JP4049363B2 - Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound - Google Patents
Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound Download PDFInfo
- Publication number
- JP4049363B2 JP4049363B2 JP2001384086A JP2001384086A JP4049363B2 JP 4049363 B2 JP4049363 B2 JP 4049363B2 JP 2001384086 A JP2001384086 A JP 2001384086A JP 2001384086 A JP2001384086 A JP 2001384086A JP 4049363 B2 JP4049363 B2 JP 4049363B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- treatment
- group
- present
- same manner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はアルカンから不飽和酸素含有化合物を製造する触媒に関する。特にプロパン又はイソブタンを気相接触酸化することにより、各々アクロレイン、アクリル酸及びメタクロレイン、メタクリル酸を製造するのに好適な触媒に関する。
【0002】
【従来の技術】
アクロレイン、アクリル酸やメタクロレイン、メタクリル酸等の不飽和アルデヒド又は不飽和カルボン酸のような不飽和酸素含有化合物は、一般的にプロピレン、イソブチレンを原料とし酸化触媒の存在下、気相接触酸化して製造されている。ところが、近年プロピレン、イソブチレンより安価なプロパン、イソブタン等のアルカンを原料に不飽和酸素含有化合物を効率よく製造する方法への関心が高まり、これらのプロセスに使用するための触媒が種々提案されている。
例えば、特開平6−279351号公報、特開平10−36311号公報、特開2000−143244号公報にはMoVTe系触媒が、特開平9−316023号公報、特開平10−045664号公報、特開平10−118491号公報、特開平10−120617号公報、特開平10−137585号公報、特開平11−285637号公報、特開2000−51693号公報にはMoVSb系触媒が開示されている。
【0003】
【発明が解決しようとする課題】
上記MoVTe系触媒では、高収率で目的生成物であるアクリル酸を得ているものの、蒸散しやすいTeを必須成分としているため、高温で触媒を使用すると触媒の活性劣化が生じやすい。
また、MoVSb系触媒は、触媒製造時に分子状酸素や過酸化水素の添加等を行い、アクリル酸の収率向上を図っているが、公報に開示されている反応温度は380℃以上と高く、充分な触媒活性が得られないという問題点があり、ランニングコスト、触媒寿命の点からしてもさらなる高活性化が必要とされている。
このようにアルカンから不飽和酸素含有化合物を高収率で得ることを目的に種々の触媒が提案されているものの、商業運転可能なレベルには達していない。
商業運転を可能とするために使用される触媒は、適切なアルカン転化率で良好なアクリル酸選択率を有し、最終的に充分なアクリル酸収率を与えるものでなければならず、また長期に渡って安定な性能を保持することが要求される。
【0004】
【課題を解決するための手段】
本発明者等は、アルカン例えばC3ないしC8のアルカン、より具体的にはプロパン、イソブタン等のC3ないしC4のアルカンから不飽和酸素含有化合物、例えばα、β−不飽和アルデヒド又は/及び不飽和カルボン酸、より具体的には(メタ)アクロレイン又は/及び(メタ)アクリル酸等を製造するための触媒について種々検討した結果、モリブデン、バナジウム、チタン及び特定の金属からなる複合酸化物を含有する触媒の存在下で、目的とする不飽和酸素含有化合物をより低い反応温度で製造できることを見いだし、本発明を完成させた。
【0005】
すなわち、本発明は
(1)Mo、V、Ti及びSb又はTeを必須の活性成分元素とするアルカンから不飽和酸素含有化合物を製造するための触媒、
(2)上記(1)に記載の活性成分元素に加えて、更にLi、Na、K、Rb、Cs、Mg、Ca及びSrからなる群から選ばれた少なくとも1種類の元素を活性成分元素とする上記(1)に記載の触媒、
(3)下記一般式(1)
Mo1.0VaTibXcYdOe (1)
(式中XはSb及びTeからなる群から選ばれた少なくとも1種の元素を表し、YはNb、W及びZrからなる群から選ばれた少なくとも1種の元素を表す。a、b、c、d、eは各元素の原子比を表し、0<a<0.7、0<b<0.3、0<c<0.7、0≦d<0.3、eは他の元素の酸化状態により定まる数である。)
で表される上記(1)に記載の触媒、
(4)下記一般式(2)
Mo1.0VaTibXcYdZfOe (2)
(式(2)中X、Y、a、b、c、dおよびeは式(1)におけるのと同じ意味を表す。また、ZはLi、Na、K、Rb、Cs、Mg、Ca及びSrからなる群から選ばれた少なくとも1種の元素を表す。fはZの原子比を表し、0<f<0.1である。)
で表される上記(2)に記載の触媒、
(5)触媒を構成する元素(活性成分元素)を含有する原料化合物と水を混合し、スラリー液とする工程及び該スラリー液を加温及び加圧処理する工程を含むことを特徴とする上記(1)又は(2)に記載の触媒の製法、
(6)加温及び加圧処理して得られた生成物を、酸素ガスの存在下で行われる第一の焼成処理工程と不活性ガスの存在下で行われる第ニの焼成処理工程を含む焼成処理に付することを特徴とする上記(5)に記載の製法、
(7)第一の焼成処理と第二の焼成処理における温度差が150〜400℃である上記(6)に記載の触媒、
(8)第一の焼成処理の処理温度が250〜350℃であり、第二の焼成処理の処理温度が500〜650℃である上記(5)に記載の製法、
(9)プロパンからアクロレイン及び/又はアクリル酸を製造するための上記(1)又は(2)に記載の触媒、
(10)Mo、V、Ti及びSb又はTeを必須の活性成分元素とし、針状結晶を有する複合酸化物触媒、
(11)上記(1)、(2)又は(3)に記載の触媒を使用することを特徴とするアルカンの気相接触酸化反応による不飽和酸素含有化合物の製造法
に関する。
【0006】
【発明を実施するための最良の形態】
以下、本発明を詳細に説明する。
本発明の触媒は、Mo、V、Ti及びSb又はTe(以下、元素A群という)を必須の活性成分元素とする複合酸化物からなり、その他の活性成分元素を含んでもよい。その他の活性成分元素は特に制限はない。必須の活性成分のSb又はTeは通常いずれか一方であるが、両者を含んでもよい。Sbを含む場合、得られる触媒の比表面積は含まない場合に比べ大きくなる傾向があり、この比表面積の増大は触媒の高活性化(高転化率)に寄与する。他方、Teを触媒の構成元素として含む場合、触媒の比表面積はそれ程増大しないが、得られる触媒はSbを含有する場合に比べ、やや高めの温度で高転化率、高選択率でアクリル酸などの目的化合物が得られる。但し、上述したようにTeは蒸散しやすいため触媒の活性劣化に注意が必要である。
本発明の好ましい実施態様1つは、元素A群と共に更にLi、Na、K、Rb、Cs、Mg、Ca及びSrからなる群(以下、元素B群という)から選ばれた少なくとも1種の元素を含有する触媒である。これらの元素B群の元素の中では、K及びRbが好ましく、Kがより好ましい。この元素B群の元素を含む触媒はこれを含まない元素A群だけの触媒に比べてより高いアクリル酸の選択率を示す。
本発明の触媒の製造方法は特に制限はなく、例えば、触媒を構成する元素を単独又は複数含有する原料化合物(以下原料化合物という)を水と混合し、スラリー液とした後、これを乾燥、必要により焼成する方法で製造することができる。この場合の焼成温度は通常300〜900℃、焼成時間は通常1〜30時間である。本発明の触媒のより好ましい製造方法は後記するように、上記方法でスラリー液を製造した後、加温及び加圧処理を施し、その後乾燥工程に付する方法である。
【0007】
本発明の触媒の製造に使用する原料化合物としては、空気中で焼成することにより酸化物に分解できるものであれば特に制限はない。
元素A群の原料化合物としては、例えばモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、モリブデン酸ナトリウム等のモリブデンを含有する化合物、酸化バナジウム、バナジン酸アンモニウム、オキソ硫酸バナジル等のバナジウムを含有する化合物、酸化チタン、蓚酸チタンアンモニウム、硫酸チタン等のチタンを含有する化合物、三酸化アンチモン、硫酸アンチモン、酢酸アンチモン等のアンチモンを含有する化合物、二酸化テルル、テルル酸等のテルルを含有する化合物がそれぞれ挙げられる。
【0008】
また、元素B群の原料化合物としては、元素B群の酸化物、塩化物、硫酸塩、硝酸塩、酢酸塩、炭酸塩又は水酸化物等が挙げられる。具体的には、酸化リチウム、塩化リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、酸化ナトリウム、塩化ナトリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、酸化カリウム、塩化カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、酢酸カリウム、水酸化カリウム、炭酸ルビジウム、硝酸ルビジウム、酸化ルビジウム、水酸化ルビジウム、炭酸セシウム、硝酸セシウム、酢酸セシウム、酸化セシウム、水酸化セシウム、炭酸カルシウム、炭酸水素カルシウム、硝酸カルシウム、酢酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸ストロンチウム、硝酸ストロンチウム、酢酸ストロンチウム、酸化ストロンチウム、水酸化ストロンチウム等が挙げられる。
【0009】
また、本発明の触媒は、上記の元素A群及びB群以外に他の活性成分元素を含有しうるが、他の活性成分元素としては、Nb、W及びZrからなる群(以下、元素C群という)から選ばれる1種以上が好ましい。これら任意成分の原料化合物としては、任意成分元素の酸化物、塩化物、硫酸塩、硝酸塩等が挙げられる。具体的には、ニオブの原料化合物としては、ニオブ酸、酸化ニオブ、蓚酸水素ニオブ等が、タングステンの原料化合物としては、パラタングステン酸アンモニウム、タングステン酸、酸化タングステン等が、また、ジルコニウムの原料化合物としては、酸化ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム等がそれぞれ挙げられる。また、前記化合物としてアンモニウム塩を使用する場合、触媒にアンモニウム基が残留しないよう適宜調製条件を決定するのが好ましい。
本発明の触媒を構成する複合酸化物において、その組成は元素A群を含有する限り任意であるが、元素A群と元素C群の組み合わせにおいては、下記式(1)で示される組成が好ましい。
Mo1.0VaTibXcYdOe (1)
(式中XはSb及びTeなる群から選ばれた少なくとも1種の元素を表し、YはNb、W及びZrから選ばれた少なくとも1種の元素を表す。a、b、c、d、eは各元素の原子比を表し、0<a<0.7、0<b<0.3、好ましくは0.005<b<0.1、0<c<0.7、0≦d<0.3、好ましくは0≦d<0.1、eは他の元素の酸化状態により定まる数である。)
【0010】
また、該複合酸化物が元素B群を含有する場合、下記式(2)で表される組成が好ましい。
Mo1.0VaTibXcYdZfOe (2)
(式(2)中X、Y、a、b、c、dおよびeは式(1)におけるのと同じ意味を表す。また、ZはLi、Na、K、Rb、Cs、Mg、Ca及びSrからなる群から選ばれた少なくとも1種の元素を表す。fはZの原子比を表し、0<f<0.1、好ましくは0.005<f<0.1である。)
【0011】
前記したように、本発明の触媒は、活性成分元素を含有する化合物を水と混合し、スラリー状にしてこれを乾燥する工程を経て得ることができ、好ましくは該乾燥前にスラリー液を加温、加圧処理する工程を入れた水熱合成法で調製される。
該水熱合成法を経て得られた粉末につき、電子顕微鏡で観察するとその外形は針状結晶である。水熱合成法を経ない場合このような結晶形態は電子顕微鏡では通常観察されないことから、水熱合成により生成するものと考えられる。
【0012】
水熱合成は、通常原料化合物、例えば前記例示化合物を常温〜100℃で水に溶解又は分散して得たスラリー液をオートクレーブに仕込んで行う。この際の水の使用量は、スラリー液を調製できれば特に制限はないが、通常原料化合物1質量部に対して0.5〜20質量部程度、好ましくは1〜10質量部程度、更に好ましくは1〜6質量部程度である。
水熱合成は通常の水熱反応処理で有れば特に制限はなく、上記スラリー液をオートクレーブ中で100℃より高い温度に加熱して水熱反応処理すれば良い。反応は、空気中で行うこともできるが、反応開始前にオートクレーブ内を空気の代わりにその一部あるいは全量を窒素、ヘリウム等の不活性ガスで置換して行うのが好ましい。水熱合成の反応温度は通常110℃以上、好ましくは130℃以上、より好ましくは140℃以上であり、そして、通常400℃以下、好ましくは300℃以下、更に好ましくは、250℃以下であり、反応時間は通常1〜100時間である。
【0013】
オートクレーブ内圧力は通常飽和蒸気圧であるが、場合により該蒸気圧以上の加圧下に行ってもよく、また水熱合成中攪拌を行っても良い。
水熱合成終了後の反応液は冷却した後、生成した固体物質を分離乾燥する。該生成物の分離は固液分離ができればいずれの方法も使用可能である。好ましい方法はろ過、水洗後乾燥する方法である。
【0014】
こうして得られた生成物をそのまま本発明の触媒として使用することも可能であるが、該生成物を焼成処理して本発明の触媒とするのが好ましい。焼成処理は、空気中で300〜900℃、1〜30時間の範囲で一段階で行うこともできるが、下記するように雰囲気が異なる二段階に分けて行うのが好ましい。この際の第一の焼成処理と第二の焼成処理の温度差は、150℃以上あるのが好ましく、より好ましく200℃以上であり、且つ500℃以下が好ましく、より好ましくは400℃以下である。
第一の焼成処理は、酸素ガスの存在下(例えば空気中)で、200℃以上、400℃以下、好ましくは250〜350℃で0.5〜12時間行い、第二の焼成処理は窒素、ヘリウム等不活性ガス中で400℃以上、700℃以下、好ましくは500〜650℃で0.5〜10時間行う。
2回に分けて実施する焼成処理において、焼成温度、時間が上記範囲からはずれると触媒性能は低下する場合がある。特に不飽和酸素含有化合物の選択性が低下するので好ましくない。
【0015】
焼成処理後に得られた複合金属酸化物は、そのまま本発明の触媒とすることができるが、その使用形態によっては粉砕して使用することが好ましい場合がある。
このようにして得られた本発明の触媒は比表面積が1〜50m2/gの針状結晶物質である。
本発明の触媒は、Mo、V及びSb又はTeと共に、その構成元素としてTiを含むことにより、高活性が得られるものと推定される。また、本発明の触媒を調製する際に、水熱合成や二段階焼成を行う場合には、これらの工程を経ないものに比して、触媒活性等の面で、より好ましい効果が達成あれるものと推定される。
また、本発明の触媒が元素B群から選ばれる1種以上を含有する場合、元素B群除く触媒を構成する元素を含有する化合物につき、上記に準じて水熱合成工程及び焼成工程に供して得られた焼成粉末を元素B群を含んだ溶液(通常は元素B群含有化合物の水溶液又はその水分散体)に分散し、ろ過、洗浄、乾燥を行って本発明の触媒を得ることもできる。尚、乾燥後の触媒は焼成を行ってもよい。
【0016】
こうして得られた本発明の触媒は、プロパン又はイソブタン等のアルカン(好ましくはC3〜C8のアルカン、より好ましくはC3〜C4のアルカン)から気相接触酸化によるアクロレイン、アクリル酸又はメタクロレイン、メタクリル酸等の不飽和酸素含有化合物の製造に好適に使用でき、プロパンからアクロレイン、アクリル酸を製造するのに最も好適に使用できる。尚、本発明において不飽和酸素含有化合物とはカルボニル基を含む化合物を意味し、好ましくはエチレン性不飽和結合及びカルボニル基の両者を有する化合物である。(メタ)アクロレイン及び/又は(メタ)アクリル酸を目的化合物とする場合、目的化合物以外の生成ガスはプロピレンや酢酸であり、前者は選択率が10〜30%程度の割合で生成することもあるが、例えば後工程でプロピレンの気相接触酸化用触媒を用いれば該副生プロピレンから目的とするアクロレインやアクリル酸を得ることができる。
【0017】
気相接触酸化反応における原料ガス組成比(モル比)は特に限定されないが、アルカン:酸素:水蒸気:希釈ガス=1:0.1〜10:0〜70:0〜20、好ましくは1:0.5〜3.0:3.0〜20:0〜10で実施するのが好ましい。ここで、希釈ガスとしては、窒素、炭酸ガス等が好ましい。
気相接触酸化反応は加圧下または減圧下で実施しても良いが、一般的には大気圧付近の圧力で実施するのが好ましい。反応温度は通常250〜450℃、好ましくは280〜420℃、より好ましくは300〜380℃である。
原料ガスの供給量は空間速度(SV)にして通常100〜100000hr-1、好ましくは400〜30000hr-1である。
【0018】
本発明の触媒は固定床、流動床、移動床等のいずれの反応様式にも適用できる。
尚、固定床反応器には、シリカ、アルミナ、シリコンカーバイト等の球状担体に触媒粉末を担持成型した被覆触媒、触媒粉末を打錠成型等の成型機で成型した成型触媒の使用が有利となる。また、流動床、移動床反応器には、耐摩耗性を向上させるためにさらにシリカ成分等の反応に不活性な物質を添加して調製した数十ミクロン程度の均一な複合金属酸化物粒子触媒の使用が有利となる。
また、本発明の触媒は、目的の不飽和酸素含有化合物への選択性を高めに保つためにアルカン転化率を抑えて反応を行いながら、反応生成物を分離した後、再度未反応アルカンを反応器にリサイクルする反応システムでの使用も可能である。
【0019】
【実施例】
以下に実施例を用いて本発明を具体的に説明するが、本発明は、その主旨を越えない限り、以下の実施例に限定されるものではない。尚、以下の実施例におけるプロパン転化率、アクリル酸選択率はそれぞれ次の通り定義される。
プロパン転化率(モル%)=(供給したプロパンのモル数−未反応プロパンのモル数)/(供給したプロパンのモル数)×100アクリル酸選択率(モル%)=(生成したアクリル酸のモル数)/(供給したプロパンのモル数−未反応プロパンのモル数)×100また、触媒の組成は原料化合物の仕込み比から計算した(但し、Kのみは発光分光分析による実測値)。
また下記実施例A1〜A7、実施例B3及び実施例B8は参考例である。
【0020】
実施例A1
(触媒の調製)
蒸留水30mlにモリブデン酸アンモニウム6.00gを溶解した。この水溶液を80℃で撹拌しながら、この水溶液に硫酸アンチモン0.85gを添加した。さらに、オキソ硫酸バナジル2.53g、蓚酸チタンアンモニウム0.22gを加え、充分に攪拌した後、その水溶液をオートクレーブ(内容量60ml)に移し、175℃で24時間水熱合成を行った。得られた生成物をろ過・水洗し、40℃で一昼夜乾燥後、空気流通下280℃で1時間焼成した。引き続き窒素流通下で600℃、2時間焼成し、Mo1.0V0.3Ti0.025Sb0.1の組成(酸素は除く、以下同様。)を有する本発明の触媒を得た。
(触媒評価試験)
固定床流通式反応装置を使用し、内径12mmのパイレックス(R)管に充分に粉砕した触媒1.2mlを炭化ケイ素粉末(3.6ml)で希釈充填し、プロパン、酸素、水蒸気、窒素からなる原料混合ガスをプロパン/酸素/水蒸気/窒素=3/4.5/21/18(ml/min)の流速で流しながら、反応温度320℃で反応試験を行った。反応生成物はガスクロマトグラフィーで分析した。
(比表面積測定)
マイクロメリティックス製フローソーブII2300測定装置を用い、触媒約0.3gを不活性ガス中200℃で前処理した後、窒素/ヘリウム混合ガス流通下、窒素吸着により比表面積を測定した。
触媒評価試験結果及び比表面積測定結果を表1に記載した。
【0021】
実施例A2
実施例A1において蓚酸チタンアンモニウム0.22gを硫酸第一チタン0.21gに変更した以外は実施例A1と同様にしてMo1.0V0.3Ti0.025Sb0.1の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験、比表面積測定を実施例A1と同様に行いその結果を表1に記載した。
【0022】
実施例A3
実施例A1において蓚酸チタンアンモニウム0.22gを硫酸第二チタン0.28gに変更した以外は実施例A1と同様にしてMo1.0V0.3Ti0.025Sb0.1の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験、比表面積測定を実施例A1と同様に行いその結果を表1に記載した。
【0023】
比較例1
実施例A1において蓚酸チタンアンモニウムを添加しない以外は実施例A1と同様にしてMo1.0V0.3Sb0.1の組成を有する比較用の触媒を得た。
得られた触媒につき触媒評価試験、比表面積測定を実施例A1と同様に行いその結果を表1に記載した。
【0024】
実施例A4
実施例A1において蓚酸チタンアンモニウム添加後にニオブ酸0.15gを添加する以外は実施例A1と同様にしてMo1.0V0.3Ti0.025Sb0.1Nb0.025の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験、比表面積測定を実施例A1と同様に行いその結果を表1に記載した。
【0025】
実施例A5
実施例A4においてニオブ酸0.15gをタングステン酸0.21gに変更した以外は実施例A4と同様にしてMo1. 0V0.3Ti0.025Sb0.1W0.025の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験、比表面積測定を実施例A1と同様に行いその結果を表1に記載した。
【0026】
実施例A6
実施例A4においてニオブ酸0.15gを硫酸ジルコニウム0.29gに変更した以外は実施例A4と同様にしてMo1.0V0.3Ti0.025Sb0.1Zr0.025の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験、比表面積測定を実施例A1と同様に行いその結果を表1に記載した。
【0027】
【0028】
実施例A7
蒸留水30mlにモリブデン酸アンモニウム6.00gを溶解した。この水溶液を室温℃で撹拌しながら、この水溶液に二酸化テルル0.85gを添加した。さらに、オキソ硫酸バナジル4.21g、蓚酸水素ニオブ1.65g、蓚酸チタンアンモニウム0.22gを加え、充分に攪拌した後、その水溶液をオートクレーブ(内容量60ml)に移し、175℃で24時間水熱合成を行った。得られた生成物をろ過・水洗し、40℃で一昼夜乾燥後、空気流通下300℃で2時間焼成した。引き続き窒素流通下で600℃、2時間焼成し、
Mo1.0V0.5Ti0.025Te0.17Nb0.058の組成を有する本発明の触媒を得た。
得られた触媒につき比表面積測定を実施例A1と同様におこなった結果、その比表面積は3m2/gであった。
また得られた触媒につき反応温度を380℃とした以外は実施例A1と同様に触媒評価試験を行った結果、プロパン転化率は42%、アクリル酸選択率は60%であった。
【0029】
実施例B1
(触媒の調製)
蒸留水30mlにモリブデン酸アンモニウム6.00gを溶解した。この水溶液を80℃で撹拌しながら、この水溶液に硫酸アンチモン0.85gを添加した。さらに、オキソ硫酸バナジル2.53g、蓚酸チタンアンモニウム0.22g、硝酸カリウム0.08gを加え、充分に攪拌した後、その水溶液をオートクレーブ(内容量60ml)に移し、175℃で24時間水熱合成を行った。得られた生成物をろ過・水洗し、40℃で一昼夜乾燥後、空気流通下280℃で1時間焼成した。引き続き窒素流通下で600℃、2時間焼成し、
Mo1.0V0.3Ti0.025Sb0.1K0.016の組成を有する本発明の触媒を得た。
(触媒評価試験)
反応温度を360℃に変えた以外は実施例A1と同様にして反応試験を行い、結果を表2に記載した。
【0030】
実施例B2
実施例B1において硝酸カリウム0.08gを硝酸ルビジウム0.12gに変更した以外は実施例B1と同様にしてMo1.0V0.3Ti0.025Sb0.1Rb0.015の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0031】
実施例B3
実施例B1において硝酸カリウム0.08gを硝酸セシウム0.16gに変更した以外は実施例B1と同様にしてMo1.0V0.3Ti0.025Sb0.1Cs0.015の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0032】
実施例B4
実施例B1において硝酸カリウム0.08gを0.03gに変更した以外は実施例B1と同様にしてMo1.0V0.3Ti0.025Sb0.1K0.010の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0033】
実施例B5
実施例B1において硝酸カリウム0.08gを0.16gに変更した以外は実施例B1と同様にしてMo1.0V0.3Ti0.025Sb0.1K0.027の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0034】
実施例B6
実施例B1において硝酸カリウム0.08gを0.24gに変更した以外は実施例B1と同様にしてMo1.0V0.3Ti0.025Sb0.1K0.050の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0035】
実施例B7
蒸留水30mlにモリブデン酸アンモニウム6.00gを溶解した。この水溶液を80℃で撹拌しながら、この水溶液に硫酸アンチモン0.85gを添加した。さらに、オキソ硫酸バナジル2.53g、蓚酸チタンアンモニウム0.22g、ニオブ酸0.15g、硝酸カリウム0.16gを加え、充分に攪拌した後、その水溶液をオートクレーブ(内容量60ml)に移し、175℃で24時間水熱合成を行った。得られた生成物をろ過・水洗し、40℃で一昼夜乾燥後、空気流通下280℃で1時間焼成した。引き続き窒素流通下600℃で2時間焼成し、Mo1.0V0.3Ti0.025Sb0.1Nb0.025K0.046の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0036】
実施例B8
実施例B7においてニオブ酸0.15gをタングステン酸0.21gに変更した以外は実施例B7と同様にしてMo1.0V0.3Ti0.025Sb0.1W0.025K0.030の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0037】
実施例B9
実施例B7においてニオブ酸0.15gを硫酸ジルコニウム0.29gに変更した以外は実施例B7と同様にして
Mo1.0V0.3Ti0.025Sb0.1Zr0.025K0.029の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0038】
実施例B10
蒸留水30mlにモリブデン酸アンモニウム6.00gを溶解した。この水溶液を80℃で撹拌しながら、この水溶液に硫酸アンチモン0.85gを添加した。さらに、オキソ硫酸バナジル2.53g、蓚酸チタンアンモニウム0.22gを加え、充分に攪拌した後、その水溶液をオートクレーブ(内容量60ml)に移し、175℃で24時間水熱合成を行った。水熱合成後の生成物は、ろ過・水洗を行い、40℃で一昼夜乾燥後、280℃、1時間空気流通下で焼成した。引き続き窒素流通下で600℃、2時間焼成した。そして、得られた複合金属酸化物を硝酸カリウム1.18gが含まれた水溶液100ml中に分散した。この混合物を濾過、水洗し、続けて40℃で一昼夜乾燥し、
Mo1.0V0.3Ti0.025Sb0.1K0.024の組成を有する本発明の触媒を得た。
得られた触媒につき触媒評価試験を実施例B1と同様に行い、その結果を表2に記載した。
【0039】
【0040】
【発明の効果】
本発明の触媒は、その高い活性のためアルカンから気相接触酸化反応による不飽和酸素含有化合物を製造するための触媒として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for producing an unsaturated oxygen-containing compound from an alkane. In particular, the present invention relates to a catalyst suitable for producing acrolein, acrylic acid, methacrolein, and methacrylic acid by gas phase catalytic oxidation of propane or isobutane.
[0002]
[Prior art]
Unsaturated oxygen-containing compounds such as unsaturated aldehydes or unsaturated carboxylic acids such as acrolein, acrylic acid, methacrolein, methacrylic acid, etc. are generally vapor-phase catalytically oxidized using propylene and isobutylene as raw materials in the presence of an oxidation catalyst. Manufactured. However, in recent years, interest in methods for efficiently producing unsaturated oxygen-containing compounds using alkanes such as propane and isobutane, which are cheaper than propylene and isobutylene, has increased, and various catalysts have been proposed for use in these processes. .
For example, in Japanese Patent Laid-Open Nos. 6-279351, 10-36311, and 2000-143244, MoVTe-based catalysts are disclosed in Japanese Patent Laid-Open Nos. 9-316023, 10-045664, and No. 10-118491, JP-A-10-120617, JP-A-10-137585, JP-A-11-285637, and JP-A-2000-51693 disclose MoVSb-based catalysts.
[0003]
[Problems to be solved by the invention]
In the MoVTe-based catalyst, although the target product acrylic acid is obtained with a high yield, Te that easily evaporates is an essential component, and therefore, when the catalyst is used at a high temperature, the activity of the catalyst is likely to deteriorate.
In addition, the MoVSb-based catalyst performs molecular oxygen and hydrogen peroxide addition at the time of catalyst production to improve the yield of acrylic acid, but the reaction temperature disclosed in the publication is as high as 380 ° C. or higher. There is a problem that sufficient catalyst activity cannot be obtained, and further higher activation is required in terms of running cost and catalyst life.
As described above, various catalysts have been proposed for the purpose of obtaining an unsaturated oxygen-containing compound from an alkane in a high yield, but it has not reached a level at which commercial operation is possible.
The catalyst used to enable commercial operation must have good acrylic acid selectivity at the proper alkane conversion and ultimately give sufficient acrylic acid yield, and long-term It is required to maintain stable performance over a long period of time.
[0004]
[Means for Solving the Problems]
The inventors have found that unsaturated oxygen-containing compounds such as α, β-unsaturated aldehydes and / or unsaturated carboxylic acids from alkanes such as C3 to C8 alkanes, more specifically C3 to C4 alkanes such as propane and isobutane. As a result of various studies on catalysts for producing acids, more specifically, (meth) acrolein or / and (meth) acrylic acid, etc., a catalyst containing a composite oxide composed of molybdenum, vanadium, titanium and a specific metal In the presence of the present invention, it was found that the target unsaturated oxygen-containing compound can be produced at a lower reaction temperature, and the present invention was completed.
[0005]
That is, the present invention
(1) A catalyst for producing an unsaturated oxygen-containing compound from an alkane having Mo, V, Ti and Sb or Te as essential active component elements,
(2) In addition to the active component element described in (1) above, at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, and Sr The catalyst according to (1) above,
(3) The following general formula (1)
Mo 1.0 V a Ti b X c Y d O e (1)
(Wherein X represents at least one element selected from the group consisting of Sb and Te, and Y represents at least one element selected from the group consisting of Nb, W and Zr. A, b, c , D and e represent the atomic ratio of each element, 0 <a <0.7, 0 <b <0.3, 0 <c <0.7, 0 ≦ d <0.3, e is another element The number is determined by the oxidation state of
The catalyst according to the above (1) represented by:
(4) The following general formula (2)
Mo 1.0 V a Ti b X c Y d Z f O e (2)
(In the formula (2), X, Y, a, b, c, d and e represent the same meaning as in the formula (1), and Z represents Li, Na, K, Rb, Cs, Mg, Ca and (It represents at least one element selected from the group consisting of Sr. f represents the atomic ratio of Z, and 0 <f <0.1.)
The catalyst according to the above (2) represented by:
(5) The above-mentioned process comprising the steps of mixing a raw material compound containing an element constituting the catalyst (active component element) and water to form a slurry liquid, and heating and pressurizing the slurry liquid. (1) or the manufacturing method of the catalyst as described in (2),
(6) The product obtained by the heating and pressurizing treatment includes a first firing treatment step performed in the presence of oxygen gas and a second firing treatment step performed in the presence of an inert gas. The production method according to (5) above, which is subjected to a firing treatment,
(7) The catalyst according to (6) above, wherein the temperature difference between the first calcination treatment and the second calcination treatment is 150 to 400 ° C.
(8) The process according to the above (5), wherein the treatment temperature of the first firing treatment is 250 to 350 ° C., and the treatment temperature of the second firing treatment is 500 to 650 ° C.
(9) The catalyst according to (1) or (2) above for producing acrolein and / or acrylic acid from propane,
(10) A composite oxide catalyst having Mo, V, Ti and Sb or Te as essential active component elements and having needle-like crystals,
(11) A method for producing an unsaturated oxygen-containing compound by a gas-phase catalytic oxidation reaction of alkane, characterized by using the catalyst according to (1), (2) or (3)
About.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The catalyst of the present invention is composed of a complex oxide containing Mo, V, Ti and Sb or Te (hereinafter referred to as element A group) as essential active component elements, and may contain other active component elements. Other active component elements are not particularly limited. The essential active ingredient Sb or Te is usually either one, but may contain both. When Sb is included, the specific surface area of the obtained catalyst tends to be larger than when the specific surface area is not included, and the increase in the specific surface area contributes to high activation (high conversion rate) of the catalyst. On the other hand, when Te is included as a constituent element of the catalyst, the specific surface area of the catalyst does not increase so much, but the obtained catalyst has a higher conversion rate at a slightly higher temperature, acrylic acid, etc. at a slightly higher temperature than when Sb is contained. Of the desired compound. However, since Te easily evaporates as described above, it is necessary to pay attention to catalyst activity deterioration.
One preferred embodiment of the present invention is that at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca and Sr (hereinafter referred to as element B group) together with element A group. It is a catalyst containing. Among these group B elements, K and Rb are preferable, and K is more preferable. A catalyst containing this element B group element shows a higher selectivity for acrylic acid than a catalyst containing only this element A group.
The method for producing the catalyst of the present invention is not particularly limited. For example, a raw material compound containing a single element or a plurality of elements constituting the catalyst (hereinafter referred to as a raw material compound) is mixed with water to obtain a slurry liquid, which is then dried. If necessary, it can be produced by a firing method. In this case, the firing temperature is usually 300 to 900 ° C., and the firing time is usually 1 to 30 hours. As described later, a more preferable production method of the catalyst of the present invention is a method in which a slurry liquid is produced by the above-described method, followed by heating and pressurizing treatment, and then subjected to a drying step.
[0007]
The raw material compound used in the production of the catalyst of the present invention is not particularly limited as long as it can be decomposed into oxides by firing in air.
As the raw material compound of element A group, for example, a compound containing molybdenum such as ammonium molybdate, molybdenum trioxide, molybdic acid, sodium molybdate, a compound containing vanadium such as vanadium oxide, ammonium vanadate, vanadyl oxosulfate, Examples thereof include compounds containing titanium such as titanium oxide, ammonium ammonium oxalate and titanium sulfate, compounds containing antimony such as antimony trioxide, antimony sulfate and antimony acetate, and compounds containing tellurium such as tellurium dioxide and telluric acid. .
[0008]
Examples of the element B group raw material compound include element B group oxides, chlorides, sulfates, nitrates, acetates, carbonates or hydroxides. Specifically, lithium oxide, lithium chloride, lithium nitrate, lithium carbonate, lithium hydroxide, sodium oxide, sodium chloride, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium oxide, potassium chloride, potassium nitrate, carbonate Potassium, potassium bicarbonate, potassium acetate, potassium hydroxide, rubidium carbonate, rubidium nitrate, rubidium oxide, rubidium hydroxide, cesium carbonate, cesium nitrate, cesium acetate, cesium oxide, cesium hydroxide, calcium carbonate, calcium bicarbonate, nitric acid Examples include calcium, calcium acetate, calcium oxide, calcium hydroxide, strontium carbonate, strontium nitrate, strontium acetate, strontium oxide, and strontium hydroxide.
[0009]
Further, the catalyst of the present invention may contain other active component elements in addition to the above-mentioned elements A and B. As other active component elements, the group consisting of Nb, W and Zr (hereinafter referred to as element C). One or more selected from the group) is preferred. Examples of the raw material compounds of these optional components include oxides, chlorides, sulfates, nitrates and the like of optional component elements. Specifically, niobic acid, niobium oxide, niobium hydrogen oxalate and the like as the raw material compound of niobium, ammonium paratungstate, tungstic acid, tungsten oxide and the like as the raw material compound of tungsten, and the raw material compound of zirconium Examples thereof include zirconium oxide, zirconium nitrate, and zirconium acetate. In addition, when an ammonium salt is used as the compound, it is preferable to appropriately determine the preparation conditions so that no ammonium group remains in the catalyst.
In the composite oxide constituting the catalyst of the present invention, the composition thereof is arbitrary as long as it contains the element A group, but in the combination of the element A group and the element C group, a composition represented by the following formula (1) is preferable. .
Mo 1.0 V a Ti b X c Y d O e (1)
(Wherein X represents at least one element selected from the group consisting of Sb and Te, and Y represents at least one element selected from Nb, W and Zr. A, b, c, d, e Represents the atomic ratio of each element, 0 <a <0.7, 0 <b <0.3, preferably 0.005 <b <0.1, 0 <c <0.7, 0 ≦ d <0. .3, preferably 0 ≦ d <0.1, e is a number determined by the oxidation state of other elements.
[0010]
Moreover, when this complex oxide contains the element B group, the composition represented by following formula (2) is preferable.
Mo 1.0 V a Ti b X c Y d Z f O e (2)
(In the formula (2), X, Y, a, b, c, d and e represent the same meaning as in the formula (1), and Z represents Li, Na, K, Rb, Cs, Mg, Ca and Represents at least one element selected from the group consisting of Sr, where f represents the atomic ratio of Z, and 0 <f <0.1, preferably 0.005 <f <0.1.
[0011]
As described above, the catalyst of the present invention can be obtained through a step of mixing a compound containing an active component element with water and making it into a slurry to dry it. Preferably, the slurry liquid is added before the drying. It is prepared by a hydrothermal synthesis method that includes a process of temperature and pressure treatment.
When the powder obtained through the hydrothermal synthesis method is observed with an electron microscope, the outer shape is a needle-like crystal. In the case where the hydrothermal synthesis method is not used, such a crystal form is not usually observed with an electron microscope, and thus is considered to be generated by hydrothermal synthesis.
[0012]
Hydrothermal synthesis is usually performed by charging a slurry solution obtained by dissolving or dispersing a raw material compound, for example, the exemplified compound in water at room temperature to 100 ° C. into an autoclave. The amount of water used in this case is not particularly limited as long as a slurry liquid can be prepared, but usually about 0.5 to 20 parts by mass, preferably about 1 to 10 parts by mass, more preferably about 1 part by mass of the raw material compound. About 1 to 6 parts by mass.
Hydrothermal synthesis is not particularly limited as long as it is a normal hydrothermal reaction treatment, and the slurry liquid may be heated to a temperature higher than 100 ° C. in an autoclave and subjected to a hydrothermal reaction treatment. Although the reaction can be carried out in air, it is preferred to carry out a part or the whole of the inside of the autoclave with an inert gas such as nitrogen or helium instead of air before starting the reaction. The reaction temperature of hydrothermal synthesis is usually 110 ° C or higher, preferably 130 ° C or higher, more preferably 140 ° C or higher, and usually 400 ° C or lower, preferably 300 ° C or lower, more preferably 250 ° C or lower, The reaction time is usually 1 to 100 hours.
[0013]
The pressure in the autoclave is usually a saturated vapor pressure, but in some cases, it may be performed under a pressure higher than the vapor pressure, or may be stirred during hydrothermal synthesis.
After the hydrothermal synthesis is completed, the reaction solution is cooled, and the produced solid substance is separated and dried. Any method can be used for the separation of the product as long as solid-liquid separation can be performed. A preferred method is filtration, washing with water and drying.
[0014]
Although the product thus obtained can be used as it is as the catalyst of the present invention, it is preferable to calcine the product to obtain the catalyst of the present invention. The baking treatment can be performed in one step in the range of 300 to 900 ° C. and 1 to 30 hours in the air, but it is preferably performed in two steps with different atmospheres as described below. In this case, the temperature difference between the first baking treatment and the second baking treatment is preferably 150 ° C. or more, more preferably 200 ° C. or more, and preferably 500 ° C. or less, more preferably 400 ° C. or less. .
The first baking treatment is performed in the presence of oxygen gas (for example, in the air) at 200 ° C. or more and 400 ° C. or less, preferably 250 to 350 ° C. for 0.5 to 12 hours, and the second baking treatment is nitrogen, The reaction is carried out in an inert gas such as helium at 400 ° C. or higher and 700 ° C. or lower, preferably 500 to 650 ° C. for 0.5 to 10 hours.
In the calcination treatment carried out in two steps, the catalyst performance may be lowered if the calcination temperature and time deviate from the above ranges. In particular, it is not preferable because the selectivity of the unsaturated oxygen-containing compound is lowered.
[0015]
The composite metal oxide obtained after the calcination treatment can be used as the catalyst of the present invention as it is, but it may be preferable to use it after pulverization depending on the use form.
The catalyst of the present invention thus obtained has a specific surface area of 1 to 50 m. 2 / G of acicular crystal material.
The catalyst of the present invention is presumed to have high activity by including Ti as a constituent element together with Mo, V and Sb or Te. In addition, when hydrothermal synthesis or two-step calcination is performed when preparing the catalyst of the present invention, a more favorable effect can be achieved in terms of catalyst activity and the like than those not undergoing these steps. It is estimated that.
Moreover, when the catalyst of this invention contains 1 or more types chosen from the element B group, it uses for the hydrothermal synthesis process and a calcination process according to the above about the compound containing the element which comprises the catalyst except the element B group. The obtained fired powder can be dispersed in a solution containing element B group (usually an aqueous solution of element B group-containing compound or an aqueous dispersion thereof), filtered, washed and dried to obtain the catalyst of the present invention. . The dried catalyst may be calcined.
[0016]
The catalyst of the present invention thus obtained is obtained from acrolein, acrylic acid or methacrolein, methacrylic acid by gas phase catalytic oxidation from an alkane such as propane or isobutane (preferably a C3-C8 alkane, more preferably a C3-C4 alkane). It can be suitably used for the production of unsaturated oxygen-containing compounds such as, and can be most suitably used for the production of acrolein and acrylic acid from propane. In the present invention, the unsaturated oxygen-containing compound means a compound containing a carbonyl group, preferably a compound having both an ethylenically unsaturated bond and a carbonyl group. When (meth) acrolein and / or (meth) acrylic acid is used as the target compound, the product gas other than the target compound is propylene or acetic acid, and the former may be generated at a ratio of about 10 to 30% in selectivity. However, for example, if a catalyst for gas phase catalytic oxidation of propylene is used in the subsequent step, the desired acrolein or acrylic acid can be obtained from the by-product propylene.
[0017]
Although the raw material gas composition ratio (molar ratio) in the gas phase catalytic oxidation reaction is not particularly limited, alkane: oxygen: water vapor: diluent gas = 1: 0.1 to 10: 0 to 70: 0 to 20, preferably 1: 0 5 to 3.0: 3.0 to 20: 0 to 10 is preferable. Here, as dilution gas, nitrogen, carbon dioxide gas, etc. are preferable.
The gas phase catalytic oxidation reaction may be carried out under pressure or under reduced pressure, but generally it is preferably carried out at a pressure near atmospheric pressure. The reaction temperature is usually 250 to 450 ° C, preferably 280 to 420 ° C, more preferably 300 to 380 ° C.
The supply amount of the raw material gas is normally 100 to 100000 hr in space velocity (SV). -1 , Preferably 400-30000 hr -1 It is.
[0018]
The catalyst of the present invention can be applied to any reaction mode such as a fixed bed, a fluidized bed, and a moving bed.
For the fixed bed reactor, it is advantageous to use a coated catalyst in which a catalyst powder is supported on a spherical carrier such as silica, alumina, or silicon carbide, and a molded catalyst in which the catalyst powder is molded by a molding machine such as tablet molding. Become. In addition, in a fluidized bed or moving bed reactor, a uniform composite metal oxide particle catalyst of about several tens of microns prepared by adding a substance inert to the reaction such as a silica component in order to improve wear resistance. Is advantageous.
Further, the catalyst of the present invention reacts the unreacted alkane again after separating the reaction product while performing the reaction while suppressing the alkane conversion rate in order to keep the selectivity to the target unsaturated oxygen-containing compound high. It can also be used in a reaction system that is recycled to a vessel.
[0019]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the propane conversion rate and acrylic acid selectivity in the following examples are respectively defined as follows.
Propane conversion (mol%) = (moles of propane fed−moles of unreacted propane) / (moles of propane fed) × 100 acrylic acid selectivity (mol%) = (mol of acrylic acid produced) Number) / (number of moles of supplied propane−number of moles of unreacted propane) × 100 Further, the composition of the catalyst was calculated from the charging ratio of the raw material compounds (provided that only K is an actually measured value by emission spectroscopic analysis).
Examples A1 to A7, Example B3 and Examples below B8 Is a reference example.
[0020]
Example A1
(Preparation of catalyst)
In 30 ml of distilled water, 6.00 g of ammonium molybdate was dissolved. While stirring this aqueous solution at 80 ° C., 0.85 g of antimony sulfate was added to this aqueous solution. Further, 2.53 g of vanadyl oxosulfate and 0.22 g of ammonium ammonium oxalate were added and sufficiently stirred, and then the aqueous solution was transferred to an autoclave (internal volume 60 ml), and hydrothermal synthesis was performed at 175 ° C. for 24 hours. The obtained product was filtered and washed with water, dried at 40 ° C. all day and night, and then calcined at 280 ° C. for 1 hour under air flow. Subsequently, it was calcined at 600 ° C. for 2 hours under a nitrogen flow, and Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 The catalyst of the present invention having the following composition (excluding oxygen, the same applies hereinafter) was obtained.
(Catalyst evaluation test)
Using a fixed-bed flow reactor, 1.2 ml of a sufficiently pulverized catalyst in a 12 mm inner diameter Pyrex (R) tube is diluted with silicon carbide powder (3.6 ml) and made of propane, oxygen, water vapor, and nitrogen. The reaction test was conducted at a reaction temperature of 320 ° C. while flowing the raw material mixed gas at a flow rate of propane / oxygen / water vapor / nitrogen = 3 / 4.5 / 21/18 (ml / min). The reaction product was analyzed by gas chromatography.
(Specific surface area measurement)
Using a Micromerix Flowsorb II 2300 measuring device, about 0.3 g of the catalyst was pretreated at 200 ° C. in an inert gas, and then the specific surface area was measured by nitrogen adsorption under a nitrogen / helium mixed gas flow.
Table 1 shows the results of the catalyst evaluation test and the specific surface area measurement results.
[0021]
Example A2
In the same manner as in Example A1, except that 0.22 g of titanium ammonium oxalate was changed to 0.21 g of stannous sulfate in Example A1, Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 A catalyst of the present invention having the following composition was obtained.
The obtained catalyst was subjected to a catalyst evaluation test and a specific surface area measurement in the same manner as in Example A1, and the results are shown in Table 1.
[0022]
Example A3
In the same manner as in Example A1, except that 0.22 g of titanium ammonium oxalate was changed to 0.28 g of titanium dioxide sulfate in Example A1, Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 A catalyst of the present invention having the following composition was obtained.
The obtained catalyst was subjected to a catalyst evaluation test and a specific surface area measurement in the same manner as in Example A1, and the results are shown in Table 1.
[0023]
Comparative Example 1
In the same manner as in Example A1, except that no titanium ammonium oxalate was added in Example A1, Mo 1.0 V 0.3 Sb 0.1 A comparative catalyst having the following composition was obtained:
The obtained catalyst was subjected to a catalyst evaluation test and a specific surface area measurement in the same manner as in Example A1, and the results are shown in Table 1.
[0024]
Example A4
In Example A1, Mo was added in the same manner as Example A1 except that 0.15 g of niobic acid was added after addition of titanium ammonium oxalate. 1.0 V 0.3 Ti 0.025 Sb 0.1 Nb 0.025 A catalyst of the present invention having the following composition was obtained.
The obtained catalyst was subjected to a catalyst evaluation test and a specific surface area measurement in the same manner as in Example A1, and the results are shown in Table 1.
[0025]
Example A5
Mo in the same manner as in Example A4 except that 0.15 g of niobic acid was changed to 0.21 g of tungstic acid in Example A4. Ten V 0.3 Ti 0.025 Sb 0.1 W 0.025 A catalyst of the present invention having the following composition was obtained.
The obtained catalyst was subjected to a catalyst evaluation test and a specific surface area measurement in the same manner as in Example A1, and the results are shown in Table 1.
[0026]
Example A6
Mo in the same manner as in Example A4 except that 0.15 g of niobic acid was changed to 0.29 g of zirconium sulfate in Example A4. 1.0 V 0.3 Ti 0.025 Sb 0.1 Zr 0.025 A catalyst of the present invention having the following composition was obtained.
The obtained catalyst was subjected to a catalyst evaluation test and a specific surface area measurement in the same manner as in Example A1, and the results are shown in Table 1.
[0027]
[0028]
Example A7
In 30 ml of distilled water, 6.00 g of ammonium molybdate was dissolved. While stirring this aqueous solution at room temperature, 0.85 g of tellurium dioxide was added to this aqueous solution. Further, 4.21 g of vanadyl oxosulfate, 1.65 g of niobium hydrogen oxalate and 0.22 g of ammonium ammonium oxalate were added and stirred sufficiently. The aqueous solution was transferred to an autoclave (internal volume 60 ml) and hydrothermally heated at 175 ° C. for 24 hours. Synthesis was performed. The obtained product was filtered, washed with water, dried at 40 ° C. for a whole day and night, and then calcined at 300 ° C. for 2 hours under air circulation. Subsequently, it was baked at 600 ° C. for 2 hours under nitrogen flow.
Mo 1.0 V 0.5 Ti 0.025 Te 0.17 Nb 0.058 A catalyst of the present invention having the following composition was obtained.
The specific surface area of the obtained catalyst was measured in the same manner as in Example A1, and as a result, the specific surface area was 3 m. 2 / G.
Further, as a result of conducting a catalyst evaluation test in the same manner as in Example A1 except that the reaction temperature was 380 ° C. for the obtained catalyst, the propane conversion was 42% and the acrylic acid selectivity was 60%.
[0029]
Example B1
(Preparation of catalyst)
In 30 ml of distilled water, 6.00 g of ammonium molybdate was dissolved. While stirring this aqueous solution at 80 ° C., 0.85 g of antimony sulfate was added to this aqueous solution. Further, 2.53 g of vanadyl oxosulfate, 0.22 g of ammonium ammonium oxalate and 0.08 g of potassium nitrate were added and stirred sufficiently. went. The obtained product was filtered and washed with water, dried at 40 ° C. all day and night, and then calcined at 280 ° C. for 1 hour under air flow. Subsequently, it was baked at 600 ° C. for 2 hours under nitrogen flow
Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 K 0.016 A catalyst of the present invention having the following composition was obtained.
(Catalyst evaluation test)
A reaction test was conducted in the same manner as in Example A1 except that the reaction temperature was changed to 360 ° C. The results are shown in Table 2.
[0030]
Example B2
In the same manner as in Example B1, except that 0.08 g of potassium nitrate was changed to 0.12 g of rubidium nitrate in Example B1. 1.0 V 0.3 Ti 0.025 Sb 0.1 Rb 0.015 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0031]
Example B3
In the same manner as in Example B1, except that 0.08 g of potassium nitrate was changed to 0.16 g of cesium nitrate in Example B1. 1.0 V 0.3 Ti 0.025 Sb 0.1 Cs 0.015 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0032]
Example B4
In the same manner as in Example B1, except that 0.08 g of potassium nitrate was changed to 0.03 g in Example B1, Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 K 0.010 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0033]
Example B5
In the same manner as in Example B1, except that 0.08 g of potassium nitrate was changed to 0.16 g in Example B1, Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 K 0.027 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0034]
Example B6
In the same manner as in Example B1, except that 0.08 g of potassium nitrate was changed to 0.24 g in Example B1, Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 K 0.050 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0035]
Example B7
In 30 ml of distilled water, 6.00 g of ammonium molybdate was dissolved. While stirring this aqueous solution at 80 ° C., 0.85 g of antimony sulfate was added to this aqueous solution. Further, 2.53 g of vanadyl oxosulfate, 0.22 g of ammonium ammonium oxalate, 0.15 g of niobic acid, and 0.16 g of potassium nitrate were added and stirred sufficiently. Hydrothermal synthesis was performed for 24 hours. The obtained product was filtered and washed with water, dried at 40 ° C. all day and night, and then calcined at 280 ° C. for 1 hour under air flow. Subsequently, it was fired at 600 ° C. for 2 hours under a nitrogen flow, 1.0 V 0.3 Ti 0.025 Sb 0.1 Nb 0.025 K 0.046 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0036]
Example B8
Mo in the same manner as in Example B7 except that 0.15 g of niobic acid was changed to 0.21 g of tungstic acid in Example B7. 1.0 V 0.3 Ti 0.025 Sb 0.1 W 0.025 K 0.030 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0037]
Example B9
In the same manner as in Example B7 except that 0.15 g of niobic acid was changed to 0.29 g of zirconium sulfate in Example B7.
Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 Zr 0.025 K 0.029 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0038]
Example B10
In 30 ml of distilled water, 6.00 g of ammonium molybdate was dissolved. While stirring this aqueous solution at 80 ° C., 0.85 g of antimony sulfate was added to this aqueous solution. Further, 2.53 g of vanadyl oxosulfate and 0.22 g of ammonium ammonium oxalate were added and sufficiently stirred. The aqueous solution was transferred to an autoclave (internal volume 60 ml), and hydrothermal synthesis was performed at 175 ° C. for 24 hours. The product after hydrothermal synthesis was filtered and washed with water, dried at 40 ° C. for a whole day and night, and then calcined at 280 ° C. for 1 hour under air flow. Subsequently, it was calcined at 600 ° C. for 2 hours under a nitrogen flow. The obtained composite metal oxide was dispersed in 100 ml of an aqueous solution containing 1.18 g of potassium nitrate. The mixture is filtered, washed with water and subsequently dried at 40 ° C. overnight.
Mo 1.0 V 0.3 Ti 0.025 Sb 0.1 K 0.024 A catalyst of the present invention having the following composition was obtained.
A catalyst evaluation test was performed on the obtained catalyst in the same manner as in Example B1, and the results are shown in Table 2.
[0039]
[0040]
【The invention's effect】
The catalyst of the present invention is extremely useful as a catalyst for producing an unsaturated oxygen-containing compound from an alkane by a gas phase catalytic oxidation reaction because of its high activity.
Claims (7)
Mo1.0VaTib Sb cYdZfOe (2)
(式中、YはNb及びZrからなる群から選ばれた少なくとも1種の元素を表し、ZはK及びRbからなる群から選ばれた少なくとも1種の元素を表す。a、b、c、d、e、fは各元素の原子比を表し、0<a<0.7、0<b<0.3、0<c<0.7、0≦d<0.3、0<f<0.1、eは他の元素の酸化状態により定まる数である。)で表されるアルカンから不飽和酸素含有化合物を製造するための触媒。The following general formula (2)
Mo 1.0 V a Ti b Sb c Y d Z f O e (2)
( Wherein Y represents at least one element selected from the group consisting of Nb and Zr , and Z represents at least one element selected from the group consisting of K and Rb. A , b, c, d, e, and f represent the atomic ratio of each element, 0 <a <0.7, 0 <b <0.3, 0 <c <0.7, 0 ≦ d <0.3, 0 <f < 0.1 and e are numbers determined by the oxidation state of other elements.) A catalyst for producing an unsaturated oxygen-containing compound from an alkane represented by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001384086A JP4049363B2 (en) | 2000-12-22 | 2001-12-18 | Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-391078 | 2000-12-22 | ||
JP2000391078 | 2000-12-22 | ||
JP2001094513 | 2001-03-29 | ||
JP2001-94513 | 2001-03-29 | ||
JP2001108122 | 2001-04-06 | ||
JP2001-108122 | 2001-04-06 | ||
JP2001384086A JP4049363B2 (en) | 2000-12-22 | 2001-12-18 | Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002361085A JP2002361085A (en) | 2002-12-17 |
JP4049363B2 true JP4049363B2 (en) | 2008-02-20 |
Family
ID=27481905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001384086A Expired - Fee Related JP4049363B2 (en) | 2000-12-22 | 2001-12-18 | Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4049363B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645906B2 (en) * | 2001-04-30 | 2003-11-11 | Rohm And Haas Company | High temperature mixing |
US7642214B2 (en) * | 2003-06-10 | 2010-01-05 | Nippon Kayaku Kabushiki Kaisha | Catalyst for oxidation of alkane, process for preparing thereof and process for producing unsaturated oxygen-containing compound |
JP4566056B2 (en) * | 2005-04-21 | 2010-10-20 | 日本化薬株式会社 | Method for producing composite metal oxide catalyst |
JP4950457B2 (en) * | 2005-08-12 | 2012-06-13 | 日本化薬株式会社 | Method for producing composite metal oxide catalyst and use of the catalyst |
JP5041509B2 (en) * | 2006-06-07 | 2012-10-03 | 旭化成ケミカルズ株式会社 | Oxide containing Nb and V, and method for producing the same |
JP4727506B2 (en) * | 2006-06-07 | 2011-07-20 | 旭化成ケミカルズ株式会社 | Method for producing oxide having bronze structure |
US8697596B2 (en) * | 2007-04-03 | 2014-04-15 | Ineos Usa Llc | Mixed metal oxide catalysts and catalytic conversions of lower alkane hydrocarbons |
WO2018016155A1 (en) * | 2016-07-20 | 2018-01-25 | 東亞合成株式会社 | Process for producing metal oxide catalyst |
-
2001
- 2001-12-18 JP JP2001384086A patent/JP4049363B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002361085A (en) | 2002-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7009075B2 (en) | Process for the selective conversion of alkanes to unsaturated carboxylic acids | |
US20040116284A1 (en) | Preparation of mixed metal oxide catalysts for catalytic oxidation of olefins to unsaturated aldehydes | |
JP4174852B2 (en) | Acrylic acid production method | |
JP2000254496A (en) | Catalyst for production of acrylic acid | |
KR100809463B1 (en) | Alkane oxidation catalyst, process for producing the same, and process for producing oxygen-containing unsaturated compound | |
JP4049363B2 (en) | Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound | |
JP4187837B2 (en) | Method for producing catalyst for producing unsaturated nitrile | |
JP4081824B2 (en) | Acrylic acid production method | |
JP3938225B2 (en) | Catalyst preparation method | |
JP4179675B2 (en) | Process for producing unsaturated nitriles | |
US7642214B2 (en) | Catalyst for oxidation of alkane, process for preparing thereof and process for producing unsaturated oxygen-containing compound | |
JP3959836B2 (en) | Method for producing a catalyst for acrylic acid production | |
JP4666334B2 (en) | Method for producing oxide catalyst for oxidation or ammoxidation | |
JP2010207696A (en) | Method of manufacturing catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid | |
JP4212154B2 (en) | Catalyst and method for producing unsaturated nitrile using the same | |
JP2005185977A (en) | Method for manufacturing mixed metal oxide catalyst | |
JP4950457B2 (en) | Method for producing composite metal oxide catalyst and use of the catalyst | |
JP4162945B2 (en) | Oxide catalyst | |
JP4566056B2 (en) | Method for producing composite metal oxide catalyst | |
JP3750234B2 (en) | Method for producing acrylic acid production catalyst | |
JP2000202293A (en) | Catalyst and production of unsaturated nitrile using same | |
JP2001347165A (en) | Method for producing metal oxide catalyst | |
JP4278035B2 (en) | Composite metal oxide catalyst | |
JP4318331B2 (en) | Catalyst and method for producing unsaturated nitrile using the same | |
JPH11246504A (en) | Production of unsaturated nitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040610 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070326 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |