JP4048525B2 - Novel indole derivative and light emitting device using the same - Google Patents

Novel indole derivative and light emitting device using the same Download PDF

Info

Publication number
JP4048525B2
JP4048525B2 JP2001384693A JP2001384693A JP4048525B2 JP 4048525 B2 JP4048525 B2 JP 4048525B2 JP 2001384693 A JP2001384693 A JP 2001384693A JP 2001384693 A JP2001384693 A JP 2001384693A JP 4048525 B2 JP4048525 B2 JP 4048525B2
Authority
JP
Japan
Prior art keywords
light
light emitting
compound
derivatives
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001384693A
Other languages
Japanese (ja)
Other versions
JP2002305084A (en
Inventor
一巳 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2001384693A priority Critical patent/JP4048525B2/en
Publication of JP2002305084A publication Critical patent/JP2002305084A/en
Application granted granted Critical
Publication of JP4048525B2 publication Critical patent/JP4048525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyrrole Compounds (AREA)
  • Indole Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バックライト、フラットパネルディスプレイ、照明光源、表示素子、電子写真、有機半導体レーザー、記録光源、露光光源、読み取り光源、標識、看板、光通信デバイスなどの分野に利用可能な発光素子に関するものである。
【0002】
【従来の技術】
今日、研究開発が行われている種々の発光素子の中で、有機電界発光(EL)素子は、低電圧駆動で高輝度の発光が得られることから、近年活発な研究開発が行われている。一般に有機EL素子は、発光層及び該層を挟んだ一対の対向電極から構成されており、陰極から注入された電子と陽極から注入されたホールが発光層において再結合し、生成した励起子からの発光を利用するものである。
現在、低電圧で高輝度に発光する有機EL素子はTangらによって示された積層構造を有するものであり(アプライド フィジックス レターズ、51巻、913頁、1987年)。この素子は電子輸送兼発光材料とホール輸送材料を積層させることにより高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は数千cd/m2 に達している。しかしながら実用的な素子を考えた場合、更なる高輝度化、高効率発光素子の開発が望まれている。
【0003】
最近、更なる高効率発光素子を得るための手段として種々の遷移金属錯体を発光材料として用いた発光素子が研究されており、特に高効率に発光するもとしてイリジウムのオルトメタル化錯体(Ir(ppy)3:tris−orthoiridated complex with 2−phenylpyridine)を発光材料として用いた発光素子が報告された(アプライド フィジックスレターズ、75巻、4ページ、1999年)。この素子の外部量子効率は8.3%であり、従来より限界といわれていた外部量子効率5%を凌駕している。しかし、緑色発光素子に限定されているため、フルカラーディスプレイや白色発光素子に応用する場合にはその他の色でも高効率に発光する素子の開発が求められていた。
一方、有機発光素子において高輝度発光を実現しているものは有機物質を真空蒸着によって積層している素子であるが、製造工程の簡略化、加工性、大面積化等の観点から塗布方式による素子作製が望ましい。しかしながら、従来の塗布方式で作製した素子では発光輝度、発光効率の点で蒸着方式で作製した素子に劣っており、高輝度、高効率発光化が大きな課題となっていた。
【0004】
【発明が解決しようとする課題】
本発明の第一の目的は高輝度、高効率の発光が可能で、繰り返し使用時、高温下での安定性に優れ均質面状発光が可能な発光素子材料および発光素子の提供にある。
本発明の第二の目的は高効率かつ良好な色純度で青色発光可能な発光素子材料および発光素子の提供である。
本発明の第三の目的は高い量子収率を有する遷移金属錯体をドープすることにより、高効率、高輝度発光可能なホスト材料の提供にある。
本発明の第四の目的は塗布方式で作成しても高輝度、高効率発光可能な発光素子材料及びそれを用いた発光素子の提供にある。
【0005】
【課題を解決するための手段】
本発明は下記(1)〜()により達成された。
(1) 基板上に設けた一対の電極間に発光層を含む有機化合物層を形成した発光素子において、該有機化合物層が下記一般式(II)で表される部分構造を有する化合物を含有することを特徴とする発光素子。
一般式(II
【0006】
【化3】

Figure 0004048525
【0007】
(式中、L 12 がメタ位で連結したフェニレン基、ベンゼンとメチレンの組み合わせからなる連結基、n 2 は2ないし6の整数を表す。Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、または炭素数2から20のヘテロアリール基を表し、mは0から6の整数を表す。
(2) 前記一般式( II )において、L 12 が下記の基:
【化2】
Figure 0004048525
であることを特徴とする(1)に記載の発光素子。
) 前記発光層にりん光発光性化合物を含有することを特徴とする(1)または(2)に記載の発光素子。
(4)下記一般式(II)で表されることを特徴とする化合物。
一般式(II)
【0008】
【化4】
Figure 0004048525
【0009】
(式中、L12メタ位で連結したフェニレン基、ベンゼンとメチレンの組み合わせからなる連結基、n2は2ないし6の整数を表す。Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、または炭素数2から20のヘテロアリール基を表し、mは0から6の整数を表す。)
(5) ホスト材料として(1)の一般式(II)で表される部分構造を有する化合物であることを特徴とする発光素子。
) 発光層に遷移金属錯体を含有することを特徴とする(1)ないし(3)のいずれかに記載の発光素子。
) ()記載の遷移金属錯体が三重項励起状態からの遷移による発光を生じることを特徴とする発光素子。
) 発光層が高分子化合物を含有することを特徴とする(1)ないし(3)のいずれかに記載の発光素子。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の発光素子は、陽極及び陰極の両電極間に発光層を含む複数の有機化合物層を形成した素子であり、発光層の他にホール注入層、ホール輸送層、電子注入層、電子輸送層、保護層などを有しても良く、またこれらの各層はそれぞれ他の機能を備えたものであっても良い。
【0011】
本発明の発光素子は発光極大波長λmaxが500nm以下の青色領域に有するものであり、色純度の観点からλmaxは好ましくは495nm以下、より好ましくは490nm以下である。
本発明の発光素子は外部量子収率が5%以上、好ましくは7%以上、より好ましくは10%以上であり、理想的には100%である。尚、ここで、外部量子効率とは、以下の式により算出される値をいう。発光素子の外部量子効率の算出方法としては、発光輝度、発光スペクトル、比視感度曲線および電流密度から算出する方法と、電流密度および発光した全フォトン数から算出する方法とがある。
外部量子効率(%)=(発光した全フォトン数/発光素子に注入された電子数)×100
【0012】
本発明は基板上に設けた一対の電極間に発光層を含む有機化合物層を形成した発光素子において、該有機化合物層でのホスト材料の単層膜が3.6eV以上5.2eV以下のエネルギーギャップを有し、かつ該ホスト材料のイオン化ポテンシャルが5.4〜6.3eVであることが好ましく、より好ましくは5.8〜6.3eVである。該イオン化ポテンシャルの該範囲をはずれると素子の発光効率は低下する。エネルギーギャップ(バンドギャップ)はOno等の方法(J.Phys.Soc.Jpn.,58(1989)1895)に従い、単層蒸着膜もしくはポリカーボネートにホスト材料を分散した膜の光吸収により求めた。また、イオン化ポテンシャルは光電子分光装置(理研計器製:AC−1)を用い膜状態のイオン化ポテンシャルを測定した。
【0013】
本発明の態様は基板上に設けた一対の電極間に発光層を含む有機化合物層を形成した発光素子において、該有機化合物層が下記一般式(II)で表される部分構造を有する化合物を含有することを特徴とする発光素子。
一般式(II
【0014】
【化5】
Figure 0004048525
【0015】
式中11メタ位で連結したフェニレン基、ベンゼンとメチレンの組み合わせからなる連結基 2 は2ないし6の整数を表す。Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、または炭素数2から20のヘテロアリール基を表し、mは0から6の整数を表す。
【0016】
一般式( II )において、Rが炭素数1から20のアルキル基を表すとき、好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。一般式( II )において、Rが炭素数6から20のアリール基を表すとき、好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。
【0019】
一般式( II )において、Rが炭素数2から20のヘテロアリール基を表すとき、好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばチオフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾール、チアジアゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0022】
11メタ位で連結したフェニレン基、ベンゼンとメチレンの組み合わせからなる連結基である。
11の好ましい具体例としては以下の基が挙げられる
【0023】
【化6】
Figure 0004048525
【0025】
また、一般式(II)で表される化合物は低分子量化合物であっても良く、好ましくは一般式(II)のアゾール環単位を2ないし10含む化合物を表す。n1は好ましくは2から10の整数を表し、より好ましくは2から8の整数を表し、更に好ましくは2から6の整数を表す。また、一般式(II)で表される化合物を側鎖とする高分子量化合物(好ましくは質量平均分子量1×103 〜5×106 、特に好ましくは5×103 〜2×106 、さらに好ましくは1×104 〜1×106 )もしくは、一般式(II)の骨格を主鎖にもつ高分子量化合物(好ましくは質量平均分子量1×103 〜5×106 、特に好ましくは5×103 〜2×106 、更に好ましくは1×104 〜1×106 )であってもよい。高分子量化合物の場合は、ホモポリマーであっても良いし、他のモノマーとの共重合体であっても良い
【0028】
以下に一般式(II)で表される化合物の具体例を挙げるが本発明はこれらに限定されるものではない。具体的な化合物例の括弧右下のn、はそれぞれ1以上500以下の整数を意味する。
【0029】
【化9】
Figure 0004048525
【0030】
【化10】
Figure 0004048525
【0031】
【化11】
Figure 0004048525
【0032】
【化12】
Figure 0004048525
【0034】
【化14】
Figure 0004048525
【0035】
次に本発明の一般式(I)で表される化合物の合成例の一部を以下に示す
【0038】
合成例−2
例示化合物(H−3)の合成
【0039】
【化16】
Figure 0004048525
【0040】
窒素雰囲気下、インドール1.9gをo−キシレン70mlに溶解したものに、炭酸ルビジウム11.1g、酢酸パラジウム0.036g、4,4−ジブロモジフェニルメタン2.6g、t−ブチルホスフィン0.1gを順次添加し120℃で3時間加熱攪拌した。反応終了後、反応液に酢酸エチルを添加し、セライトろ過にて不溶分を除去した。得られた酢酸エチル溶液を水洗、脱水後、濃縮し、得られた結晶をシリカゲルクロマトグラフィーにて精製し、クロロホルム−エタノールで再結晶することにより目的物(H−3)0.92gを得た。
(H−3)の融点:110〜111℃
【0041】
合成例−3
例示化合物(H−17)の合成
合成例−2と同様の方法で下記スキームに従い例示化合物(H−17)を合成した(m.p.228〜232℃)。
【0042】
【化17】
Figure 0004048525
【0045】
本発明の発光素子に用いる発光材料のうち少なくとも一つは青色領域に励起子からの発光極大を有する化合物であり、発光材料としては例えば遷移金属錯体が挙げられ、好ましくはイリジウム錯体、オスミウム錯体、白金錯体が挙げられ、より好ましくはイリジウム錯体、白金錯体、さらに好ましくはオルトメタル化イリジウム錯体である。
本発明に用いる遷移金属錯体は発光性を有するものが好ましく、発光効率の点で特にりん光発光性化合物が好ましい。りん光発光性化合物とは、三重項励起子から発光する化合物を意味する。りん光発光性化合物は、りん光発光を利用しているため、一重項励起子から得られる蛍光発光を利用したものより発光効率が高い。りん光発光性化合物は、特に限定されることはないが、オルトメタル化金属錯体が好ましく用いられる。
遷移金属錯体は、化合物中に遷移金属原子を一つ有しても良いし、また、2つ以上有するいわゆる複核錯体であっても良い。異種の金属原子を同時に含有していても良い。
【0046】
遷移金属錯体中の配位子としては特に限定しないが、Comprehensive Coordination Chemistry G.Wilkinson等著 Pergamon Press社 1987年発行、(Photochemistry and Photophysics of Coordination Compounds)Springer−Verlag社 H.Yersin著 1987年発行(有機金属化学−基礎と応用−)裳華房社 山本明夫著 1982年発行、等に記載の配位子などが挙げられる。好ましくは、ハロゲン配位子、含窒素ヘテロ環配位子(例えばフェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えばアセチルアセトンなど)、カルボン酸配位子(例えば酢酸配位子など、りん配位子(例えばトリフェニルホスフィン系配位子、亜りん酸エステル系配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子である。
遷移金属錯体の配位子の種類は1種類でも良いし、複数の種類があっても良い。錯体中の配位子の数は好ましくは1、2種類である。
【0047】
本発明で用いられるオルトメタル化錯体とは、例えば山本明夫著(有機金属化学−基礎と応用−)p150、232 裳華房社 1982年発行等に記載されている化合物群の総称である。オルトメタル化錯体における中心金属は、上記遷移金属錯体と同様に遷移金属であればいずれも使用可能であるが、本発明では、ロジウム、白金、金、イルジウム、ルテニウム、パラジウム等を好ましく用いることができ、より好ましいのはイリジウムである。前記オルトメタル化金属錯体の具体的な記載および化合物例は、特願2000−254171号の段落番号0152から0180までに記載されている。
【0048】
本発明の発光層は発光材料以外に、高分子化合物、より好ましくは樹脂成分を含有しても良い。該樹脂成分としては例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂などが挙げられる。該発光層の形成方法としてコーティング法(スピンコート法、キャスト法、ディップコート法など)を用いた場合、発光材料と高分子化合物(樹脂成分)と共に溶解または分散することができるため、製膜が容易になる。
【0049】
本発明の発光素子は本発明の化合物を利用する素子であればシステム、駆動方法、利用形態など特に問わないが、本発明化合物を発光材料と共存させ発光層のホストとして利用するか、発光材料とは共存せずに電荷輸送材料として利用するものが好ましい。代表的な発光素子として有機EL(エレクトロルミネッセンス)素子を挙げることができる。
本発明化合物を発光材料と共存させる場合の本発明化合物の混合比率は発光材料の質量比で0.1〜95%、0.1〜30%が好ましく、0.1〜10%が最も好ましい。
本発明の化合物を含有する発光素子の有機層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法、電子写真法などの方法が用いられ、特性面、製造面で抵抗加熱蒸着、コーティング法、転写法が好ましく、また、蒸着時の熱分解回避の点からコーティング法がより好ましい。
本発明の発光素子は陽極、陰極の一対の電極間に発光層を含む複数の有機化合物薄膜を形成した素子であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
【0050】
陽極は正孔注入層、正孔輸送層、発光層などに正孔を供給するものであり、金属、合金、金属酸化物、電気伝導性化合物、またはこれらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料である。具体例としては酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、あるいは金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、およびこれらとITOとの積層物などが挙げられ、好ましくは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からITOが好ましい。陽極の膜厚は材料により適宜選択可能であるが、通常10nm〜5μmの範囲のものが好ましく、より好ましくは50nm〜1μmであり、更に好ましくは100nm〜500nmである。
【0051】
陽極は通常、ソーダライムガラス、無アルカリガラス、透明樹脂基板などの上に層形成したものが用いられる。ガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合、シリカなどのバリアコートを施したものを使用することが好ましい。基板の厚みは、機械的強度を保つのに十分であれば特に制限はないが、ガラスを用いる場合には、通常0.2mm以上、好ましくは0.7mm以上のものを用いる。
陽極の作製には材料によって種々の方法が用いられるが、例えばITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾル−ゲル法など)、酸化インジウムスズの分散物の塗布などの方法で膜形成される。陽極は洗浄その他の処理により、素子の駆動電圧を下げたり、発光効率を高めることも可能である。例えばITOの場合、UV−オゾン処理、プラズマ処理などが効果的である。
【0052】
陰極は電子注入層、電子輸送層、発光層などに電子を供給するものであり、電子注入層、電子輸送層、発光層などの負極と隣接する層との密着性やイオン化ポテンシャル、安定性等を考慮して選ばれる。陰極の材料としては金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物、またはこれらの混合物を用いることができ、具体例としてはアルカリ金属(例えばLi、Na、K、Cs等)及びそのフッ化物、酸化物、アルカリ土類金属(例えばMg、Ca等)及びそのフッ化物、酸化物、金、銀、鉛、アルニウム、ナトリウム−カリウム合金またはそれらの混合金属、リチウム−アルミニウム合金またはそれらの混合金属、マグネシウム−銀合金またはそれらの混合金属、インジウム、イッテリビウム等の希土類金属等が挙げられ、好ましくは仕事関数が4eV以下の材料であり、より好ましくはアルミニウム、リチウム−アルミニウム合金またはそれらの混合金属、マグネシウム−銀合金またはそれらの混合金属等である。陰極は、上記化合物及び混合物の単層構造だけでなく、上記化合物及び混合物を含む積層構造を取ることもできる。陰極の膜厚は材料により適宜選択可能であるが、通常10nm〜5μmの範囲のものが好ましく、より好ましくは50nm〜1μmであり、更に好ましくは100nm〜1μmである。
【0053】
陰極の作製には電子ビーム法、スパッタリング法、抵抗加熱蒸着法、コーティング法などの方法が用いられ、金属を単体で蒸着することも、二成分以上を同時に蒸着することもできる。さらに、複数の金属を同時に蒸着して合金電極を形成することも可能であり、またあらかじめ調整した合金を蒸着させてもよい。
陽極及び陰極のシート抵抗は低い方が好ましく、数百Ω/□以下が好ましい。
【0054】
発光層の材料は、電界印加時に陽極または正孔注入層、正孔輸送層から正孔を注入することができると共に陰極または電子注入層、電子輸送層から電子を注入することができる機能や、注入された電荷を移動させる機能、正孔と電子の再結合の場を提供して発光させる機能を有する層を形成することができるものであれば何でもよく、一重項励起子または三重項励起子のいずれから発光するものであっても良い。好ましくは遷移金属錯体、更に好ましくはオルトメタル化金属錯体を含有するものであるが、他の発光材料を併用して用いることもできる。例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、ペリレン誘導体、ペリノン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、芳香族ジメチリディン化合物、8−キノリノール誘導体の金属錯体や希土類錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物等が挙げられる。
【0055】
発光層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。
発光層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法(スピンコート法、キャスト法、ディップコート法など)、LB法、インクジェット法、印刷法、転写法、電子写真法などの方法が用いられ、好ましくは抵抗加熱蒸着、コーティング法である。
【0056】
正孔注入層、正孔輸送層の材料は、陽極から正孔を注入する機能、正孔を輸送する機能、陰極から注入された電子を障壁する機能のいずれか有しているものであればよい。その具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、カーボン膜等が挙げられる。正孔注入層、正孔輸送層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。正孔注入層、正孔輸送層は上述した材料の1種または2種以上からなる単層構造であってもよいし、同一組成または異種組成の複数層からなる多層構造であってもよい。
【0057】
正孔注入層、正孔輸送層の形成方法は、真空蒸着法、LB法、インクジェット法、印刷法、転写法、電子写真法、前記正孔注入輸送剤を溶媒に溶解または分散させてコーティングする方法(スピンコート法、キャスト法、ディップコート法など)などが用いられる。コーティング法の場合、樹脂成分と共に溶解または分散することができ、樹脂成分としては例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂などが挙げられる。
【0058】
電子注入層、電子輸送層の材料は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入された正孔を障壁する機能のいずれか有しているものであればよい。その具体例としては、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルビジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体等が挙げられる。電子注入層、電子輸送層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。電子注入層、電子輸送層は上述した材料の1種または2種以上からなる単層構造であってもよいし、同一組成または異種組成の複数層からなる多層構造であってもよい。
【0059】
電子注入層、電子輸送層の形成方法は、真空蒸着法、LB法、インクジェット法、印刷法、転写法、電子写真法、前記電子注入輸送剤を溶媒に溶解または分散させてコーティングする方法(スピンコート法、キャスト法、ディップコート法など)などが用いられる。コーティング法の場合、樹脂成分と共に溶解または分散することができ、樹脂成分としては例えば、正孔注入輸送層の場合に例示したものが適用できる。
【0060】
保護層の材料としては水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2 、Al2 3 、GeO、NiO、CaO、BaO、Fe2 3 、Y2 3 、TiO2 等の金属酸化物、MgF2 、LiF、AlF3 、CaF2 等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
【0061】
保護層の形成方法についても特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、インクジェット法、印刷法、転写法を適用できる。
【0062】
【実施例】
以下に本発明の実施例および比較例を例示して説明するが、本発明はこれらの例により限定されるものではない。
【0063】
比較例1
洗浄したITO基板を蒸着装置に入れ、TPD(N,N’−ジフェニル−N,N’−ジ(m−トリル)−ベンジジン)を40nm蒸着し、この上にCBP(ビスカルバゾリルベンジジン)、下記発光材料(G−1)を10:1の比率で24nm共蒸着し、この上に電子輸送材料ETM−1を24nm蒸着した。有機薄膜上にパターニングしたマスク(発光面積が4mm×5mmとなる)を装着し、マグネシウム:銀=10:1を250nm共蒸着した後、銀250nmを蒸着し、EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400を用いて、直流定電圧をEL素子に印加し、発光させ、その輝度をトプコン社の輝度計BM−8、発光波長とCIE色度座標を浜松ホトニクス社製スペクトルアナライザーPMA−11を用いて測定した。その結果、発光極大波長が486nmの発光が得られ、駆動電圧8Vで輝度114cd/m2 、外部量子効率は6.0%であった。
【0064】
【化19】
Figure 0004048525
【0065】
比較例2
比較例1の素子において、CBPの代わりにBCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナンスロリン)を用いて比較例1と同様に素子を作製し、評価した。その結果、8Vで発光は観測できなかった。
【0066】
実施例1
比較例1の素子において、CBPの代わりに例示化合物(H−3)を用いて比較例1と同様に素子を作製し、評価した。その結果、発光極大波長が487nmの発光が得られ、駆動電圧8Vで輝度120cd/m2 、外部量子効率は10.5%であった。
【0067】
比較例1、比較例2および実施例1においてホスト材料として用いたCBP、CBPおよび例示化合物H−3の蒸着膜のイオン化ポテンシャル(IP)を光電子分光装置(理研計器製:AC−1)測定し、エネルギーギャップを蒸着膜の吸収スペクトルにより測定しその長波端から算出し、その結果を以下に示す。
【0068】
【表1】
Figure 0004048525
【0069】
表1から明らかなように、BCPはCBPより広いエネルギーギャップを有するものの、発光は観測されなかったが、本発明化合物のように広いエネルギーギャップを有しかつイオン化ポテンシャルが5.4〜6.3eVを有するものは、青色発光材料のホストとして機能し、高効率発光可能である。
【0070】
実施例2
Baytron P(PEDOT−PSS溶液(ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸ドープ体)/バイエル社製)を洗浄した基板上にスピンコートし(1000rpm,30sec)、150℃にて1.5時間、真空乾燥した。有機層の膜厚は70nmであった。その上にポリカーボネート−Z10mg、本発明化合物(H−3) 20mg、発光材料(G−1) 1mg、PBD(2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール) 6mg、をジクロロエタン2.5gに溶解し、洗浄した基板上にスピンコートした(2000rpm,30sec)。総有機層の膜厚は170nmであった。有機薄膜上にパターニングしたマスク(発光面積が4mm×5mmとなるマスク)を設置し、蒸着装置内でマグネシウム:銀=10:1を250nm共蒸着した後、銀250nmを蒸着した。直流定電圧をEL素子に印加し発光させた結果、発光極大波長が485nmの発光が得られ、外部量子効率5.3%(100cd/m2 時)であった。
【0071】
実施例3
比較例1のTPDの代わりに本発明化合物(H−17)を用い、同様の素子を作成した。そして発光スペクトル及び輝度を測定し、発光効率を算出したところ、駆動電圧8Vで輝度193cd/m2、外部量子効率は7.1%であった。このことから本発明化合物をホール輸送材料として用いると高効率発光が可能であることがわかる。
実施例4
実施例1の素子において、TPDの代わりに(HO−1)を、発光材料(G−1)の代わりにより短波長で発光する発光材料(B−1)を用いて実施例1と同様に素子を作製し評価した。その結果、発光極大波長が459nmの発光が得られ、外部量子効率は12.7%であった。このことからわかるように本発明のホストはより短波長な青色発光素子で高効率発光を可能にする。
【0072】
【発明の効果】
本発明により、駆動電圧を一定にした場合、従来と比較して青色領域でより高い効率で発光する発光素子を得ることができた。又、新規なインドール誘導体を得ることができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light-emitting element that can be used in fields such as a backlight, a flat panel display, an illumination light source, a display element, electrophotography, an organic semiconductor laser, a recording light source, an exposure light source, a reading light source, a sign, a signboard, and an optical communication device. Is.
[0002]
[Prior art]
Among various light emitting devices currently being researched and developed, organic electroluminescence (EL) devices have been actively researched and developed in recent years because they can emit light with high luminance when driven at a low voltage. . In general, an organic EL element is composed of a light-emitting layer and a pair of counter electrodes sandwiching the layer. Electrons injected from the cathode and holes injected from the anode are recombined in the light-emitting layer, and generated excitons. Is used.
At present, an organic EL element that emits light with high luminance at a low voltage has a laminated structure shown by Tang et al. (Applied Physics Letters, 51, 913, 1987). This device obtains green light with high luminance by laminating an electron transport / light emitting material and a hole transport material, and the luminance is several thousand cd / m at a DC voltage of 6 to 7V.2Has reached. However, when considering a practical device, development of a light emitting device with higher brightness and higher efficiency is desired.
[0003]
Recently, light-emitting devices using various transition metal complexes as light-emitting materials have been studied as means for obtaining further high-efficiency light-emitting devices. Particularly, iridium orthometalated complexes (Ir ( ppy)Three: Light-emitting element using tris-ortholipidated complex with 2-phenylpyridine as a light-emitting material was reported (Applied Physics Letters, Vol. 75, p. 4, 1999). The external quantum efficiency of this element is 8.3%, which exceeds the external quantum efficiency of 5%, which has been considered to be a limit. However, since it is limited to green light-emitting elements, development of elements that emit light with high efficiency even in other colors has been demanded when applied to full-color displays and white light-emitting elements.
On the other hand, organic light-emitting elements that achieve high-intensity light emission are elements in which organic substances are stacked by vacuum vapor deposition, but depending on the application method from the viewpoint of simplification of the manufacturing process, processability, large area, etc. Device fabrication is desirable. However, the device manufactured by the conventional coating method is inferior to the device manufactured by the vapor deposition method in terms of light emission luminance and light emission efficiency, and high luminance and high efficiency light emission have been a major issue.
[0004]
[Problems to be solved by the invention]
A first object of the present invention is to provide a light-emitting element material and a light-emitting element that can emit light with high brightness and high efficiency, and are excellent in stability under high temperature and capable of uniform planar light emission when repeatedly used.
The second object of the present invention is to provide a light emitting device material and a light emitting device capable of emitting blue light with high efficiency and good color purity.
The third object of the present invention is to provide a host material capable of emitting light with high efficiency and high brightness by doping a transition metal complex having a high quantum yield.
A fourth object of the present invention is to provide a light emitting device material capable of emitting light with high luminance and high efficiency even when produced by a coating method, and a light emitting device using the same.
[0005]
[Means for Solving the Problems]
    The present invention includes the following (1) to (5).
(1) In a light-emitting element in which an organic compound layer including a light-emitting layer is formed between a pair of electrodes provided on a substrate, the organic compound layer has the following general formula (IIA light emitting device comprising a compound having a partial structure represented by:
General formula (II)
[0006]
[Chemical Formula 3]
Figure 0004048525
[0007]
(Where L 12 A phenylene group linked at the meta position, a linking group consisting of a combination of benzene and methylene, n 2 Represents an integer of 2 to 6. R represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and m represents an integer of 0 to 6.
(2) General formula ( II ), L 12 Is the following group:
[Chemical formula 2]
Figure 0004048525
The light-emitting element according to (1), wherein
(3The phosphor layer contains a phosphorescent compound (1)Or (2)The light emitting element as described in.
(4) A compound represented by the following general formula (II):
  Formula (II)
[0008]
[Formula 4]
Figure 0004048525
[0009]
(Where L12IsA phenylene group linked at the meta position, a linking group consisting of a combination of benzene and methylene, N2Represents an integer of 2 to 6.R represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms,m represents an integer of 0 to 6. )
(5)As a host material (1)General formula (IIA light-emitting element characterized by being a compound having a partial structure represented by:
(6) It contains a transition metal complex in the light emitting layer(1) to (3)The light emitting element in any one of.
(7()6The light-emitting element is characterized in that the transition metal complex described in (1) emits light by transition from a triplet excited state.
(8) The light emitting layer contains a polymer compound(1) to (3)The light emitting element in any one of.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The light-emitting device of the present invention is a device in which a plurality of organic compound layers including a light-emitting layer are formed between both an anode and a cathode. In addition to the light-emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport A layer, a protective layer, and the like may be included, and each of these layers may have other functions.
[0011]
The light emitting device of the present invention has a light emission maximum wavelength λmax in a blue region of 500 nm or less, and from the viewpoint of color purity, λmax is preferably 495 nm or less, more preferably 490 nm or less.
The light emitting device of the present invention has an external quantum yield of 5% or more, preferably 7% or more, more preferably 10% or more, and ideally 100%. Here, the external quantum efficiency is a value calculated by the following equation. As a method for calculating the external quantum efficiency of the light emitting element, there are a method for calculating from the light emission luminance, the light emission spectrum, the relative visibility curve and the current density, and a method for calculating from the current density and the total number of emitted photons.
External quantum efficiency (%) = (total number of photons emitted / number of electrons injected into light-emitting element) × 100
[0012]
  The present inventionsoIs a light emitting device in which an organic compound layer including a light emitting layer is formed between a pair of electrodes provided on a substrate, and the single layer film of the host material in the organic compound layer has an energy gap of 3.6 eV to 5.2 eV. And the ionization potential of the host material is 5.4 to 6.3 eVPreferably, More preferably 5.8 to 6.3 eVIs. If the ionization potential is out of the range, the light emission efficiency of the device decreases. The energy gap (band gap) was determined by light absorption of a single layer deposited film or a film in which a host material was dispersed in polycarbonate according to the method of Ono et al. (J. Phys. Soc. Jpn., 58 (1989) 1895). The ionization potential was measured using a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-1).
[0013]
Aspects of the inventionIs a light-emitting element in which an organic compound layer including a light-emitting layer is formed between a pair of electrodes provided on a substrate, and the organic compound layer is represented by the following general formula (IIA light emitting device comprising a compound having a partial structure represented by:
General formula (II)
[0014]
[Chemical formula 5]
Figure 0004048525
[0015]
  In the formula,L11IsA phenylene group linked at the meta position, a linking group consisting of a combination of benzene and methylene,n 2 Represents an integer of 2 to 6. R represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and m represents an integer of 0 to 6.
[0016]
  General formula ( II ), When R represents an alkyl group having 1 to 20 carbon atoms, it preferably has 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n -Octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl and the like. General formula ( II ), When R represents an aryl group having 6 to 20 carbon atoms, it preferably has 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl and the like.
[0019]
  General formula ( II ) In which R represents a heteroaryl group having 2 to 20 carbon atoms,Preferably it is C1-C12, and as a hetero atom, for example, a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example,Thiophene, furan, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazole, thiadiazole, oxazole, oxadiazole, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, Pteridine, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, tetrazaindeneEtc. These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.
[0022]
L11IsA phenylene group linked at the meta position, a linking group consisting of a combination of benzene and methyleneIt is.
  L11Preferred examples of are the following groups:.
[0023]
[Chemical 6]
Figure 0004048525
[0025]
  The general formula (II) May be a low molecular weight compound, preferably a general formula (II) Is a compound containing 2 to 10 azole ring units. n1Preferably represents an integer of 2 to 10, more preferably an integer of 2 to 8, and still more preferably an integer of 2 to 6. The general formula (II) Is a high molecular weight compound having a side chain as a compound (preferably a mass average molecular weight of 1 × 10Three~ 5x106, Particularly preferably 5 × 10Three~ 2x106More preferably 1 × 10Four~ 1x106) Or general formula (II) In the main chain (preferably mass average molecular weight 1 × 10)Three~ 5x106, Particularly preferably 5 × 10Three~ 2x106More preferably 1 × 10Four~ 1x106). In the case of a high molecular weight compound, it may be a homopolymer or a copolymer with other monomers..
[0028]
  The general formula (IISpecific examples of the compound represented by (II) are given below, but the present invention is not limited to these. N in the lower right of the parenthesis of the specific compound example,pEach represents an integer of 1 to 500.
[0029]
[Chemical 9]
Figure 0004048525
[0030]
Embedded image
Figure 0004048525
[0031]
Embedded image
Figure 0004048525
[0032]
Embedded image
Figure 0004048525
[0034]
Embedded image
Figure 0004048525
[0035]
  Next, some synthesis examples of the compound represented by the general formula (I) of the present invention are shown below..
[0038]
Synthesis Example-2
Synthesis of exemplary compound (H-3)
[0039]
Embedded image
Figure 0004048525
[0040]
In a nitrogen atmosphere, 1.9 g of indole was dissolved in 70 ml of o-xylene, and then 11.1 g of rubidium carbonate, 0.036 g of palladium acetate, 2.6 g of 4,4-dibromodiphenylmethane, and 0.1 g of t-butylphosphine were sequentially added. The mixture was added and stirred at 120 ° C. for 3 hours. After completion of the reaction, ethyl acetate was added to the reaction solution, and insoluble matters were removed by Celite filtration. The obtained ethyl acetate solution was washed with water, dehydrated and concentrated. The obtained crystals were purified by silica gel chromatography and recrystallized from chloroform-ethanol to obtain 0.92 g of the desired product (H-3). .
Melting point of (H-3): 110-111 ° C
[0041]
Synthesis example-3
Synthesis of exemplary compound (H-17)
Exemplified compound (H-17) was synthesized according to the following scheme in the same manner as in Synthesis Example-2 (m.p. 228 to 232 ° C.).
[0042]
Embedded image
Figure 0004048525
[0045]
At least one of the light-emitting materials used in the light-emitting element of the present invention is a compound having a light emission maximum from excitons in the blue region, and examples of the light-emitting material include transition metal complexes, preferably iridium complexes, osmium complexes, A platinum complex is mentioned, More preferably, it is an iridium complex, a platinum complex, More preferably, it is an ortho metalated iridium complex.
The transition metal complex used in the present invention preferably has a luminescent property, and a phosphorescent compound is particularly preferable from the viewpoint of luminous efficiency. A phosphorescent compound means a compound that emits light from triplet excitons. Since the phosphorescent compound utilizes phosphorescence emission, its luminous efficiency is higher than that using fluorescence emission obtained from singlet excitons. The phosphorescent compound is not particularly limited, but an orthometalated metal complex is preferably used.
The transition metal complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained simultaneously.
[0046]
Although it does not specifically limit as a ligand in a transition metal complex, Comprehensive Coordination Chemistry G.M. Wilkinson et al., Pergamon Press, Inc., published in 1987 (Photochemistry and Photophysics of Coordination Compounds), Springer-Verlag, Inc. Examples include the ligands described in Yersin's 1987 issue (organometallic chemistry-basics and applications-). Preferably, a halogen ligand, a nitrogen-containing heterocyclic ligand (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, phenanthroline, etc.), a diketone ligand (eg, acetylacetone), a carboxylic acid ligand (eg, acetic acid coordination) A ligand such as a phosphorus ligand (for example, a triphenylphosphine-based ligand or a phosphite-based ligand), a carbon monoxide ligand, an isonitrile ligand, or a cyano ligand.
There may be one kind of ligand of the transition metal complex, or there may be a plurality of kinds. The number of ligands in the complex is preferably one or two.
[0047]
The ortho-metalated complex used in the present invention is a general term for a group of compounds described in, for example, Akio Yamamoto (Organic Metal Chemistry-Fundamentals and Applications) p150, 232 Hankabo Publishing Co., Ltd. published in 1982. The central metal in the orthometalated complex can be any transition metal as long as it is a transition metal complex, but in the present invention, rhodium, platinum, gold, iridium, ruthenium, palladium, etc. are preferably used. More preferred is iridium. Specific descriptions and compound examples of the orthometalated metal complex are described in paragraph Nos. 0152 to 0180 of Japanese Patent Application No. 2000-254171.
[0048]
The light emitting layer of the present invention may contain a polymer compound, more preferably a resin component, in addition to the light emitting material. Examples of the resin component include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, Examples thereof include polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, and silicon resin. When a coating method (spin coating method, casting method, dip coating method, etc.) is used as a method for forming the light emitting layer, it can be dissolved or dispersed together with the light emitting material and the polymer compound (resin component), so It becomes easy.
[0049]
The light emitting device of the present invention is not particularly limited as long as it is a device utilizing the compound of the present invention, and the system, driving method, usage form, etc. are not particularly limited. Are preferably used as charge transport materials without coexisting with. An organic EL (electroluminescence) element can be mentioned as a typical light emitting element.
When the compound of the present invention is allowed to coexist with the light emitting material, the mixing ratio of the compound of the present invention is preferably 0.1 to 95%, 0.1 to 30%, and most preferably 0.1 to 10% by mass ratio of the light emitting material.
The method for forming the organic layer of the light emitting device containing the compound of the present invention is not particularly limited, but resistance heating vapor deposition, electron beam, sputtering, molecular lamination method, coating method, ink jet method, printing method, electrophotography. A method such as a method is used, and resistance heating vapor deposition, coating method, and transfer method are preferable in terms of characteristics and production, and a coating method is more preferable from the viewpoint of avoiding thermal decomposition during vapor deposition.
The light emitting device of the present invention is a device in which a plurality of organic compound thin films including a light emitting layer are formed between a pair of electrodes of an anode and a cathode. In addition to the light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron It may have a transport layer, a protective layer, etc., and each of these layers may have other functions. Various materials can be used for forming each layer.
[0050]
The anode supplies holes to a hole injection layer, a hole transport layer, a light emitting layer, and the like, and a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used. Is a material having a work function of 4 eV or more. Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide and indium tin oxide (ITO), metals such as gold, silver, chromium and nickel, and these metals and conductive metal oxides. Inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO, preferably conductive metals It is an oxide, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like. Although the film thickness of the anode can be appropriately selected depending on the material, it is usually preferably in the range of 10 nm to 5 μm, more preferably 50 nm to 1 μm, still more preferably 100 nm to 500 nm.
[0051]
As the anode, a layer formed on a soda-lime glass, non-alkali glass, a transparent resin substrate or the like is usually used. When glass is used, it is preferable to use non-alkali glass as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. The thickness of the substrate is not particularly limited as long as it is sufficient to maintain the mechanical strength, but when glass is used, a thickness of 0.2 mm or more, preferably 0.7 mm or more is usually used.
Various methods are used for producing the anode depending on the material. For example, in the case of ITO, an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (such as a sol-gel method), an indium tin oxide dispersion A film is formed by a method such as coating. The anode can be subjected to cleaning or other treatments to lower the drive voltage of the element or increase the light emission efficiency. For example, in the case of ITO, UV-ozone treatment, plasma treatment, etc. are effective.
[0052]
The cathode supplies electrons to the electron injection layer, the electron transport layer, the light emitting layer, etc., and the adhesion, ionization potential, stability, etc., between the negative electrode and the adjacent layer such as the electron injection layer, electron transport layer, light emitting layer, etc. Selected in consideration of As the cathode material, a metal, an alloy, a metal halide, a metal oxide, an electrically conductive compound, or a mixture thereof can be used. Specific examples include alkali metals (for example, Li, Na, K, Cs, etc.) and Its fluorides, oxides, alkaline earth metals (eg Mg, Ca etc.) and their fluorides, oxides, gold, silver, lead, arnium, sodium-potassium alloys or mixed metals thereof, lithium-aluminum alloys or them Mixed metals, magnesium-silver alloys or mixed metals thereof, rare earth metals such as indium and ytterbium, and the like, preferably materials having a work function of 4 eV or less, more preferably aluminum, lithium-aluminum alloys or their A mixed metal, a magnesium-silver alloy, or a mixed metal thereof. The cathode can take not only a single layer structure of the compound and the mixture but also a laminated structure including the compound and the mixture. The film thickness of the cathode can be appropriately selected depending on the material, but is usually preferably in the range of 10 nm to 5 μm, more preferably 50 nm to 1 μm, still more preferably 100 nm to 1 μm.
[0053]
For production of the cathode, methods such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, and a coating method are used, and a metal can be vapor-deposited alone or two or more components can be vapor-deposited simultaneously. Furthermore, a plurality of metals can be vapor-deposited simultaneously to form an alloy electrode, or a previously prepared alloy may be vapor-deposited.
The sheet resistance of the anode and the cathode is preferably low, and is preferably several hundred Ω / □ or less.
[0054]
The material of the light emitting layer is a function that can inject holes from the anode or hole injection layer, hole transport layer and cathode or electron injection layer, electron transport layer when an electric field is applied, Any singlet exciton or triplet exciton can be used as long as it can form a layer having a function of transferring injected charges and a function of emitting light by providing a recombination field of holes and electrons. Any of these may emit light. Preferably, it contains a transition metal complex, more preferably an orthometalated metal complex, but other light emitting materials can also be used in combination. For example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, perylene derivatives, perinone derivatives, oxadiazole derivatives, aldazine derivatives , Pyraziridine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, aromatic dimethylidin compounds, 8-quinolinol derivatives, metal complexes and rare earth complexes Representative metal complexes, polymer compounds such as polythiophene, polyphenylene, polyphenylene vinylene, etc. And the like.
[0055]
Although the film thickness of a light emitting layer is not specifically limited, Usually, the thing of the range of 1 nm-5 micrometers is preferable, More preferably, it is 5 nm-1 micrometer, More preferably, it is 10 nm-500 nm.
The formation method of the light emitting layer is not particularly limited, but resistance heating vapor deposition, electron beam, sputtering, molecular lamination method, coating method (spin coating method, casting method, dip coating method, etc.), LB method, inkjet method , Printing methods, transfer methods, electrophotographic methods and the like are used, and resistance heating vapor deposition and coating methods are preferred.
[0056]
The material of the hole injection layer and the hole transport layer may be any one having a function of injecting holes from the anode, a function of transporting holes, or a function of blocking electrons injected from the cathode. Good. Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives. , Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline compounds Examples include copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, and carbon films. The film thicknesses of the hole injection layer and the hole transport layer are not particularly limited, but are usually preferably in the range of 1 nm to 5 μm, more preferably 5 nm to 1 μm, and still more preferably 10 nm to 500 nm. . The hole injection layer and the hole transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
[0057]
The hole injection layer and hole transport layer can be formed by vacuum evaporation, LB method, ink jet method, printing method, transfer method, electrophotography, or coating by dissolving or dispersing the hole injection transport agent in a solvent. Methods (spin coating method, casting method, dip coating method, etc.) are used. In the case of the coating method, it can be dissolved or dispersed together with the resin component. Examples of the resin component include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, and poly (N -Vinyl carbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, and the like.
[0058]
The material for the electron injection layer and the electron transport layer may be any material having any one of a function of injecting electrons from the cathode, a function of transporting electrons, and a function of blocking holes injected from the anode. Specific examples thereof include triazole derivatives, oxazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbidiimide derivatives, fluorenylidenemethane derivatives, Various metal complexes typified by metal complexes of styrylpyrazine derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, benzoxazole and benzothiazole ligands Etc. Although the film thickness of an electron injection layer and an electron carrying layer is not specifically limited, The thing of the range of 1 nm-5 micrometers is preferable normally, More preferably, it is 5 nm-1 micrometer, More preferably, it is 10 nm-500 nm. The electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
[0059]
The electron injection layer and the electron transport layer can be formed by vacuum deposition, LB method, ink jet method, printing method, transfer method, electrophotography, or coating method by dissolving or dispersing the electron injection transport agent in a solvent (spin Coating method, casting method, dip coating method, etc.) are used. In the case of the coating method, it can be dissolved or dispersed together with the resin component. As the resin component, for example, those exemplified in the case of the hole injection transport layer can be applied.
[0060]
As a material for the protective layer, any material may be used as long as it has a function of preventing substances that promote device deterioration such as moisture and oxygen from entering the device. Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, and SiO.2, Al2OThree, GeO, NiO, CaO, BaO, Fe2OThree, Y2OThreeTiO2Metal oxide such as MgF2, LiF, AlFThree, CaF2Metal fluorides such as polyethylene, polypropylene, polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoro A copolymer obtained by copolymerizing a monomer mixture containing ethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, a water-absorbing substance having a water absorption of 1% or more, a water absorption Examples include a moisture-proof substance of 0.1% or less.
[0061]
There is no particular limitation on the method for forming the protective layer. For example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency excitation ions) Plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, ink jet method, printing method, and transfer method can be applied.
[0062]
【Example】
EXAMPLES Examples and comparative examples of the present invention will be described below as examples, but the present invention is not limited to these examples.
[0063]
Comparative Example 1
The cleaned ITO substrate was put into a vapor deposition apparatus, and TPD (N, N′-diphenyl-N, N′-di (m-tolyl) -benzidine) was vapor-deposited to 40 nm, and CBP (biscarbazolyl benzidine), The following luminescent material (G-1) was co-evaporated at a ratio of 10: 1 to 24 nm, and an electron transport material ETM-1 was deposited thereon to 24 nm. A patterned mask (with a light emitting area of 4 mm × 5 mm) was mounted on the organic thin film, and magnesium: silver = 10: 1 was co-evaporated to 250 nm, and then 250 nm of silver was evaporated to produce an EL device. Using a source measure unit 2400 made by Toyo Technica, a constant DC voltage is applied to the EL element to emit light, and the brightness is measured by Topcon's luminance meter BM-8. The emission wavelength and CIE chromaticity coordinates are a spectrum analyzer made by Hamamatsu Photonics. Measurement was performed using PMA-11. As a result, light emission with an emission maximum wavelength of 486 nm is obtained, and the luminance is 114 cd / m at a driving voltage of 8 V.2The external quantum efficiency was 6.0%.
[0064]
Embedded image
Figure 0004048525
[0065]
Comparative Example 2
In the device of Comparative Example 1, a device was prepared and evaluated in the same manner as in Comparative Example 1 using BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) instead of CBP. As a result, no luminescence was observed at 8V.
[0066]
Example 1
In the device of Comparative Example 1, a device was prepared and evaluated in the same manner as in Comparative Example 1 using the exemplified compound (H-3) instead of CBP. As a result, light emission with an emission maximum wavelength of 487 nm is obtained, and the luminance is 120 cd / m at a driving voltage of 8V.2The external quantum efficiency was 10.5%.
[0067]
The ionization potential (IP) of the deposited films of CBP, CBP, and Example Compound H-3 used as host materials in Comparative Example 1, Comparative Example 2, and Example 1 was measured by a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-1). The energy gap was measured from the absorption spectrum of the deposited film and calculated from the long wave end, and the results are shown below.
[0068]
[Table 1]
Figure 0004048525
[0069]
As is clear from Table 1, although BCP has a wider energy gap than CBP, no light emission was observed, but it had a wide energy gap and the ionization potential was 5.4 to 6.3 eV like the compound of the present invention. Those that have a function as a host of a blue light emitting material and can emit light with high efficiency.
[0070]
Example 2
Baytron P (PEDOT-PSS solution (polyethylenedioxythiophene-polystyrenesulfonic acid dope) / manufactured by Bayer) was spin-coated on a cleaned substrate (1000 rpm, 30 sec) and vacuum dried at 150 ° C. for 1.5 hours. did. The film thickness of the organic layer was 70 nm. On top of this, 10 mg of polycarbonate-Z, 20 mg of the present compound (H-3), 1 mg of luminescent material (G-1), PBD (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3 , 4-oxadiazole) was dissolved in 2.5 g of dichloroethane and spin-coated on the cleaned substrate (2000 rpm, 30 sec). The total organic layer thickness was 170 nm. A patterned mask (a mask with a light emitting area of 4 mm × 5 mm) was placed on the organic thin film, and magnesium: silver = 10: 1 was co-evaporated to 250 nm in an evaporation apparatus, and then 250 nm of silver was evaporated. As a result of applying a constant DC voltage to the EL element to emit light, light emission having a maximum emission wavelength of 485 nm was obtained, and the external quantum efficiency was 5.3% (100 cd / m).2Time).
[0071]
Example 3
A similar device was prepared using the compound (H-17) of the present invention instead of the TPD of Comparative Example 1. Then, the emission spectrum and the luminance were measured, and the luminous efficiency was calculated. The luminance was 193 cd / m at a driving voltage of 8V.2The external quantum efficiency was 7.1%. From this, it can be seen that when the compound of the present invention is used as a hole transport material, highly efficient light emission is possible.
Example 4
In the element of Example 1, (HO-1) is used instead of TPD, and the light emitting material (B-1) that emits light at a short wavelength is used instead of the light emitting material (G-1). Were prepared and evaluated. As a result, light emission with an emission maximum wavelength of 459 nm was obtained, and the external quantum efficiency was 12.7%. As can be seen from the above, the host of the present invention enables highly efficient light emission with a blue light emitting element having a shorter wavelength.
[0072]
【The invention's effect】
According to the present invention, when the driving voltage is made constant, a light emitting element that emits light with higher efficiency in the blue region than in the prior art can be obtained. In addition, a novel indole derivative could be obtained.

Claims (5)

基板上に設けた一対の電極間に発光層を含む有機化合物層を形成した発光素子において、該有機化合物層が下記一般式(II)で表される部分構造を有する化合物を含有することを特徴とする発光素子。
一般式(II
Figure 0004048525
(式中、L 12 がメタ位で連結したフェニレン基、ベンゼンとメチレンの組み合わせからなる連結基、n 2 は2ないし6の整数を表す。Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、または炭素数2から20のヘテロアリール基を表し、mは0から6の整数を表す。
A light-emitting element in which an organic compound layer including a light-emitting layer is formed between a pair of electrodes provided on a substrate, wherein the organic compound layer contains a compound having a partial structure represented by the following general formula ( II ) A light emitting element.
General formula ( II )
Figure 0004048525
(In the formula, L 12 is a phenylene group linked at the meta position, a linking group consisting of a combination of benzene and methylene, n 2 represents an integer of 2 to 6. R is an alkyl group having 1 to 20 carbon atoms, 6 carbon atoms. To an aryl group having 2 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and m represents an integer of 0 to 6.
前記一般式(General formula ( IIII )において、L), L 1212 が下記の基:Is the following group:
Figure 0004048525
Figure 0004048525
であることを特徴とする請求項1に記載の発光素子。The light emitting device according to claim 1, wherein:
前記発光層にりん光発光性化合物を含有することを特徴とする請求項1または2に記載の発光素子。The light emitting device according to claim 1 or 2, characterized in that it contains the light emitting layer to a phosphorescent compound. 下記一般式(II)で表されることを特徴とする化合物。
一般式(II)
Figure 0004048525
(式中、 12 がメタ位で連結したフェニレン基、ベンゼンとメチレンの組み合わせからなる連結基、2は2ないし6の整数を表す。Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、または炭素数2から20のヘテロアリール基を表し、mは0から6の整数を表す。)
A compound represented by the following general formula (II):
Formula (II)
Figure 0004048525
(In the formula, L 12 is a phenylene group linked at the meta position, a linking group consisting of a combination of benzene and methylene, n 2 represents an integer of 2 to 6. R is an alkyl group having 1 to 20 carbon atoms, 6 carbon atoms. To an aryl group having 2 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and m represents an integer of 0 to 6.)
前記一般式(General formula ( IIII )において、L), L 1212 が下記の基:Is the following group:
Figure 0004048525
Figure 0004048525
であることを特徴とする請求項4に記載の化合物。The compound according to claim 4, wherein
JP2001384693A 2000-12-25 2001-12-18 Novel indole derivative and light emitting device using the same Expired - Lifetime JP4048525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384693A JP4048525B2 (en) 2000-12-25 2001-12-18 Novel indole derivative and light emitting device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-392895 2000-12-25
JP2000392895 2000-12-25
JP2001384693A JP4048525B2 (en) 2000-12-25 2001-12-18 Novel indole derivative and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2002305084A JP2002305084A (en) 2002-10-18
JP4048525B2 true JP4048525B2 (en) 2008-02-20

Family

ID=26606530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384693A Expired - Lifetime JP4048525B2 (en) 2000-12-25 2001-12-18 Novel indole derivative and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4048525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966537B2 (en) 2014-12-29 2018-05-08 Dow Global Technologies Llc Compositions with 2,3-disubstituted indoles as charge transport materials, and display devices fabricated therefrom

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812730B2 (en) * 2001-02-01 2006-08-23 富士写真フイルム株式会社 Transition metal complex and light emitting device
JP4048792B2 (en) * 2002-02-20 2008-02-20 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP4028996B2 (en) * 2002-03-15 2008-01-09 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
JP4030093B2 (en) * 2002-03-22 2008-01-09 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
JP4631259B2 (en) * 2002-10-03 2011-02-16 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
EP2759585B1 (en) 2002-11-26 2018-08-15 Konica Minolta Business Technologies, Inc. Organic electroluminescent element, and display and illuminator
US7326475B2 (en) 2003-04-23 2008-02-05 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
JP2005054076A (en) * 2003-08-05 2005-03-03 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element using the same
JP4363133B2 (en) * 2003-09-09 2009-11-11 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device using the same
KR101026602B1 (en) * 2003-09-29 2011-04-04 신닛테츠가가쿠 가부시키가이샤 Organic electroluminescent device
US7118812B2 (en) * 2003-12-05 2006-10-10 Eastman Kodak Company Organic element for electroluminescent devices
EP1750487A4 (en) * 2004-05-14 2008-12-17 Idemitsu Kosan Co Organic electroluminescent device
KR101214539B1 (en) * 2004-07-07 2012-12-24 유니버셜 디스플레이 코포레이션 Stable and efficient electroluminescent materials
JP2006100394A (en) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd Organic light emitting device
WO2006090568A1 (en) * 2005-02-23 2006-08-31 Konica Minolta Holdings, Inc. Organic electroluminescence element, light emitting panel, liquid crystal display and illuminator
JP5076891B2 (en) 2005-07-01 2012-11-21 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
EP1947911B1 (en) 2005-11-09 2017-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP5181676B2 (en) 2006-01-05 2013-04-10 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2007097149A1 (en) 2006-02-20 2007-08-30 Konica Minolta Holdings, Inc. Organic electroluminescence element, white light emitting element, display device and illuminating device
EP1998387B1 (en) 2006-03-17 2015-04-22 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
WO2007108459A1 (en) 2006-03-23 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP5463668B2 (en) 2006-03-30 2014-04-09 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
US8426846B2 (en) 2006-03-30 2013-04-23 Konica Minolta Holdings, Inc. Organic electroluminescent element, method of manufacturing organic electroluminescent element, lighting device, and display device
JP5282260B2 (en) 2006-11-27 2013-09-04 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
EP2437326A3 (en) 2006-12-13 2013-11-13 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
JP2008218987A (en) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same
JP5430073B2 (en) 2007-03-30 2014-02-26 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP2007284684A (en) * 2007-05-28 2007-11-01 Idemitsu Kosan Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the same
EP2460866B1 (en) 2008-05-13 2019-12-11 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
JP2010034528A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same
JP2010031249A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
EP2383815B1 (en) 2009-01-28 2014-07-30 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device, and illumination device
WO2010090077A1 (en) 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 Organic electroluminescent element, and illumination device and display device each comprising the element
WO2011004639A1 (en) 2009-07-07 2011-01-13 コニカミノルタホールディングス株式会社 Organic electroluminescent element, novel compound, lighting device and display device
WO2011030406A1 (en) * 2009-09-09 2011-03-17 株式会社 東芝 Organic electroluminescent element
WO2012053398A1 (en) 2010-10-22 2012-04-26 コニカミノルタホールディングス株式会社 Organic electroluminescent element
EP2677560A4 (en) 2011-02-15 2016-08-17 Konica Minolta Inc Organic electroluminescence element and illumination device
US9923154B2 (en) 2011-02-16 2018-03-20 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
US20140021462A1 (en) 2011-04-06 2014-01-23 Konica Minolta, Inc. Method for manufacturing organic electroluminescent element, and organic electroluminescent element
US20140103321A1 (en) 2011-05-10 2014-04-17 Konica Minolta, Inc. Phosphorescent organic electroluminescent element and lighting device
JP5958464B2 (en) 2011-06-28 2016-08-02 コニカミノルタ株式会社 Organic electroluminescence device and method for producing the same
JP5742586B2 (en) 2011-08-25 2015-07-01 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
EP2763507A4 (en) 2011-09-07 2015-09-16 Konica Minolta Inc Organic electroluminescence element, illumination device and display device
JP5983618B2 (en) 2011-09-21 2016-09-06 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence device
JP6362330B2 (en) 2011-11-14 2018-07-25 コニカミノルタ株式会社 Organic electroluminescence device and planar light emitter
JP6052182B2 (en) 2011-11-14 2016-12-27 コニカミノルタ株式会社 Organic electroluminescence device and planar light emitter
CN103946020B (en) 2011-11-17 2016-08-24 柯尼卡美能达株式会社 Transparency electrode and electronic device
WO2013099867A1 (en) 2011-12-27 2013-07-04 コニカミノルタ株式会社 Transparent electrode, electronic device, organic electroluminescence element, and method for manufacturing organic electroluminescence elements
KR101251451B1 (en) 2012-08-17 2013-04-05 덕산하이메탈(주) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
JP5978843B2 (en) 2012-02-02 2016-08-24 コニカミノルタ株式会社 Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device
WO2013141057A1 (en) 2012-03-21 2013-09-26 コニカミノルタ株式会社 Organic electroluminescence element
KR101952234B1 (en) * 2012-03-22 2019-02-27 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
WO2013161602A1 (en) 2012-04-23 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescent element
JP6128117B2 (en) 2012-04-24 2017-05-17 コニカミノルタ株式会社 Manufacturing method of transparent electrode
WO2013161894A1 (en) 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP5880274B2 (en) 2012-05-21 2016-03-08 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
JP5849867B2 (en) 2012-06-21 2016-02-03 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP6146415B2 (en) 2012-08-07 2017-06-14 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
EP2890221A4 (en) 2012-08-24 2016-09-14 Konica Minolta Inc Transparent electrode, electronic device, and method for manufacturing transparent electrode
JP6119754B2 (en) 2012-09-04 2017-04-26 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
JP6424626B2 (en) 2012-12-10 2018-11-21 コニカミノルタ株式会社 Organic electroluminescent device, lighting device and display device
EP2930762B1 (en) 2012-12-10 2020-09-16 Konica Minolta, Inc. Material for organic electroluminescent element, organic electroluminescent element, illumination device, and display device
WO2014157618A1 (en) 2013-03-29 2014-10-02 コニカミノルタ株式会社 Organic electroluminescent element, and lighting device and display device which are provided with same
KR101798307B1 (en) 2013-03-29 2017-11-15 코니카 미놀타 가부시키가이샤 Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
WO2014156922A1 (en) 2013-03-29 2014-10-02 コニカミノルタ株式会社 Isomer-mixture metal complex composition, organic electroluminescent element, illuminator, and display device
CN104659280B (en) * 2013-11-21 2017-04-05 固安鼎材科技有限公司 A kind of organic electroluminescence device and preparation method thereof
JP2015159066A (en) 2014-02-25 2015-09-03 コニカミノルタ株式会社 Light diffusion sheet for organic electroluminescence, and organic electroluminescent panel
JP5831654B1 (en) 2015-02-13 2015-12-09 コニカミノルタ株式会社 Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device
KR102120517B1 (en) * 2016-04-28 2020-06-08 주식회사 엘지화학 Organic light emitting device
KR102044057B1 (en) 2016-04-28 2019-11-12 주식회사 엘지화학 Organic light emitting device
WO2018083169A1 (en) * 2016-11-04 2018-05-11 Cynora Gmbh Organic electroluminescent devices comprising host compounds
KR101999545B1 (en) * 2018-11-06 2019-07-15 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817822B2 (en) * 1992-05-14 1998-10-30 富士電機株式会社 Electrophotographic photoreceptor
JP2000068057A (en) * 1998-06-12 2000-03-03 Idemitsu Kosan Co Ltd Organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966537B2 (en) 2014-12-29 2018-05-08 Dow Global Technologies Llc Compositions with 2,3-disubstituted indoles as charge transport materials, and display devices fabricated therefrom

Also Published As

Publication number Publication date
JP2002305084A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP4048525B2 (en) Novel indole derivative and light emitting device using the same
US6693295B2 (en) Indole derivative, material for light-emitting device and light-emitting device using the same
JP4067286B2 (en) Light emitting device and iridium complex
JP4404473B2 (en) Novel nitrogen-containing heterocyclic compounds, light emitting device materials, and light emitting devices using them
US6565994B2 (en) Light emitting device material comprising iridium complex and light emitting device using same material
US8742108B2 (en) Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP4169246B2 (en) Heterocyclic compound and light emitting device using the same
JP4340401B2 (en) Light emitting device and iridium complex
JP2000351966A (en) Specific silane compound, light emission element material comprising the same and light emission element containing the same
JP2002235076A (en) Transition metal complex and light emission element material comprising the same, and light emission element
JP2001345183A (en) Highly efficient red light emitting element, light emitting element material composed of iridium complex and novel iridium complex
JP2002302671A (en) Luminescent element material comprising iridium complex, and luminescent element
JP2001181617A (en) Light emitting element material composed of orthometalated palladium complex and light emitting element
JP2001181616A (en) Light emitting element material composed of orthometalated palladium complex and light emitting element
JP4686011B2 (en) Novel heterocyclic compound, light emitting device material, and light emitting device using the same
JP2003022893A (en) Luminescent element
KR100982932B1 (en) Organic electroluminescent device
JP3949391B2 (en) Light emitting element
US7935432B2 (en) Organic electroluminescent device
JP2003257676A (en) Organic electroluminescence element having layer containing conductive highpolymer
JP2001031961A (en) Novel methine compound, luminescent element material, and luminescent element prepared from the material
JP4174202B2 (en) Novel heterocyclic compound and light emitting device using the same
JP4256556B2 (en) Light emitting device material, light emitting device using the same, and amine compound
JP4253429B2 (en) Light emitting device material, light emitting device using the same, and amine compound
JP2001261677A (en) Light emission element material, light emission element using the same and cyclic azine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

R150 Certificate of patent or registration of utility model

Ref document number: 4048525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term