828B2 (en) 2008-03-12

Family

ID=11925695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01677999A Expired - Fee Related JP4058828B2 (en) 1999-01-26 1999-01-26 Lipoprotein analyzer

Country Status (1)

Country Link
JP (1) JP4058828B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243745A (en) * 2001-02-15 2002-08-28 Tosoh Corp Lipoprotein analyzer
JP4705754B2 (en) * 2001-11-13 2011-06-22 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア Ion mobility analysis of biological particles
JP3899041B2 (en) * 2003-02-07 2007-03-28 真一 臼井 Lipoprotein analysis method and analysis program
JP5145771B2 (en) * 2006-05-25 2013-02-20 東ソー株式会社 Method and apparatus for analyzing vitamin E in lipoprotein
EP2397858B1 (en) 2006-05-25 2012-11-28 Tosoh Corporation Method and apparatus for analyzing vitamin E in lipoproteins

Also Published As

Publication number Publication date
JP2000214150A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
Gika et al. Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics
Ito et al. Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tandem mass spectrometry of liquid urine or urine-soaked filter paper strips
Vuckovic Sample preparation in global metabolomics of biological fluids and tissues
Suzuki et al. Use of on‐line supercritical fluid extraction‐supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry
McLaren et al. An ultraperformance liquid chromatography method for the normal-phase separation of lipids
WO2011068707A1 (en) Vitamin d metabolite determination utilizing mass spectrometry following derivatization
Lacassie et al. Multiresidue determination method for organophosphorus pesticides in serum and whole blood by gas chromatography–mass-selective detection
Micalizzi et al. Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids
WO2014085486A2 (en) Methods and apparatus for the analysis of vitamin d metabolites
Chamorro et al. Quantitative profile of lipid classes in blood by normal phase chromatography with evaporative light scattering detector: application in the detection of lipid class abnormalities in liver cirrhosis
JPH0915225A (en) Method for analyzing serum lipoprotein
Bartosova et al. High throughput semiquantitative UHPSFC–MS/MS lipid profiling and lipid class determination
JP4058828B2 (en) Lipoprotein analyzer
JP2002139501A (en) Method for analyzing and diagnosing lipoprotein subclass
Suwanvecho et al. Effective, convenient, and green sample preparation for the determination of retinol and retinol acetate in human serum using pipette tip microextraction
Kuksis Quantitative lipid analysis by combined thin layer and gas—liquid chromatographic systems
Qureshi et al. Determination of cholesterol and triglycerides in serum lipoproteins using flow field-flow fractionation coupled to gas chromatography–mass spectrometry
Sandvik et al. Routine supercritical fluid chromatography tandem mass spectrometry method for determination of vitamin K1 extracted from serum with a 96-well solid-phase extraction method
Meunier et al. Four years of LC–MS/MS method for quantification of 25-hydroxyvitamin D (D2+ D3) for clinical practice
Mendiara et al. Online solid-phase extraction–liquid chromatography–mass spectrometry to determine free sterols in human serum
Adole et al. Clinical utility of validated gas chromatography–ion trap mass spectrometry in patients with anticholinesterase pesticides poisoning
Bernert Jr et al. Direct determination of the linoleate/oleate ratio in serum cholesterol esters by liquid chromatography.
JP4644948B2 (en) Lipoprotein analysis method
Busbee et al. Separation and detection of lipoproteins in human serum by use of size-exclusion liquid chromatography: a preliminary report.
Aurand et al. Highly selective isolation and separation of 25-hydroxyvitamin D and 3-epi-25-hydroxyvitamin D metabolites from serum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees