JP4058503B2 - Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same - Google Patents

Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same Download PDF

Info

Publication number
JP4058503B2
JP4058503B2 JP28269597A JP28269597A JP4058503B2 JP 4058503 B2 JP4058503 B2 JP 4058503B2 JP 28269597 A JP28269597 A JP 28269597A JP 28269597 A JP28269597 A JP 28269597A JP 4058503 B2 JP4058503 B2 JP 4058503B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purification
alumina
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28269597A
Other languages
Japanese (ja)
Other versions
JPH10235156A (en
Inventor
泰治 菅野
武 長南
敦 加岳井
邦秀 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP28269597A priority Critical patent/JP4058503B2/en
Publication of JPH10235156A publication Critical patent/JPH10235156A/en
Application granted granted Critical
Publication of JP4058503B2 publication Critical patent/JP4058503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃焼排ガス、特に自動車、ボイラー、ガスエンジン、ガスタービン、船舶などの移動式および固定式内燃機関の燃焼排ガス中に含まれる窒素酸化物の浄化に用いられる排ガス浄化用触媒層および排ガス浄化用触媒被覆構造体に関し、さらに詳細には希薄燃焼領域で運転される内燃機関から排出される排ガス中の窒素酸化物を高い空間速度で、かつ高効率で浄化可能な排ガス浄化用触媒層および排ガス浄化用触媒被覆構造体と、これらを使用しての排ガス浄化方法に関するものである。
【0002】
【従来の技術】
自動車をはじめとする内燃機関から排出される各種の燃焼排ガス中には、燃焼生成物である水や二酸化炭素とともに、一酸化窒素や二酸化窒素などの窒素酸化物(NOx)が含まれている。NOxは人体、特に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保全の上から問題視される酸性雨の原因の1つとなっている。そのため、これら各種の排ガスから効率よく窒素酸化物を除去する脱硝技術の開発が望まれている。
【0003】
他方において、地球温暖化防止の観点から近年希薄燃焼方式の内燃機関が注目されている。従来の自動車用ガソリンエンジンは、空燃比(A/F)=14.7付近で制御された化学量論比での燃焼であり、その排ガス処理に対しては排ガス中の一酸化炭素、炭化水素とNOxとを、主として白金、ロジウム、パラジウムおよびセリアを含むアルミナ触媒に接触させて有害三成分を同時に除去する三元触媒方式が採用されてきた。
【0004】
しかしながら、この三元触媒方式は、エンジンが化学量論比で運転されることが絶対条件であるため、希薄空燃比で運転される希薄燃焼ガソリンエンジンの排ガス浄化には適用することができない。また、ディーゼルエンジンは本来希薄燃焼エンジンであるが、その排ガスに対しては浮遊粒子状物質とNOxの両方に厳しい規制がかけられようとしている。
【0005】
従来、酸素過剰雰囲気下でΝOxを還元除去する方法としては、還元ガスとして僅かな量でも選択的に触媒に吸着するNHを使用する技術が既に確立されている。この技術は、いわゆる固定発生源であるボイラーやディーゼルエンジンからの排ガス脱硝方法として工業化されているが、この方法においては未反応の還元剤の回収処理のための特別な装置を必要とし、また臭気が強く有害なアンモニアを用いるので、特に自動車などの移動発生源からの排ガス脱硝技術としては危険性があり適用できない。
【0006】
近年、酸素過剰雰囲気の希薄燃焼排ガス中に残存する未燃の炭化水素を還元剤として用いることにより、NOx還元反応を促進させることができるという報告がなされて以来、この反応を促進するための触媒が種々開発され報告されている。例えば、アルミナやアルミナに遷移金属を担持した触媒が、炭化水素を還元剤として用いるNOx還元反応に有効であるとする数多くの報告がある。また、特開平4−284848号公報には0.1〜4重量%のCu、Fe、Cr、Zn、Ni、Vを含有するアルミナあるいはシリカ−アルミナをΝOx還元触媒として使用した例が報告されている。
【0007】
さらに、Ρtをアルミナに担持した触媒を用いると、NOx還元反応が200〜300℃程度の低温領域で進行することが特開平4−267946号公報、特開平5−68855号公報や特開平5−103949号公報などに報告されている。しかしながら、これらの担持貴金属触媒を用いた場合、還元剤である炭化水素の燃焼反応が過度に促進されたり、地球温暖化の原因物質の1つといわれているNOが多量に副生し、無害なΝへの還元反応を選択的に進行させることが困難であるといった欠点を有していた。
【0008】
本出願人の一方は、先に酸素過剰雰囲気下で炭化水素を還元剤として銀を含有する触媒を用いるとNOx還元反応が選択的に進行することを見出し、この技術を特開平4−281844号公報に開示した。この開示が行われた後においても、銀を含有する触媒を用いる類似のΝOx還元除去技術が特開平4−354536号公報、特開平5−92124号公報、特開平5−92125号公報および特開平6−277454号公報などに開示されている。
【0009】
【発明の解決しようとする課題】
しかしながら、これら従来の公報に記載されたアルミナ担持銀触媒は、SOxおよび水蒸気共存下での脱硝性能が実用的に未だ不十分であった。
【0010】
本発明は上記従来技術の欠点を解決すべくなされたものであり、その目的とするところは、希薄燃焼排ガス中のNOxを効率よく除去することができる排ガス浄化用触媒層および排ガス浄化用触媒被覆構造体と、これらを使用しての希薄燃焼排ガス中のNOxの高効率、高信頼性をもって浄化する排ガス浄化方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、SOxと水蒸気が共存する希薄燃焼領域において高い脱硝性能を有する排ガス浄化用触媒層および排ガス浄化用触媒被覆構造体と、これらを使用しての排ガス浄化方法について鋭意研究を重ねた結果、排ガスの流通方向に対してシリカとカルシウム、さらには必要に応じ硫酸根、アルミナおよびジルコニアのうち少なくとも1種とを含有させてなる触媒Aを前段に、特定の細孔構造を有するアルミナ担体に銀を含有してなる触媒Bを後段になるように区分して配置させることにより上記した問題点を解決できることを見出し本発明を完成するに至った。
【0012】
すなわち、上記課題を解決するため本発明の第1の実施態様は、シリカとカルシウムとアルミナ又はジルコニアを含有させてなる触媒Aと、窒素ガス吸着法により測定された細孔半径と細孔容積の関係が、細孔半径300オングストローム以下の細孔の占める細孔容積の合計値をXとし、細孔半径25オングストローム以上で100オングストローム未満の細孔の占める細孔容積の合計値をYとし、細孔半径100オングストローム以上で300オングストローム以下の細孔の占める細孔容積の合計値をZとしたとき、YがXの70%以上であり、ZがXの20%以下であるような細孔構造を有するアルミナ担体に金属換算で0.1〜10重量%の銀を含有してなる触媒Bとから構成され、且つ、排ガス流通方向に対し、前記触媒Aが前段に、前記触媒Bが後段に区分して配置されている排ガス浄化用触媒層を特徴とするものである。
また、本発明の他の第1の実施態様は、前記触媒Aに、さらに硫酸根を含有させてなる排ガス浄化用触媒層を特徴とするものである。該触媒層は、粉体または成型した状態で排ガスの流通空間に配置するのが好ましい。
【0013】
また、本発明の第2の実施態様は、多数の貫通孔を有する耐火性材料からなる一体構造の支持基質と、該支持基質における少なくとも該貫通孔の内表面に上記の触媒A及びBを、排ガス流通方向に対し、上記触媒Aが前段に、上記触媒Bが後段に区分して配置して被覆してなる排ガス浄化用触媒被覆構造体を特徴とするものである。
【0014】
またさらに、本発明の第3の実施態様は希薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有層と接触させることからなる炭化水素を還元剤とする排ガス中のNOxを除去する方法において、該触媒含有層に含まれる触媒は前記第1の実施態様における排ガス浄化用触媒層または前記第2の実施態様における排ガス浄化用触媒被覆構造体であることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の詳細およびその作用についてさらに具体的に説明する。
(触媒の構造およびその製法)
本発明の排ガス浄化用触媒層における触媒Bの主成分の1つであり、かつ触媒Aの任意成分の1つであるアルミナは、例えば鉱物学上ベーマイト、擬ベーマイト、バイアライト、あるいはノルストランダイトに分類される水酸化アルミニウムの粉体やゲルを、空気中あるいは真空中300〜800℃、好ましくは400〜900℃で加熱脱水することによって、結晶学的にγ−型、η−型、δ−型、χ−型あるいはその混合型に分類されるアルミナに相転移させたものが脱硝性能上好ましい。他の結晶構造をとるアルミナ、例えばα−型のアルミナは極端に比表面積が小さく固体酸性にも乏しいので本発明の触媒成分としては不適当である。
【0016】
また、触媒Bのアルミナは窒素ガス吸着法により測定された細孔半径が300オングストローム以下の細孔の占める細孔容積の合計値をXとし、細孔半径が25オングストローム以上で100オングストローム未満の細孔の占める細孔容積の合計値をYとし、細孔半径が100オングストローム以上で300オングストローム以下の細孔の占める細孔容積の合計値をZとしたとき、YがΧの70%以上であり、ZがXの20%以下であるような細孔構造を有するアルミナであることが必要である。細孔構造が、上記した条件を満たさないアルミナを本発明の触媒Bにおける担体として用いた場合には、これにより構成される排ガス浄化用触媒のSOxと水蒸気共存下での排ガスの脱硝性能が不十分であった。したがって、本発明の触媒Bの主成分として有効なアルミナは、上記した結晶構造および細孔特性を有するものが適切であるといえる。
【0017】
本発明の排ガス浄化用触媒層は、以下のような触媒である。
本発明にかかる触媒層は、シリカとカルシウムと、さらには必要に応じ硫酸根、アルミナ、ジルコニアからなる群から選択された少なくとも1種を含有してなる触媒Aと、上記した結晶構造および細孔特性を有するアルミナに銀を含有してなる触媒Bとから構成されるものである。触媒Aのシリカに含有されるカルシウムの状態、さらに含有される硫酸根、アルミナ、ジルコニアからなる群から選択された少なくとも1種の状態も特に限定されない。一方、触媒Bにおけるアルミナに含有される銀の状態も特に限定されず、金属状態、酸化物状態およびこれらの混合状態などが挙げられる。特に、希薄燃焼ガソリン自動車などの内燃機関の燃焼排ガス組成は運転状態によってその都度変化するため、触媒は還元雰囲気および酸化雰囲気に曝される。したがって、触媒を構成する活性金属の状態は雰囲気により変化することが想定される。なお、触媒Aにおけるカルシウムの出発原料は特に限定されないが、耐久性能上水酸化カルシウムが好ましい。また、触媒Aに硫酸根を含有させる場合、硫酸根の出発原料としては、硫酸や硫酸カルシウムなどを用いることが好ましい。触媒Bにおける銀の出発原料は特に限定されない。
【0018】
本発明にかかる触媒Aにおけるシリカにカルシウム、さらには硫酸根、アルミナ、ジルコニアからなる群から選択された少なくとも1種を含有させる方法と触媒Bにおけるアルミナに銀を含有させる方法は特に限定されず従来から行われている手法、例えば吸着法、ポアフィリング法、インシピエントウェットネス法、蒸発乾固法、スプレー法などの含浸法、混練法、物理混合法およびこれらの組み合わせ法など通常採用されている公知の方法を任意に採用することができる。
【0019】
触媒Aに対するカルシウムの含有量は特に限定されないが、CaO換算で10〜80重量%であることが望ましい。カルシウムの含有量がCaO換算で10重量%未満では、初期脱硝性能は優れるが、触媒AのSOx吸収性能が乏しいため早期に活性低下を起こす。また80重量%を超えると、カルシウムの分散性が低下するため、SOx吸収性能が減少し、脱硝活性の早期低下につながるため好ましくない。つぎに触媒Aに含有される硫酸根、アルミナ、ジルコニアからなる群から選択された少なくとも1種の重量は特に限定されないが、特にアルミナ、ジルコニアはSOx吸収性能上30重量%未満であることが好ましい。一方、触媒Bに対する金属換算での銀の含有量は、特に限定されないが0.1〜10重量%であることが好ましい。銀の担持量が0.1重量%未満ではその効果が発揮されず、また10重量%を超えると還元剤である炭化水素の燃焼反応が優先的に進行し、NOx除去特性が低下する。
【0020】
触媒Aの乾燥温度は、80〜120℃程度で乾燥する。また、焼成温度は200〜800℃、好ましくは400〜600℃程度である。
焼成温度が800℃を超えると、シリカの比表面積の減少と共にカルシウムの分散性も低下するため好ましくない。一方、触媒Bの乾燥温度は、特に限定されるものではなく通常80〜120℃程度で乾燥する。また、焼成温度は300〜1000℃、好ましくは400〜900℃程度である。焼成温度が1000℃を超えると、α−型のアルミナへの相変態が起こるので好ましくない。このときの雰囲気は特に限定されないが、触媒組成に応じて空気中、不活性ガス中、酸素中などの各雰囲気を適宜選択すればよい。また、各雰囲気を一定時間毎に交互に代えてもよい。
【0021】
本発明の第1の実施態様において、排ガス浄化用の触媒層を形成するに際し、該触媒層は上記した触媒を所定の形状に成型または粉末状態のまま目的とする排ガスが流通する一定の空間内に充填する。
触媒層を成型体とするに際して、その形状は特に制限されず、例えば球状、円筒状、ハニカム状、螺旋状、粒状、ペレット状、リング状など種々の形状を採用することができる。これらの形状、大きさなどは使用条件に応じて任意に選択すればよい。
【0022】
次に、本発明の第2の実施態様の排ガス浄化用触媒被覆構造体について説明する。ここでいう触媒被覆構造体とは、多数の貫通孔を有する耐火性材料で構成された一体構造の支持基質の少なくとも該貫通孔の内表面に上記した触媒を区分して被覆した構造を有するものである。
【0023】
該支持基質には、多数の貫通孔が排ガスの流通方向に沿って設けられるが、その流通方向に垂直な断面において、通常、開孔率60〜90%、好ましくは70〜90%であって、その数は1平方インチ(5.06cm)当り30〜700個、好ましくは200〜600個である。触媒は、少なくとも該貫通孔の内表面に区分して被覆されるが、その支持基質の端面や側面に被覆されていてもよい。
【0024】
該耐火性支持基質の材質としては、α−型のアルミナ、ムライト、コージェライト、シリコンカーバイトなどのセラミックスやオーステナイト系、フェライト系のステンレス鋼などの金属などが使用される。形状もハニカムやフォームなどの慣用のものが使用できるが、好ましいものはコージェライト製やステンレス鋼製のハニカム状の支持基質である。
【0025】
該支持基質への触媒の被覆方法としては、一定の粒度に整粒した本発明の触媒をバインダーと共に、またはバインダーを用いないで前記支持基質の少なくとも貫通孔の内表面に区分して被覆する、いわゆる通常のウォッシュコート法やゾル−ゲル法が適用できる。また上記の支持基質に予めアルミナを被覆しておいて、これに本発明の触媒活性物質の担持処理を行って触媒被覆層を形成してもよい。支持基質への触媒層の被覆量は限定されないが、支持基質単位体積当り50〜250g/リットル程度が好ましく、100〜200g/リットル程度とすることがより好ましい。
【0026】
つぎに、本発明の第3の実施態様の排ガス浄化方法について説明する。本発明の第3の実施態様は、前記した第1の実施態様の触媒層や第2の実施態様の触媒被覆構造体を使用して、これと排ガス中のCO、HCおよびHといった還元性成分をΝOxおよびOといった酸化性成分で完全酸化するに要する化学量論量近傍から過剰の酸素を含有する排ガスとを接触させることによって、ΝOxはNとΗOにまで還元分解されると同時に、HCなどの還元剤もCOとHOに酸化させるものである。
【0027】
本発明において触媒Aを前段に、触媒Bを後段に配置させる理由は、前段の触媒AでSOxを吸着除去することにより、トータル触媒システムでのSOx耐久性能を向上させるためである。触媒Aと触媒Bの割合は、SOx耐久性能とNOx除去性能に応じて任意に選択すればよい。
【0028】
ディーゼルエンジンの排ガスのように、排ガスそのもののHC/NOx比が低い場合には、排ガス中にメタン換算濃度で数百〜数千ppm程度の燃料ΗCを追加添加した後、本発明の触媒含有層と接触させるシステムを採用すれば充分に高いNOx除去率を達成できる。なお、ここでいうHCとは、パラフィン系炭化水素、オレフィン系炭化水素および芳香族系炭化水素、アルコール、アルデヒド、ケトン、エーテルなどの含酸素有機化合物、ガソリン、灯油、軽油、A重油などを含んだものを意味する。
【0029】
本発明による触媒含有層を用いて、希薄空燃比の領域で運転される内燃機関の燃焼排ガスを浄化する際のガス空間速度(SV)は、特に限定されるものではないが、SV5,000h−1以上で200,000h−1以下とすることが好ましい。
【0030】
そして、ガス組成を一定とした場合の脱硝率は触媒の種類とHCの種類に依存するが、本発明の触媒層を用いた場合は、例えばC〜Cのパラフィン、オレフィンおよびC〜Cの芳香族HCに対しては450〜600℃、C〜Cのパラフィンおよびオレフィンに対しては350〜550℃、C10〜C25のパラフィンおよびオレフィンに対しては250〜500℃で高い脱硝率を示すため触媒層入口温度を100℃以上で700℃以下、好ましくは200℃以上で600℃以下にすることが必要である。
【0031】
[実施例]
以下に実施例および、参考例、比較例により、本発明をさらに詳細に説明する。
但し、本発明は下記実施例に限定されるものでない。
(1)アルミナの選定
触媒Bの使用アルミナ担体の選定のために、表1に示すような比表面積と細孔分布を有する種々のγ−型のアルミナにおいて、a〜cが本発明の範囲に入るアルミナであり、d〜gが本発明の範囲外のアルミナである。
なお、a〜gのアルミナの細孔分布は、カルロエルバ社製のソープトマチックにより測定した。
【0032】
【表1】
【0033】
(2)触媒層の調製
以下に、本発明の触媒層を構成するための各触媒の調製についての調製例を試料として示す。
(イ)触媒Bの製造:
試料1]
表1のγ−型のアルミナaの前駆体物質であるアルミナ水和物100gを硝酸銀5.36gを含む300ミリリットルの水溶液に10時間浸漬した後、80℃で蒸発乾固した。これを110℃で通風乾燥後、空気中550℃で3時間焼成して触媒1を得た。なお、触媒1における金属換算でのAgの含有量は、触媒全体に対して4.5重量%であった。
【0034】
試料2〜試料12]
同様に、表1に示すγ−型のアルミナb〜gが得られる前駆体物質であるアルミナ水和物を用いた以外は、試料1と同様にしてそれぞれ触媒2(試料2)、触媒3(試料3)、触媒4(試料4)、触媒5(試料5)、触媒6(試料6)、触媒7(試料7)を得た。
また、試料1の触媒1の調製に際し、銀の含有量を0重量%、2重量%、3重量%、8重量%および12重量%とした以外は試料1と同様にして、それぞれ触媒8(試料8)、触媒9(試料9)、触媒10(試料10)、触媒11(試料11)および触媒12(試料12)を得た。
【0035】
(ロ)触媒Aの製造:
試料13〜試料19]
市販のシリカ20gと水酸化カルシウム40gを200ミリリットルの純水中で攪拌混合し、80℃で蒸発乾固し、さらに110℃で乾燥、550℃で焼成して触媒13(試料13)を調製した。この時のSiOとCa(OH)の重量比は1:2であった。また、SiOとCa(OH)の混合比が15:1、3:1、1:5および1:10のものも同様にして調製し、それぞれ触媒14〜17(試料14〜17)とした。また、市販の酸化カルシウムのみで構成する触媒を触媒18(試料18)、市販のシリカのみで構成する触媒を触媒19(試料19)とした。
【0036】
試料20および試料36]
上記試料13において、さらに硫酸カルシウム(半水石膏)を添加してシリカと水酸化カルシウムと硫酸カルシウムの重量比が2:4:3、8:1:1、4:1:1、1:4:3および1:8:5となるように調製した以外は、試料13と同様にしてそれぞれ触媒20〜24(試料20〜24)とし、市販のアルミナを添加してシリカと水酸化カルシウムとアルミナの重量比が2:4:1、8:16:1、4:8:1および1:2:1となるように調製した以外は、試料13と同様にしてそれぞれ触媒25〜28(試料25〜28)とし、市販のアルミナのみからなる触媒を触媒29(試料29)とし、ジルコニアを添加してシリカと水酸化カルシウムとジルコニアの重量比が2:4:3、8:16:1、4:8:1および1:2:1となるように調製した以外は、試料13と同様にしてそれぞれ触媒30〜33(試料30〜33)とし、市販のジルコニアのみからなる触媒を触媒34(試料34)とした。
また上記試料13において、さらに市販のアルミナとジルコニアとを添加してシリカと水酸化カルシウムとアルミナとジルコニアの重量比が8:16:3:1、8:16:1:3となるよう調製した以外は試料13と同様にしてそれぞれ触媒35、36(試料35、36)とした。
【0037】
(ハ)ハニカム触媒の製造:
試料37および38]
上記の触媒13の60gを、アルミナゾル(Αl固形分20重量%)5gおよび水120mlと共にボールミルポットに仕込み、湿式粉砕してスラリーを得た。このスラリーの中に、市販の400cpsi(セル/inch)コージェライトハニカム基質からくり貫かれた直径1インチ、長さ2.5インチの円筒状コアを浸漬し、引き上げた後余分のスラリーをエアーブローで除去し乾燥した。
その後、500℃で30分焼成し、ハニカム1リットル当たりドライ換算で150gの固形分を被覆してCa(OH)−SiO組成のハニカム触媒37(試料37)を得た。
【0038】
また、上記の粉末触媒1の60gを、それぞれアルミナゾル(Αl固形分10重量%)8gおよび水120ミリリットルと共にボールミルポットに仕込み、湿式粉砕してスラリーを得た。このスラリーの中に、市販の400cpsi(セル/inch)コージェライトハニカム基質からくり貫かれた直径1インチ、長さ2.5インチの円筒状コアを浸漬し、引き上げた後余分のスラリーをエアーブローで除去し乾燥した。
その後、500℃で30分焼成し、ハニカム1リットル当たりドライ換算で150gの固形分を被覆して4.4%Αg/Αl組成のハニカム触媒38(試料38)を得た。
【0039】
以下に上記した試料1〜38の触媒1〜38を用いて形成した排ガス浄化用触媒層について、種々の条件下において脱硝性能を評価した結果について述べる。
参考例1]
試料13の触媒13と試料1の触媒1をそれぞれ加圧成型した後、粉砕して粒度を350〜500μmに整粒し、排ガスの流通方向に対して触媒13が前段に、触媒1が後段になるように内径15mmのステンレス製反応管に充填して触媒層を形成し、これを常圧固定床流通反応装置に装着した。触媒13と触媒1の重量比は1:1であった。
【0040】
[性能評価例1]
この触媒層に、反応管内の排ガス温度を425℃に保ち、モデル排ガスとしてNO:750ppm、灯油(C):4500ppm、O:10%、HO:10%、SO:50ppm、残部:Nからなる混合ガスを空間速度40,000h−1で通過させた。
反応管出口ガス組成の分析において、NOとNOの濃度については化学発光式NOx計で測定し、NO濃度はΡorapack Qカラムを装着したガスクロマトグラフ・熱伝導度検出器を用いて測定した。脱硝率は以下の式で定義した。
また、本発明のいずれの触媒層でもNOおよびNOは殆ど生成しなかった。
【0041】
[式1]
反応管入口NO濃度−反応管出口ΝOx濃度
脱硝率(%)=────────────────────×100
反応管入口NO濃度
【0042】
参考例2〜11、実施例12〜21、および比較例1〜14]
試料2、3、9〜11の触媒2、3、9〜11および試料4〜8、12の触媒4〜8、12をそれぞれ参考例1の触媒1の代わりに用いて、上記と同様の触媒層を形成し、同様にしてモデルガスによる評価試験を行った。触媒2、3、9〜11を用いた触媒層を、それぞれ参考例2〜6とし、触媒4〜8、12を用いた触媒層を、それぞれ比較例1〜6とした。
また、試料15、16、20、22、23、25〜28、30〜33、35、36の触媒15、16、20、22、23、25〜28、30〜33、35、36および試料14、17〜19、21、24、29、34の触媒14、17〜19、21、24、29、34を参考例1の触媒13の代わりに用いて上記と同様の触媒層を形成し、同様にしてモデルガスによる評価試験を行った。触媒15、16、20、22、23、25〜28、30〜33、35、36を用いた触媒層をそれぞれ参考例7〜11とし、触媒14、17〜19、21、24、29、34を用いた触媒層をそれぞれ比較例7〜14とした。
表2に、上記参考例1〜11、実施例12〜21および比較例1〜14の触媒層について初期脱硝性能および反応開始8時間後の脱硝性能を示す。
【0043】
[性能評価例2(参考例22)]
性能評価例1において、試料37のハニカム触媒37と試料38のハニカム触媒38を、それぞれ直径15mm、長さ32mmの円筒状に加工し、排ガスの流通方向に対してハニカム触媒37が前段に、ハニカム触媒38が後段になるように内径15mmのステンレス製反応管に充填した(参考例22)。ハニカム触媒38の触媒層に対して、フィードするガスの空間速度を13,000h−1とした以外は性能評価例1と同様のモデルガスによる評価試験を行い、初期脱硝性能および反応開始8時間後の脱硝性能を性能評価例1の結果とともに表2に示す。
【0044】
【表2】
【0045】
表2より参考例1〜11、22、実施例12〜21および比較例7〜14は、初期脱硝性能が75%以上であり、比較例1〜6に比べて優れた性能を示した。また実施例12〜21は、比較例7〜14に比べて50ppmのSOx共存条件で8時間反応させた後も、少なくとも61%以上の高い脱硝性能を維持した。
【0046】
【発明の効果】
以上述べた通り本発明による排ガス浄化用触媒層および排ガス浄化用触媒被覆構造体と、これらを使用した排ガス浄化方法によれば、SOxと水蒸気が共存する希薄燃焼排ガス中に含まれる窒素酸化物を高い脱硝率で還元浄化できることから内燃機関の燃焼排ガス中の窒素酸化物の浄化に有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst layer used for purification of combustion exhaust gas, particularly nitrogen oxide contained in combustion exhaust gas of mobile and stationary internal combustion engines such as automobiles, boilers, gas engines, gas turbines, ships, etc., and exhaust gas purification More specifically, a catalyst layer for exhaust gas purification and exhaust gas capable of purifying nitrogen oxide in exhaust gas discharged from an internal combustion engine operated in a lean combustion region at high space velocity and with high efficiency The present invention relates to a purification catalyst covering structure and an exhaust gas purification method using these.
[0002]
[Prior art]
Various combustion exhaust gases discharged from internal combustion engines including automobiles contain nitrogen oxides (NOx) such as nitrogen monoxide and nitrogen dioxide together with water and carbon dioxide as combustion products. NOx not only adversely affects the human body, particularly the respiratory system, but is also one of the causes of acid rain that is regarded as a problem from the viewpoint of protecting the global environment. Therefore, development of a denitration technique that efficiently removes nitrogen oxides from these various exhaust gases is desired.
[0003]
On the other hand, lean combustion internal combustion engines have attracted attention in recent years from the viewpoint of preventing global warming. Conventional automobile gasoline engines burn at a stoichiometric ratio controlled near an air-fuel ratio (A / F) = 14.7. For the exhaust gas treatment, carbon monoxide and hydrocarbons in the exhaust gas are used. A three-way catalyst system in which NOx is contacted with an alumina catalyst mainly containing platinum, rhodium, palladium and ceria to remove harmful three components simultaneously has been adopted.
[0004]
However, since this three-way catalyst system is an absolute condition that the engine is operated at a stoichiometric ratio, it cannot be applied to exhaust gas purification of a lean combustion gasoline engine operated at a lean air-fuel ratio. Diesel engines are inherently lean combustion engines, but strict regulations are about to be imposed on both the suspended particulate matter and NOx for the exhaust gas.
[0005]
Conventionally, as a method for reducing and removing soot Ox in an oxygen-excess atmosphere, NH is selectively adsorbed on the catalyst even with a small amount as a reducing gas. 3 The technology to use is already established. This technology has been industrialized as a method for denitrating exhaust gas from boilers and diesel engines, which are so-called fixed sources, but this method requires special equipment for the recovery of unreacted reducing agent, and odors. However, because it uses strong and harmful ammonia, it is dangerous and cannot be applied particularly as an exhaust gas denitration technology from mobile sources such as automobiles.
[0006]
In recent years, since it has been reported that an unburned hydrocarbon remaining in a lean combustion exhaust gas in an oxygen-rich atmosphere can be used as a reducing agent, a NOx reduction reaction can be promoted, and thus a catalyst for promoting this reaction. Have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. In addition, JP-A-4-284848 reports an example in which alumina or silica-alumina containing 0.1 to 4% by weight of Cu, Fe, Cr, Zn, Ni, V is used as a soot Ox reduction catalyst. Yes.
[0007]
Further, when a catalyst in which Ρt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C. Japanese Patent Laid-Open Nos. 4-267946, 5-68855, and 5- No. 103949 and the like. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbon as a reducing agent is excessively promoted, and N is said to be one of the causative substances of global warming. 2 A lot of O by-product, harmless moth 2 However, it was difficult to selectively proceed the reduction reaction.
[0008]
One of the present applicants has previously found that when a catalyst containing silver with hydrocarbon as a reducing agent is used in an oxygen-excess atmosphere, the NOx reduction reaction proceeds selectively, and this technique is disclosed in JP-A-4-281844. It was disclosed in the publication. Even after this disclosure has been made, similar soot Ox reduction and removal techniques using a silver-containing catalyst are disclosed in JP-A-4-354536, JP-A-5-92124, JP-A-5-92125 and JP-A-5-92125. It is disclosed in Japanese Patent Laid-Open No. 6-277454.
[0009]
[Problem to be Solved by the Invention]
However, the alumina-supported silver catalysts described in these conventional publications still have practically insufficient denitration performance in the presence of SOx and water vapor.
[0010]
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an exhaust gas purification catalyst layer and an exhaust gas purification catalyst coating capable of efficiently removing NOx in a lean combustion exhaust gas. An object of the present invention is to provide a structure and an exhaust gas purification method for purifying NOx in lean combustion exhaust gas using these with high efficiency and high reliability.
[0011]
[Means for Solving the Problems]
The present inventors have conducted extensive research on exhaust gas purification catalyst layers and exhaust gas purification catalyst coating structures having high denitration performance in a lean combustion region in which SOx and water vapor coexist, and exhaust gas purification methods using these. As a result, the catalyst A containing at least one of silica and calcium and, if necessary, at least one of sulfate radicals, alumina and zirconia in the flow direction of the exhaust gas, has a specific pore structure. The inventors have found that the above-mentioned problems can be solved by arranging the catalyst B containing silver on the support so as to be arranged in the subsequent stage, and have completed the present invention.
[0012]
That is, in order to solve the above-mentioned problem, the first embodiment of the present invention includes a catalyst A containing silica, calcium and alumina or zirconia, and a pore radius and a pore volume measured by a nitrogen gas adsorption method. In the relationship, X is the total pore volume occupied by pores having a pore radius of 300 angstroms or less, and Y is the total pore volume occupied by pores having a pore radius of 25 angstroms or more and less than 100 angstroms. A pore structure in which Y is 70% or more of X and Z is 20% or less of X, where Z is the total pore volume occupied by pores having a pore radius of 100 angstrom or more and 300 angstrom or less On an alumina carrier having 0.1 to 10% by weight in terms of metal And a catalyst layer for purifying exhaust gas, which is composed of a catalyst B containing silver, and is arranged so that the catalyst A is divided into the front stage and the catalyst B is divided into the rear stage with respect to the exhaust gas flow direction. Is.
Another first embodiment of the present invention is characterized by an exhaust gas purifying catalyst layer in which the catalyst A further contains a sulfate group. The catalyst layer is preferably arranged in the exhaust gas circulation space in a powdered or molded state.
[0013]
Further, the second embodiment of the present invention is a support substrate having a monolithic structure made of a refractory material having a large number of through holes, and the above catalyst on the inner surface of at least the through holes in the support substrate. A and B are arranged in such a manner that the catalyst A is divided into the front stage and the catalyst B is divided into the rear stage with respect to the exhaust gas flow direction. An exhaust gas purifying catalyst-coated structure formed by coating is characterized.
[0014]
Still further, a third embodiment of the present invention is a method for removing NOx in exhaust gas using hydrocarbon as a reducing agent, comprising contacting a combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer. The catalyst contained in the catalyst-containing layer is the exhaust gas purification catalyst layer in the first embodiment or the exhaust gas purification catalyst coating structure in the second embodiment. Toss Is.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention and the operation thereof will be described more specifically.
(Catalyst structure and production method)
Alumina, which is one of the main components of catalyst B and one of the optional components of catalyst A in the exhaust gas purifying catalyst layer of the present invention, is, for example, mineralized boehmite, pseudoboehmite, vialite, or norstrandite. The powder and gel of aluminum hydroxide classified into the following are crystallographically γ-type, η-type, δ by dehydrating in air or in vacuum at 300 to 800 ° C, preferably 400 to 900 ° C. In view of the denitration performance, a phase transition to alumina classified into a -type, a χ-type, or a mixed type thereof is preferable. Alumina having another crystal structure, such as α-type alumina, is extremely unsuitable as a catalyst component of the present invention because of its extremely small specific surface area and poor solid acidity.
[0016]
In addition, the alumina of the catalyst B is a fine value having a pore radius of 25 angstroms or more and less than 100 angstroms, where X is the total pore volume occupied by pores having a pore radius of 300 angstroms or less measured by the nitrogen gas adsorption method. When the total value of the pore volume occupied by pores is Y, and the total value of the pore volume occupied by pores having a pore radius of 100 angstroms or more and 300 angstroms or less is Z, Y is 70% or more of the soot. , It is necessary to be an alumina having a pore structure such that Z is 20% or less of X. When alumina whose pore structure does not satisfy the above-described conditions is used as the carrier in the catalyst B of the present invention, the denitration performance of the exhaust gas in the presence of SOx and water vapor of the exhaust gas purification catalyst constituted thereby is not good. It was enough. Therefore, it can be said that alumina having the above-described crystal structure and pore characteristics is appropriate as an effective alumina as the main component of the catalyst B of the present invention.
[0017]
The exhaust gas purifying catalyst layer of the present invention is the following catalyst.
The catalyst layer according to the present invention includes a catalyst A containing at least one selected from the group consisting of silica and calcium, and optionally sulfate group, alumina and zirconia, and the crystal structure and pores described above. It is comprised from the catalyst B which contains silver in the alumina which has a characteristic. The state of calcium contained in the silica of catalyst A, and at least one state selected from the group consisting of sulfate radical, alumina, and zirconia are also not particularly limited. On the other hand, the state of silver contained in the alumina in the catalyst B is not particularly limited, and examples thereof include a metal state, an oxide state, and a mixed state thereof. In particular, the combustion exhaust gas composition of an internal combustion engine such as a lean-burn gasoline automobile changes each time depending on the operating state, so that the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst varies depending on the atmosphere. The starting material for calcium in catalyst A is not particularly limited, but calcium hydroxide is preferred in terms of durability. In addition, when the catalyst A contains a sulfate group, it is preferable to use sulfuric acid, calcium sulfate, or the like as a starting material for the sulfate group. The silver starting material in the catalyst B is not particularly limited.
[0018]
There is no particular limitation on the method for containing silica in the catalyst A according to the present invention with at least one selected from the group consisting of calcium, sulfate, alumina, and zirconia, and the method for containing silver in the alumina with the catalyst B. For example, adsorption methods, pore filling methods, incipient wetness methods, evaporative drying methods, impregnation methods such as spray methods, kneading methods, physical mixing methods, and combinations thereof are usually employed. Any known method can be employed.
[0019]
The calcium content relative to the catalyst A is not particularly limited, but is preferably 10 to 80% by weight in terms of CaO. When the calcium content is less than 10% by weight in terms of CaO, the initial denitration performance is excellent, but since the SOx absorption performance of the catalyst A is poor, the activity is lowered early. On the other hand, if it exceeds 80% by weight, the dispersibility of calcium decreases, so the SOx absorption performance decreases, leading to an early decrease in denitration activity. Next, the weight of at least one selected from the group consisting of sulfate, alumina and zirconia contained in catalyst A is not particularly limited, but alumina and zirconia are particularly preferably less than 30% by weight in terms of SOx absorption performance. . On the other hand, the metal content in terms of metal relative to the catalyst B is not particularly limited, but is preferably 0.1 to 10% by weight. If the supported amount of silver is less than 0.1% by weight, the effect is not exhibited, and if it exceeds 10% by weight, the combustion reaction of hydrocarbon as a reducing agent preferentially proceeds, and the NOx removal characteristics are deteriorated.
[0020]
The drying temperature of the catalyst A is about 80 to 120 ° C. The firing temperature is about 200 to 800 ° C, preferably about 400 to 600 ° C.
If the firing temperature exceeds 800 ° C., it is not preferable because the specific surface area of silica is reduced and the dispersibility of calcium is also lowered. On the other hand, the drying temperature of the catalyst B is not particularly limited, and is usually dried at about 80 to 120 ° C. The firing temperature is about 300 to 1000 ° C, preferably about 400 to 900 ° C. When the firing temperature exceeds 1000 ° C., phase transformation to α-type alumina occurs, which is not preferable. The atmosphere at this time is not particularly limited, but each atmosphere such as air, inert gas, or oxygen may be appropriately selected according to the catalyst composition. Moreover, you may change each atmosphere alternately for every fixed time.
[0021]
In the first embodiment of the present invention, when forming a catalyst layer for exhaust gas purification, the catalyst layer is molded into a predetermined shape or in a fixed space in which the target exhaust gas flows in a powder state. To fill.
When the catalyst layer is formed into a molded body, the shape is not particularly limited, and various shapes such as a spherical shape, a cylindrical shape, a honeycomb shape, a spiral shape, a granular shape, a pellet shape, and a ring shape can be employed. These shapes, sizes, etc. may be arbitrarily selected according to the use conditions.
[0022]
Next, the exhaust gas purifying catalyst coating structure of the second embodiment of the present invention will be described. The catalyst-coated structure here has a structure in which at least the inner surface of the through-hole of a monolithic support substrate made of a refractory material having a large number of through-holes is coated with the above-mentioned catalyst being divided. It is.
[0023]
The support substrate is provided with a large number of through holes along the flow direction of the exhaust gas. In the cross section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. The number is 1 square inch (5.06 cm) 2 ) 30 to 700, preferably 200 to 600. The catalyst is coated at least on the inner surface of the through-hole, but may be coated on the end face or side face of the supporting substrate.
[0024]
As the material for the refractory support substrate, ceramics such as α-type alumina, mullite, cordierite and silicon carbide, and metals such as austenitic and ferritic stainless steel are used. Conventional shapes such as honeycombs and foams can be used, but cordierite or stainless steel honeycomb support substrates are preferred.
[0025]
As a method of coating the catalyst on the support substrate, the catalyst of the present invention, which has been sized to a certain particle size, is coated with at least the inner surface of the through hole of the support substrate with or without a binder. A so-called normal washcoat method or sol-gel method can be applied. Alternatively, the support substrate may be coated with alumina in advance, and a catalyst coating layer may be formed thereon by carrying the catalyst active substance according to the present invention. The coating amount of the catalyst layer on the support substrate is not limited, but is preferably about 50 to 250 g / liter, more preferably about 100 to 200 g / liter per unit volume of the support substrate.
[0026]
Next, an exhaust gas purification method of the third embodiment of the present invention will be described. The third embodiment of the present invention uses the catalyst layer of the first embodiment and the catalyst coating structure of the second embodiment described above, and CO, HC and H in the exhaust gas. 2 Reducing components such as ΝOx and O 2 By contacting exhaust gas containing excess oxygen from near the stoichiometric amount required for complete oxidation with an oxidizing component such as 2 And nephew 2 At the same time as reductive decomposition to O, reducing agents such as HC are also CO. 2 And H 2 It is oxidized to O.
[0027]
In the present invention, the reason why the catalyst A is arranged at the front stage and the catalyst B is arranged at the rear stage is that SOx is adsorbed and removed by the catalyst A at the front stage, thereby improving the SOx durability performance in the total catalyst system. The ratio of the catalyst A and the catalyst B may be arbitrarily selected according to the SOx durability performance and the NOx removal performance.
[0028]
When the HC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine, after adding fuel soot C of about several hundred to several thousand ppm in terms of methane in the exhaust gas, the catalyst-containing layer of the present invention A sufficiently high NOx removal rate can be achieved by adopting a system for contacting with NO. The term “HC” as used herein includes paraffinic hydrocarbons, olefinic hydrocarbons and aromatic hydrocarbons, oxygen-containing organic compounds such as alcohols, aldehydes, ketones and ethers, gasoline, kerosene, light oil, A heavy oil, and the like. Means something.
[0029]
The gas space velocity (SV) at the time of purifying combustion exhaust gas of an internal combustion engine operated in a lean air-fuel ratio region using the catalyst-containing layer according to the present invention is not particularly limited, but is SV5,000h. -1 200,000h for the above -1 The following is preferable.
[0030]
The denitration rate when the gas composition is constant depends on the type of catalyst and the type of HC, but when the catalyst layer of the present invention is used, for example, C 2 ~ C 6 Paraffins, olefins and C 6 ~ C 9 450 to 600 ° C. for aromatic HC 6 ~ C 9 350-550 ° C. for C 10 ~ C 25 In order to show a high denitration rate at 250 to 500 ° C. for paraffins and olefins, the catalyst layer inlet temperature must be 100 ° C. or higher and 700 ° C. or lower, preferably 200 ° C. or higher and 600 ° C. or lower.
[0031]
[Example]
Examples and Reference examples, The present invention will be described in more detail with reference to comparative examples.
However, the present invention is not limited to the following examples.
(1) Selection of alumina
For the selection of the alumina support to be used for catalyst B, in various γ-type aluminas having specific surface areas and pore distributions as shown in Table 1, a to c fall within the scope of the present invention, and d ~ G is alumina outside the scope of the present invention.
In addition, the pore distribution of the alumina of ag was measured by the soapomatic by the Carlo Elba company.
[0032]
[Table 1]
[0033]
(2) Preparation of catalyst layer
In the following, preparation examples for the preparation of each catalyst for constituting the catalyst layer of the present invention sample As shown.
(A) Production of catalyst B:
[ sample 1]
100 g of alumina hydrate, which is a precursor material of γ-type alumina a in Table 1, was immersed in a 300 ml aqueous solution containing 5.36 g of silver nitrate for 10 hours, and then evaporated to dryness at 80 ° C. This was dried by ventilation at 110 ° C. and then calcined in air at 550 ° C. for 3 hours to obtain Catalyst 1. In addition, the content of Ag in terms of metal in the catalyst 1 was 4.5% by weight with respect to the whole catalyst.
[0034]
[ sample 2 to sample 12]
Similarly, except for using alumina hydrate which is a precursor material from which γ-type alumina b to g shown in Table 1 are obtained, sample 1 in the same way as catalyst 1 ( sample 2), catalyst 3 ( sample 3), catalyst 4 ( sample 4), catalyst 5 ( sample 5), catalyst 6 ( sample 6), catalyst 7 ( sample 7) was obtained.
Also, sample 1 except that the content of silver was 0% by weight, 2% by weight, 3% by weight, 8% by weight and 12% by weight. sample 1 and catalyst 8 ( sample 8), catalyst 9 ( sample 9), catalyst 10 ( sample 10), catalyst 11 ( sample 11) and catalyst 12 ( sample 12) was obtained.
[0035]
(B) Production of catalyst A:
[ sample 13 ~ sample 19]
20 g of commercially available silica and 40 g of calcium hydroxide are stirred and mixed in 200 ml of pure water, evaporated to dryness at 80 ° C., dried at 110 ° C. and calcined at 550 ° C. to form catalyst 13 ( sample 13) was prepared. SiO at this time 2 And Ca (OH) 2 The weight ratio was 1: 2. In addition, SiO 2 And Ca (OH) 2 Having a mixing ratio of 15: 1, 3: 1, 1: 5 and 1:10 were prepared in the same manner, and catalysts 14 to 17 ( sample 14-17). In addition, a catalyst composed only of commercially available calcium oxide is replaced with catalyst 18 ( sample 18) A catalyst composed only of commercially available silica is designated as catalyst 19 ( sample 19).
[0036]
[ sample 20 and sample 36]
the above sample 13, calcium sulfate (hemihydrate gypsum) is further added, and the weight ratio of silica, calcium hydroxide, and calcium sulfate is 2: 4: 3, 8: 1: 1, 4: 1: 1, 1: 4: 3. And 1: 8: 5 sample 13 to catalyst 20 to 24 ( sample 20-24), and commercially available alumina is added so that the weight ratio of silica, calcium hydroxide and alumina is 2: 4: 1, 8: 16: 1, 4: 8: 1 and 1: 2: 1. Except for being prepared in sample In the same manner as in FIG. sample 25-28), and a catalyst made only of commercially available alumina is the catalyst 29 ( sample 29) except that zirconia was added and the weight ratio of silica, calcium hydroxide and zirconia was 2: 4: 3, 8: 16: 1, 4: 8: 1 and 1: 2: 1. Is sample 13 to catalyst 30 to 33 ( sample 30 to 33), and a catalyst composed only of commercially available zirconia is designated as catalyst 34 ( sample 34).
Also above sample 13 except that commercially available alumina and zirconia were further added so that the weight ratio of silica, calcium hydroxide, alumina and zirconia was 8: 16: 3: 1 and 8: 16: 1: 3. sample 13 and catalyst 35 and 36 ( sample 35, 36).
[0037]
(C) Manufacturing of honeycomb catalyst:
[ sample 37 and 38]
60 g of the catalyst 13 was mixed with alumina sol (Αl 2 O 3 A ball mill pot was prepared together with 5 g of solid content (20 wt%) and 120 ml of water, and wet pulverized to obtain a slurry. In this slurry, a commercially available 400 cpsi (cell / inch 2 ) A cylindrical core having a diameter of 1 inch and a length of 2.5 inches punched from the cordierite honeycomb substrate was immersed, and after lifting, excess slurry was removed by air blow and dried.
Thereafter, it was fired at 500 ° C. for 30 minutes, and coated with 150 g of a solid content in dry conversion per liter of honeycomb, and Ca (OH) 2 -SiO 2 Honeycomb catalyst 37 ( sample 37) was obtained.
[0038]
In addition, 60 g of the above powder catalyst 1 was added to alumina sol (Αl 2 O 3 A ball mill pot was prepared together with 8 g of solid content (10 wt%) and 120 ml of water, and wet pulverized to obtain a slurry. In this slurry, a commercially available 400 cpsi (cell / inch 2 ) A cylindrical core having a diameter of 1 inch and a length of 2.5 inches punched from the cordierite honeycomb substrate was immersed, and after lifting, excess slurry was removed by air blow and dried.
After that, it was fired at 500 ° C. for 30 minutes, and coated with 150 g of a solid content per liter of honeycomb and coated with 4.4% Αg / Αl. 2 O 3 Honeycomb catalyst 38 ( sample 38) was obtained.
[0039]
As described above sample The results of evaluating the NOx removal performance under various conditions for the exhaust gas purifying catalyst layer formed using 1 to 38 catalysts 1 to 38 will be described.
[ Reference example 1]
sample 13 catalysts 13 and sample Each of the catalyst 1 was pressure-molded and then pulverized to adjust the particle size to 350 to 500 μm. A reaction tube was filled to form a catalyst layer, which was attached to an atmospheric pressure fixed bed flow reactor. The weight ratio of catalyst 13 to catalyst 1 was 1: 1.
[0040]
[Example of performance evaluation 1]
In this catalyst layer, the exhaust gas temperature in the reaction tube is kept at 425 ° C., and NO: 750 ppm as model exhaust gas, kerosene (C 1 ): 4500 ppm, O 2 : 10%, H 2 O: 10%, SO 2 : 50 ppm, balance: N 2 A mixed gas consisting of -1 It was passed through.
In the analysis of the reaction tube outlet gas composition, NO and NO 2 The concentration of N was measured with a chemiluminescent NOx meter, and N 2 The O concentration was measured using a gas chromatograph / thermal conductivity detector equipped with a Ρorapack Q column. The denitration rate was defined by the following formula.
In any catalyst layer of the present invention, N 2 O and NO 2 Hardly formed.
[0041]
[Formula 1]
Reaction tube inlet NO concentration-Reaction tube outlet Ν Ox concentration
Denitration rate (%) = ──────────────────── × 100
Reaction tube inlet NO concentration
[0042]
[ Reference Examples 2-11, Examples 12-21, And Comparative Examples 1 to 14]
sample 2, 3, 9-11 catalysts 2, 3, 9-11 and sample 4-8, 12 catalysts 4-8, 12 respectively Reference example 1 was used in place of the catalyst 1 to form a catalyst layer similar to the above, and an evaluation test using a model gas was performed in the same manner. The catalyst layers using the catalysts 2, 3, 9 to 11 are respectively Reference example 2 to 6, and the catalyst layers using the catalysts 4 to 8 and 12 were referred to as Comparative Examples 1 to 6, respectively.
Also, sample 15, 16, 20, 22, 23, 25-28, 30-33, 35, 36 catalyst 15, 16, 20, 22, 23, 25-28, 30-33, 35, 36 and sample 14, 17-19, 21, 24, 29, 34 catalyst 14, 17-19, 21, 24, 29, 34 Reference example A catalyst layer similar to the above was formed using the catalyst 13 instead of the catalyst 13 and an evaluation test using a model gas was performed in the same manner. Catalyst layers using catalysts 15, 16, 20, 22, 23, 25-28, 30-33, 35, 36, respectively Reference example 7 to 11, and catalyst layers using the catalysts 14, 17 to 19, 21, 24, 29, and 34 were referred to as Comparative Examples 7 to 14, respectively.
Table 2 shows the above Reference Examples 1-11, Examples 12-21 The initial denitration performance and the denitration performance 8 hours after the start of the reaction are shown for the catalyst layers of Comparative Examples 1-14.
[0043]
[Performance evaluation example 2 ( Reference example 22)]
In performance evaluation example 1, sample 37 honeycomb catalyst 37 and sample Each of the 38 honeycomb catalysts 38 is processed into a cylindrical shape having a diameter of 15 mm and a length of 32 mm. Filled the tube ( Reference example 22). The space velocity of the gas to be fed to the catalyst layer of the honeycomb catalyst 38 is 13,000 h. -1 Except for the above, an evaluation test using the same model gas as in the performance evaluation example 1 was performed, and the initial denitration performance and the denitration performance 8 hours after the start of the reaction are shown in Table 2 together with the results of the performance evaluation example 1.
[0044]
[Table 2]
[0045]
From Table 2, Reference Examples 1 to 11, 22, Examples 12 to 21 and Comparative Examples 7 to 14 had an initial denitration performance of 75% or more, and showed superior performance as compared with Comparative Examples 1 to 6. Examples 12 to 21 are ,ratio Even after 8 hours of reaction under the coexistence conditions of 50 ppm SOx as compared with Comparative Examples 7 to 14, high denitration performance of at least 61% was maintained.
[0046]
【The invention's effect】
As described above, according to the exhaust gas purifying catalyst layer and the exhaust gas purifying catalyst coating structure according to the present invention, and the exhaust gas purifying method using these, nitrogen oxides contained in the lean combustion exhaust gas in which SOx and water vapor coexist are obtained. Since it can be reduced and purified at a high denitration rate, it is useful for the purification of nitrogen oxides in the combustion exhaust gas of an internal combustion engine.

Claims (5)

シリカとカルシウムとアルミナ又はジルコニアを含有させてなる触媒Aと、窒素ガス吸着法により測定された細孔半径と細孔容積の関係が、細孔半径300オングストローム以下の細孔の占める細孔容積の合計値をXとし、細孔半径25オングストローム以上で100オングストローム未満の細孔の占める細孔容積の合計値をYとし、細孔半径100オングストローム以上で300オングストローム以下の細孔の占める細孔容積の合計値をZとしたとき、YがXの70%以上であり、ZがXの20%以下であるような細孔構造を有するアルミナ担体に金属換算で0.1〜10重量%の銀を含有してなる触媒Bとから構成され、且つ、排ガス流通方向に対し、前記触媒Aが前段に、前記触媒Bが後段に区分して配置されていることを特徴とする排ガス浄化用触媒層。The relationship between the catalyst A containing silica, calcium and alumina or zirconia and the pore radius and pore volume measured by the nitrogen gas adsorption method is the pore volume occupied by pores having a pore radius of 300 angstroms or less. The total value of the pore volume occupied by pores having a pore radius of 25 angstroms or more and less than 100 angstroms is defined as Y, and the total value of the pore volume occupied by pores having a pore radius of 100 angstroms or more and 300 angstroms or less. When the total value is Z , 0.1 to 10% by weight of silver in terms of metal is added to an alumina support having a pore structure in which Y is 70% or more of X and Z is 20% or less of X. And the catalyst B is arranged in the front stage and the catalyst B is divided in the rear stage with respect to the exhaust gas flow direction. Gas purification catalyst layer. 前記触媒Aに、さらに硫酸根を含有させてなることを特徴とする請求項1記載の排ガス浄化用触媒層。 The exhaust gas purification catalyst layer according to claim 1, wherein the catalyst A further contains a sulfate group. 多数の貫通孔を有する耐火性材料からなる一体構造の支持基質における少なくとも貫通孔の内表面に請求項1または2記載の触媒A及びBを、排ガス流通方向に対し、前記触媒Aが前段に、前記触媒Bが後段に区分して配置して被覆してなることを特徴とする排ガス浄化用触媒被覆構造体。The catalyst A and B according to claim 1 or 2 on at least the inner surface of the through-hole in a monolithic support substrate made of a refractory material having a large number of through-holes , the catalyst A being in the preceding stage with respect to the exhaust gas flow direction, An exhaust gas purifying catalyst coating structure, wherein the catalyst B is disposed and coated in a subsequent stage . 希薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有層と接触させることからなる炭化水素を還元剤とする排ガス浄化方法において、前記触媒含有層に含まれる触媒は請求項1または2記載の排ガス浄化用触媒層であることを特徴とする排ガス浄化方法。 3. The exhaust gas purification method using a hydrocarbon as a reducing agent, which comprises contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, and the catalyst contained in the catalyst-containing layer is defined in claim 1 or 2. An exhaust gas purification method, which is an exhaust gas purification catalyst layer. 希薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有層と接触させることからなる炭化水素を還元剤とする排ガス浄化方法において、前記触媒含有層に含まれる触媒は請求項3記載の排ガス浄化用触媒被覆構造体で構成されることを特徴とする排ガス浄化方法。 The exhaust gas purification method using hydrocarbon as a reducing agent, which comprises contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, and the catalyst contained in the catalyst-containing layer is the exhaust gas purification according to claim 3. An exhaust gas purification method comprising a catalyst-coated structure for use.
JP28269597A 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same Expired - Fee Related JP4058503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28269597A JP4058503B2 (en) 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP29821196 1996-10-22
JP32084596 1996-11-15
JP35197196 1996-12-11
JP8-320845 1996-12-24
JP8-355574 1996-12-24
JP8-351971 1996-12-24
JP35557496 1996-12-24
JP8-298211 1996-12-24
JP28269597A JP4058503B2 (en) 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same

Publications (2)

Publication Number Publication Date
JPH10235156A JPH10235156A (en) 1998-09-08
JP4058503B2 true JP4058503B2 (en) 2008-03-12

Family

ID=27530714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28269597A Expired - Fee Related JP4058503B2 (en) 1996-10-22 1997-09-30 Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same

Country Status (1)

Country Link
JP (1) JP4058503B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173574B2 (en) * 2006-09-20 2012-05-08 Basf Corporation Catalysts to reduce NOx in an exhaust gas stream and methods of preparation
JP5558199B2 (en) * 2010-05-13 2014-07-23 ユミコア日本触媒株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH10235156A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
JP7114219B2 (en) Catalyst material for NO oxidation
JP5030343B2 (en) Exhaust gas purification apparatus and exhaust gas treatment method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3805079B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JPH11128688A (en) Purification of waste gas
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11128689A (en) Purification of waste gas
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JP3407262B2 (en) Denitration catalyst and exhaust gas denitration method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JP3433500B2 (en) Denitration catalyst and denitration method
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JPH10235157A (en) Purification of nox in exhaust gas
JP2000070675A (en) Exhaust gas cleaning method
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas
JPH10174887A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees