JP4044022B2 - Mfsk受信システム - Google Patents

Mfsk受信システム Download PDF

Info

Publication number
JP4044022B2
JP4044022B2 JP2003317336A JP2003317336A JP4044022B2 JP 4044022 B2 JP4044022 B2 JP 4044022B2 JP 2003317336 A JP2003317336 A JP 2003317336A JP 2003317336 A JP2003317336 A JP 2003317336A JP 4044022 B2 JP4044022 B2 JP 4044022B2
Authority
JP
Japan
Prior art keywords
signal
mfsk
symbol
frequency
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003317336A
Other languages
English (en)
Other versions
JP2005086552A (ja
Inventor
鶴田  誠
隆司 和久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003317336A priority Critical patent/JP4044022B2/ja
Publication of JP2005086552A publication Critical patent/JP2005086552A/ja
Application granted granted Critical
Publication of JP4044022B2 publication Critical patent/JP4044022B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、MFSK変調された信号を受信して復調するMFSK受信システムに関する。
従来、受信した電波をデジタル信号に変換し、DSP(Digital Signal Processor)等を用いて信号処理を行うことにより復調する技術が知られている。例えば、MFSK(Multilevel Frequency Shift Keying/M-ary Frequency Shift Keying)変調された信号を復調する技術として、例えば複数の相関器を並列に配置して待受けする方式、PLL(Phased Lock Loop)を用いた方式、瞬時位相から復調する方式等といった多くの方式が提案されて実用化されている。
このような技術の1つとして、例えば特許文献1は、復調を高速かつ正確に行うことができる多値周波数シフトキーイング復調器を開示している。この多値周波数シフトキーイング復調器は、変調信号を入力して高速フーリエ変換処理を行い、該変調信号に含まれる複数の周波数成分を検出するFFTと、FFTにより検出された複数の周波数成分に基づいて、符号語データ信号を生成し、その符号語データ信号に基づいて、2値データ信号を取出す最大値選択器及び復号回路を備えている。この構成によれば、包絡線検波器を用いることがなく、かつ複数の帯域通過フィルタを必要としないので、復調を高速かつ正確に行うことができる。
特開平09−130300号公報
上述したMFSK変調された信号を復調する技術のうち、相関器を並列に配置して待受けする復調方式は、搬送波の数(多値数)の増加に伴って装置が複雑になってしまい、他の変調形式への対応や複数シンボルレートへの対応等といった拡張性に乏しいという問題がある。また、PLLを用いた復調方式や瞬時位相による復調方式は、搬送波の数(多値数)の増加には比較的柔軟に対応可能であるが、混信信号等に弱いという欠点がある。
例えば、伝播路がマルチパス伝播路であり、遅延スプレッド(遅延波電力の標準偏差で遅延波群の広がりを示す値)がシンボル長と比較して大きい場合には、周波数選択性フェージングが発生する。この周波数選択性フェージングにより、MFSK変調された信号の復調波形の品質が劣化する。具体的に示すと、遅延スプレッドは、Jacks又は、その拡張モデルで示されるように、各遅延波が、振幅と位相が異なる遅延時間で到来することによりIQコンスタレーション上では、図10に示すように、位相面の回転が生じる。
また、受信されたIQ信号は、シンボル長と遅延スプレッドの関係に応じてマルチパスフェージングの影響が発生し位相と振幅に変化が生じ、その瞬時周波数は、図11の典型的波形例に示されるように、マルチパスフェージングの影響を強く受けることになる。従って、外積演算により算出される瞬時周波数は、マルチパスフェージングの変動による影響により不安定になる。この瞬時周波数の変動は、多値数の増加とともに、より深刻な問題を引き起こす。この理由から外積演算等を用いた復調方式やPLLを用いた復調方式は受信品質が劣化する。
更に、並列な相関器やFFT等のフィルタ方式は、中心周波数が既知あるいは所望の特性が確保可能な中心周波数の推定手段が必要となる。これは信号の中心周波数が正しくないと、SNRが劣化するためである。
本発明は、上述した問題を解消するためになされたものであり、劣悪な伝播路における受信品質を改善し、拡張性、高速性及び効率性を向上させることのできるMFSK受信システムを提供することにある。
上記課題を達成するために、本発明に係る主に狭帯域受信を目的としたMFSK受信システムは、受信した信号を検出する信号検出部と、この信号検出部で検出される信号を狭帯域フィルタ群を構成するための1例として高速フーリエ変換することによりMFSK変調された信号を復調するための復調部とを備え、前記復調部は、前記MFSK変調された信号を復調する際に使用される中心周波数を、前記高速フーリエ変換により得られた電力スペクトラムに基づいて推定し、前記中心周波数の推定は、粗い中心周波数の推定と高い精度な中心周波数の推定との2段階で行われることを特徴とする。また、広帯域受信後の復調処理としては適用することもできる。
即ち、狭帯域の複数のフィルタを時間的に並列に並べて受信信号を入力すると、例えば周波数選択性フェージングによる特定のキャリアのSNR(Signal to Noise Ratio)の劣化による受信信号全体のSER(Symbol Error Rate)の悪化を防止することができる。このときの狭帯域のフィルタ群の構成方法として幾つかの方法がある。例えば、DCT(Discrete Cosine Transform)、DST(Discrete Sine Transform)、FFT(Fast Fourier Transform)などがある。必要に応じて、いかような基底ベクトルでもよく、各トーンが分解可能であればよい。また、これらのフィルタ群のフィルタ定数は、信号特性に応じて最適化される。ここでは、1例としてMFSK信号がガウシャンフィルタ等のフィルタがなく直接トーンが出力されている場合について説明する。この場合には、マッチドフィルタによりSNRの最大化を図る。これは、FFTによるフィルタ群を構成すると、矩形窓がマッチドフィルタのフィルタ定数となるからである。
この発明によれば、狭帯域フィルタ群を構成するための1例として高速フーリエ変換を用いてMFSK変調された信号を復調するように構成したので、高速且つ高効率更に低SERのMFSK変調された信号を復調することができる。
以上詳述したように、本発明によれば、狭帯域フィルタ群を構成するための1例として高速フーリエ変換を用いてMFSK変調された信号を復調するように構成したので、高速且つ高効率にMFSK変調された信号を復調することができる。さらに、窓関数(フィルタ定数)をマッチドフィルタとすることによる最大SNR化や狭帯域化によるSNRの改善によるSER特性の改善を図ることができる。
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
本発明の第1の実施の形態に係るMFSK受信システムは、1例としてFFTを適用した狭帯域フィルタ群からなるFFTフィルタバンクを用いて復調を行う。図1は本発明の第1の実施の形態に係るMFSK受信システムの概略の構成を示すブロック図である。このMFSK受信システムは、アンテナ10、周波数変換部20、アナログ−デジタル変換部(以下、「ADC(Analog to Digital Converter)」という)30、復調ブロック40から構成されている。
周波数変換部20は、アンテナ10から受信されたRF信号をIF信号に変換する。この周波数変換部20で得られたIF信号はADC30に送られる。
周波数変換部20は、ADC30の構成に応じて様々な構成形態をとることができる。例えば、ADC30の入力部にアンチエイリアシングフィルタあるいはナイキストフィルタが存在する場合は、周波数変換部20でADC30のサンプリング周波数に対応する周波数まで信号の中心周波数を所望の信号が存在するように調整する必要がある(所謂、オーバサンプリング(ナイキストサンプリングを含む)の系に対応)。
また、ADC30に例えば、アンチエイリアシングフィルタが存在せずに高いキャリア周波数まで直接入力でき、且つADC30のサンプリング周波数等のADC性能が十分で安定度が確認できる場合には、周波数変換部20は、ADC30のサンプリング周波数以下の信号帯域幅になるようなBPF(Band Pass Filter)を組込むのみで済むので、RF系のハードコスト低減が可能である(所謂、アンダーサンプリングの系に対応)。
ADC30は、周波数変換部20から送られてくるアナログのIF信号をデジタル信号に変換する。このADC30から出力されるデジタル信号は、復調ブロック40に送られる。
復調ブロック40は、MFSK変調された信号を復調する。この復調ブロック40は、大別すると、信号検出部50、復調部60及び復号部70から構成されている。なお、復調ブロック40の詳細な構成及び動作は後述する。
信号検出部50は、ADC30からのディジタル信号を入力し、信号の出現及び消滅を自動監視する。そして、信号が出現した場合は、その出現位置(中心周波数と信号出現時刻)を検出し、ディジタル信号と合わせて復調部60に送る。
復調部60は、信号検出部50から送られてくるデジタル信号を、その出現位置に基づいて復調する。復調部60における復調は、1例として高速フーリエ変換(FFT)を用いて行われる。
高速フーリエ変換を用いた復調方法では、FFTの出力である各Bin(周波数スロット)は位相情報と振幅情報を有する。しかし、FFTを用いた復調方式におけるMFSK復調においては、各Bin出力に対応する振幅の絶対値が送信されたシンボルに対応する。また、ドップラシフトによる周波数の不確定要素に関しては、FFTのBin幅をドップラシフトよりも十分広く且つ、送信信号の最大偏移周波数以下であれば同一Bin内のフィルタで対応することができる。一方、振幅の変動は、同一Binに関してもBin間に関しても時々刻々と変化する。しかし、同一の時刻に1シンボルのみが所望波として存在していることから、FFT出力の各Binの振幅の絶対値に対する最大値検出が有効である。
但し、信号検出部50にて信号帯域幅と信号の中心周波数の情報が得られているために、振幅の絶対値の最大値検出のBin方向に制限を与えることが低SNR時のSERの改善に効果がある。
更に、FFT(FFTフィルタバンク)復調方式では、FFT出力の瞬時電力スペクトラムのもつ周波数は、MFSK信号のトーンの最尤推定値と等価である。従って、FFTフィルタバンク方式による復調は、ビット誤り率を最小にすることができる。
ここで、FFTが最尤復調である原理を説明する。サンプリング周波数をTsとし、時刻t=nTsにおいてMFSK信号のトーンが未知でありfk=k/NTsとする。またMFSK信号ベクトル空間Dnは、下記式(1)で表される。
Figure 0004044022
式(1)において、Ωは一様分布する初期位相である。
次に、FFTシンボル内においては周波数がほぼ一定であるという定常性を仮定する。この時に、送信信号Dnに対するN次元受信信号ベクトルを、rn={r n}としたときのMFSKの送信信号のトーンがfkである場合のrnの最尤推定関数は、下記式(2)のようになる。
Figure 0004044022
式(2)において、σはガウス雑音の電力、I0は第1種0次変形ベッセル関数である。式(2)に示されるように受信信号r0のフーリエ変換は最尤推定であることが示されている。
復調部60で復調することにより得られ信号は、復号部70に送られる。
復号部70は、復調部60から送られてくる復調された信号を復号する。この復号部70で復号された信号は、復号データとして外部に送られる。
次に、MFSK復調を行うための復調ブロック40の詳細を説明する。図2は復調ブロック40の具体的な構成を示すブロック図である。この復調ブロック40は、信号検出部50、シンボル同期部51、復調部60、シンボル追随部61、復号部70、遅延バッファ制御部71及び遅延バッファ72から構成されている。
信号検出部50は、遅延バッファ72から送られてくるIQ信号の出現及び消滅を検出する。この信号検出部50における信号検出には幾つかの方法を用いることができる。この場合、送信信号とその送信信号が伝播する伝播路の状況とにより実際に使用する方法を決定することができる。
例えば、遅延スプレッドが小さい環境の場合(シンボル長に比較し遅延スプレッドが小さい場合)は、MFSK変調信号の時間変動は緩やかである。この状況においては、IQ信号の電力の変化を監視することにより信号検出を行うように構成できる。この方法は、上記状況下においては非常に有効である。
この方法の場合、図3に示すように、電力の変化点を検出して信号出現を判断するように構成できる。電力の変化点の検出方法としては、移動平均された電力の前後の比が閾値を超えたら信号出現と判定する相対的な量による検出方法又は移動平均された電力が閾値の電力を超えたか比較し信号出現と判定する絶対的な量による検出方法を採用することができる。また、相対的な量による検出方法と絶対的な量による検出方法を組合せた検出方法を採用することもできる。また、信号の消滅は、信号出現の判定と逆の手順で検出することができる。
遅延スプレッドが大きい環境の場合(シンボル長に比較してフェージング周期が短い場合)は、周波数選択性フェージングにより振幅の変動が発生する。遅延スプレッドが大きい環境の場合は、信号帯域幅を監視して信号出現を判断するように構成できる。信号帯域幅の監視は、図4に示すように、IQ信号を高速フーリエ変換して求められた電力スペクトラムの信号帯域幅を監視することにより行うことができる。この方法では、信号の帯域幅を監視し、帯域幅が変化した時点t1を信号の出現位置と判定し、帯域幅が安定した時点t2を信号出現確定判定位置として取決め、信号の出現位置において信号が確かに出現したことを確認する。更に、信号帯域幅と電力の変化の情報を利用して信号出現を検出するように構成することもできる。
更には、これらの組み合わせとしての信号の電力の変化や帯域幅の変化の両情報から信号の出現と消滅を判定する方法も有効である。
また、復調時に、信号の中心周波数を推定する必要が発生するが、この中心周波数の推定は、電力スペクトラムから推定するように構成できる。電力スペクトラムからの中心周波数の推定は、粗い中心周波数の推定と高精度な中心周波数の推定の2段階に分けて実施される。
粗い中心周波数の推定は、平均電力スペクトラムの最大ピークからXdB低下した両サイドの周波数の算術平均により求めることができる。この時、一般に波形の歪み等により推定精度の追求に限界がある。そこで、引き続いて、高精度な中心周波数の推定が行われる。高精度な中心周波数の推定方法として、次の2つの方法を採用することができる。
第1の高精度な中心周波数の推定方法では、図5(A)に示すように、IQ信号を必要に応じて時間領域で逓倍処理し、その逓倍処理された信号を高速フーリエ変換(FFT)することにより電力スペクトラムを求め、求められた電力スペクトラムの周波数方向の縮退処理を行い、周波数縮退された電力スペクトラムのピークを検出し、周波数オフセットを推定する。
第2の高精度な中心周波数の推定方法では、図5(B)に示すように、IQ信号をディシメーション処理することにより、所謂アンダーサンプリングすることによる一種の周波数変換を利用して周波数の縮退を行わせ、そのアンダーサンプリングされた信号を高速フーリエ変換(FFT)することにより電力スペクトラムを求め、求められた電力スペクトラムのピークを検出し、周波数オフセットを推定する。
信号検出部50は、以上のようにして得られた信号の出現位置(発生及び消滅)、中心周波数及び信号帯域幅を表すデータを遅延バッファ制御部71に送る。また、信号検出部50は、シンボル同期指示をシンボル同期部51に与える。
図2を参照して、シンボル同期部51は、MFSKシンボルのタイムスロットにFFT復調時のFFT窓を合わせるためのシンボル同期化を行う。このシンボル同期化は、次の2つの方法で行うことができる。第1のシンボル同期化方法は、図6に示すように、FFT復調されたIQ信号の位相を監視する方法である。この方法は、MFSKシンボルが存在する区間では位相が一定あるいは1次微分が一定であることを利用し、この位相が一定である関係を監視することによりシンボル同期化を行う。
第2のシンボル同期化方法は、図7に示すように、FFT復調されたIQ信号の振幅を監視する方法である。一般に最適なシンボルタイミングの対数尤度関数は、1シンボル内で平均的に最大振幅となるタイミングにおいて最大値となる。この考え方をシンボルタイミング同期のアルゴリズムとして適用したものがMAM(Maximum Amplitude Method)である。ここでは、FFT出力の振幅の絶対値をA(n,m)とする。但し、nはタイムスロットの番号、mは周波数スロットの番号とする。このときに、FFT復調に適用したMAMは式(3)のA(l)が得られる。
Figure 0004044022
但し、NはMFSK信号のシンボル数を示す。このときのA(l)が最大となるlが求めるシンボル同期情報となる。
また、これとは別の視点で、平均的な振幅が最大である点は、A(l)の極大点あるいは極小点に相当するので、これらの点における平均微分係数は0となる。WDM(Waveform Differential Method)は、この特徴を利用したもので、この方法もある。
このシンボル同期は、フルサンプリングレート又はハーフサンプリングレートと高いサンプリングレートとで実施することにより、シンボル同期の精度を確保することができる。
シンボル同期部51は、以上説明した方法でシンボル同期を行うことにより得られたシンボル位置を表すデータを遅延バッファ制御部71に送る。また、シンボル同期部51は、シンボル同期が確立すると復調指示を復調ブロック40に与える。
復調部60は、シンボル同期部51からの復調指示に応答して、シンボルレートの間隔で高速フーリエ変換を実行し、FFT復調を実施する。この場合のFFT演算量は、シンボル同期部51のそれと比較して最大1/(シンボルレート)になる。この高速フーリエ変換により得られるIQ信号の振幅をBin(周波数スロット)方向に検索し、その最大値を送信シンボルとすることができる。MFSK信号の場合は、各Binの振幅の絶対値を監視し、各Binの振幅の出現パターンを送信シンボルのパターンとすることができる。
この復調部60は、窓関数等のフィルタ定数の変更により他の変調がなされた信号に容易に拡張することが可能である。例えば、MPSK(Multilevel Phase Shift Keying/M-ary Phase Shift Keying)変調された信号の復調は、高速フーリエ変換の出力の位相を追いかけることにより行うことができる。MQAM(Multiple Quadrature Amplitude Modulation/M-ary Quadrature Amplitude Modulation)変調された信号の復調は、高速フーリエ変換の出力の位相と振幅を追いかけることにより行うことができる。復調部60で復調された信号は、シンボル追随部61及び復号部70に送られる。
シンボル追随部61は、復調部60で得られるIQ信号の振幅に関するBin方向の最大値以外の漏れ成分を監視する。このシンボル追随部61におけるシンボル追随の方法を図8に示す。
シンボル同期がとれ且つ、周波数の推定が完全であり同調している場合は、図8(A)に示すように、タイムスロットを固定した時に、Bin方向にシンボルが出現するのは1スロットのみである。一方、シンボル同期が外れている場合は、図8(B)に示すように、タイムスロットを固定した時に、シンボルがBin方向に2スロットにわたって出現している。なお、図8(B)ではシンボル同期が外れている場合の例としてシンボル同期が遅れている場合の例を示しているがシンボル同期が進んでいる場合も同様である。この2スロットのうち、ハッチングで示すスロットが対象タイムスロットにおけるシンボル成分であり、塗りつぶしで示すスロットが、1シンボル前のシンボル成分である。
上記スロットを監視することによりシンボル同期の追随が可能である。この際、同期外れか否かの判断基準として、対象タイムスロット成分と前タイムスロット漏れ成分の比がXdBを超えたか否かを用い、超えた場合に同期外れと判断するように構成できる。この同期外れを判断するための閾値XdBは、遅延スプレッドに起因する周波数選択性フェージングによるシンボル間のレベル差を考慮したものになる。なお、伝播路に適用した閾値XdBの最適化手法を適用することもできる。
このシンボル追随部61でシンボル同期の遅れが検出された場合には、次のFFTのシンボルを進める処理が、以下の手順(1)〜(3)で行われる。
(1)シンボルを進める量Xサンプルを決める。この進める量Xは固定で与える方法とアダプティブに与える方法がある。
(2)次のシンボルの同期位置をXサンプル進める。
(3)シンボルの同期外れを監視し、同期が戻っていなければ(1)へ戻る。
このシンボル同期遅れを調整するためのXサンプル補正量の決定手順としては、極力早くシンボル同期が復旧し、且つ、調整後に、逆にシンボル同期が悪化しないようなアルゴリズム、例えば、対象タイムスロット成分と前タイムスロットの漏れ成分の比を変数とした最大傾斜法を用いることができる。なお、シンボル同期進みを調整するためのXサンプル補正量の決定手順も上記と同様の方法で実現できる。このシンボル追随部61は、上記手順により得られたシンボル位置補正を表すデータを遅延バッファ制御部71に送る。
なお、復調部60は、硬判定(Hard Decision)を適用しているが、これに限定されず、条件次第では軟判定(Soft Decision)の適用も可能である。
復号部70は、変調時に適用された符号化方法に対応した復号方法を適用して、復調部60から送られてくる復調された信号を復号する。この復号部70で復号された信号は、復号データとして外部に送られる。例えば畳み込み符号ならば、Viterbi復号である。
遅延バッファ制御部71は、信号検出部50から送られてくる信号の出現位置(発生及び消滅)、中心周波数及び信号帯域幅を表すデータ、シンボル同期部51から送られてくるシンボル位置を表すデータ、並びに、シンボル追随部61から送られてくるシンボル位置補正を表すデータに基づいて、遅延バッファ72の中の読み出し位置を指示する制御信号を生成し、遅延バッファ72に送る。
遅延バッファ72は、ADC30から順次送られてくるデジタル信号(IQ信号)をバッファリングする。この遅延バッファ72は、タイミングを調整するために使用される。例えば、信号検出部50にて検出された時刻の情報は、検出完了時点では過去の情報であり、この情報を検出完了時点で引出すために遅延バッファ72が使用される。遅延バッファ72の内容は、遅延バッファ制御部71からの制御信号に応じて読み出され、IQ信号として信号検出部50、シンボル同期部51及び復調部60に送られる。
以上のように構成される復調ブロック40の動作を説明する。復調ブロック40を構成する各部は、時系列に相互に関係して動作する。即ち、まず、信号検出部50は信号の有無を検出する。次に、信号検出部50にて信号が出現したことが確定した時点で、シンボル同期部51は、復調処理を実施するためのMFSKシンボルの送信シンボルに同期をかける。
このシンボル同期部51にてシンボルの同期の確立が確定した後に、復調部60にてMFSK信号を復調(FFTフィルタバンクを適用した復調)する処理が実施される。また、シンボル追随部61は、復調部60における復調結果をモニタし、シンボル同期外れの有無を常に監視している。このシンボル追随部61にてMFSKシンボルのシンボル長変動やサンプリング周波数とシンボル長とが非整数倍関係になることに起因するシンボル同期位置のシフトによってシンボルの同期外れが起こるのを防止する。
復号部70は、このようにして復調部60で復調された結果に対し復号処理を実施する。この復号部70による復号結果が復調ブロック40の最終出力になる。
以上説明したように、本発明の第1の実施の形態によれば、狭帯域フィルタ群を構成するために1例としてFFTによる復調を基本原理とすることにより、遅延スプレッドの劣悪な環境化における周波数選択性フェージングによる相関帯域幅を超える信号の劣化を伴うような環境においても狭帯域化に伴うSNRの改善およびマッチドフィルタによるSNRの最大化により、受信品質(SER特性からみた受信品質)を改善することができる。一方、相関帯域幅内の信号であってもFFTによる復調は、他の方法に比較し、高速且つ高効率さらに、SNRの改善により受信品質(SER特性からみた受信品質)を改善できる。
なお、上記第1の実施の形態では、MFSK変調に対するMFSKの復調を行う受信システムについて説明したが、FFT出力は、位相と振幅の複素信号が得られるためにMPSK及びMQAMの復調にも柔軟に拡張できる。
また、FFTによる復調と瞬時周波数を取出す外積演算とを比較するとFFTのポイント数に対応するSNR(信号対雑音比)の改善効果も期待できる。
本発明の第2の実施の形態に係るMFSK受信システムは、変調形フィルタバンクを用いて復調を行う。変調型形フィルタバンクとは、基底となるLPF(Low Pass Filter)を角周波数ωを有するejωtで変調したインパルス応答の群により構成されるフィルタである。ここでは、MFSKのトーン数に対応した数だけのフィルタの組が存在する。ここでは、信号を複素数として扱ったが、信号が実成分のみの場合も周波数成分の正負の区別がないことを除けば同様に扱うことができる。
図9は、本発明の第2の実施の形態に係るMFSK受信システムの概略の構成を示すブロック図である。このMFSK受信システムは、主に広帯域受信を目的としたものであり、ADC100、フィルタバンク110、信号検出部120、セレクタ130、信号確認部140、周波数オフセット検出部150、周波数オフセット補正部160及び復調部170から構成されている。
ADC100は、図示しないアンテナから受信された信号をデジタル信号に変換してフィルタバンク110に送る。フィルタバンク110は、ADC100から送られてくるデジタル信号をFFTすることにより帯域分割する。
このようにFFTによるフィルタバンク110を用いて帯域分割を行うことにより、効率的且つ高速な帯域分割が可能になっている。
フィルタバンク110で帯域分割された各Binの出力は、サブチャネル信号として信号検出部120及びセレクタ130に送られる。信号検出部120は、各サブチャネル信号に対応した高速フーリエ変換(FFT)部121及び各FFT部121からの信号をモニタする帯域モニタ部122から構成されている。
FFT部121の各々は、各サブチャネル信号を高速フーリエ変換して電力スペクトラムを求め、帯域モニタ部122に送る。帯域モニタ部122は各FFT部121からの電力スペクトラムに基づいて信号の出現と消滅を判定する。この帯域モニタ部122での判定結果は、セレクタ130に送られる。
セレクタ130は、フィルタバンク110から送られてくる複数のサブチャネル信号の中から、帯域モニタ部122によって信号の出現が判定されたサブチャネル信号を選択して出力する。このセレクタ130から出力されるサブチャネル信号は、信号確認部140、周波数オフセット検出部150及び周波数オフセット補正部160に送られる。
信号確認部140は、セレクタ130から出力される、信号の出現が判定されたサブチャネル信号を対象にして信号確認を実施する。所望の信号確認(verify)は、次のようにして行われる。即ち、受信信号に対し、外積検波を施し、絶対値あるいは外積検波を施し、その差分の絶対値の演算の後にスペクトルを観測すると、クロック周波数成分が抽出される。このクロック周波数成分が所望波のクロックレートと合致するか否かを検査し、観測対象信号の確認が行われる。この信号確認部140は、所望波がMFSKであれば、シンボルレート、変調多値数、変調指数、帯域幅等を自動検出する。
周波数オフセット検出部150は、信号確認部140で自動検出された諸元に基づき自動識別されたサブチャネル信号を対象に周波数オフセット検出(Coarse)を行う。周波数オフセット検出部150は、逓倍部(X2)152及び高速フーリエ変換(FFT)部152を含む。この周波数オフセット検出部150における周波数オフセット検出は次のようにして行われる。即ち、受け取ったサブチャネル信号に逓倍部151で逓倍演算を施し、FFT部152で高速フーリエ変換し、この高速フーリエ変換によって得られた波形の周波数応答を走査することによって、周波数誤差の粗検出を行う。逓倍演算を行うことによって、変調指数が2倍になるため、中心周波数の検出が容易になる。この周波数オフセット検出部150で粗検出された周波数オフセット(Coarse)は、周波数オフセット補正部160に送られる。
周波数オフセット補正部160は、セレクタ130から送られてくるサブチャネル信号に周波数オフセット検出部150から送られてくる周波数オフセットをミキシングする。このミキシングされたサブチャネル信号をベースバンド信号と呼ぶ。また、周波数オフセット補正部160は、後述する復調部170からフィードバックされる信号(Fine)に従って、ミキシングされたサブチャネル信号の周波数誤差を補正する。この周波数オフセット補正部160で補正がなされたサブチャネル信号は、復調部170に送られる。
復調部170は、変調形フィルタバンク171、最大開口検出部172、平均化部173、振幅補正部174、位相補正部175、最大値検出部176から構成されている。
変調形フィルタバンク171は、周波数オフセット補正部160から送られてくるベースバンド信号を入力し、MFSKの各トーンを分離する。変調形フィルタバンク171は、例えば複数のFIR(Finite Impulse Filter)フィルタから構成されており、DCを中心としたLPFを複素変調されたフィルタが時間的に並列に並べられて構成されている。この変調形フィルタバンク171の出力は、最大開口検出部172に送られる。
最大開口検出部172は、変調形フィルタバンク171の最大開口検出を行い、シンボル同期をとる。この最大開口検出部172におけるサンプリング位相検出では、MAM(Maximum Amplitude Method)と同様のアプローチによって、最適識別位相を検出するように構成できる。この最大開口検出部172の出力は、平均化部173に送られる。
平均化部173は、最大開口検出部172の出力を平均化して振幅補正部174に送る。
振幅補正部174は、最大値選択前のレベル補正として平均化部173の出力の振幅を補正し、位相補正部175に送る。先に述べた周波数選択性フェージングに起因し、周波数帯域(フィルタ出力)毎にレベル差が生じる。振幅補正部174は、このレベル差を解消するために、フィルタ出力毎に平均電力を求め、周波数帯域毎のレベルを補正する。
位相補正部175は、最大値選択前のレベル補正として振幅補正部174の出力の位相を補正し、最大値検出部176に送る。各フィルタ出力に対して位相面補正を行うことで、位相同期が実現される。これによって、MFSKに対する同期検波が可能な構成になっている。通常時、受信は、非同期検波時によって行われる。即ち、最大値検出部176の前段で絶対値演算が行われる。
また、位相補正部175は、各フィルタ出力に対して行われる位相面補正の長区間平均から、位相変動量の傾き(時間偏移量)を算出し、この算出結果を周波数オフセット(Fine)として周波数オフセット補正部160にフィードバックする。これにより、ベースバンド信号の周波数誤差の補正が行われる。また、振幅補正部174及び位相補正部175で、振幅補正及び位相補正がそれぞれ施されることにより受信性能が改善される。
最大値検出部176は、位相補正部175の出力の最大値検出を実施し、送信シンボルを推定する。ここでは、複素信号に関して記述しているが、実信号(リアル信号のみ)においても、複素フィルタをリアル成分のみもつフィルタに置きかえることにより同様に実現できる。
以上説明したように、本発明の第2の実施の形態によれば、受信した信号を高速フーリエ変換することにより帯域分割してサブチャネル信号を生成し、この生成されたサブチャネル信号に基づき復調を行うように構成したので、高速且つ高効率にサブチャネル信号を得ることができる。
本発明は、復調装置や受信装置に適用可能である。
本発明の第1の実施の形態に係るMFSK受信システムの概略的な構成を示すブロック図である。 図1に示した復調ブロックの具体的な構成を示すブロック図である。 図2に示した信号検出部において、移動平均値を用いて信号を検出する方法を説明するための図である。 図2に示した信号検出部において、電力の変化を用いて信号を検出する方法を説明するための図である。 図2に示した信号検出部において、中心周波数を推定する方法を説明するための図である。 図2に示したシンボル同期部における第1のシンボル同期化方法を説明するための図である。 図2に示したシンボル同期部における第2のシンボル同期化方法を説明するための図である。 図2に示したシンボル追随部におけるシンボル追随方法を説明するための図である。 本発明の第2の実施の形態に係るMFSK受信システムの構成を示すブロック図である。 フェージングによるIQコンスタレーションの変化を示す図である。 MFSKのフェージング劣化後の典型的な波形例を示す図である。
符号の説明
10 アンテナ
20 周波数変換部
30 ADC(アナログ−デジタル変換部)
40 復調ブロック
50 信号検出部
51 シンボル同期部
60 復調部
61 シンボル追随部
70 復号部
71 遅延バッファ制御部
72 遅延バッファ
100 ADC(アナログ−デジタル変換部)
110 フィルタバンク
120 信号検出部
121 高速フーリエ変換(FFT)部
122 帯域モニタ部
130 セレクタ
140 信号確認部
150 周波数オフセット検出部
151 逓倍部(X2)
152 高速フーリエ変換(FFT)部
160 周波数オフセット補正部
170 復調部
171 変調形フィルタバンク
172 最大開口検出部
173 平均化部
174 振幅補正部
175 位相補正部
176 最大値検出部

Claims (6)

  1. 受信した信号を検出する信号検出部と、
    前記信号検出部で検出される信号を高速フーリエ変換することによりMFSK(Multilevel Frequency Shift Keying/M-ary Frequency Shift Keying)変調された信号を復調する復調部と、
    を備え
    前記復調部は、
    前記MFSK変調された信号を復調する際に使用される中心周波数を、前記高速フーリエ変換により得られた電力スペクトラムに基づいて推定し、前記中心周波数の推定は、粗い中心周波数の推定と高い精度な中心周波数の推定との2段階で行われることを特徴とするMFSK受信システム。
  2. 前記信号検出部は、
    前記受信した信号の時間・周波数軸方向に対する電力の変化に基づいて信号の出現を検出することを特徴とする請求項1記載のMFSK受信システム。
  3. 前記信号検出部は、
    前記受信した信号の帯域幅に基づいて信号の出現あるいは消滅を検出することを特徴とする請求項1記載のMFSK受信システム。
  4. 前記復調部は、前記高速フーリエ変換により得られる位相及び振幅の情報に基づいて、更にMPSK(Multilevel Phase Shift Keying/M-ary Phase Shift Keying)変調及びMQAM(Multilevel Quadrature Amplitude Modulation/M-ary Quadrature Amplitude Modulation)変調を含むデジタル変調された信号を復調することを特徴とする請求項1記載のMFSK受信システム。
  5. MFSKの送信シンボルに同期をかけるシンボル同期部を更に備え、
    前記復調部は、前記シンボル同期部による同期が確立した後に復調を実施することを特徴とする請求項1記載のMFSK受信システム。
  6. 前記復調部における復調結果をモニタし、シンボルの同期外れを修正するシンボル追随部を更に備えたことを特徴とする請求項1記載のMFSK受信システム。
JP2003317336A 2003-09-09 2003-09-09 Mfsk受信システム Expired - Fee Related JP4044022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317336A JP4044022B2 (ja) 2003-09-09 2003-09-09 Mfsk受信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317336A JP4044022B2 (ja) 2003-09-09 2003-09-09 Mfsk受信システム

Publications (2)

Publication Number Publication Date
JP2005086552A JP2005086552A (ja) 2005-03-31
JP4044022B2 true JP4044022B2 (ja) 2008-02-06

Family

ID=34416950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317336A Expired - Fee Related JP4044022B2 (ja) 2003-09-09 2003-09-09 Mfsk受信システム

Country Status (1)

Country Link
JP (1) JP4044022B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2290749C1 (ru) * 2005-06-15 2006-12-27 Игорь Борисович Дунаев Способ демодуляции сигнала многопозиционной частотной манипуляции с эквидистантным разнесением по частоте, демодулятор такого сигнала и машиночитаемый носитель
JP5988863B2 (ja) * 2012-12-27 2016-09-07 パナソニック株式会社 受信装置及び復調方法
JP6270107B2 (ja) * 2013-09-30 2018-01-31 日本信号株式会社 自動列車制御装置
JP6229518B2 (ja) * 2014-02-06 2017-11-15 国立研究開発法人産業技術総合研究所 無線受信装置及び無線受信方法
JP6382130B2 (ja) * 2014-02-26 2018-08-29 国立研究開発法人産業技術総合研究所 無線受信装置及び無線受信方法
JP6298729B2 (ja) * 2014-06-30 2018-03-20 日本信号株式会社 列車制御装置

Also Published As

Publication number Publication date
JP2005086552A (ja) 2005-03-31

Similar Documents

Publication Publication Date Title
KR100461209B1 (ko) 디지털오디오방송용송신시스템
TWI336992B (en) Apparatus and method for sampling frequency offset estimation and correction in a wireless communication system
US6590860B1 (en) Receiving device and signal receiving method
US20030043947A1 (en) GFSK receiver
US9042471B2 (en) Receiving device, signal processing device, and signal processing method
JP2010521939A (ja) 複数のフィルタバンクを用いる多重搬送波受信機のロバストな同期方法及びそれに対応する受信機とトランシーバ
EP0736986B1 (en) Data reception apparatus and method thereof which use reference data inserted into a transmission signal in order to estimate the transmission channel quality
EP1195960B1 (en) Demapping in a multicarrier receiver
CN104272692A (zh) 载波再生装置和载波再生方法
KR20010053243A (ko) 주파수 동기 신호의 위치 결정 방법, 장치 및 시스템
US20050008101A1 (en) Computationally efficient demodulation for differential phase shift keying
JP2008530951A (ja) 予め符号化された部分応答信号用の復調器および受信器
EP2615770B1 (en) Fast acquisition of frame timing and frequency
CN101766009A (zh) 用于同步接收机的方法和设备
JP4044022B2 (ja) Mfsk受信システム
JP4163018B2 (ja) 伝送路特性推定装置および伝送路特性推定方法、無線復調装置、コンピュータプログラム
JP4295012B2 (ja) 半導体集積回路及び復調装置
KR100778919B1 (ko) 패턴 시퀀스의 동기화
JP4809099B2 (ja) 受信回路及び受信方法
US7583743B2 (en) Method of differential-phase/absolute-amplitude QAM
CN113115430A (zh) 一种高速突发数字解调系统
JP2005260331A (ja) Ofdm受信装置
JP2004282613A (ja) 等化装置およびこれを有する受信装置
CN110535620B (zh) 一种基于判决反馈的信号检测与同步方法
JP3973332B2 (ja) ディジタル変復調の同期方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees