JP4013595B2 - Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement - Google Patents

Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement Download PDF

Info

Publication number
JP4013595B2
JP4013595B2 JP2002059050A JP2002059050A JP4013595B2 JP 4013595 B2 JP4013595 B2 JP 4013595B2 JP 2002059050 A JP2002059050 A JP 2002059050A JP 2002059050 A JP2002059050 A JP 2002059050A JP 4013595 B2 JP4013595 B2 JP 4013595B2
Authority
JP
Japan
Prior art keywords
insulation resistance
electronic component
limiting resistor
current limiting
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002059050A
Other languages
Japanese (ja)
Other versions
JP2003255000A (en
Inventor
秀樹 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002059050A priority Critical patent/JP4013595B2/en
Publication of JP2003255000A publication Critical patent/JP2003255000A/en
Application granted granted Critical
Publication of JP4013595B2 publication Critical patent/JP4013595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容量式接触検査を伴う電子部品の絶縁抵抗測定を行う装置及び該絶縁抵抗測定装置に用いられる過電流保護回路に関し、より詳細には、微小な静電容量をもつ誘電体や圧電体などを用いた電子部品の絶縁抵抗測定に用いられる、絶縁抵抗測定装置及び過電流保護回路に関する。
【0002】
【従来の技術】
従来、積層コンデンサや圧電共振子などの電子部品の特性の選別に際し、電子部品の絶縁抵抗が測定されている。ところで、電子部品の絶縁抵抗は一般に非常に大きいため、測定端子と電子部品の電極との接触不良があった場合の測定値と、接触が正常な場合の測定値とを区別することが難しかった。そのため、従来、図2に示す接触検査を伴う絶縁抵抗測定装置が用いられていた。
【0003】
図2に示すように、接触検査用電源として正弦波発生器51と、絶縁抵抗測定用の直流電源52とが備えられている。正弦波発生器51及び直流測定電源52の一端は、接地電位に接続されており、他端がスイッチ53の第1,第2の端子にそれぞれ接続されている。スイッチ53は、正弦波発生器51または直流測定電源52を用い得るように切替られる。
【0004】
スイッチ53の第3の端子は、電流制限抵抗54に一端が接続されている。電流制限抵抗54の他端は、接触端子55に接続されている。接触端子55は、測定対象である電子部品56の電極に接触される。また、測定対象である電子部品56の他の電極に、測定端子57が接続される。測定端子57の後段には、絶縁抵抗測定回路58及び接触検査測定回路59が接続されている。
【0005】
絶縁抵抗の測定に際しては、まず、電子部品56の一対の電極に、測定端子55,57が接触される。この状態において、測定端子55,57が電子部品の電極に正しく接触しているか否かを確認するために、スイッチ53が正弦波発生器51側に切替られる。このようにして、交流信号が電流制限抵抗4を介して電子部品56に流れ、電子部品56を流れた交流信号が、接触検査測定回路59で測定される。この信号が所定の値以下である場合には、接触不良と判断される。
【0006】
接触が良好と判断された場合には、次にスイッチ53が直流電流52側へ切替られる。直流電流が電流制限抵抗4により制限され、しかる後電子部品56に流される。そして、電子部品56に流れた電流が、絶縁抵抗測定回路58により測定され、絶縁抵抗値が求められる。
【0007】
【発明が解決しようとする課題】
従来の絶縁抵抗測定装置では、上記のように絶縁抵抗の測定に際し、電流制限抵抗54により直流信号の電流値が制限されている。しかしながら、測定対象である電子部品が誘電体や圧電体セラミックスからなる場合には比較的大きな電流制限抵抗54が用いられる。電流制限抵抗54の抵抗値が大きいと、微小な静電容量を有する誘電体や圧電体やセラミックスでは、接触検査に際しての交流信号が極めて小さくなり、接触検査を行うことができないことがあった。
【0008】
他方、接触検査を可能とするために、電流制限抵抗54の抵抗値を小さくした場合、あるいは電流制限抵抗54を用いない場合には、機械的な電流遮断回路を接続する必要があった。このような電流遮断回路を用いた場合、大きな電流が流れて電流遮断回路が開放された場合、復帰に長い時間を必要とする。従って、大量の電子部品の絶縁抵抗の測定を高速で行うことができなかった。
【0009】
本発明の目的は、上述した従来技術の欠点を解消し、容量測定式接触検査を伴う絶縁抵抗測定装置であって、微小な静電容量の電子部品を測定する場合であっても、確実に接触検査を行うことができるだけでなく、絶縁抵抗の測定の高速化を図り得る電子部品の絶縁抵抗測定装置並びに絶縁抵抗測定用過電流保護回路を提供することにある。
【0010】
【課題を解決するための手段】
本願の第1の発明は、電子部品の電極に測定端子を接触させて、容量測定式接触検査及び絶縁抵抗の測定を行う電子部品の絶縁抵抗測定装置であって、絶縁抵抗及び容量測定式接触検査を行う絶縁抵抗測定回路と、前記電子部品と絶縁抵抗測定用電源及び接触検査用電源との間に接続された電流制限抵抗と、前記電流制限抵抗に並列に接続されたコンデンサとを備えることを特徴とする。第1の発明のある特定の局面では、上記電流制限抵抗として、前記電子部品と絶縁抵抗測定用電源及び接触検査用電源との間に1つの電流制限抵抗が接続されている。
【0011】
第2の発明は、電子部品の絶縁抵抗測定用過電流保護回路であって、電源と、測定対象の電子部品との間に接続される電流制限抵抗と、前記電流制限抵抗に並列に接続されたコンデンサとを備えることを特徴とする。第2の発明のある特定の局面では、上記電流制限抵抗として、電源と、測定対象の電子部品との間に1つの電流制限抵抗が接続されている。
【0012】
【発明の実施の形態】
以下、本発明の具体的な実施例を説明することにより、本発明を明らかにする。
【0013】
図1は、本発明の一実施例に係る電子部品の絶縁抵抗測定装置を説明するための回路図である。図1に示すように、容量測定式接触検査を行うための接触検査用電源として、正弦波発生器1と、絶縁抵抗の測定に際して用いられる直流電源2とが備えられている。正弦波発生器1及び直流電源2の一端はアース電位に接続されており、他端は、それぞれ、スイッチ3の第1,第2の端子3a,3bに接続されている。
【0014】
スイッチ3は、第1〜第3の端子3a〜3cを有し、第1の端子3aと第3の端子3cが接続されている状態と、第2の端子3bと、第3の端子3cとが接続されている状態とで切替られるように構成されている。
【0015】
スイッチ3の第3の端子3cには、電流制限抵抗4の一端が接続されている。電流制限抵抗4の他端は、測定端子5に接続されている。
そして、本実施例では、上記電流制限抵抗4に並列に、コンデンサ6が接続されている。
【0016】
測定端子5は、測定対象としての電子部品7の電極に接触されるように構成されている。また、電子部品7の他の電極に第2の測定端子8が接触されるように構成されている。測定端子8の後段には、絶縁抵抗検出回路9及び接触状態検出回路10が接続されている。
【0017】
本実施例の絶縁抵抗測定装置を用いた電子部品7の絶縁抵抗の測定方法を説明する。
まず、測定端子5,8を電子部品7の一対の電極に接触させる。この状態で、スイッチ3を第1,第3の端子3a,3cが接続される状態に切り替える。その結果、交流電流が電流制限抵抗4及びコンデンサ6が並列接続されている部分を通り、電子部品7に流れる。電子部品7に流れた電流が接触状態検出回路10により検出され、接触状態が正常か否かが判断される。この場合、電流制限抵抗4に並列にコンデンサ6が接続されているため、電流制限抵抗4の抵抗値の大きさに左右されることなく、接触検査に必要な交流信号が電子部品7に流れることになる。従って、確実に測定端子5,8の接触状態を検出することができる。
【0018】
次に、接触状態が正常である場合に、スイッチ3が、第2の端子3bと第3の端子3cとが接続される状態に切替えられる。このようにして、直流電源2からの直流電流が電子部品7に流される。この場合、電流制限抵抗4の抵抗値により、電流が制限され、従って、過電流保護が果たされた状態で電子部品7に直流が流れる。そして、この直流信号が絶縁抵抗測定回路9により検出され、該電流値の大きさに応じて絶縁抵抗が検出される。
【0019】
上記のように、本実施例の絶縁抵抗測定装置では、電流制限抵抗4と、電流制限抵抗4に並列に接続されたコンデンサ6からなる過電流保護回路が設けられており、接触検査に際しては、コンデンサ6が設けられているため、電流制限抵抗4の大きさを大きくした場合であっても、確実に接触検査を行うことができる。すなわち、電子部品7として、静電容量が非常に小さい誘電体や圧電体セラミックスからなるものを用いた場合であっても、接触検査に必要な交流信号を電子部品7に確実に流すことができる。
【0020】
また、本実施例では、上記電流制限抵抗4と、電流制限抵抗4に並列に接続されたコンデンサ6とにより過電流保護回路が構成されている。従来の電流遮断回路を用いた場合には、電子部品において短絡不良が生じている場合には、復帰に時間を必要としたのに対し、本実施例では、このような遮断回路を必要としないため、測定の高速化を図ることができる。
【0021】
もっとも、本実施例においても、上記電流制限抵抗4及びコンデンサ6が並列接続されている過電流保護回路に加えて、従来の電流遮断回路をさらに接続してもよい。その場合であっても、電流制限抵抗4及びコンデンサ6からなる過電流保護回路が備えられているため、電流遮断回路をさほど動作させる必要がない。従って、やはり、測定の高速化を図ることができる。
【0022】
なお、本発明は、上記のように微小な静電容量を有する誘電体や圧電体を用いた電子部品の絶縁抵抗の測定に好適に用いられるが、必ずしも、微小な静電容量を有する電子部品に限らず、様々な電子部品の絶縁抵抗の測定に用いることができる。
【0023】
【発明の効果】
第1の発明に係る絶縁抵抗測定装置では、接触検査用電源及び絶縁抵抗測定用電源と測定端子との間に、電流制限抵抗と電流制限抵抗に並列に接続されたコンデンサとからなる第2の発明に係る過電流保護回路が設けられている。従って、電流制限抵抗に並列にコンデンサが接続されているため、電流制限抵抗の大きさに左右されることなく、十分な大きさの交流信号を測定対象である電子部品に流すことができ、接触検査を確実に行うことが可能となる。よって、電子部品の静電容量が非常に小さい場合であっても、すなわち電流制限抵抗の抵抗値が比較的大きくした場合であっても、接触検査を確実に行うことができる。
【0024】
よって、本発明によれば、接触検査を伴う絶縁抵抗の測定に際し、より高精度に絶縁抵抗を測定することができる。また、機械的な電流遮断回路を必ずしも必要としないため、絶縁抵抗測定の高速化を図ることも可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る絶縁抵抗測定装置を説明するための回路図。
【図2】従来の絶縁抵抗測定装置を説明するための回路図。
【符号の説明】
1…接触検査用電源としての正弦波発生器
2…絶縁抵抗測定用電源としての直流電源
3…スイッチ
4…電流制限抵抗
5…接触端子
6…コンデンサ
7…測定対象である電子部品
8…測定端子
9…絶縁抵抗測定回路
10…接触状態検出回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring an insulation resistance of an electronic component accompanied by a capacitive contact inspection and an overcurrent protection circuit used in the insulation resistance measuring apparatus. More specifically, the present invention relates to a dielectric or piezoelectric having a minute capacitance. The present invention relates to an insulation resistance measuring device and an overcurrent protection circuit used for measuring an insulation resistance of an electronic component using a body.
[0002]
[Prior art]
Conventionally, when selecting characteristics of electronic components such as multilayer capacitors and piezoelectric resonators, the insulation resistance of the electronic components has been measured. By the way, since the insulation resistance of electronic parts is generally very large, it is difficult to distinguish between the measured value when there is a poor contact between the measurement terminal and the electrode of the electronic part and the measured value when the contact is normal. . Therefore, conventionally, an insulation resistance measuring apparatus with a contact inspection shown in FIG. 2 has been used.
[0003]
As shown in FIG. 2, a sine wave generator 51 and a DC power source 52 for measuring insulation resistance are provided as power sources for contact inspection. One end of the sine wave generator 51 and the DC measurement power source 52 is connected to the ground potential, and the other end is connected to the first and second terminals of the switch 53. The switch 53 is switched so that the sine wave generator 51 or the DC measurement power supply 52 can be used.
[0004]
One end of the third terminal of the switch 53 is connected to the current limiting resistor 54. The other end of the current limiting resistor 54 is connected to the contact terminal 55. The contact terminal 55 is in contact with the electrode of the electronic component 56 that is the measurement target. In addition, the measurement terminal 57 is connected to the other electrode of the electronic component 56 to be measured. An insulation resistance measurement circuit 58 and a contact inspection measurement circuit 59 are connected to the subsequent stage of the measurement terminal 57.
[0005]
In measuring the insulation resistance, first, the measurement terminals 55 and 57 are brought into contact with the pair of electrodes of the electronic component 56. In this state, the switch 53 is switched to the sine wave generator 51 side in order to confirm whether or not the measurement terminals 55 and 57 are correctly in contact with the electrodes of the electronic component. In this way, the AC signal flows through the electronic component 56 through the current limiting resistor 5 4, the AC signal flowing through the electronic component 56 is measured by contacting test measuring circuit 59. If this signal is less than or equal to a predetermined value, it is determined that there is a contact failure.
[0006]
If it is determined that the contact is good, the switch 53 is then switched to the direct current 52 side. The direct current is limited by the current limiting resistor 4 and then flows to the electronic component 56. Then, the current flowing through the electronic component 56 is measured by the insulation resistance measurement circuit 58, and the insulation resistance value is obtained.
[0007]
[Problems to be solved by the invention]
In the conventional insulation resistance measuring apparatus, the current value of the DC signal is limited by the current limiting resistor 54 when measuring the insulation resistance as described above. However, when the electronic component to be measured is made of a dielectric or piezoelectric ceramic, a relatively large current limiting resistor 54 is used. When the resistance value of the current limiting resistor 54 is large, the alternating current signal at the time of contact inspection becomes extremely small in a dielectric material, piezoelectric material, or ceramics having a minute capacitance, and the contact inspection may not be performed.
[0008]
On the other hand, when the resistance value of the current limiting resistor 54 is reduced or when the current limiting resistor 54 is not used in order to enable the contact inspection, it is necessary to connect a mechanical current cutoff circuit. When such a current interrupting circuit is used, when a large current flows and the current interrupting circuit is opened, a long time is required for recovery. Therefore, it was impossible to measure the insulation resistance of a large number of electronic components at high speed.
[0009]
An object of the present invention is an insulation resistance measuring device that eliminates the above-mentioned drawbacks of the prior art and is accompanied by a capacitance-measuring contact inspection, and even when measuring an electronic component with a minute capacitance, An object of the present invention is to provide an insulation resistance measuring device for an electronic component and an overcurrent protection circuit for measuring insulation resistance, which can perform not only contact inspection but also increase the speed of measurement of insulation resistance.
[0010]
[Means for Solving the Problems]
1st invention of this application is the insulation resistance measuring apparatus of the electronic component which makes a measurement terminal contact the electrode of an electronic component, and measures a capacitance measurement type contact inspection and an insulation resistance, Comprising: Insulation resistance and a capacitance measurement type contact An insulation resistance measuring circuit for performing inspection, a current limiting resistor connected between the electronic component, the insulation resistance measuring power source and the contact inspection power source, and a capacitor connected in parallel to the current limiting resistor. It is characterized by. In a specific aspect of the first invention, as the current limiting resistor, one current limiting resistor is connected between the electronic component, an insulation resistance measuring power source, and a contact inspection power source.
[0011]
A second invention is an overcurrent protection circuit for measuring an insulation resistance of an electronic component, and is connected in parallel to a current limiting resistor connected between a power source and an electronic component to be measured, and the current limiting resistor. And a capacitor. In a specific aspect of the second invention, as the current limiting resistor, one current limiting resistor is connected between a power source and an electronic component to be measured.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be clarified by describing specific examples of the present invention.
[0013]
FIG. 1 is a circuit diagram for explaining an electronic component insulation resistance measuring apparatus according to an embodiment of the present invention. As shown in FIG. 1, a sine wave generator 1 and a DC power source 2 used for measuring insulation resistance are provided as contact inspection power sources for performing capacitance measurement type contact inspection. One end of the sine wave generator 1 and the DC power source 2 is connected to the ground potential, and the other end is connected to the first and second terminals 3a and 3b of the switch 3, respectively.
[0014]
The switch 3 includes first to third terminals 3a to 3c, a state in which the first terminal 3a and the third terminal 3c are connected, a second terminal 3b, and a third terminal 3c. Is configured to be switched in a connected state.
[0015]
One end of the current limiting resistor 4 is connected to the third terminal 3 c of the switch 3. The other end of the current limiting resistor 4 is connected to the measurement terminal 5.
In this embodiment, a capacitor 6 is connected in parallel with the current limiting resistor 4.
[0016]
The measurement terminal 5 is configured to be in contact with an electrode of the electronic component 7 as a measurement target. Further, the second measurement terminal 8 is configured to come into contact with the other electrode of the electronic component 7. An insulation resistance detection circuit 9 and a contact state detection circuit 10 are connected to the subsequent stage of the measurement terminal 8.
[0017]
A method for measuring the insulation resistance of the electronic component 7 using the insulation resistance measurement device of this embodiment will be described.
First, the measurement terminals 5 and 8 are brought into contact with a pair of electrodes of the electronic component 7. In this state, the switch 3 is switched to a state in which the first and third terminals 3a and 3c are connected. As a result, an alternating current flows through the part where the current limiting resistor 4 and the capacitor 6 are connected in parallel to the electronic component 7. The current flowing through the electronic component 7 is detected by the contact state detection circuit 10, and it is determined whether or not the contact state is normal. In this case, since the capacitor 6 is connected in parallel with the current limiting resistor 4, an AC signal necessary for the contact inspection flows to the electronic component 7 without being influenced by the magnitude of the resistance value of the current limiting resistor 4. become. Therefore, the contact state of the measurement terminals 5 and 8 can be detected reliably.
[0018]
Next, when the contact state is normal, the switch 3 is switched to a state in which the second terminal 3b and the third terminal 3c are connected. In this way, a direct current from the direct current power source 2 is passed through the electronic component 7. In this case, the current is limited by the resistance value of the current limiting resistor 4, and therefore a direct current flows through the electronic component 7 in a state where overcurrent protection is achieved. Then, this DC signal is detected by the insulation resistance measuring circuit 9, and the insulation resistance is detected according to the magnitude of the current value.
[0019]
As described above, in the insulation resistance measuring apparatus of the present embodiment, the overcurrent protection circuit including the current limiting resistor 4 and the capacitor 6 connected in parallel to the current limiting resistor 4 is provided. Since the capacitor 6 is provided, the contact inspection can be reliably performed even when the size of the current limiting resistor 4 is increased. That is, even when the electronic component 7 is made of a dielectric or piezoelectric ceramic having a very small capacitance, an AC signal necessary for the contact inspection can be reliably supplied to the electronic component 7. .
[0020]
In this embodiment, the current limiting resistor 4 and the capacitor 6 connected in parallel to the current limiting resistor 4 constitute an overcurrent protection circuit. In the case of using a conventional current interruption circuit, when a short circuit failure occurs in an electronic component, it takes time to recover, but in this embodiment, such an interruption circuit is not required. Therefore, the measurement speed can be increased.
[0021]
Of course, in this embodiment, in addition to the overcurrent protection circuit in which the current limiting resistor 4 and the capacitor 6 are connected in parallel, a conventional current cutoff circuit may be further connected. Even in such a case, since the overcurrent protection circuit including the current limiting resistor 4 and the capacitor 6 is provided, it is not necessary to operate the current cutoff circuit so much. Therefore, it is possible to speed up the measurement.
[0022]
The present invention is preferably used for measuring the insulation resistance of an electronic component using a dielectric or piezoelectric body having a minute capacitance as described above, but is not necessarily an electronic component having a minute capacitance. However, the present invention can be used for measuring the insulation resistance of various electronic components.
[0023]
【The invention's effect】
In the insulation resistance measuring apparatus according to the first aspect of the present invention, a second circuit comprising a current limiting resistor and a capacitor connected in parallel to the current limiting resistor is provided between the contact inspection power source, the insulation resistance measuring power source, and the measurement terminal. An overcurrent protection circuit according to the invention is provided. Therefore, since a capacitor is connected in parallel with the current limiting resistor, a sufficiently large AC signal can be passed through the electronic component to be measured without being affected by the size of the current limiting resistor, and contact can be made. Inspection can be performed reliably. Therefore, even when the capacitance of the electronic component is very small, that is, even when the resistance value of the current limiting resistor is relatively large, the contact inspection can be reliably performed.
[0024]
Therefore, according to the present invention, the insulation resistance can be measured with higher accuracy when measuring the insulation resistance accompanied by the contact inspection. Further, since a mechanical current interrupt circuit is not necessarily required, it is possible to increase the speed of insulation resistance measurement.
[Brief description of the drawings]
FIG. 1 is a circuit diagram for explaining an insulation resistance measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a circuit diagram for explaining a conventional insulation resistance measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sine wave generator 2 as a power source for contact inspection 2 ... DC power source 3 as a power source for insulation resistance measurement 3 ... Switch 4 ... Current limiting resistor 5 ... Contact terminal 6 ... Capacitor 7 ... Electronic component 8 to be measured 8 ... Measurement terminal 9 ... Insulation resistance measurement circuit 10 ... Contact state detection circuit

Claims (4)

電子部品の電極に測定端子を接触させて、容量測定式接触検査及び絶縁抵抗の測定を行う電子部品の絶縁抵抗測定装置であって、
絶縁抵抗及び容量測定式接触検査を行う絶縁抵抗測定回路と、
前記電子部品と絶縁抵抗測定用電源及び接触検査用電源との間に接続された電流制限抵抗と、
前記電流制限抵抗に並列に接続されたコンデンサとを備えることを特徴とする、電子部品の絶縁抵抗測定装置。
An insulation resistance measuring device for an electronic component that makes a measurement terminal contact with an electrode of the electronic component and performs a capacitance measurement type contact inspection and an insulation resistance measurement,
Insulation resistance and capacitance measurement type insulation resistance measuring circuit for contact inspection,
A current limiting resistor connected between the electronic component and a power source for insulation resistance measurement and a power source for contact inspection;
An insulation resistance measuring device for electronic parts, comprising: a capacitor connected in parallel to the current limiting resistor.
前記電流制限抵抗として、前記電子部品と、絶縁抵抗測定用電源及び接触検査用電源との間に1つの電流制限抵抗が接続されている、請求項1に記載の絶縁抵抗測定装置。The insulation resistance measuring device according to claim 1, wherein as the current limiting resistor, one current limiting resistor is connected between the electronic component and an insulation resistance measuring power source and a contact inspection power source. 電子部品の絶縁抵抗測定用過電流保護回路であって、
電源と、測定対象の電子部品との間に接続される電流制限抵抗と、
前記電流制限抵抗に並列に接続されたコンデンサとを備えることを特徴とする、電子部品の絶縁抵抗測定用過電流保護回路。
An overcurrent protection circuit for measuring insulation resistance of electronic components,
A current limiting resistor connected between the power source and the electronic component to be measured;
An overcurrent protection circuit for measuring an insulation resistance of an electronic component, comprising: a capacitor connected in parallel to the current limiting resistor.
前記電流制限抵抗として、電源と、測定対象の電子部品との間に1つの電流制限抵抗が接続されている、請求項3に記載の電子部品の絶縁抵抗測定用過電流保護回路。The overcurrent protection circuit for measuring an insulation resistance of an electronic component according to claim 3, wherein one current limiting resistor is connected between the power source and the electronic component to be measured as the current limiting resistor.
JP2002059050A 2002-03-05 2002-03-05 Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement Expired - Fee Related JP4013595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059050A JP4013595B2 (en) 2002-03-05 2002-03-05 Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059050A JP4013595B2 (en) 2002-03-05 2002-03-05 Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement

Publications (2)

Publication Number Publication Date
JP2003255000A JP2003255000A (en) 2003-09-10
JP4013595B2 true JP4013595B2 (en) 2007-11-28

Family

ID=28668857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059050A Expired - Fee Related JP4013595B2 (en) 2002-03-05 2002-03-05 Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement

Country Status (1)

Country Link
JP (1) JP4013595B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109061B2 (en) * 2007-02-07 2012-12-26 株式会社ワイディー・メカトロソリューションズ Current limit circuit

Also Published As

Publication number Publication date
JP2003255000A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP5736197B2 (en) Insulation state detection unit
JP3262819B2 (en) Impedance measuring device having contact determination circuit and contact determination method thereof
JP2003028900A (en) Non-contact voltage measurement method and apparatus
JP3642456B2 (en) Electronic component inspection method and apparatus
JP2007017429A (en) Measuring bias tee
JP4344667B2 (en) Non-contact voltage measuring device
JP3675678B2 (en) Probe contact state detection method and probe contact state detection device
JP4013595B2 (en) Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement
JPH11142451A (en) Measuring terminal contact detection method for capacitor
TWI636263B (en) Inspecting apparatus
JP3402274B2 (en) Electronic component impedance measuring device
JP4251961B2 (en) Non-contact voltage measuring device
JPH1123630A (en) Apparatus for measuring resistance of electronic device
JP2015001470A (en) Substrate testing device
JPH04501763A (en) circuit test
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JP3527665B2 (en) Capacitor impedance measuring device
JP3892345B2 (en) Microcurrent measuring device
JP2006030131A (en) Resistance measuring method and device therefor
JP2001340313A (en) Impedance measuring instrument
JP6608234B2 (en) Contact determination device and measurement device
WO2023026839A1 (en) Impedance measuring device
JP5546986B2 (en) Insulation inspection equipment
JP2001153902A (en) Method of measuring resistance
JP2977959B2 (en) Semiconductor device and measuring method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees