JP3988202B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3988202B2
JP3988202B2 JP09376397A JP9376397A JP3988202B2 JP 3988202 B2 JP3988202 B2 JP 3988202B2 JP 09376397 A JP09376397 A JP 09376397A JP 9376397 A JP9376397 A JP 9376397A JP 3988202 B2 JP3988202 B2 JP 3988202B2
Authority
JP
Japan
Prior art keywords
mol
exhaust gas
zirconium oxide
catalyst
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09376397A
Other languages
Japanese (ja)
Other versions
JPH10286462A (en
Inventor
伸司 山本
純章 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP09376397A priority Critical patent/JP3988202B2/en
Publication of JPH10286462A publication Critical patent/JPH10286462A/en
Application granted granted Critical
Publication of JP3988202B2 publication Critical patent/JP3988202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気ガス浄化用触媒に関し、特に自動車等の内燃機関から排出される排気ガス中の炭化水素(以下、「HC」と称す)、一酸化炭素(以下、「CO」と称す)及び窒素酸化物(以下、「NOx」と称す)を効率良く浄化することができ、しかも、高温耐久性に優れるとともに耐久後も低温活性と浄化性能に優れる排気ガス浄化用触媒に関する。
【0002】
【従来の技術】
従来より、排気ガス浄化用触媒は高温下での耐久性が十分でなく、耐久後は触媒が劣化し排気ガスに対する浄化能が著しく低下するため、高温耐久後も低温活性と浄化性能に優れる排気ガス浄化用触媒の開発が期待されている。
【0003】
かかる排気ガス浄化用触媒としては、例えば、特公昭58−20307号公報、特開昭62−282641号公報、特開平4−284847号公報、特開平6−378号公報及び特開平7−60118号公報に開示されているものがある。
特公昭58−20307号公報に記載された排気ガス浄化用触媒は、白金、ロジウム及びセリウムから成る組成物を耐火性担体に担持させたものであり、具体的にはアルミナや酸化セリウムなどに白金、パラジウム及びロジウムなどの白金族元素を担持させ、これをモノリス担体にコーティングした構造のものである。
【0004】
また特開昭62−282641号公報には、ロジウムを酸化ジルコニウムに担持させた排気ガス浄化用触媒が開示されており、具体的にはロジウムを含有させた酸化ジルコニウム、活性アルミナ、酸化セリウムとアルミナゾルとを含むスラリーを、担体に付着・乾燥・焼成した後、白金を担持させた排気ガス浄化用触媒が開示されている。
【0005】
特開平4−284847号公報には、白金、ロジウム、活性アルミナ、酸化セリウム等の従来から触媒成分として使用されているものに加え、酸化セリウムとランタン、プラセオジウム、イットリウム、ネオジウム、2A族及び3B族から選ばれた一種又は一種以上の金属酸化物により安定化されたジルコニウム化合物とを組み合わせた排気ガス浄化用触媒が開示されている。
【0006】
特開平6−378号公報には、活性アルミナと酸化セリウムに、触媒成分として白金及び/又はパラジウムと、塩基性元素であるカリウム、セシウム、ストロンチウム及びバリウムから成る群より選ばれた少なくとも一種の金属の酸化物とが担持された排気ガス浄化用触媒が提案されている。換言すれば、当該触媒は、白金族元素、活性アルミナ、酸化セリウム等の従来から触媒成分として使用されているものに加え、塩基性元素である、カリウム化合物、セシウム化合物、ストロンチウム化合物及びバリウム化合物のうち少なくとも一種類と組み合わせてなるものである。
【0007】
特開平7−60118号公報には、イットリア、カルシア、マグネシア又はスカンジアで安定化されたジルコニウム酸化物と40〜95重量%のアルミナ又はチタニアからなり、30〜300m2 gの表面積を有する酸素イオン伝導性複合体を、ロジウム/白金、ロジウム/パラジウムの担持基材として用いる貴金属触媒が提案されている。
【0008】
【発明が解決しようとする課題】
しかし、前記公報中に記載された従来の触媒は、初期状態から高温耐久後まで高い排気ガス浄化性能を維持するため、高価な貴金属を多量に使用しなければならず、このため、排気ガスの浄化を目的とする三元触媒として、使用する貴金属量が少なくても高い浄化性能が得られる触媒が望まれている。然るに、従来の触媒中の貴金属量を低減した場合には、高温下における耐久性が不十分となり、また耐久後は低温域での触媒活性や排気ガス浄化性能が悪化するという問題点があった。
【0009】
これは、理論空燃比(以下、「ストイキ」と称す)を中心に、酸素濃度が不十分な還元雰囲気(以下、「リッチ」と称す)から酸素濃度が過剰な酸化雰囲気(以下、「リーン」と称す)まで幅広く組成が変化する自動車の排気ガス雰囲気下では、貴金属種の劣化(シンタリング)が促進され、その結果浄化性能が低下するためと考えられる。特に、貴金属量を低減する場合には、上記影響が顕著に現れて、さらに浄化性能が低下するという問題があった。
【0010】
また、通常アルミナは熱安定性が不十分で、高温下ではその結晶構造が変化し、BET比表面積が著しく小さなα−アルミナへ相転移を起こす。この際に、貴金属のシリングを促進したり、また、アルミナが貴金属と固相反応を起こして不活性な化合物を形成し、その結果浄化性能が大きく低下する。
一方、酸化ジルコニウムは熱に対する構造安定性に優れるが、BET比表面積が小さいため貴金属の分散性が悪く、初期状態から高温耐久後まで充分な低温活性や浄化性能を得ることが難しいという問題もあった。
【0011】
従って、本発明の目的は、従来の触媒よりも高温耐久性が向上し、耐久後においても優れた低温活性と浄化性能を有する排気ガス浄化用触媒を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために研究した結果、白金及びロジウムの高温耐久性と触媒活性を向上させるために、触媒成分担持中に白金やロジウムと共に、ジルコニウム酸化物を含有させることにより、高温耐久性を改善し、耐久後の低温活性や浄化性能が著しく向上して維持されることを見出し、本発明に到達した。
【0013】
請求項1記載の排気ガス浄化用触媒は、触媒成分担持層を有する一体構造型触媒において、少なくともロジウム担持ジルコニウム酸化物と白金担持ジルコニウム酸化物とを含有することを特徴とする。
【0014】
更に、請求項1記載の排気ガス浄化用触媒の耐久性と触媒能を更に向上させるために、請求項2記載の排気ガス浄化用触媒は、上記のロジウムを担持するジルコニウム酸化物が、次の一般式;
Nda Cab Zrc d
(式中、a,b及びcは、各元素の原子比率を示し、金属換算で、a=0.01〜20モル%、b=0.05〜20モル%、c=60〜95モル%、dは上記各成分の原子価を満足するのに必要な酸素原子数である)で表されることを特徴とする。
【0015】
更に、請求1又は2記載の排気ガス浄化用触媒の耐被毒性とリッチ雰囲気下における触媒活性を更に向上させるために、請求項3記載の排気ガス浄化用触媒は、上記の白金を担持するジルコニウム酸化物が、次の一般式;
〔X〕 eCef Zrg h
(式中、Xは、プラセオジウム、イットリウム、ランタン及びネオジウムからなる群より選ばれた少なくとも一種の元素であり、e,f及びgは、各元素の原子比率を示し、金属換算で、e=0.01〜10モル%、f=5〜30モル%、g=65〜95モル%、hは上記各成分の原子価を満足するのに必要な酸素原子数である)で表されることを特徴とする。
【0016】
更に、請求項1〜3いずれかの項記載の排気ガス浄化用触媒のコーティング性を改良し、しかも、耐久性を更に高めるために、請求項4記載の排気ガス浄化用触媒は、上記触媒成分担持層中に更にパラジウム担持アルミナを含有し、該アルミナはセリウム、ジルコニウム及びランタンからなる群より選ばれた少なくとも一種を金属換算で1〜10%含むことを特徴とする。
【0017】
請求項1〜4いずれかの項記載の排気ガス浄化用触媒の低温活性とHC浄化性能を更に向上させるために、請求項5記載の排気ガス浄化用触媒は、上記触媒成分担持層中に、更にパラジウム担持セリウム酸化物を含有し、該セリウム酸化物は、ジルコニウム、ネオジウム及びランタンからなる群より選ばれた一種を金属換算で1〜40モル%含むことを特徴とする。
【0018】
更に、請求項4又は5記載の排気ガス浄化用触媒におけるパラジウムとロジウムとの耐被毒性向上という相乗効果をよく発現させるために、請求項6記載の排気ガス浄化用触媒は、請求項4又は5記載の排気ガス浄化用触媒において、ロジウム担持ジルコニウム酸化物を表層側に、パラジウム担持触媒成分を内層側に配置して成ることを特徴とする。
【0019】
更に、請求項1〜6いずれかの項記載の排気ガス浄化用触媒の高温耐久後の低温活性とNOx 浄化性能を更に向上させるために、請求項7記載の排気ガス浄化用触媒は、、更に、アルカリ金属及びアルカリ土類金属からなる群より選ばれた少なくとも一種が含有することを特徴とする。
【0020】
【発明の実施の形態】
本発明の排気ガス浄化用触媒の触媒成分担持層に含有される貴金属としては、少なくともロジウムと白金がある。
当該ロジウムの含有量は、触媒1L容量中0.01〜3gである。0.01g未満では低温活性や浄化性能が十分に発現せず、逆に3gを越えてもロジウムの触媒活性は飽和し、経済的ではない。
当該白金の含有量は、触媒1L容量中0.01〜5gである。0.01g未満では低温活性や浄化性能が十分に発現せず、逆に5gを越えても白金の触媒活性は飽和し、経済的にも有効ではない。
このように、ロジウムと白金を共存させることにより、鉛やイオウ等の被毒物質に対する耐被毒性を向上させることができる。
【0021】
前記ロジウムが担持される基材としては、ロジウムの分散性を高め、高温耐久性を向上させるために、ジルコニウム酸化物が、また白金が担持される基材としても、白金の耐久性を向上させるためにジルコニウム酸化物が適切である。
【0022】
すなわち、ロジウムをジルコニウム酸化物に担持することによって、耐久後のロジウムの不活性化を抑制でき、また、白金をジルコニウム酸化物に担持することによって、耐久後の白金の触媒能の低下を抑制できる。
【0023】
また、請求項2記載の排気ガス浄化用触媒は、請求項1記載の排気ガス浄化用触媒の耐久後の浄化性能を特に高めるために、上記ロジウムを担持するジルコニウム酸化物が、ネオジウムとカルシウムとを含有するもので、かかるジルコニウム酸化物の組成は、Nda Cab Zrc d で表され、前記式中、a=0.01〜20モル%、b=0.05〜20モル%、c=60〜95モル%である。
【0024】
a=0.01モル%未満では、ジルコニウム酸化物に添加されているネオジウムの結晶構造安定化という作用が小さく、充分なBET表面積改良効果が得られず、ジルコニア(Zr02 )のみの場合と変わらない。また、a=20モル%を越えると、ネオジウムがジルコニウム酸化物に固溶した上記式で表されるジルコニウム複合酸化物を形成し難くなり、BET比表面積等のジルコニア酸化物の物性が低下するためロジウムの分散性が悪く、初期状態において充分な浄化性能が得られない。
【0025】
b=0.05モル%未満では、ジルコニウム酸化物に添加されているカルシウムのロジウムへの電子供与という作用が小さく、充分な浄化性能改良効果が得られず、ジルコニア(Zr02 )のみの場合と変わらない。また、b=20モル%を越えると、カルシウムがジルコニウム酸化物に固溶した上記式で表されるジルコニウム複合酸化物を形成し難くなり、熱安定性等のジルコニア酸化物の物性が低下するため、高温耐久中にロジウムのシンタリングが促進され、耐久後の浄化性能が悪化する。
【0026】
c=60モル%未満では、ネオジウムやカルシウムが固溶した上記式で表されるジルコニウム複合酸化物を形成し難くなり、熱安定性やBET比表面積等のジルコニウム酸化物の物性が低下するため、初期状態から充分な浄化性能が得られなかったり、高温耐久後の該ジルコニウム酸化物の構造安定性が悪化する。また、c=95モル%を越えると、ネオジウムやカルシウムの構造安定化や電子供与という作用が小さく、充分な浄化性能改良効果が得られずジルコニア(Zr02 )のみの場合と変わらない。
【0027】
かかるジルコニウム酸化物の使用量は、触媒1Lあたり5〜100gである。5g未満だと貴金属の分散性が得られず、100gより多く使用しても前記改良効果は飽和し有効でない。
【0028】
このように、ネオジウム及びカルシウムの組成比を特定したジルコニウム酸化物とすることによって、添加した元素がジルコニウム酸化物の結晶構造中に容易に固溶し、しかも、高温下での構造安定性が向上し、大きなBET比表面積のジルコニウム酸化物を得ることができる。
【0029】
特に請求項3記載の排気ガス浄化用触媒は、請求項1又は2記載の排気ガス浄化用触媒の高温耐久後の浄化性能を特に高めるために、プラセオジウム、イットリウム、ランタン及びネオジウムからなる群より選ばれた少なくとも一種の元素と、セリウムとを含有するもので、かかるジルコニウム酸化物の組成は、次の式〔X〕e Cef Zrg h で表され、前記式中、e=0.01〜10モル%、f=5〜30モル%、g=65〜95モル%である。
【0030】
e=0.01モル%未満では、Zr02 のみの場合と変わらず、上記した元素のZr02 のBET比表面積や熱安定性を改良する効果が現れず、e=10モル%を越えるとこの効果が飽和もしくは逆に低下する。
【0031】
f=5モル%未満ではセリウムの酸素吸蔵能が充分に発現せず、耐久後のロジウムや白金の浄化性能の改良効果が十分に得られず、逆に、f=30モル%を越えると、この効果が飽和もしくは逆に結晶構造の熱安定性が低下する。
【0032】
かかるジルコニウム酸化物の使用量は、触媒1Lあたり5〜100gである。5g未満だと充分な貴金属の分散性が得られず、100gより多く使用しても改良効果は飽和し有効でない。
【0033】
このように、プラセオジウム、イットリウム、ランタン及びネオジウムからなる群より選ばれた少なくとも一種の元素とセリウムの組成比を特定したジルコニウム酸化物とすることによって、添加した元素がジルコニウム酸化物の結晶構造中に容易に固溶し高温下での構造安定性が向上し、しかも、酸素吸蔵能の高いジルコニウム酸化物を得ることができる。
【0034】
このように、酸素吸蔵能の高いセリウム含有ジルコニウム酸化物に白金を担持することによって、リッチ雰囲気及びストイキ近傍で格子酸素や吸着酸素を放出し易くなるため、ロジウムの酸化状態を排気ガスの浄化に適したものとし、ロジウムの触媒能の低下を抑制できる。
【0035】
また、請求項4記載の排気ガス浄化用触媒は、請求項1〜3いずれかの項記載の排気ガス浄化用触媒に加えて、更に、パラジウム担持アルミナを含有するものである。
当該パラジウムの含有量は、触媒1L容量中0.1〜20gである。0.01g未満では低温活性や浄化性能が十分に発現せず、逆に20gを越えてもパラジウムの触媒活性は飽和し、経済的にも有効でない。
【0036】
前記パラジウムが担持される基材としては、白金やパラジウムの分散性を高め、触媒性能を向上させるため、アルミナ、特に活性アルミナが適切である。特に、高温耐久後のアルミナの構造安定性を高め、α−アルミナへの相転移やBET比表面積の低下を抑制するために、上記アルミナにはセリウム、ジルコニウム及びランタンからなる群より選ばれた少なくとも一種が金属換算で1〜10モル%含有される。
【0037】
かかるアルミナの使用量は、触媒1Lあたり10〜200gである。10g未満だと充分な貴金属の分散性が得られず、200gより多く使用しても触媒性能は飽和し、顕著な改良効果は得られない。
【0038】
これにより、スラリー化した触媒成分担持層のコーティング性を改善でき、しかも、触媒成分層の剥離を防止することができる。
【0039】
更に、請求項5記載の排気ガス浄化用触媒は、請求項1〜4いずれかの項記載の排気ガス浄化用触媒に、更に、パラジウム担持セリウム酸化物を含有するものである。当該セリウム酸化物には、ジルコニウム、ネオジウム及びランタンからなる群より選ばれた少なくとも一種を金属換算で1〜40モル%、セリウムを60〜98モル%含有するのである。1〜40モル%としたのは、セリウム酸化物(CeO2 )にジルコニウム、ネオジウム及びランタンからなる群より選ばれた少なくとも一種の元素を添加し、CeO2 の酸素放出能やBET比表面積、熱安定性を顕著に改良するためである。
1モル%未満ではCeO2 のみの場合と変わらず、上記した元素の添加効果が現れず、40モル%を超えるとこの効果が飽和もしくは逆に低下する。
【0040】
これにより、高温耐久後の低温活性及びHC浄化能を向上させることができる。
【0041】
請求項6記載の排気ガス浄化用触媒は、請求項4又は5記載の排気ガス浄化用触媒において、上記パラジウム含有触媒成分をコート層の内層側(下側)に配置し、前記ロジウム担持ジルコニウム酸化物をコート表層側(上側)に配置したものである。
上記パラジウム含有触媒成分とは、上記パラジウム担持アルミナ、又は、上記パラジウム担持アルミナと上記パラジウム担持セリウム酸化物である。このような配置とすることにより、ロジウムとパラジウムの間の耐被毒性向上という相乗作用が効率良く発現することとなる。
【0042】
また、請求項7記載の排気ガス浄化触媒は、請求項1〜6いずれかの項記載の排気ガス浄化用触媒に、更にアルカリ金属及びアルカリ土類金属からなる群より選ばれる少なくとも一種を含有するものである。使用されるアルカリ金属及び/又はアルカリ土類金属には、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウムが含まれる。その含有量は触媒1L中1〜40gである。1g未満では、炭化水素類の吸着被毒やパラジウムのシンタリングを抑制できず、40gを越えても有為な増量効果が得られず逆に性能を低下させる。
【0043】
このように、アルカリ金属及びアルカリ土類金属からなる群より選ばれた少なくとも一種を含有することにより更に、浄化性能向上効果が得られる。これらを触媒成分担持層に含有させると、リッチ雰囲気下でのHC吸着被退く作用を緩和し、また、パラジウムのシンタリングを抑制するため、低温活性や還元雰囲気でNOx 浄化能をさらに向上させることができる。
【0044】
本発明の排気ガス浄化用触媒を製造するに際しては、上記ジルコニウム酸化物を構成する添加元素とジルコニウム成分を各々含む触媒原料を純水に加えて攪拌する。この際、各触媒原料を同時に又は別個に溶解した液を加えても良い。
【0045】
次いで、この混合溶液にアンモニア水及びアンモニウム化合物の水溶液を徐々に添加し、溶液のpHを6.0〜10.0の範囲になるように調整した後、水分を除去し、残留物を熱処理してジルコニウム酸化物を得、これにロジウム及び/又は白金を含浸担持してさらに熱処理することにより請求項1〜3いずれかの項記載の排気ガス浄化用触媒が得られる。
【0046】
請求項1〜3いずれかの項記載の排気ガス浄化用触媒のジルコニウム酸化物は、前記添加元素とジルコニウム成分の各水溶液塩を水に溶解又は分散させた後、アンモニア水あるいはアンモニウム化合物の水溶液を加え、溶液のpHを6.0から10.0の範囲になるように調整になるように調整した後、水分を除去して乾燥し、次いで焼成することにより得られる。
【0047】
または、請求項1〜3いずれかの項記載の排気ガス浄化用触媒のジルコニウム酸化物は、予めジルコニウム酸化物の沈殿を生成した懸濁液に、前記添加元素の水溶液塩を水に溶解又は分散させた溶液を徐々に滴下した後、溶液のpHを6.0から10.0の範囲になるように調整し、水分を除去して乾燥し、次いで焼成することにより得ることもできる。
【0048】
本発明の排気ガス浄化用触媒に用いるジルコニウム酸化物は、前記各元素の硝酸塩、炭酸塩、酢酸塩及び酸化物等の水溶性塩を任意に組み合わせて製造することができる。
【0049】
前記ジルコニウム酸化物の調製方法としては特別な方法に限定されず、成分の著しい偏在を伴わない限り、公知の沈殿法、含浸法、蒸発乾固法等の種々の方法の手化から適宜選択して使用することができるが、上記各元素の塩を水に溶解又は分散させた後、アンモニア水あるいはアンモニウム化合物の水溶液を沈殿剤として加える沈殿法を用いることが、ジルコニウム酸化物の結晶構造を均一にし、また、表面積を充分に確保するために好ましい。
【0050】
上記沈殿法を実施するに際しては、溶液のpHを6.0〜10.0の範囲に調整することにより、各種金属塩の沈殿物を形成することができる。pHが6.0より低いと各種元素が充分に沈殿を形成させず、逆にpHが10.0より高いと沈殿した成分の一部が再溶解することがある。
【0051】
水の除去は、例えば濾過法や蒸発乾固法の公知の方法の中から適宜選択して行うことができる。本発明に用いるジルコニウム酸化物を得るために最初の熱処理は、特に制限されないが、添加した元素をジルコニウム酸化物に固溶させた複合酸化物を形成し、また、ロジウムや白金の分散性良く担持するための大木な比表面積を得るため、例えば400℃〜800℃の比較的低温で空気中及び/又は空気流通下で焼成を行うこと好ましい。
【0052】
前記ジルコニウム酸化物にロジウムや白金を担持する方法としては、例えば含浸法や混練法等の公知の方法の中から適宜選択して行うことができるが、特に含浸法を用いることが好ましい。
【0053】
ロジウムの原料化合物としては、硝酸塩等の水溶性のものであれば任意のものが使用できる。白金の原料化合物としては、ジニトロジアンミン酸塩、塩化物、硝酸塩等の水溶性のものであれば任意のものが使用できる。
【0054】
本発明にかかる排気ガス浄化用触媒は、沈殿法で得られたジルコニウム酸化物が有する微細な細孔構造と大きなBET比表面積及び均一な結晶構造が、低温におけるロジウムの触媒活性の発現に重要な役割を果たしている。これに対し、上記沈殿法を用いずに得たジルコニウム酸化物は、反応に有効な比表面積が小さくなり、また、添加した元素がジルコニウム酸化物に固溶した複合酸化物を形成せず担持表面に偏在し、ロジウムや白金の触媒活性や耐久後の浄化性能が低下する。
【0055】
また、請求項1〜3記載の排気ガス浄化用触媒中の触媒成分に加えて、アルミナ粉末にパラジウムを含浸法で担持した粉末を加えることにより、請求項4記載の排気ガス浄化用触媒が得られる。パラジウムの原料化合物としては、ジニトロジアンミン酸塩、塩化物、硝酸塩等水溶性のものであれば任意のものが使用できる。
【0056】
また、請求項1〜4記載の排気ガス浄化用触媒中の触媒成分に加えて、セリウム酸化物粉末にパラジウムを含浸法で担持した粉末を加えることにより、請求項5記載の排気ガス浄化用触媒が得られる。また、該セリウム酸化物には、ジルコニウム、ネオジウム及びランタンからなる群より選ばれる少なくとも1種が含有される。当該ジルコニウム、ネオジウム及びランタンからなる群より選ばれる少なくとも一種を含有するセリウム酸化物にパラジウムが担持されたものを添加することにより、還元雰囲気下において、パラジウムの酸化状態を、排気ガス浄化に適した状態に、より有効に維持することができる。
【0057】
このようにして得られる本発明にかかる排気ガス浄化用触媒は、無担体でも有効に使用することができるが、粉砕・スラリーとし、触媒担体にコートして、400〜900℃で焼成して用いることが好ましい。
【0058】
従って、得られた前記ロジウム及び/又は白金担持ジルコニウム酸化物粉末、上記パラジウム担体アルミナ粉末及び上記パラジウム担持セリウム酸化物粉末に、アルミナゾルを加えて湿式にて粉砕してスラリーとし、触媒担体に付着させ、400〜650℃の範囲の温度で空気中及び/又は空気流通下で焼成を行う。
【0059】
更に、ロジウム及びパラジウムの耐被毒性向上という相乗作用を効率よく発現させるために、パラジウムを含有する触媒成分層はコート層の下側(内層側)に配置し、ロジウムを含有する触媒成分層はコート層の上側(表層側)に配置することが好ましく、これにより請求項6記載の排気ガス浄化用触媒が得られる。白金は、ロジウムを含有する触媒成分層(表層側)及びパラジウムを含有する触媒成分層(内層側)いずれの触媒成分層中に含有させることもできるが、特に、ロジウムを含有する触媒成分層(表層側)中に均一に配置することが耐久性改良の点から好ましい。
【0060】
触媒担体としては、公知の触媒担体の中から適宜選択して使用することができ、例えば耐火性材料からなるモノリス担体やメタル担体等が挙げられる。
前記触媒担体の形状は、特に制限されないが、通常はハニカム形状で使用することが好ましく、ハニカム状の各種基材に触媒粉末を塗布して用いられる。
【0061】
このハニカム材料としては、一般にセラミック等のコージェライト質のものが多く用いられるが、フェライト系ステンレス等の金属材料からなるハニカム材料を用いることも可能であり、更には触媒成分粉末そのものをハニカム状に成形しても良い。触媒の形状をハニカム状とすることにより、触媒と排気ガスとの接触面積が大きくなり、圧力損失も抑制できるため自動車用排気ガス浄化用触媒として用いる場合に極めて有効である。
【0062】
ハニカム材料に付着させる触媒成分コート層の量は、触媒成分全体のトータルで、触媒1Lあたり、50g〜400gが好ましい。
触媒成分担持層が多い程、触媒寿命の面から好ましいが、コート層が厚くありすぎると、触媒成分担持層内部で反応ガスが拡散不良となり触媒と充分に接触できなくなるため、活性に対する増量効果が飽和し、更にはガスの通過抵抗も大きくなってしまう。このため、コート層量は、上記触媒1Lあたり50g〜400gが好ましい。
【0063】
更に好ましくは、得られた排気ガス浄化用触媒に、アルカリ金属及びアルカリ土類金属を含浸担持させることにより、請求項7記載の排気ガス浄化用触媒が得られる。
使用できるアルカリ金属及びアルカリ土類金属は、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、ストロンチウからなる群より選ばれる少なくとも一種の元素が挙げられるが、特に、カリウム及び/又はバリウムが好ましい。
【0064】
使用できるアルカリ金属及びアルカリ土類金属の化合物は、酸化物、硝酸塩及び水酸化物等の水溶性のものである。これにより、白金及びパラジウムの近傍に塩基性元素であるアルカル金属及び/又はシルカリ土類金属を分散性良く担持することが可能となる。
【0065】
具体的には、アルカリ金属化合物及び/又はアルカリ土類金属からなる粉末の水溶液を、ウォッシュコート成分を担持した上記担体に含浸し、乾燥し、次いで空気中及び/又は空気流通下で200〜600℃の比較的低温で焼成するものである。
かかる焼成温度が200℃未満だとアルカリ金属及びアルカリ土類金属化合物が酸化物形態になることが充分にできず、逆に600℃を越えても焼成温度の効果は飽和し、顕著な差異は得られない。
【0066】
本発明を次の実施例及び比較例により説明する。
【0067】
【実施例】
実施例1
セリウム3モル%(CeO2 に換算して8.7重量%)、ジルコニウム3モル%(ZrO2 に換算して6.3重量%)とランタン2モル%(La2 3 に換算して5.5重量%)を含有するアルミナ粉末(粉末A)に硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pd担持アルミナ粉末(粉末B)を得た。この粉末BのPd濃度は4.8重量%であった。
【0068】
ランタン1モル%(La2 3 に換算して2重量%)とジルコニウム32モル%(ZrO2 に換算して25重量%)を含むセリウム酸化物粉末(粉末C)に硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pd担持セリウム酸化物(La0.01Zr0.32Ce0.67x )粉末(粉末D)を得た。この粉末DのPd濃度は0.9重量%であった。
【0069】
上記粉末B907g、粉末D400gと活性アルミナ193g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェラト質モノリス担体(1.7L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート層重量150g/L一担体(担体A)を得た。パラジウム担持量は133.3g/cf(4.71g/L)であった。
【0070】
Nd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末(粉末E)に硝酸ロジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Rh担持Nd0.1 Ca0.1 Zr0.8 x 粉末(粉末F)を得た。この粉末FのRh濃度は1.5重量%であった。
【0071】
La1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末(粉末G)にジニトロジアンミン酸白金水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成してPt担持ジルコニウム酸化物粉末(粉末H)を得た。この粉末HのPt濃度は1.5重量%であった。
【0072】
上記粉末F313g、粉末H313gと、ジルコニウム3モル%(ZrO2 に換算して6.3重量%)とを含むアルミナ粉末(粉末I)149gと活性アルミナ25g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を前記Pd含有触媒成分層を担持したコージェラト質モノリス担体(1.7L、400セル)(担持A)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート層重量80g/L一担体(担持B)を得た。Rhの担持量は13.3g/cf(0.47g/L)、Ptの担持量は13.3g/cf(0.47g/L)であった。
次いで、上記触媒成分担持コージェラト質モノリス担体(担持B)に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させて、排気ガス浄化用触媒を得た。
【0073】
実施例2
Nd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd5モル%、Ca10モル%、Zr85モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0074】
実施例3
Nd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd20モル%、Ca10モル%、Zr70モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0075】
実施例4
Nd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd5モル%、Ca5モル%、Zr90モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0076】
実施例5
Nd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd5モル%、Ca20モル%、Zr75モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0077】
実施例6
Nd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd15モル%、Ca15モル%、Zr70モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0078】
実施例7
La1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、La1モル%、Ce10モル%、Zr89モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0079】
実施例8
La1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、La1モル%、Ce30モル%、Zr69モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0080】
実施例9
実施例1で得られた粉末B907g、粉末D400g、粉末H157g、活性アルミナ36g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェラト質モノリス担体(1.7L、400セル)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート層重量150g/Lの担体(担体C)を得た。パラジウム担持量は133.3g/cf(4.71g/L)、白金担持量6.7g/cf(0.24g/L)であった。
【0081】
実施例1で得られた粉末F313g、粉末G157g、粉末H157gと、ジルコニウム3モル%(ZrO2 に換算して6.3重量%)とを含むアルミナ粉末(粉末I)148gと活性アルミナ25g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を前記PdとPt含有触媒成分層を担持したコージェラト質モノリス担体(1.7L、400セル)(担体C)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート層重量80g/L一担体(担体D)を得た。Rhの担持量は13.3g/cf(0.47g/L)、Ptの担持量は6.7g/cf(0.24g/L)であった。
次いで、上記触媒成分担持コージェラト質モノリス担体(担体D)に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた。
【0082】
実施例10
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd5モル%、Ca10モル%、Zr85モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0083】
実施例11
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd20モル%、Ca10モル%、Zr70モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0084】
実施例12
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd5モル%、Ca5モル%、Zr90モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0085】
実施例13
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd5モル%、Ca20モル%、Zr75モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0086】
実施例14
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd15モル%、Ca15モル%、Zr70モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0087】
実施例15
粉末Gを調製する際のLa1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、La1モル%Ce10モル%Zr89モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0088】
実施例16
粉末Gを調製する際のLa1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、La1モル%、Ce30モル%、Zr69モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0089】
実施例17
粉末Gを調製する際のLa1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、Pr1モル%、Le20モル%、Zr78モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0090】
実施例18
粉末Gを調製する際のLa1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、Y1モル%、Nd1モル%、Ce20モル%、Zr78モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0091】
実施例19
粉末Gを調製する際のLa1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、Pr1モル%、Nd1モル%、Y1モル%、La1モル%、Ce10モル%、Zr86モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0092】
実施例20
粉末Gを調製する際のLa1モル%、Ce20モル%、Zr79モル%のジルコニウム酸化物粉末の代わりに、Pr1モル%、Nd1モル%、La1モル%、Ce30モル%、Zr66モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0093】
比較例1
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、活性アルミナを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0094】
比較例2
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、ZrO2 を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0095】
比較例3
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd20モル%、Ca30モル%、Zr50モル%のジルコニウム酸化物粉末を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0096】
比較例4
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、活性アルミナを用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0097】
比較例5
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、ZrO2 を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0098】
比較例6
粉末Fを調製する際のNd10モル%、Ca10モル%、Zr80モル%のジルコニウム酸化物粉末の代わりに、Nd20モル%、Ca30モル%、Zr50モル%のジルコニウム酸化物粉末を用いた以外は、実施例9と同様にして排気ガス浄化用触媒を得た。
【0099】
上記実施例1〜20及び比較例1〜6で得られた排気ガス浄化用触媒中におけるロジウム、白金、パラジウム、アルカリ金属及びアルカリ土類金属の含有量を表1に示す。
【0100】
【表1】

Figure 0003988202
【0101】
試験例
前記実施例1〜20及び比較例1〜6の排気ガス浄化用触媒について、以下の耐久条件により耐久を行った後、下記評価条件で触媒活性評価を行った。
【0102】
Figure 0003988202
【0103】
評価条件1:低温活性
エンジン排気量 2000cc
燃料 無鉛ガソリン
昇温速度 10℃/分
測定温度範囲 150〜500℃
耐久後の各排気ガス浄化用触媒の低温活性を、HC、CO及びNOx の転化率が50%になった時の温度(T50/℃)で表し、その結果を表2に示す。
【0104】
Figure 0003988202
耐久後の各排気ガス浄化用触媒の浄化性能を、ストイキ雰囲気におけるHC、CO及びNOx の平均転化率(%)を以下の式により決定し、その結果を表2に示す。
【0105】
【数1】
Figure 0003988202
【数2】
Figure 0003988202
【数3】
Figure 0003988202
【0106】
【表2】
Figure 0003988202
【0107】
【発明の効果】
請求項1記載の排気ガス浄化用触媒は、耐久性と耐被毒性に優れ、耐久後の低温活性及びストイキ転化率等の排気ガス浄化性能を向上させることができる。
【0108】
請求項2記載の排気ガス浄化用触媒は、上記効果に加えて、更にロジウムの不活性化を抑制し、耐久後の触媒性能を向上させることができる。
【0109】
請求項3記載の排気ガス浄化用触媒は、上記効果に加えて、触媒成分の低下を抑制できる。
【0110】
請求項4記載の排気ガス浄化用触媒は、上記効果に加えて、更に低温活性や浄化性能を向上し、触媒成分の完全に起因する触媒性能の低下を抑制できる。
【0111】
請求項5記載の排気ガス浄化用触媒は、上記効果に加えて、更にパラジウムの還元による不活性化を抑制し、更に耐久後の触媒性能の低下を抑制できる。
【0112】
請求項6記載の排気ガス浄化用触媒は、上記効果に加えて、パラジウムの耐被毒性を向上し、更に、ロジウムの耐久後の触媒性能の低下を抑制できる。
【0113】
請求項7記載の排気ガス浄化用触媒は、上記効果に加えて、触媒成分中のパラジウムのシンタリングを抑制して、更に低温活性や浄化性能を向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst, and in particular, hydrocarbons (hereinafter referred to as “HC”), carbon monoxide (hereinafter referred to as “CO”) in exhaust gas discharged from an internal combustion engine such as an automobile, and the like. The present invention relates to an exhaust gas purifying catalyst that can efficiently purify nitrogen oxides (hereinafter referred to as “NOx”), and that is excellent in high temperature durability and excellent in low temperature activity and purification performance after durability.
[0002]
[Prior art]
Conventionally, exhaust gas purification catalysts do not have sufficient durability at high temperatures, and after they are exhausted, the catalyst deteriorates and the exhaust gas purification performance is significantly reduced. Development of gas purification catalysts is expected.
[0003]
Examples of the exhaust gas purifying catalyst include, for example, Japanese Patent Publication No. 58-20307, Japanese Patent Application Laid-Open No. 62-282642, Japanese Patent Application Laid-Open No. 4-284847, Japanese Patent Application Laid-Open No. 6-378, and Japanese Patent Application Laid-Open No. 7-60118. Some are disclosed in the publication.
The exhaust gas purifying catalyst described in Japanese Patent Publication No. 58-20307 is a catalyst in which a composition composed of platinum, rhodium and cerium is supported on a refractory carrier, specifically, platinum on alumina, cerium oxide or the like. Further, a platinum group element such as palladium and rhodium is supported, and this is coated on a monolith support.
[0004]
JP-A-62-282641 discloses an exhaust gas purifying catalyst in which rhodium is supported on zirconium oxide. Specifically, zirconium oxide, rhodium-containing zirconium oxide, activated alumina, cerium oxide and alumina sol are disclosed. An exhaust gas purifying catalyst in which platinum is supported after a slurry containing is attached to a carrier, dried and calcined is disclosed.
[0005]
In JP-A-4-284847, in addition to those conventionally used as catalyst components such as platinum, rhodium, activated alumina, cerium oxide, etc., cerium oxide and lanthanum, praseodymium, yttrium, neodymium, 2A group and 3B group An exhaust gas purifying catalyst in combination with a zirconium compound stabilized by one or more metal oxides selected from the above is disclosed.
[0006]
JP-A-6-378 discloses at least one metal selected from the group consisting of activated alumina and cerium oxide, platinum and / or palladium as a catalyst component, and basic elements such as potassium, cesium, strontium and barium. An exhaust gas purifying catalyst on which an oxide of the above is supported has been proposed. In other words, the catalyst is a basic element such as a potassium compound, a cesium compound, a strontium compound, and a barium compound in addition to those conventionally used as catalyst components such as platinum group elements, activated alumina, and cerium oxide. It is a combination of at least one of them.
[0007]
JP-A-7-60118 comprises a zirconium oxide stabilized with yttria, calcia, magnesia or scandia and 40 to 95% by weight of alumina or titania.2A noble metal catalyst using an oxygen ion conductive composite having a surface area of g as a supporting substrate for rhodium / platinum or rhodium / palladium has been proposed.
[0008]
[Problems to be solved by the invention]
However, the conventional catalyst described in the above publication must use a large amount of expensive noble metal in order to maintain high exhaust gas purification performance from the initial state to after high temperature endurance. As a three-way catalyst for purification, a catalyst capable of obtaining high purification performance even if the amount of noble metal used is small is desired. However, when the amount of noble metal in the conventional catalyst is reduced, there is a problem that durability at high temperature becomes insufficient, and after durability, catalyst activity and exhaust gas purification performance in a low temperature range deteriorate. .
[0009]
This is centered on the stoichiometric air-fuel ratio (hereinafter referred to as “stoichi”), from a reducing atmosphere (hereinafter referred to as “rich”) with insufficient oxygen concentration to an oxidizing atmosphere (hereinafter referred to as “lean”) with excessive oxygen concentration. It is considered that deterioration of the precious metal species (sintering) is promoted under the exhaust gas atmosphere of automobiles whose composition changes widely until the purification performance is lowered as a result. In particular, when the amount of noble metal is reduced, there is a problem in that the above-mentioned influence appears remarkably and the purification performance is further deteriorated.
[0010]
Also, alumina usually has poor thermal stability, its crystal structure changes at high temperatures, and causes a phase transition to α-alumina having a remarkably small BET specific surface area. At this time, shilling of the noble metal is promoted, or alumina causes a solid phase reaction with the noble metal to form an inactive compound, resulting in a significant reduction in purification performance.
Zirconium oxide, on the other hand, is excellent in structural stability against heat. However, since the BET specific surface area is small, the dispersibility of noble metals is poor, and it is difficult to obtain sufficient low-temperature activity and purification performance from the initial state to after high-temperature durability. It was.
[0011]
Accordingly, an object of the present invention is to provide an exhaust gas purifying catalyst that has higher temperature durability than conventional catalysts and has excellent low-temperature activity and purification performance even after durability.
[0012]
[Means for Solving the Problems]
As a result of studies conducted by the present inventors to solve the above-mentioned problems, in order to improve the high-temperature durability and catalytic activity of platinum and rhodium, a zirconium oxide is contained together with platinum and rhodium while supporting the catalyst component. As a result, it was found that the high temperature durability was improved and the low temperature activity and purification performance after durability were significantly improved and maintained, and the present invention was achieved.
[0013]
The exhaust gas purifying catalyst according to claim 1 is a monolithic structure type catalyst having a catalyst component-supporting layer, and contains at least rhodium-supported zirconium oxide and platinum-supported zirconium oxide.
[0014]
Furthermore, in order to further improve the durability and catalytic performance of the exhaust gas purifying catalyst according to claim 1, the exhaust gas purifying catalyst according to claim 2 is characterized in that the zirconium oxide supporting rhodium is: General formula;
NdaCabZrcOd
(Wherein a, b and c represent the atomic ratio of each element, and a = 0.01 to 20 mol%, b = 0.05 to 20 mol%, c = 60 to 95 mol% in terms of metal) , D is the number of oxygen atoms necessary to satisfy the valence of each of the above components).
[0015]
Furthermore, in order to further improve the poisoning resistance of the exhaust gas purifying catalyst according to claim 1 or 2 and the catalytic activity in a rich atmosphere, the exhaust gas purifying catalyst according to claim 3 is a zirconium carrying the platinum. The oxide has the general formula:
[X]eCefZrgOh
(In the formula, X is at least one element selected from the group consisting of praseodymium, yttrium, lanthanum and neodymium, and e, f and g indicate the atomic ratio of each element, and in terms of metal, e = 0. 0.01 to 10 mol%, f = 5 to 30 mol%, g = 65 to 95 mol%, and h is the number of oxygen atoms necessary to satisfy the valence of each of the above components). Features.
[0016]
Furthermore, in order to improve the coating property of the exhaust gas purifying catalyst according to any one of claims 1 to 3 and to further enhance the durability, the exhaust gas purifying catalyst according to claim 4 is provided with the above catalyst component. The support layer further contains palladium-supported alumina, and the alumina contains at least one selected from the group consisting of cerium, zirconium and lanthanum in an amount of 1 to 10% in terms of metal.
[0017]
In order to further improve the low-temperature activity and HC purification performance of the exhaust gas purification catalyst according to any one of claims 1 to 4, the exhaust gas purification catalyst according to claim 5 is provided in the catalyst component support layer. Furthermore, it contains a palladium-supported cerium oxide, and the cerium oxide contains 1 to 40 mol% of one selected from the group consisting of zirconium, neodymium and lanthanum in terms of metal.
[0018]
Furthermore, in order to express the synergistic effect of improving the poisoning resistance of palladium and rhodium in the exhaust gas purification catalyst according to claim 4 or 5, the exhaust gas purification catalyst according to claim 6 is characterized in that 5. The exhaust gas purifying catalyst according to 5, wherein the rhodium-supported zirconium oxide is disposed on the surface layer side and the palladium-supported catalyst component is disposed on the inner layer side.
[0019]
Further, the exhaust gas purifying catalyst according to any one of claims 1 to 6 has a low temperature activity and NO after the high temperature durability.xIn order to further improve the purification performance, the exhaust gas purification catalyst according to claim 7 is further characterized by containing at least one selected from the group consisting of alkali metals and alkaline earth metals.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The noble metal contained in the catalyst component-supporting layer of the exhaust gas purifying catalyst of the present invention includes at least rhodium and platinum.
The rhodium content is 0.01 to 3 g in 1 L capacity of the catalyst. If it is less than 0.01 g, the low-temperature activity and the purification performance are not sufficiently exhibited. Conversely, if it exceeds 3 g, the catalytic activity of rhodium is saturated, which is not economical.
The platinum content is 0.01 to 5 g in 1 L capacity of the catalyst. If it is less than 0.01 g, the low-temperature activity and the purification performance are not sufficiently exhibited. Conversely, if it exceeds 5 g, the catalytic activity of platinum is saturated and is not economically effective.
Thus, the coexistence of rhodium and platinum can improve the poisoning resistance against poisoning substances such as lead and sulfur.
[0021]
As the base material on which rhodium is supported, in order to improve the dispersibility of rhodium and improve the high temperature durability, zirconium oxide and the base material on which platinum is supported also improve the durability of platinum. Therefore, zirconium oxide is suitable.
[0022]
That is, by supporting rhodium on zirconium oxide, it is possible to suppress inactivation of rhodium after durability, and by supporting platinum on zirconium oxide, it is possible to suppress a decrease in the catalytic performance of platinum after durability. .
[0023]
Further, the exhaust gas purifying catalyst according to claim 2 is characterized in that, in order to particularly improve the endurance purification performance of the exhaust gas purifying catalyst according to claim 1, the zirconium oxide supporting rhodium is composed of neodymium and calcium. And the composition of such zirconium oxide is Nd.aCabZrcOdIn the above formula, a = 0.01 to 20 mol%, b = 0.05 to 20 mol%, and c = 60 to 95 mol%.
[0024]
If a = less than 0.01 mol%, the effect of stabilizing the crystal structure of neodymium added to the zirconium oxide is small, and a sufficient BET surface area improvement effect cannot be obtained, and zirconia (Zr02) Only the case. On the other hand, if a exceeds 20 mol%, it becomes difficult to form a zirconium composite oxide represented by the above formula in which neodymium is dissolved in zirconium oxide, and the physical properties of the zirconia oxide such as the BET specific surface area decrease. The dispersibility of rhodium is poor and sufficient purification performance cannot be obtained in the initial state.
[0025]
When b is less than 0.05 mol%, the action of electron donation to the rhodium of calcium added to the zirconium oxide is small, and a sufficient purification performance improvement effect cannot be obtained, and zirconia (Zr02) Only the case. On the other hand, if b exceeds 20 mol%, it becomes difficult to form a zirconium composite oxide represented by the above formula in which calcium is dissolved in zirconium oxide, and the physical properties of zirconia oxide such as thermal stability are reduced. In addition, rhodium sintering is promoted during high temperature durability, and purification performance after durability deteriorates.
[0026]
When c is less than 60 mol%, it becomes difficult to form a zirconium composite oxide represented by the above formula in which neodymium or calcium is dissolved, and the physical properties of the zirconium oxide such as thermal stability and BET specific surface area decrease. Sufficient purification performance cannot be obtained from the initial state, or the structural stability of the zirconium oxide after high temperature durability deteriorates. On the other hand, when c exceeds 95 mol%, the effects of neodymium and calcium structural stabilization and electron donation are small, and a sufficient purification performance improvement effect cannot be obtained, and zirconia (Zr02) Only the case.
[0027]
The amount of zirconium oxide used is 5 to 100 g per liter of catalyst. If it is less than 5 g, the dispersibility of the noble metal cannot be obtained, and even if it is used more than 100 g, the improvement effect is saturated and not effective.
[0028]
Thus, by using a zirconium oxide with a specified composition ratio of neodymium and calcium, the added elements can be easily dissolved in the crystal structure of the zirconium oxide, and the structural stability at high temperatures is improved. In addition, a zirconium oxide having a large BET specific surface area can be obtained.
[0029]
In particular, the exhaust gas purifying catalyst according to claim 3 is selected from the group consisting of praseodymium, yttrium, lanthanum and neodymium in order to particularly enhance the purification performance after high temperature durability of the exhaust gas purifying catalyst according to claim 1 or 2. Containing at least one kind of element and cerium, and the composition of the zirconium oxide has the following formula [X]eCefZrgOhIn the above formula, e = 0.01 to 10 mol%, f = 5 to 30 mol%, and g = 65 to 95 mol%.
[0030]
When e = less than 0.01 mol%, Zr02Zr0 of the above element2The effect of improving the BET specific surface area and thermal stability of the material does not appear, and when e exceeds 10 mol%, this effect is saturated or conversely decreased.
[0031]
When f = 5 mol% or less, the oxygen storage capacity of cerium is not sufficiently exhibited, and the effect of improving the purification performance of rhodium and platinum after durability cannot be sufficiently obtained. Conversely, when f = 30 mol% is exceeded, This effect is saturated or, conversely, the thermal stability of the crystal structure decreases.
[0032]
The amount of zirconium oxide used is 5 to 100 g per liter of catalyst. If it is less than 5 g, sufficient dispersibility of the noble metal cannot be obtained, and even if it is used more than 100 g, the improvement effect is saturated and not effective.
[0033]
Thus, by adding a zirconium oxide having a specified composition ratio of cerium to at least one element selected from the group consisting of praseodymium, yttrium, lanthanum and neodymium, the added element is contained in the crystal structure of the zirconium oxide. Zirconium oxide can be obtained that is easily solid-solved, has improved structural stability at high temperatures, and has a high oxygen storage capacity.
[0034]
In this way, by supporting platinum on a cerium-containing zirconium oxide with a high oxygen storage capacity, it becomes easier to release lattice oxygen and adsorbed oxygen in a rich atmosphere and in the vicinity of stoichiometry, so the oxidation state of rhodium can be used for purification of exhaust gas. It can be made suitable, and the fall of the rhodium catalytic ability can be suppressed.
[0035]
Further, the exhaust gas purifying catalyst according to claim 4 contains palladium-supported alumina in addition to the exhaust gas purifying catalyst according to any one of claims 1 to 3.
The content of the palladium is 0.1 to 20 g in 1 L capacity of the catalyst. If it is less than 0.01 g, the low-temperature activity and the purification performance are not sufficiently exhibited. Conversely, if it exceeds 20 g, the catalytic activity of palladium is saturated and is not economically effective.
[0036]
As the base material on which palladium is supported, alumina, particularly activated alumina is suitable in order to increase the dispersibility of platinum and palladium and improve the catalyst performance. In particular, the alumina is at least selected from the group consisting of cerium, zirconium and lanthanum in order to enhance the structural stability of alumina after high-temperature durability and to suppress the phase transition to α-alumina and the decrease in the BET specific surface area. 1 type contains 1-10 mol% in conversion of a metal.
[0037]
The amount of alumina used is 10 to 200 g per liter of catalyst. If it is less than 10 g, sufficient dispersibility of the noble metal cannot be obtained, and even if it is used in excess of 200 g, the catalyst performance is saturated and a remarkable improvement effect cannot be obtained.
[0038]
Thereby, the coating property of the catalyst component carrying layer made into a slurry can be improved, and the separation of the catalyst component layer can be prevented.
[0039]
  Further, the exhaust gas purifying catalyst according to claim 5 further includes palladium-supported cerium oxide in addition to the exhaust gas purifying catalyst according to any one of claims 1 to 4. The cerium oxide includes zirconium,NeodymiumAnd at least one selected from the group consisting of lanthanum in terms of metal in an amount of 1 to 40 mol% and cerium in an amount of 60 to 98 mol%containsIt is. 1 to 40 mol% is cerium oxide (CeO2 And at least one element selected from the group consisting of zirconium, neodymium and lanthanum,2 This is because the oxygen releasing ability, the BET specific surface area, and the thermal stability are significantly improved.
  Less than 1 mol% CeO2 The effect of adding the above-described element does not appear as in the case of only the above, and when it exceeds 40 mol%, this effect is saturated or conversely reduced.
[0040]
Thereby, the low temperature activity and HC purification ability after high temperature durability can be improved.
[0041]
The exhaust gas purifying catalyst according to claim 6 is the exhaust gas purifying catalyst according to claim 4 or 5, wherein the palladium-containing catalyst component is disposed on the inner layer side (lower side) of the coat layer, and the rhodium-supported zirconium oxidation A thing is arranged on the coat surface side (upper side).
The palladium-containing catalyst component is the palladium-supported alumina, or the palladium-supported alumina and the palladium-supported cerium oxide. By adopting such an arrangement, a synergistic effect of improving the poisoning resistance between rhodium and palladium is efficiently expressed.
[0042]
The exhaust gas purifying catalyst according to claim 7 further contains at least one selected from the group consisting of alkali metals and alkaline earth metals in the exhaust gas purifying catalyst according to any one of claims 1 to 6. Is. Alkali metals and / or alkaline earth metals used include lithium, sodium, potassium, cesium, magnesium, calcium, strontium, barium. The content is 1 to 40 g in 1 L of the catalyst. If it is less than 1 g, adsorption poisoning of hydrocarbons and palladium sintering cannot be suppressed, and if it exceeds 40 g, a significant increase effect cannot be obtained and the performance is reduced.
[0043]
Thus, the purification performance improvement effect is further obtained by containing at least one selected from the group consisting of alkali metals and alkaline earth metals. When these are contained in the catalyst component-supporting layer, the action of HC adsorption / retarding under a rich atmosphere is mitigated, and in order to suppress palladium sintering, NO is used in a low-temperature activity or reducing atmosphere.xThe purification ability can be further improved.
[0044]
In producing the exhaust gas purifying catalyst of the present invention, the catalyst raw materials each containing the additive element constituting the zirconium oxide and the zirconium component are added to pure water and stirred. At this time, a solution obtained by dissolving the catalyst raw materials simultaneously or separately may be added.
[0045]
Next, aqueous ammonia and an aqueous solution of an ammonium compound are gradually added to the mixed solution to adjust the pH of the solution to be in the range of 6.0 to 10.0, and then water is removed and the residue is heat treated. The exhaust gas purifying catalyst according to any one of claims 1 to 3 is obtained by obtaining zirconium oxide, impregnating and supporting it with rhodium and / or platinum, and further heat-treating it.
[0046]
The zirconium oxide of the exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein each aqueous solution salt of the additive element and the zirconium component is dissolved or dispersed in water, and then ammonia water or an aqueous solution of an ammonium compound is used. In addition, it is obtained by adjusting the pH of the solution so as to be in the range of 6.0 to 10.0, removing the moisture, drying, and then baking.
[0047]
Alternatively, the zirconium oxide of the exhaust gas purifying catalyst according to any one of claims 1 to 3 is prepared by dissolving or dispersing an aqueous solution salt of the additive element in water in a suspension in which a precipitate of zirconium oxide has been generated in advance. It can also be obtained by gradually dropping the prepared solution, adjusting the pH of the solution to be in the range of 6.0 to 10.0, removing the moisture and drying, followed by firing.
[0048]
The zirconium oxide used in the exhaust gas purifying catalyst of the present invention can be produced by arbitrarily combining water-soluble salts such as nitrates, carbonates, acetates and oxides of the respective elements.
[0049]
The method for preparing the zirconium oxide is not limited to a special method, and may be appropriately selected from various methods such as a known precipitation method, impregnation method, and evaporation to dryness method, as long as there is no significant uneven distribution of components. It is possible to use a precipitation method in which the salt of each of the above elements is dissolved or dispersed in water and then an aqueous ammonia or ammonium compound solution is added as a precipitating agent, so that the crystal structure of the zirconium oxide is uniform. In addition, it is preferable for ensuring a sufficient surface area.
[0050]
In carrying out the precipitation method, various metal salt precipitates can be formed by adjusting the pH of the solution to a range of 6.0 to 10.0. If the pH is lower than 6.0, various elements do not sufficiently form precipitates. Conversely, if the pH is higher than 10.0, some of the precipitated components may be redissolved.
[0051]
The removal of water can be performed by appropriately selecting from known methods such as filtration and evaporation to dryness. The initial heat treatment for obtaining the zirconium oxide used in the present invention is not particularly limited, but forms a composite oxide in which the added element is dissolved in zirconium oxide, and supports rhodium and platinum with good dispersibility. In order to obtain a large specific surface area for the purpose of firing, it is preferable to perform firing in air and / or under air flow at a relatively low temperature of 400 ° C. to 800 ° C., for example.
[0052]
The method for supporting rhodium or platinum on the zirconium oxide can be appropriately selected from known methods such as an impregnation method and a kneading method, but the impregnation method is particularly preferable.
[0053]
Any raw material compound of rhodium can be used as long as it is water-soluble such as nitrate. As the platinum raw material compound, any water-soluble compound such as dinitrodiamminate, chloride, nitrate and the like can be used.
[0054]
In the exhaust gas purifying catalyst according to the present invention, the fine pore structure, the large BET specific surface area and the uniform crystal structure of the zirconium oxide obtained by the precipitation method are important for the expression of the catalytic activity of rhodium at low temperature. Playing a role. In contrast, the zirconium oxide obtained without using the above precipitation method has a small specific surface area effective for the reaction, and the supported surface does not form a complex oxide in which the added element is dissolved in zirconium oxide. The catalyst activity of rhodium and platinum and the purification performance after endurance deteriorate.
[0055]
Further, in addition to the catalyst component in the exhaust gas purification catalyst according to claims 1 to 3, the exhaust gas purification catalyst according to claim 4 is obtained by adding a powder in which palladium is supported on an alumina powder by an impregnation method. It is done. As the palladium raw material compound, any water-soluble compound such as dinitrodiamminate, chloride, nitrate can be used.
[0056]
Further, in addition to the catalyst component in the exhaust gas purification catalyst according to claims 1 to 4, an exhaust gas purification catalyst according to claim 5 is added by adding a powder obtained by impregnating palladium on a cerium oxide powder. Is obtained. The cerium oxide contains at least one selected from the group consisting of zirconium, neodymium and lanthanum. By adding a palladium-supported cerium oxide containing at least one selected from the group consisting of zirconium, neodymium and lanthanum, the oxidation state of palladium is suitable for exhaust gas purification under a reducing atmosphere. The state can be maintained more effectively.
[0057]
The exhaust gas purifying catalyst according to the present invention thus obtained can be used effectively without a carrier, but it is used as a pulverized slurry, coated on the catalyst carrier, and calcined at 400 to 900 ° C. It is preferable.
[0058]
Therefore, the obtained rhodium and / or platinum-supported zirconium oxide powder, the palladium-supported alumina powder and the palladium-supported cerium oxide powder are added with an alumina sol and pulverized wet to form a slurry, which is attached to the catalyst support. And firing in air and / or under air flow at a temperature in the range of 400 to 650 ° C.
[0059]
Furthermore, in order to efficiently express the synergistic effect of improving the poisoning resistance of rhodium and palladium, the catalyst component layer containing palladium is disposed on the lower side (inner layer side) of the coat layer, and the catalyst component layer containing rhodium is Preferably, the exhaust gas purifying catalyst according to claim 6 is obtained by disposing it on the upper side (surface layer side) of the coat layer. Platinum can be contained in any of the catalyst component layers containing rhodium (surface layer side) and the catalyst component layer containing palladium (inner layer side). In particular, the catalyst component layer containing rhodium ( It is preferable from the point of durability improvement to arrange uniformly in the surface layer side).
[0060]
The catalyst carrier can be appropriately selected from known catalyst carriers, and examples thereof include a monolith carrier made of a refractory material and a metal carrier.
The shape of the catalyst carrier is not particularly limited, but it is usually preferable to use a honeycomb shape, and the catalyst powder is applied to various honeycomb substrates.
[0061]
As this honeycomb material, cordierite material such as ceramic is generally used, but it is also possible to use a honeycomb material made of a metal material such as ferritic stainless steel, and further, the catalyst component powder itself is formed into a honeycomb shape. It may be molded. By making the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased, and the pressure loss can be suppressed, which is extremely effective when used as an exhaust gas purifying catalyst for automobiles.
[0062]
The amount of the catalyst component coat layer deposited on the honeycomb material is preferably 50 g to 400 g per liter of the catalyst in total for the entire catalyst component.
The more catalyst component-supported layers are preferable from the viewpoint of catalyst life, but if the coat layer is too thick, the reaction gas is poorly diffused inside the catalyst component-supported layer and cannot be sufficiently contacted with the catalyst, so that the effect of increasing the activity is increased. It becomes saturated and the gas passage resistance also increases. For this reason, the coating layer amount is preferably 50 g to 400 g per liter of the catalyst.
[0063]
More preferably, the exhaust gas purification catalyst according to claim 7 is obtained by impregnating and supporting the obtained exhaust gas purification catalyst with an alkali metal and an alkaline earth metal.
Examples of the alkali metal and alkaline earth metal that can be used include at least one element selected from the group consisting of lithium, sodium, potassium, cesium, magnesium, calcium, and strontium, and potassium and / or barium are particularly preferable.
[0064]
Alkali metal and alkaline earth metal compounds which can be used are water-soluble compounds such as oxides, nitrates and hydroxides. As a result, it is possible to support the alkaline elemental metal and / or silicic earth earth metal, which are basic elements, in the vicinity of platinum and palladium with good dispersibility.
[0065]
Specifically, an aqueous solution of a powder composed of an alkali metal compound and / or an alkaline earth metal is impregnated into the carrier carrying a washcoat component, dried, and then 200 to 600 in air and / or under air flow. It is fired at a relatively low temperature of ° C.
If the calcination temperature is less than 200 ° C., the alkali metal and alkaline earth metal compound cannot be sufficiently converted into an oxide form. Conversely, if the calcination temperature exceeds 600 ° C., the effect of the calcination temperature is saturated, and the remarkable difference is I can't get it.
[0066]
The invention is illustrated by the following examples and comparative examples.
[0067]
【Example】
Example 1
Cerium 3 mol% (CeO28.7% by weight), zirconium 3 mol% (ZrO2In terms of 6.3 wt%) and lanthanum 2 mol% (La2OThreeAlumina powder (powder A) containing 5.5 wt% in terms of the amount of palladium was impregnated with an aqueous solution of palladium nitrate, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour. Powder B) was obtained. The Pd concentration of this powder B was 4.8% by weight.
[0068]
Lanthanum 1 mol% (La2OThreeIn terms of 2% by weight) and 32 mol% zirconium (ZrO)2A cerium oxide powder (powder C) containing 25 wt% in terms of the amount of palladium was impregnated with an aqueous palladium nitrate solution, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour to obtain Pd-supported cerium oxide ( La0.01Zr0.32Ce0.67Ox) A powder (powder D) was obtained. The Pd concentration of this powder D was 0.9% by weight.
[0069]
The above-mentioned powder B907g, powder D400g, activated alumina 193g, and nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to a cordieric monolith carrier (1.7 L, 400 cells), excess slurry in the cells was removed and dried with an air stream, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain a carrier having a coat layer weight of 150 g / L (carrier A). The amount of palladium supported was 133.3 g / cf (4.71 g / L).
[0070]
An aqueous rhodium nitrate solution was impregnated with zirconium oxide powder (powder E) of Nd 10 mol%, Ca 10 mol%, and Zr 80 mol%, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour to obtain Rh-supported Nd0.1Ca0.1Zr0.8OxA powder (powder F) was obtained. The Rh concentration of this powder F was 1.5% by weight.
[0071]
A zirconium oxide powder (powder G) of La 1 mol%, Ce 20 mol%, and Zr 79 mol% was impregnated with an aqueous platinum dinitrodiamminate solution, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour to obtain Pt-supported zirconium. An oxide powder (powder H) was obtained. The Pt concentration of this powder H was 1.5% by weight.
[0072]
The above powder F313g, powder H313g, zirconium 3 mol% (ZrO2149 g of alumina powder (powder I), 25 g of activated alumina, and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was attached to a cordieritic monolith support (1.7 L, 400 cells) (support A) carrying the Pd-containing catalyst component layer, and excess slurry in the cells was removed and dried with an air stream. Baked at 1 ° C. for 1 hour. A carrier having a coat layer weight of 80 g / L (support B) was obtained. The supported amount of Rh was 13.3 g / cf (0.47 g / L), and the supported amount of Pt was 13.3 g / cf (0.47 g / L).
Next, a barium acetate solution was attached to the catalyst component-supported cordieritic monolith support (support B), and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO to obtain an exhaust gas purification catalyst. .
[0073]
Example 2
Exhaust was conducted in the same manner as in Example 1 except that zirconium oxide powder of Nd5 mol%, Ca10 mol%, Zr85 mol% was used instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol%. A gas purification catalyst was obtained.
[0074]
Example 3
Exhaust was conducted in the same manner as in Example 1 except that zirconium oxide powder of Nd 20 mol%, Ca 10 mol%, and Zr 70 mol% was used instead of zirconium oxide powder of Nd 10 mol%, Ca 10 mol%, and Zr 80 mol%. A gas purification catalyst was obtained.
[0075]
Example 4
Exhaust was conducted in the same manner as in Example 1 except that zirconium oxide powder of Nd 5 mol%, Ca 5 mol%, and Zr 90 mol% was used instead of zirconium oxide powder of Nd 10 mol%, Ca 10 mol%, and Zr 80 mol%. A gas purification catalyst was obtained.
[0076]
Example 5
Exhaust was conducted in the same manner as in Example 1 except that zirconium oxide powder of Nd5 mol%, Ca20 mol%, Zr75 mol% was used instead of zirconium oxide powder of Nd10 mol%, Ca10 mol% and Zr80 mol%. A gas purification catalyst was obtained.
[0077]
Example 6
Exhaust was conducted in the same manner as in Example 1 except that zirconium oxide powder of Nd15 mol%, Ca15 mol%, Zr70 mol% was used instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol%. A gas purification catalyst was obtained.
[0078]
Example 7
Exhaust was conducted in the same manner as in Example 1 except that La1 mol%, Ce10 mol%, Zr89 mol% zirconium oxide powder was used instead of La1 mol%, Ce20 mol%, Zr79 mol% zirconium oxide powder. A gas purification catalyst was obtained.
[0079]
Example 8
Exhaust was conducted in the same manner as in Example 1 except that La1 mol%, Ce30 mol%, Zr69 mol% zirconium oxide powder was used instead of La1 mol%, Ce20 mol%, Zr79 mol% zirconium oxide powder. A gas purification catalyst was obtained.
[0080]
Example 9
907 g of powder B, 400 g of powder D, 157 g of powder H, 36 g of activated alumina and 1000 g of nitric acid aqueous solution obtained in Example 1 were put in a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to a cordieric monolith carrier (1.7 L, 400 cells), excess slurry in the cells was removed and dried with an air stream, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain a carrier (carrier C) having a coat layer weight of 150 g / L. The supported amount of palladium was 133.3 g / cf (4.71 g / L), and the supported amount of platinum was 6.7 g / cf (0.24 g / L).
[0081]
Powder F313g obtained in Example 1, powder G157g, powder H157g, zirconium 3 mol% (ZrO2148 g of alumina powder (powder I), 25 g of activated alumina, and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is attached to a cordieritic monolith carrier (1.7 L, 400 cells) (carrier C) carrying the Pd- and Pt-containing catalyst component layer, and excess slurry in the cells is removed and dried by an air flow. And baked at 400 ° C. for 1 hour. A carrier having a coat layer weight of 80 g / L (carrier D) was obtained. The supported amount of Rh was 13.3 g / cf (0.47 g / L), and the supported amount of Pt was 6.7 g / cf (0.24 g / L).
Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith carrier (carrier D) and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO.
[0082]
Example 10
Except for using zirconium oxide powder of Nd5 mol%, Ca10 mol%, Zr85 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing the powder F, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0083]
Example 11
Except for using zirconium oxide powder of Nd20 mol%, Ca10 mol%, Zr70 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing powder F, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0084]
Example 12
Except for using zirconium oxide powder of Nd5 mol%, Ca5 mol%, Zr90 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing powder F, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0085]
Example 13
Except for using zirconium oxide powder of Nd5 mol%, Ca20 mol%, Zr75 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing powder F, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0086]
Example 14
Except for using zirconium oxide powder of Nd15 mol%, Ca15 mol%, Zr70 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing powder F, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0087]
Example 15
Example 9 except that a zirconium oxide powder of La 1 mol% Ce 10 mol% Zr 89 mol% was used instead of the zirconium oxide powder of La 1 mol%, Ce 20 mol%, and Zr 79 mol% in preparing the powder G. In the same manner as above, an exhaust gas purification catalyst was obtained.
[0088]
Example 16
Except that the zirconium oxide powder of La1 mol%, Ce30 mol%, Zr69 mol% was used in place of the La1 mol%, Ce20 mol%, Zr79 mol% zirconium oxide powder in the preparation of the powder G, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0089]
Example 17
Except that the zirconium oxide powder of Pr1 mol%, Le20 mol%, Zr78 mol% was used instead of the zirconium oxide powder of La1 mol%, Ce20 mol%, Zr79 mol% when preparing the powder G. In the same manner as in Example 1, an exhaust gas purification catalyst was obtained.
[0090]
Example 18
Instead of the zirconium oxide powder of La 1 mol%, Ce 20 mol% and Zr 79 mol% in preparing the powder G, a zirconium oxide powder of Y 1 mol%, Nd 1 mol%, Ce 20 mol% and Zr 78 mol% was used. Except for the above, an exhaust gas purification catalyst was obtained in the same manner as in Example 9.
[0091]
Example 19
Instead of zirconium oxide powder of La1 mol%, Ce20 mol%, Zr79 mol% in preparing powder G, Pr1 mol%, Nd1 mol%, Y1 mol%, La1 mol%, Ce10 mol%, Zr86 mol% Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the zirconium oxide powder was used.
[0092]
Example 20
Instead of zirconium oxide powder of La 1 mol%, Ce 20 mol%, Zr 79 mol% in preparing powder G, zirconium oxide powder of Pr 1 mol%, Nd 1 mol%, La 1 mol%, Ce 30 mol%, Zr 66 mol% Exhaust gas purification catalyst was obtained in the same manner as in Example 9 except that powder was used.
[0093]
Comparative Example 1
Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that activated alumina was used instead of zirconium oxide powder of Nd 10 mol%, Ca 10 mol%, and Zr 80 mol% when preparing powder F. .
[0094]
Comparative Example 2
Instead of the zirconium oxide powder of Nd 10 mol%, Ca 10 mol%, Zr 80 mol% in preparing the powder F, ZrO2Except that was used, an exhaust gas purification catalyst was obtained in the same manner as in Example 1.
[0095]
Comparative Example 3
Except for using zirconium oxide powder of Nd20 mol%, Ca30 mol%, Zr50 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing powder F, it was carried out. In the same manner as in Example 1, an exhaust gas purification catalyst was obtained.
[0096]
Comparative Example 4
Exhaust gas purifying catalyst was obtained in the same manner as in Example 9 except that activated alumina was used instead of zirconium oxide powder of Nd 10 mol%, Ca 10 mol% and Zr80 mol% when preparing powder F. .
[0097]
Comparative Example 5
Instead of the zirconium oxide powder of Nd 10 mol%, Ca 10 mol%, Zr 80 mol% in preparing the powder F, ZrO2Except that was used, an exhaust gas purifying catalyst was obtained in the same manner as in Example 9.
[0098]
Comparative Example 6
Except for using zirconium oxide powder of Nd20 mol%, Ca30 mol%, Zr50 mol% instead of zirconium oxide powder of Nd10 mol%, Ca10 mol%, Zr80 mol% when preparing powder F, it was carried out. In the same manner as in Example 9, an exhaust gas purification catalyst was obtained.
[0099]
Table 1 shows the contents of rhodium, platinum, palladium, alkali metal, and alkaline earth metal in the exhaust gas purifying catalysts obtained in Examples 1-20 and Comparative Examples 1-6.
[0100]
[Table 1]
Figure 0003988202
[0101]
Test example
The exhaust gas purification catalysts of Examples 1 to 20 and Comparative Examples 1 to 6 were subjected to durability under the following durability conditions, and then evaluated for catalytic activity under the following evaluation conditions.
[0102]
Figure 0003988202
[0103]
Evaluation condition 1: low temperature activity
Engine displacement 2000cc
Fuel Unleaded gasoline
Temperature increase rate 10 ℃ / min
Measurement temperature range 150-500 ° C
The low temperature activity of each exhaust gas purifying catalyst after endurance is expressed as HC, CO and NO.xThis is expressed in terms of the temperature (T50 / ° C.) at which the conversion rate of became 50%, and the results are shown in Table 2.
[0104]
Figure 0003988202
The exhaust gas purifying performance of each exhaust gas purifying catalyst after the endurance can be expressed as HC, CO and NO in a stoichiometric atmosphere.xThe average conversion (%) was determined according to the following formula, and the results are shown in Table 2.
[0105]
[Expression 1]
Figure 0003988202
[Expression 2]
Figure 0003988202
[Equation 3]
Figure 0003988202
[0106]
[Table 2]
Figure 0003988202
[0107]
【The invention's effect】
The exhaust gas purification catalyst according to claim 1 is excellent in durability and poisoning resistance, and can improve exhaust gas purification performance such as low-temperature activity and stoichiometric conversion after durability.
[0108]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 2 can further suppress the inactivation of rhodium and improve the catalyst performance after durability.
[0109]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 3 can suppress a decrease in catalyst components.
[0110]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 4 can further improve the low-temperature activity and the purification performance, and can suppress the deterioration of the catalyst performance due to the complete catalyst component.
[0111]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 5 can further suppress inactivation due to reduction of palladium, and further suppress a decrease in catalyst performance after durability.
[0112]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 6 can improve the poisoning resistance of palladium, and can further suppress a decrease in catalyst performance after rhodium durability.
[0113]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 7 can suppress sintering of palladium in the catalyst component and further improve the low temperature activity and purification performance.

Claims (5)

触媒成分担持層を有する一体構造型触媒において、少なくともロジウム担持ジルコニウム酸化物(但し、ジルコニアを除く。以下、ジルコニウム酸化物について同じ。)と白金担持ジルコニウム酸化物とを含有し、
ロジウムを担持するジルコニウム酸化物は、次の一般式;
Nd a Ca b Zr c d
(式中、a,b及びcは、各元素の原子比率を示し、金属換算で、a=0.01〜20モル%、b=0.05〜20モル%、c=60〜95モル%、dは上記各成分の原子価を満足するのに必要な酸素原子数である)で表され、
白金を担持するジルコニウム酸化物は、次の一般式;
〔X〕 e Ce f Zr g h
(式中、Xは、プラセオジウム、イットリウム、ランタン及びネオジウムからなる群より選ばれた少なくとも一種の元素であり、e,f及びgは、各元素の原子比率を示し、金属換算で、e=0.01〜10モル%、f=5〜30モル%、g=65〜95モル%、hは上記各成分の原子価を満足するのに必要な酸素原子数である)で表されることを特徴とする排気ガス浄化用触媒。
The monolithic catalyst having a catalyst component-supporting layer contains at least rhodium-supported zirconium oxide (excluding zirconia; hereinafter the same applies to zirconium oxide) and platinum-supported zirconium oxide,
The zirconium oxide supporting rhodium has the following general formula:
Nd a Ca b Zr c O d
(Wherein a, b and c represent the atomic ratio of each element, and a = 0.01 to 20 mol%, b = 0.05 to 20 mol%, c = 60 to 95 mol% in terms of metal) , D is the number of oxygen atoms necessary to satisfy the valence of each of the above components),
Zirconium oxide carrying platinum has the following general formula:
[X] e Ce f Zr g O h
(In the formula, X is at least one element selected from the group consisting of praseodymium, yttrium, lanthanum and neodymium, and e, f and g indicate the atomic ratio of each element, and in terms of metal, e = 0. 0.01 to 10 mol%, f = 5 to 30 mol%, g = 65 to 95 mol%, and h is the number of oxygen atoms necessary to satisfy the valence of each of the above components). A catalyst for exhaust gas purification.
請求項記載の排気ガス浄化用触媒の触媒成分担持層中に、更にパラジウム担持アルミナが含有され、該アルミナはセリウム、ジルコニウム及びランタンからなる群より選ばれた少なくとも一種を金属換算で1〜10%含むことを特徴とする排気ガス浄化用触媒。The catalyst component-supporting layer of the exhaust gas purifying catalyst according to claim 1 , further comprising palladium-supporting alumina, wherein the alumina is at least one selected from the group consisting of cerium, zirconium and lanthanum in a metal conversion of 1 to 10. %, An exhaust gas purifying catalyst characterized by comprising: 請求項1又は2記載の排気ガス浄化用触媒の触媒成分担持層中に、更にパラジウム担持セリウム酸化物が含有され、該セリウム酸化物は、ジルコニウム、ネオジウム及びランタンからなる群より選ばれた少なくとも一種を金属換算で1〜40モル%含むことを特徴とする排気ガス浄化用触媒。The catalyst component-supporting layer of the exhaust gas purifying catalyst according to claim 1 or 2 further contains palladium-supported cerium oxide, and the cerium oxide is at least one selected from the group consisting of zirconium, neodymium, and lanthanum. An exhaust gas purifying catalyst characterized by containing 1 to 40 mol% in terms of metal. 請求項又は記載の排気ガス浄化用触媒において、ロジウム担持ジルコニウム酸化物を表層側に、パラジウム担持触媒成分を内層側に配置して成ることを特徴とする排気ガス浄化用触媒。According to claim 2 or 3 exhaust gas purifying catalyst according, rhodium-carrying zirconium oxide on the surface layer side, the exhaust gas purifying catalyst, characterized by comprising placing a palladium catalytic component in the inner layer side. 請求項1〜いずれかの項記載の排気ガス浄化用触媒に、更に、アルカリ金属及びアルカリ土類金属からなる群より選ばれた少なくとも一種が含有されることを特徴とする排気ガス浄化用触媒。The exhaust gas purification catalyst according to any one of claims 1 to 4 , further comprising at least one selected from the group consisting of alkali metals and alkaline earth metals. .
JP09376397A 1997-04-11 1997-04-11 Exhaust gas purification catalyst Expired - Fee Related JP3988202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09376397A JP3988202B2 (en) 1997-04-11 1997-04-11 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09376397A JP3988202B2 (en) 1997-04-11 1997-04-11 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH10286462A JPH10286462A (en) 1998-10-27
JP3988202B2 true JP3988202B2 (en) 2007-10-10

Family

ID=14091479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09376397A Expired - Fee Related JP3988202B2 (en) 1997-04-11 1997-04-11 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3988202B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248688B1 (en) * 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
JP3688974B2 (en) * 1999-05-24 2005-08-31 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP3688947B2 (en) * 1999-09-03 2005-08-31 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP3688945B2 (en) * 1999-08-30 2005-08-31 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP4015328B2 (en) * 1999-09-14 2007-11-28 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP3902362B2 (en) * 1999-09-14 2007-04-04 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP3688953B2 (en) * 1999-10-08 2005-08-31 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP2001104785A (en) * 1999-10-08 2001-04-17 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP4397155B2 (en) * 2001-09-27 2010-01-13 東京濾器株式会社 Exhaust gas purification catalyst and method for producing the catalyst
JP2006110485A (en) 2004-10-15 2006-04-27 Johnson Matthey Japan Inc Exhaust gas catalyst and exhaust gas trteatment apparatus using the catalyst
KR101142669B1 (en) * 2006-02-17 2012-05-21 로디아 오퍼레이션스 Composition based on oxides of zirconium, cerium, yttrium, lanthanum and of another rare earth, method for preparing same and catalytic use
JP2007275704A (en) * 2006-04-03 2007-10-25 Johnson Matthey Japan Inc Exhaust gas catalyst and exhaust gas treating device using the same
JP2007301526A (en) * 2006-05-15 2007-11-22 Toyota Central Res & Dev Lab Inc Catalyst for cleaning exhaust gas and its manufacturing method
JP4985299B2 (en) * 2007-10-10 2012-07-25 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5023950B2 (en) * 2007-10-10 2012-09-12 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5034871B2 (en) * 2007-10-30 2012-09-26 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
US8568675B2 (en) * 2009-02-20 2013-10-29 Basf Corporation Palladium-supported catalyst composites
JP5942550B2 (en) * 2011-08-22 2016-06-29 マツダ株式会社 Particulate combustion catalyst and method for producing the same
JP5876436B2 (en) 2013-04-09 2016-03-02 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824844B2 (en) * 1984-07-31 1996-03-13 株式会社日立製作所 Combustion catalyst stable at high temperature, preparation method thereof, and method of carrying out chemical reaction using the catalyst
JPS63178847A (en) * 1987-01-20 1988-07-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JP2948232B2 (en) * 1989-04-04 1999-09-13 日産自動車株式会社 Exhaust gas purification catalyst
JP3061399B2 (en) * 1990-06-20 2000-07-10 株式会社日本触媒 Diesel engine exhaust gas purification catalyst and purification method
JP2734808B2 (en) * 1991-05-10 1998-04-02 日産自動車株式会社 Exhaust gas purification catalyst
JP3275356B2 (en) * 1992-04-09 2002-04-15 日産自動車株式会社 Method for producing exhaust gas purifying catalyst
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JPH0768175A (en) * 1993-06-11 1995-03-14 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
WO1995035152A1 (en) * 1994-06-17 1995-12-28 Engelhard Corporation Layered catalyst composite
JPH08229395A (en) * 1995-02-24 1996-09-10 Mazda Motor Corp Exhaust gas purifying catalyst
JP3741292B2 (en) * 1996-06-13 2006-02-01 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification method

Also Published As

Publication number Publication date
JPH10286462A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3988202B2 (en) Exhaust gas purification catalyst
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JP5910833B2 (en) Exhaust gas purification catalyst
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
WO2002066155A1 (en) Exhaust gas clarification catalyst
WO2013136821A1 (en) Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
JP5674092B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2012055842A (en) Exhaust gas purifying catalyst
JP4831753B2 (en) Exhaust gas purification catalyst
JP5078125B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP3799466B2 (en) Exhaust gas purification catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP2022135562A (en) Exhaust-purifying catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP6401740B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2010022892A (en) Catalyst for cleaning exhaust gas
JPH08281116A (en) Catalyst for purifying exhaust gas
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JPH11226405A (en) Catalyst for purification of exhaust gas and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees