JP3969505B2 - Chamfering method and apparatus - Google Patents

Chamfering method and apparatus Download PDF

Info

Publication number
JP3969505B2
JP3969505B2 JP33423397A JP33423397A JP3969505B2 JP 3969505 B2 JP3969505 B2 JP 3969505B2 JP 33423397 A JP33423397 A JP 33423397A JP 33423397 A JP33423397 A JP 33423397A JP 3969505 B2 JP3969505 B2 JP 3969505B2
Authority
JP
Japan
Prior art keywords
grinding
edge
plate
article
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33423397A
Other languages
Japanese (ja)
Other versions
JPH11165247A (en
Inventor
茂 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Optics Inc
Original Assignee
Crystal Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Optics Inc filed Critical Crystal Optics Inc
Priority to JP33423397A priority Critical patent/JP3969505B2/en
Publication of JPH11165247A publication Critical patent/JPH11165247A/en
Application granted granted Critical
Publication of JP3969505B2 publication Critical patent/JP3969505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、面取方法および装置に関し、詳しくは、ガラス基板の端縁を丸めるなどの面取加工を施す方法とその方法に用いる装置に関する。
【0002】
【従来の技術】
液晶表示装置に用いられるガラス基板は、端縁に鋭い角が存在しないように端縁を丸く曲面状に加工する、いわゆる面取加工が施されている。この面取加工には研削加工が採用される。
面取加工に用いられる研削砥石として、所望の面取形状に対応する断面の凹溝状をなす研削溝が、円柱状をなす研削砥石の外周面に形成されたものがある。研削砥石をその周面方向に高速回転させながら、研削溝をガラス基板の端縁に押し当てることで、ガラス基板の端縁が研削溝の形状に対応する断面形状に面取加工されることになる。
【0003】
【発明が解決しようとする課題】
面取形状と同じ断面形状を有する研削溝をガラス基板の端縁に押し付ける従来の面取方法では、ガラス基板の端縁に形成する面取形状が設計変更される毎に、研削溝の形状も変更しなければらない。そのために、いちいち研削砥石を製造し直すのは大変に不経済である。研削砥石をドレッシング加工して研削溝の形状を変更することも可能であるが、それでも、研削溝の形状を変えるドレッシング加工の手間と時間がかかる。
【0004】
しかも、面取加工を繰り返すと、研削砥石の研削溝が磨耗によってすり減り、研削溝の断面形状が変わってしまうという問題がある。これは、例えば、ガラス基板の断面矩形状をなす端縁に断面半円形の研削溝で面取加工を行うと、端縁の尖った隅角部に当たる部分の研削溝のみが堀り込まれるように磨耗してしまい、研削溝の断面形状が半円形から矩形に近い形状へと歪んでしまう。形状が歪んだ研削溝では、予め設定された正確な形状の面取加工を行うことができない。形状が歪んだ研削溝は、前記した同様のドレッシング加工で正確な形状に整形し直す必要があり、当然、ドレッシング加工の手間が増える。
【0005】
本発明の課題は、前記した従来技術の問題点を解消し、正確な面取形状を能率的に作製することのできる面取方法および装置を提供することである。
【0006】
【課題を解決するための手段】
本発明の面取方法は、板状物品の端縁に曲面状の面取加工を施す方法である。周面に凹状の研削溝を有する研削砥石を周面方向に回転させながら、研削溝を板状物品の端縁に押圧して、板状物品の端縁を研削する工程を含む。この研削工程で前記研削砥石として、前記凹状の研削溝が前記板状物品の端縁に形成される曲面状の面取加工の曲率半径よりも大きな曲率半径の断面形状を有する研削砥石を用いることとし、研削砥石の研削溝を板状物品の端縁に対して、互いに近接離間するY方向およびこれと直交し研削砥石の軸方向に沿うZ方向に相対的に移動させて、端縁にとっての研削を順次変えながら、板状物品の端縁を所望の曲面状に研削加工する。
【0007】
本発明の面取装置は、板状物品の端縁に曲面状の面取加工を施す装置であって、板状物品を保持する手段と、周面に凹状であって前記板状物品の端縁に形成される曲面状の面取加工の曲率半径よりも大きな曲率半径の断面形状を有する研削溝を有し、周面方向に回転自在な研削砥石と、研削砥石の研削溝と前記保持手段に保持された板状物品の端縁とを、互い近接離間するY方向およびこれと直交し研削砥石の軸方向に沿うZ方向に相対的に移動させる移動手段と、前記研削砥石の研削溝を前記板状物品の端縁に対して、互いに近接離間するY方向およびこれと直交し研削砥石の軸方向に沿うZ方向に相対的に移動させて、前記端縁にとっての研削点を順次変えながら、前記板状物品の端縁を所望の曲面状に研削加工する、制御装置と、を備える。
【0008】
各構成要件について具体的に説明する。
〔板状物品〕
各種製品あるいは製品を構成する部品となる板状の物品であって、少なくとも一部の端縁に面取加工が必要とされる物品であれば任意の物品に適用できる。
板状物品の材料は、ガラス、金属、セラミック、合成樹脂、その他の材料が用いられる。
【0009】
板状物品の端縁で構成される平面外形は、矩形のほか、各種の多角形でもよく、円形や楕円形など、外形の一部または全体が曲線状をなすものであってもよい。板状物品は平坦な面状のものであってもよいし、屈曲面や曲面を有するものであっても構わない。
したがって、板状物品の端縁は、単純な直線状の場合のほか、一つの面内で曲線状あるいは屈曲線状をなす場合、さらには、三次元的な屈曲線あるいは曲線である場合もある。
〔面取形状〕
板状物品の端縁に形成する面取形状は、板状物品および面取加工の目的に合わせて設定される。例えば、円弧状のほか、楕円弧や放物線、双曲線などの各種曲線形状が採用される。また、曲率半径の異なる複数の円弧を組み合わせたり、複数種の曲線を組み合わせた面取形状を構成することもできる。
〔研削砥石〕
基本的には、通常の面取加工に用いられるものと同様の材料および構造からなるものが使用できる。
【0010】
研削砥石の材料には、粗加工用、仕上げ加工用などの様々な規格あるいは種別があり、加工の目的に合わせて適切な砥石材料を選択する。また、複数種類の研削砥石を加工段階毎に取り替えて使用することもできる。
研削砥石は、概略円柱状あるいは円筒状をなし、周面に沿って凹状の研削溝を有している。
【0011】
研削溝の形状は、板状物品の端縁に形成する面取形状に一致させておく必要はないが、形成すべき面取形状の最大曲率半径よりも曲率半径の大きな曲線形状を有するのが好ましい。
具体的な研削溝の形状としては、半円形などの単純な図形状に設定しておけば、作製が容易であり、研削工程における移動経路の算出設定も比較的に簡単になる。半円形以外の各種曲面状であっても構わない。一部に直線形状部分が含まれていてもよい。
【0012】
研削砥石は、モータ等の駆動力を伝達し周面方向に回転させて、研削溝を板状物品の端縁に押圧することで、板状物品の端縁が研削加工される。研削砥石の保持機構や回転駆動機構については、通常の研削砥石と同様でよい。
〔相対移動〕
研削工程において、研削砥石の研削溝を板状物品の端縁に対して相対的に移動させる。相対的に移動させるとは、板状物品の端縁を静止させておいて研削砥石側を移動さる場合、逆に、研削砥石側を静止した状態で回転させておき板状物品の端縁を移動させる場合、さらには、研削砥石と板状物品の端縁との両方を移動させる場合がある。
【0013】
まず、両者を互いに近接離間するY方向に相対移動させる。研削溝が端縁に近接する方向に移動すれば、研削溝の端縁への押圧力が増え、端縁の研削量も増える。
さらに、上記Y方向と直交し研削砥石の軸方向に沿うZ方向にも相対移動させる。
【0014】
上記Y方向およびZ方向の相対移動を組み合わせることで、端縁にとっての研削点の位置、すなわち、研削溝の断面形状において、研削溝と端縁とが接触して端縁が研削される研削点の位置を順次変えることができる。板状物品の端縁は、順次移動する研削点の集合で表される包絡線あるいは研削の移動軌跡に対応する断面形状に研削されることになる。
【0015】
板状物品の端縁を所望の曲面状に研削加工するには、形成する曲面形状に合わせて、研削溝と端縁との相対的な移動軌跡が所望の移動軌跡を描くように、前記Y方向およびZ方向の相対移動量を制御する。
具体的には、マイクロコンピュータ等の演算処理機構が組み込まれた制御装置に、端縁の面取形状データや研削溝の形状データなどを入力して、幾何学的な演算処理を行えば、Y方向およびZ方向の相対移動量を求めることができる。
【0016】
上記したY方向およびZ方向の相対移動によって、端縁の特定断面における面取形状の形成が行える。但し、通常の板状物品では、端縁がその断面と直交する方向に延びているから、端縁全体の面取加工を行うには、端縁に沿うX方向の相対移動も必要となる。端縁が直線的に延びている場合には、X方向の相対移動も直線的でよいが、端縁が屈曲線状あるいは曲線状に延びている場合には、X方向の相対移動は、経時的に方向を変える屈曲線状あるいは曲線状の移動になる。
【0017】
XYZ各方向の相対移動を、研削砥石あるいは板状物品のうちの一方側のみで行えば、他方については複雑な移動機構が必要なくなるので構造を簡単にできる。
例えば、研削砥石側で、YZ方向の移動と、X方向の移動のうち直線的移動を行うようにするとともに、板状物品側で、X方向の移動に含まれる、板状物品を研削砥石の軸方向と直交する面内で旋回させる移動を行わせることができる。
【0018】
さらに、前記XYZ方向の移動では、研削砥石の回転軸は同じ姿勢のままで平行移動させるが、研削砥石の回転軸を傾けるように、研削砥石すなわち研削溝を移動させることもできる。これによって、端縁に対して研削溝が当接する姿勢を変えることができる。
〔移動手段〕
前記した相対移動を行わせるための移動手段は、通常の工作機械その他の機械装置における軸方向への移動機構を組み合わせて構成することができる。具体的には、ラックピニオン機構、ボールネジ機構、カム機構、ギア機構、電磁式あるいは油空圧式のシリンダ機構、ベルト機構、チェーン機構、リンク機構その他の機構が組み合わせられる。XYZ各方向の移動手段として、同種の移動機構を組み合わせてもよいし、それぞれの要求特性に合わせて違う移動機構を組み合わせてもよい。研削砥石の回転軸を傾けるには、回転軸あるいはその軸受構造を傾動自在に設けておけばよい。
〔保持手段〕
板状物品は、端縁の面取加工の邪魔にならない形態で保持しておく。板状物品のうち、面取加工を行わない側の辺を保持したり、板状物品の端縁から離れた中央側の面を保持したりすることができる。具体的には、機械的なクランプ機構や、真空吸着機構、磁気的な吸着機構などが使用できる。
〔研削溝の位置補正〕
研削加工を行うと、研削砥石の研削溝は磨耗する。
【0019】
前記したように、端縁にとっての研削を順次変えていれば、研削溝の断面形状は全体が均等に磨耗する。したがって、研削溝の断面形状そのものが変形したり歪んだりすることが防止できる。
しかし、同じ断面形状でも研削溝が磨耗すれば、端縁に対する研削溝のY方向の位置関係が違ってくる。具体的には、研削溝が磨耗するほど、Y方向における研削溝と端縁との距離が増える。
【0020】
この研削溝の磨耗によるY方向の位置ずれを補正することが好ましい。
すなわち、研削工程において、端縁から研削溝に加わる抵抗力を検出し、抵抗力の変動に対応して研削溝のY方向の位置を補正することができる。
抵抗力の検出は、荷重センサなどを利用することができる。研削砥石にモータ等から加わる回転トルクの変動をトルクコンバータなどで検出すれば、抵抗力の減少を回転トルクの増加として捉えることができる。
【0021】
抵抗力の減少は、研削溝の磨耗の増大を表す研削溝の磨耗量に対応して、Y方向における研削溝と端縁との距離を短くする方向に研削砥石を移動させれば、研削溝の磨耗による影響を補正することができる。
このような研削溝の磨耗に対応するY方向の補正量の演算は、前記した制御装置において処理される。
【0022】
【発明の実施形態】
〔面取装置の基本構造〕
図1に示す面取装置は、研削砥石10を備える。
研削砥石10は、概略円筒状をなし、中心に挿通されボルト等で固定された回転軸14に支持されており、周面方向に回転駆動される。
【0023】
研削砥石10の軸方向中央には、周面に沿って凹状の研削溝12が設けられている。研削溝12の断面形状はほぼ半円形をなしている。
研削砥石10は、回転軸14の軸方向と平行なZ方向、および、これと直交し研削砥石10の半径方向になるY方向の両方に移動自在に支持されている。
研削砥石10の回転軸14には、トルクコンバータなどからなるトルク検出器100が取り付けられており、回転軸14すなわち研削砥石10に加わるトルクを検出して、検出データを電気信号に変換する。トルク検出器100で検出されたデータは、マイクロコンピュータや電子回路からなる制御部110に入力される。制御部110は、予め入力されたプログラムや検出されたトルクデータなどをもとに演算処理して、前記したYZ方向の移動を行うための送り機構120に対して制御信号を出力し、研削砥石10の移動を制御する。
【0024】
板状物品Pとして、液晶装置用のガラス基板となる平坦な板材を用いる。板状物品Pは、切断加工などの手段で矩形状に形成されている。切断面である板状物品Pの端縁fは、鋭い角状をなしている。
〔面取加工〕
図2に示すように、板状物品Pの角状をなす端縁fに面取加工を施して、端縁fの断面形状を概略半円形に丸める。
【0025】
板状物品Pの端縁fに対して、高速回転する研削砥石10を接近させ、研削溝12を端縁fに押し当てれば、端縁fのうち研削溝12と接触する個所gが、削り取られる。
断面形状の異なる研削溝12と端縁fとが接触するので、接触個所gすなわち同時に研削される範囲は、点状あるいは点に近い狭い領域のみとなる。このことは、研削個所から研削溝12に加わる反力あるいは抵抗力が相対的に小さくなることを意味しており、研削砥石10に加える回転トルクが小さくて済むことや、難研削材料でも容易に研削できるという利点が生じる。
【0026】
研削溝12の移動を、Y方向およびZ方向の両方に制御する。研削砥石10の任意点の移動軌跡tが図示する弧状の軌跡を描くように、研削砥石10を移動させる。
研削溝12が移動すると、移動する研削溝12の断面形状の集合あるいは包絡面の形状にしたがって、端縁fが研削加工される。具体的には、端縁fの形状が断面半円形に加工される。端縁fに対する研削溝12の接触点すなわち研削点はg1 〜g3 へと順次移動する。
【0027】
板状物品Pの一つの側辺の全長に対して端縁fの面取加工を行うには、板状物品Pの端縁fに沿う方向、すなわち図1あるいは図2における紙面と直交する方向(以下、X方向と呼ぶ)にも、研削砥石10および研削溝12を移動させる。研削砥石10は、前記したY方向、Z方向およびX方向の移動を組み合わせた三次元的な移動を行うことになる。
【0028】
上記研削加工では、研削溝12の上端から下端までの全長にわたる各点が平均して端縁fに当接して研削を行う。その結果、研削溝12の全長で磨耗が均等に進行するので、研削溝12は、同じ断面形状のままで徐々に深くなる方向に形状を変える。板状物品Pの面取加工を繰り返しても、研削溝12の断面形状は常に一定である。その結果、研削加工される端縁fの面取形状も、予め設定された所定形状を正確に維持することができる。
【0029】
但し、研削溝12の磨耗量に合わせて、板状物品Pの端縁fに対する研削溝12のY方向の位置を、徐々に端縁f側へと移動させる。この研削溝12の磨耗量に対応する位置補正は以下のように行う。
〔研削溝の位置補正〕
研削加工中に、回転軸14に加わるトルクの変動をトルク検出器100で検出して、制御部110で監視しておく。
【0030】
研削溝12が磨耗すると、研削溝12を端縁fに対して同じ位置まで送り込んでも、実質的には磨耗量の分だけ送り込み量が少なくなる。その結果、端縁fからの反力あるいは抵抗力が小さくなる。抵抗力が小さくなれば、回転軸14に加わっているトルクの損失も少なくなるから、回転軸14で検出されるトルクは増える。
【0031】
そこで、研削工程において、端縁fに対する研削溝12の移動位置が同じであるのに、トルク検出器100で検出されるトルクが増えれば、研削溝12の磨耗が進行しているものと判断できる。そこで、制御部110から送り機構120に指令を出して、研削溝12すなわち研削砥石10を端縁f側に移動させる。その結果、前記トルクが元の大きさに戻れば、研削溝12の磨耗に対応する位置の補正は完了したことになる。言い換えると、検出されるトルクが常に一定になるように、研削溝12の位置をY方向で徐々に端縁fに向かって移動させるように補正を加える。
【0032】
前記したように、研削溝12そのものの断面形状は、磨耗が進行しても同一形状のままであるから、前記したトルク検出による研削溝12の位置修正を行いさえすれば、板状物品Pの端縁fに対する面取加工を長期間にわたって繰り返しても、常に、同じ品質性能で面取加工を行うことが可能になる。
〔板状物品の隅角部の丸め加工〕
図3に示すように、板状物品Pの平面形状において隅角部が丸くなるように加工することができる。
【0033】
すなわち、矩形状をなし隅角部r0 が直角に尖った板状物品P0 に対して、一側辺に沿って研削溝12による面取加工を行い、研削溝12が隅角部r0 に近づいたときに、研削砥石10に対して、板状物品10を水平面で旋回させるように移動させる。この水平面での旋回も、研削溝12と端縁fとが端縁fに沿う方向に移動することになるから、前記したX方向の移動に含まれる。
【0034】
上記作業の結果、板状物品Pの隅角部rが円弧状に削り取られて丸くなり、隅角部rの丸め加工が果たされる。
〔面取形状の別の実施形態〕
前記した断面半円形の研削溝12を用いて、前記した断面半円形の面取形状だけでなく、より複雑な曲面状の面取加工も可能である。
【0035】
図4に示す実施形態では、断面半円形の研削溝12を用いて、端縁fの下部を比較的に大きな曲率半径に、上部を比較的に小さく曲率半径になるように面取加工を行っている。研削溝12の移動軌跡tは、上方側では小さな曲率半径で湾曲し、下方側では大きな曲率半径で湾曲している。
このように、研削溝12の移動軌跡tあるいはYZ方向の移動量を適宜に設定することによって、研削溝12の断面形状とは全く異なる断面形状を有する面取形状の加工も可能になる。
【0036】
なお、上記した研削原理の説明から判るように、研削溝12で形成できる面取形状は、研削溝12の曲率半径よりも小さな曲率半径部分で構成される曲面であり、そのような条件を満足していれば自由な形状を構成することができる。
〔面取装置の全体構成〕
図5に平面配置を示す面取装置Mは、前記した各種の面取加工を効率的に実行することができる。図中、左上に示すXY方向の座標は、前記実施形態で説明したX方向およびY方向に対応する。Z方向は、紙面と直交する方向になる。
【0037】
研削砥石10は、第1支持台20に取り付けられ、モータ22からベルトを介して回転駆動される。
第1支持台10は、モータ34で駆動されるボールネジ機構32を介して、第2支持台30に支持されており、研削砥石10の軸方向と平行な方向すなわちZ方向に昇降自在に取り付けられている。
【0038】
第2支持台30は、第3支持台40に対してY方向に移動自在に配置されている。具体的には、第3支持台40に設置されたレール上を第2支持台30が滑動する。第3支持台40に設置されたアクチュエータ42で押動される第2支持第30は、Y方向に移動する。
第3支持台40は、X方向に沿って設置されたレール44の上を滑動する。すなわち、モータ46の回転力をボールネジ機構を介して第3支持台40に伝達することで、第3支持台40がX方向に移動する。
【0039】
以上の結果、研削砥石10は、X方向、Y方向およびZ方向の直交する3方向に自由に直線移動することが可能になる。勿論、XYZの3方向の移動を組み合わせれば、平面上での曲線移動や3次元的な移動を行うこともできる。
つぎに、前記した第3支持台40が滑動するレール44に沿って、研削砥石10の側方に、板状物品Pを保持する保持枠材50が配置されている。保持枠材50の下面には真空吸着盤52を備え、この真空吸着盤52の下面に板状物品Pを吸着保持することができる。真空吸着盤52に支持された板状物品Pの1側辺の端縁fが、前記X方向に移動する研削砥石10の研削溝12の移動経路に配置される。
【0040】
真空吸着盤52は、保持枠材50に備える旋回モータ54にギヤ機構を介して水平面内で旋回自在に取り付けられている。その結果、真空吸着盤52に支持された板状物品Pも水平面内で旋回可能である。
保持枠材50の一端が、Y方向に沿って配置されたレール56に摺動自在に支持されており、モータ58の回転力をボールネジ機構を介して保持枠材50に伝達することで、保持枠材50および板状物品PがY方向に移動する。板状物品PをY方向に移動させることで、板状物品Pの端縁fを研削砥石10の研削溝12に挿入配置したり、研削溝12から取り外したりする操作が行える。
【0041】
次に、第3支持台30が移動するレール44の端部近く(図では左端近く)には、砥石取替部60が配置されている。砥石取替部60には、取り替え用の研削砥石10が収容されている。砥石取替部60には、砥石取替機構62を備えている。第1支持台20に取り付けられた研削砥石10が砥石取替部60の位置にくると、砥石取替機構62が作動して、別の研削砥石10に交換することができる。具体的には、磨耗が進行して使用不可能になった研削砥石10を取り替えたり、粗加工用の研削砥石10を仕上げ加工用の研削砥石10に取り替えたりする作業が行える。
【0042】
以上に説明した、各作動機構は全て、図示しない制御配線を経て制御部110に接続されており、制御部110の指令にもとづいて動作が制御される。また、第1支持台20には、研削砥石10またはモータ20の回転軸に対してトルクを検出するためのトルクコンバータ(図示せず)が装備され、制御配線を経て制御部110に接続されている。
〔研削砥石の回転軸を傾ける実施形態〕
図6に示す実施形態では、研削溝12をY方向およびZ方向に移動させると同時に、研削砥石10の回転中心軸Cを、板状物品Pの面と直交する方向C0 から角度θだけ傾斜した状態C1 まで傾くように移動させながら研削を行う。図示しないが、傾斜角度θを回転中心軸C0 に対して反対向きに測った方向にも回転中心軸を傾斜させる。
【0043】
上記のように、板状物品Pに対して研削砥石10および研削溝12を傾けて相対的な姿勢を変える運動を加えると、前記実施形態のように同じ姿勢のままで平行移動させる方法に比べて、板状物品Pに対する研削溝12の当接状態あるいは研削加工形状を、より広い範囲で変更できることになる。また、研削加工形状は同じでも、端縁fと研削溝12との当接位置および姿勢が変わるので、研削溝12の磨耗を均等化できるなどの利点が得られる。
【0044】
【発明の効果】
本発明の面取方法および装置では、研削砥石の研削溝と板状物品の端縁とを、前記Y方向およびZ方向に相対的に移動させ、端縁にとっての研削を順次変えながら、板状物品の端縁を所望の曲面状に研削加工することにより、一定形状の研削溝で、様々な曲面形状の面取加工を行うことができる。面取形状を変更する毎に、研削砥石を取り替えたり、研削溝の形状修正加工を行う面倒が解消される。
【0045】
また、研削溝の磨耗が全体で均等に進行するので、面取加工を繰り返しても、研削溝の形状が変形したり歪んだりすることがなく、加工される端縁の面取形状も正確で安定したものとなる。研削溝の形状を修正するドレッシング加工を不要にできたり、ドレッシング加工が必要になる期間を延長したりすることができ、ドレッシング加工の手間を省いて、面取加工の生産性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態を表す面取装置の概略構成図
【図2】 加工状態を説明する拡大図
【図3】 板状物品の隅角部の加工状態を示す説明図
【図4】 別の実施形態を表す加工状態の説明図
【図5】 面取装置の全体構造を示す平面図
【図6】 別の実施形態を表す加工状態の説明図
【符号の説明】
10 研削砥石
12 研削溝
14 回転軸
P 板状物品
f 端縁
g 研削点
[0001]
[Industrial application fields]
The present invention relates to a chamfering method and apparatus, and more particularly, to a method for chamfering such as rounding an edge of a glass substrate and an apparatus used for the method.
[0002]
[Prior art]
A glass substrate used in a liquid crystal display device is subjected to so-called chamfering, in which an edge is rounded into a curved surface so that there is no sharp corner at the edge. Grinding is adopted for the chamfering.
As a grinding wheel used for chamfering, there is one in which a grinding groove having a concave groove shape having a cross section corresponding to a desired chamfering shape is formed on an outer peripheral surface of a cylindrical grinding wheel. The edge of the glass substrate is chamfered into a cross-sectional shape corresponding to the shape of the grinding groove by pressing the grinding groove against the edge of the glass substrate while rotating the grinding wheel at a high speed in the circumferential direction. Become.
[0003]
[Problems to be solved by the invention]
In the conventional chamfering method in which a grinding groove having the same cross-sectional shape as the chamfering shape is pressed against the edge of the glass substrate, the shape of the grinding groove is changed every time the chamfering shape formed on the edge of the glass substrate is redesigned. Must be changed. Therefore, it is very uneconomical to remanufacture grinding wheels. Although it is possible to change the shape of the grinding groove by dressing the grinding wheel, it still takes time and effort for the dressing process to change the shape of the grinding groove.
[0004]
In addition, when chamfering is repeated, there is a problem that the grinding groove of the grinding wheel is worn away due to wear and the cross-sectional shape of the grinding groove is changed. This is because, for example, when chamfering is performed with a semicircular grinding groove on the edge having a rectangular cross section of the glass substrate, only the grinding groove corresponding to the sharp corner of the edge is dug. As a result, the cross-sectional shape of the grinding groove is distorted from a semicircular shape to a rectangular shape. A grinding groove having a distorted shape cannot be chamfered with a preset accurate shape. The grinding groove having a distorted shape needs to be reshaped into an accurate shape by the same dressing process as described above, and naturally, the trouble of the dressing process increases.
[0005]
An object of the present invention is to provide a chamfering method and apparatus capable of solving the above-described problems of the prior art and efficiently producing an accurate chamfered shape.
[0006]
[Means for Solving the Problems]
The chamfering method of the present invention is a method of performing a curved chamfering process on the edge of a plate-shaped article. A step of grinding the edge of the plate-like article by pressing the grinding groove against the edge of the plate-like article while rotating a grinding wheel having a concave grinding groove on the circumference in the circumferential direction. In this grinding process, as the grinding wheel, a grinding wheel having a concave grinding groove the plate-like article large radius of curvature of the cross-sectional shape than the radius of curvature of the curved chamfer which is formed on the edge of and the use, in the grinding groove of the grinding wheel against the edge of the plate-like article, is relatively moved in the Y direction and which perpendicular to the Z direction along the axial direction of the grinding wheel close away from each other, the edges sequentially while changing the grinding point is to the, grinding the edge of the plate-like article into the desired curved shape.
[0007]
The chamfering device of the present invention is a device that performs a curved chamfering process on the edge of a plate-like article, and means for holding the plate-like article, and has a concave shape on the peripheral surface and the end of the plate-like article. A grinding wheel having a cross-sectional shape with a radius of curvature larger than the curvature radius of the curved chamfering process formed on the edge, and a grinding wheel that is rotatable in the circumferential direction, the grinding groove of the grinding wheel, and the holding means A moving means for relatively moving the edge of the plate-like article held in the Y direction and the Z direction perpendicular to each other and along the axial direction of the grinding wheel, and grinding grooves of the grinding wheel. While moving relative to the edge of the plate-like article in the Y direction approaching and separating from each other and the Z direction orthogonal to the axial direction of the grinding wheel, the grinding points for the edge are sequentially changed. , grinding the edge of the plate-like article into the desired curved shape, Preparations and control device, the That.
[0008]
Each component requirement will be specifically described.
[Plate-shaped article]
The present invention can be applied to any product as long as it is a plate-like product that becomes various products or parts constituting the product and requires chamfering on at least a part of the edges.
As the material of the plate-like article, glass, metal, ceramic, synthetic resin, and other materials are used.
[0009]
The planar outer shape constituted by the edge of the plate-like article may be various polygons other than a rectangle, and a part or the whole of the outer shape may be a curved shape such as a circle or an ellipse. The plate-shaped article may be a flat surface, or may have a bent surface or a curved surface.
Therefore, the edge of the plate-shaped article may be a simple straight line, a curved line or a bent line in one plane, or a three-dimensional bent line or a curved line. .
(Chamfer shape)
The chamfering shape formed on the edge of the plate-like article is set according to the purpose of the plate-like article and the chamfering process. For example, in addition to an arc shape, various curved shapes such as an elliptical arc, a parabola, and a hyperbola are adopted. Further, it is possible to configure a chamfered shape by combining a plurality of arcs having different curvature radii or combining a plurality of types of curves.
[Grinding wheel]
Basically, a material having the same material and structure as those used for normal chamfering can be used.
[0010]
There are various standards or types of grinding wheel materials such as roughing and finishing, and an appropriate grinding wheel material is selected according to the purpose of processing. In addition, a plurality of types of grinding wheels can be used by replacing each processing stage.
The grinding wheel has a substantially columnar shape or a cylindrical shape, and has a concave grinding groove along the circumferential surface.
[0011]
The shape of the grinding groove does not need to match the chamfered shape formed at the edge of the plate-shaped article, but has a curved shape with a radius of curvature larger than the maximum radius of curvature of the chamfered shape to be formed. preferable.
As a specific shape of the grinding groove, if it is set to a simple figure shape such as a semicircular shape, it is easy to manufacture, and the calculation setting of the movement path in the grinding process is relatively simple. Various curved surfaces other than the semicircular shape may be used. A part of the linear shape may be included.
[0012]
The grinding wheel transmits a driving force of a motor or the like, rotates in the circumferential direction, and presses the grinding groove against the edge of the plate-like article, whereby the edge of the plate-like article is ground. The holding mechanism and the rotation drive mechanism of the grinding wheel may be the same as those of a normal grinding wheel.
[Relative movement]
In the grinding process, the grinding groove of the grinding wheel is moved relative to the edge of the plate-like article. When moving the grinding wheel side with the edge of the plate-like article stationary, the edge of the plate-like article is rotated while the grinding wheel side is stationary. In the case of moving, there are also cases where both the grinding wheel and the edge of the plate-like article are moved.
[0013]
First, the two are moved relative to each other in the Y direction that is close to and away from each other. If the grinding groove moves in the direction close to the edge, the pressing force to the edge of the grinding groove increases and the amount of grinding of the edge also increases.
Furthermore, it is also moved relative to the Z direction perpendicular to the Y direction and along the axial direction of the grinding wheel.
[0014]
By combining the relative movement of the Y and Z directions, the position of the grinding point is to the edge, i.e., in the cross-sectional shape of the grinding groove, edges are ground in contact with the grinding grooves and the edge The position of the grinding point can be changed sequentially. The edge of the plate-like article is ground into a cross-sectional shape corresponding to an envelope represented by a set of grinding points that move sequentially or a movement locus of the grinding points .
[0015]
In order to grind the edge of the plate-like article into a desired curved surface shape, the Y is set such that the relative movement locus of the grinding groove and the edge draws the desired movement locus in accordance with the curved surface shape to be formed. The relative movement amount in the direction and the Z direction is controlled.
Specifically, if geometric processing is performed by inputting edge chamfering shape data, grinding groove shape data, and the like into a control device incorporating an arithmetic processing mechanism such as a microcomputer, Y The relative movement amount in the direction and the Z direction can be obtained.
[0016]
By the relative movement in the Y direction and the Z direction described above, a chamfered shape can be formed in a specific cross section of the edge. However, in a normal plate-shaped article, since the end edge extends in a direction perpendicular to the cross section, relative chamfering of the entire end edge also requires relative movement in the X direction along the end edge. When the edge extends linearly, the relative movement in the X direction may be linear, but when the edge extends in a bent line shape or a curved shape, the relative movement in the X direction is The movement is a bent line or a curved line that changes its direction.
[0017]
If the relative movement in each direction of XYZ is performed only on one side of the grinding wheel or the plate-like article, a complicated moving mechanism is not required on the other side, so that the structure can be simplified.
For example, on the grinding wheel side, linear movement is performed among the movement in the YZ direction and the movement in the X direction, and the plate-shaped article included in the movement in the X direction is removed on the plate-shaped article side. It is possible to perform a pivoting movement in a plane orthogonal to the axial direction.
[0018]
Further, in the movement in the XYZ directions, the rotation axis of the grinding wheel is moved in parallel with the same posture, but the grinding wheel, that is, the grinding groove can be moved so that the rotation axis of the grinding wheel is inclined. This makes it possible to change the posture in which the grinding groove contacts the edge.
〔transportation〕
The moving means for performing the relative movement described above can be configured by combining a moving mechanism in the axial direction of a normal machine tool or other machine device. Specifically, a rack and pinion mechanism, a ball screw mechanism, a cam mechanism, a gear mechanism, an electromagnetic or hydraulic / pneumatic cylinder mechanism, a belt mechanism, a chain mechanism, a link mechanism, and other mechanisms are combined. As movement means in the XYZ directions, the same kind of movement mechanism may be combined, or different movement mechanisms may be combined in accordance with the required characteristics. In order to tilt the rotating shaft of the grinding wheel, the rotating shaft or its bearing structure may be tilted.
[Holding means]
The plate-like article is held in a form that does not interfere with the chamfering of the edge. Of the plate-shaped article, the side on which chamfering is not performed can be held, or the center-side surface away from the edge of the plate-shaped article can be held. Specifically, a mechanical clamping mechanism, a vacuum suction mechanism, a magnetic suction mechanism, or the like can be used.
[Correction of grinding groove position]
When grinding is performed, the grinding grooves of the grinding wheel wear out.
[0019]
As described above, if successively changing the grinding point is to the edge, the cross-sectional shape of the grinding groove whole is uniformly worn. Therefore, it is possible to prevent the sectional shape of the grinding groove itself from being deformed or distorted.
However, if the grinding groove is worn even in the same cross-sectional shape, the positional relationship in the Y direction of the grinding groove with respect to the edge becomes different. Specifically, the wear of the grinding groove increases the distance between the grinding groove and the edge in the Y direction.
[0020]
It is preferable to correct a misalignment in the Y direction due to wear of the grinding grooves.
That is, in the grinding process, the resistance force applied to the grinding groove from the edge can be detected, and the position of the grinding groove in the Y direction can be corrected in accordance with the fluctuation of the resistance force.
A load sensor or the like can be used to detect the resistance force. If a fluctuation in rotational torque applied to the grinding wheel from a motor or the like is detected by a torque converter or the like, a decrease in resistance can be regarded as an increase in rotational torque.
[0021]
The decrease in the resistance force corresponds to the amount of wear of the grinding groove, which represents an increase in wear of the grinding groove, and if the grinding wheel is moved in a direction to shorten the distance between the grinding groove and the edge in the Y direction, the grinding groove It is possible to correct the influence of the wear of the metal.
The calculation of the correction amount in the Y direction corresponding to the wear of the grinding grooves is processed in the control device described above.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
[Basic structure of chamfering device]
The chamfering apparatus shown in FIG. 1 includes a grinding wheel 10.
The grinding wheel 10 has a substantially cylindrical shape, is supported by a rotating shaft 14 that is inserted through the center and fixed by a bolt or the like, and is driven to rotate in the circumferential direction.
[0023]
A concave grinding groove 12 is provided along the peripheral surface at the center in the axial direction of the grinding wheel 10. The cross-sectional shape of the grinding groove 12 is substantially semicircular.
The grinding wheel 10 is supported movably in both the Z direction parallel to the axial direction of the rotating shaft 14 and the Y direction perpendicular to the radial direction of the grinding wheel 10.
A torque detector 100 comprising a torque converter or the like is attached to the rotating shaft 14 of the grinding wheel 10, and detects the torque applied to the rotating shaft 14, that is, the grinding wheel 10, and converts the detected data into an electrical signal. Data detected by the torque detector 100 is input to the control unit 110 formed of a microcomputer or an electronic circuit. The control unit 110 performs arithmetic processing based on a previously input program, detected torque data, and the like, and outputs a control signal to the feed mechanism 120 for moving in the YZ direction described above. 10 movements are controlled.
[0024]
As the plate-like article P, a flat plate material used as a glass substrate for a liquid crystal device is used. The plate-like article P is formed in a rectangular shape by means such as cutting. The edge f of the plate-shaped article P that is a cut surface has a sharp corner shape.
[Chamfering]
As shown in FIG. 2, chamfering is performed on the edge f that forms a square shape of the plate-shaped article P, and the cross-sectional shape of the edge f is rounded into a substantially semicircular shape.
[0025]
When the grinding wheel 10 that rotates at high speed is brought close to the edge f of the plate-like article P and the grinding groove 12 is pressed against the edge f, the portion g of the edge f that contacts the grinding groove 12 is scraped off. It is.
Since the grinding grooves 12 having different cross-sectional shapes and the edge f are in contact with each other, the contact point g, that is, the range to be ground simultaneously is only a point-like or a narrow region close to a point. This means that the reaction force or resistance force applied to the grinding groove 12 from the grinding point is relatively small, and the rotational torque applied to the grinding wheel 10 can be small, and even difficult-to-grind materials can be easily used. The advantage is that it can be ground.
[0026]
The movement of the grinding groove 12 is controlled in both the Y direction and the Z direction. The grinding wheel 10 is moved so that the movement locus t of the arbitrary point of the grinding wheel 10 draws an arcuate locus shown in the figure.
When the grinding groove 12 moves, the edge f is ground according to the set of cross-sectional shapes of the moving grinding groove 12 or the shape of the envelope surface. Specifically, the shape of the edge f is processed into a semicircular cross section. The contact point of the grinding groove 12 with respect to the edge f, that is, the grinding point, sequentially moves from g 1 to g 3 .
[0027]
In order to chamfer the edge f with respect to the entire length of one side of the plate-like article P, the direction along the edge f of the plate-like article P, that is, the direction orthogonal to the paper surface in FIG. 1 or FIG. The grinding wheel 10 and the grinding groove 12 are also moved (hereinafter referred to as the X direction). The grinding wheel 10 performs a three-dimensional movement that combines the movements in the Y direction, the Z direction, and the X direction.
[0028]
In the grinding process, each point over the entire length from the upper end to the lower end of the grinding groove 12 is averaged to contact the edge f for grinding. As a result, wear progresses uniformly over the entire length of the grinding groove 12, so that the grinding groove 12 changes its shape in a direction that gradually becomes deeper with the same cross-sectional shape. Even if the chamfering of the plate-like article P is repeated, the cross-sectional shape of the grinding groove 12 is always constant. As a result, the chamfered shape of the edge f to be ground can be accurately maintained in a predetermined shape.
[0029]
However, the position of the grinding groove 12 in the Y direction with respect to the edge f of the plate-like article P is gradually moved toward the edge f in accordance with the amount of wear of the grinding groove 12. The position correction corresponding to the wear amount of the grinding groove 12 is performed as follows.
[Correction of grinding groove position]
During grinding, the torque detector 100 detects a change in torque applied to the rotary shaft 14 and monitors it with the control unit 110.
[0030]
When the grinding groove 12 is worn, even if the grinding groove 12 is fed to the same position with respect to the edge f, the feed amount is substantially reduced by the amount of wear. As a result, the reaction force or resistance force from the edge f is reduced. If the resistance force is reduced, the loss of torque applied to the rotating shaft 14 is also reduced, so that the torque detected by the rotating shaft 14 is increased.
[0031]
Therefore, in the grinding process, if the movement position of the grinding groove 12 with respect to the edge f is the same, but the torque detected by the torque detector 100 increases, it can be determined that the grinding groove 12 is being worn. . Therefore, a command is issued from the control unit 110 to the feed mechanism 120 to move the grinding groove 12, that is, the grinding wheel 10 to the edge f side. As a result, when the torque returns to the original magnitude, the correction of the position corresponding to the wear of the grinding groove 12 is completed. In other words, correction is made so that the position of the grinding groove 12 is gradually moved toward the edge f in the Y direction so that the detected torque is always constant.
[0032]
As described above, the cross-sectional shape of the grinding groove 12 itself remains the same even when wear progresses. Therefore, as long as the position of the grinding groove 12 is corrected by the torque detection described above, the plate-like article P can be obtained. Even if the chamfering process for the edge f is repeated over a long period of time, the chamfering process can always be performed with the same quality performance.
[Rounding corners of plate-like products]
As shown in FIG. 3, the planar shape of the plate-shaped article P can be processed so that the corners are rounded.
[0033]
That is, a chamfering process is performed on the plate-shaped article P 0 having a rectangular shape and a corner portion r 0 sharply perpendicular to the grinding groove 12 along one side, and the grinding groove 12 has a corner portion r 0. When approaching, the plate-shaped article 10 is moved with respect to the grinding wheel 10 so as to be swung on a horizontal plane. This turning in the horizontal plane is also included in the movement in the X direction described above because the grinding groove 12 and the edge f move in the direction along the edge f.
[0034]
As a result of the above operation, the corner portion r of the plate-like article P is cut into an arc shape and rounded, and the corner portion r is rounded.
[Another embodiment of chamfered shape]
Using the grinding groove 12 having a semicircular cross section, not only the chamfering shape having a semicircular cross section but also a more complicated curved chamfering process is possible.
[0035]
In the embodiment shown in FIG. 4, chamfering is performed using a grinding groove 12 having a semicircular cross section so that the lower portion of the edge f has a relatively large radius of curvature and the upper portion has a relatively small radius of curvature. ing. The movement locus t of the grinding groove 12 is curved with a small radius of curvature on the upper side and is curved with a large radius of curvature on the lower side.
In this way, by appropriately setting the movement trajectory t of the grinding groove 12 or the amount of movement in the YZ direction, a chamfered shape having a completely different cross-sectional shape from that of the grinding groove 12 can be processed.
[0036]
As can be seen from the description of the grinding principle described above, the chamfered shape that can be formed by the grinding groove 12 is a curved surface constituted by a curvature radius portion smaller than the curvature radius of the grinding groove 12, and satisfies such conditions. If it does, a free shape can be comprised.
[Overall configuration of chamfering device]
The chamfering apparatus M whose plane arrangement is shown in FIG. 5 can efficiently perform the various chamfering processes described above. In the figure, the coordinates in the XY directions shown in the upper left correspond to the X and Y directions described in the above embodiment. The Z direction is a direction orthogonal to the paper surface.
[0037]
The grinding wheel 10 is attached to the first support 20 and is rotationally driven from a motor 22 via a belt.
The first support base 10 is supported by the second support base 30 via a ball screw mechanism 32 driven by a motor 34, and is attached to be movable up and down in a direction parallel to the axial direction of the grinding wheel 10, that is, in the Z direction. ing.
[0038]
The second support base 30 is arranged to be movable in the Y direction with respect to the third support base 40. Specifically, the second support base 30 slides on a rail installed on the third support base 40. The second support 30 that is pushed by the actuator 42 installed on the third support 40 moves in the Y direction.
The 3rd support stand 40 slides on the rail 44 installed along the X direction. That is, by transmitting the rotational force of the motor 46 to the third support base 40 via the ball screw mechanism, the third support base 40 moves in the X direction.
[0039]
As a result, the grinding wheel 10 can freely linearly move in three directions orthogonal to the X direction, the Y direction, and the Z direction. Of course, by combining the movements in the three directions of XYZ, it is also possible to perform a curve movement or a three-dimensional movement on a plane.
Next, a holding frame member 50 that holds the plate-like article P is disposed on the side of the grinding wheel 10 along the rail 44 on which the third support 40 slides. A vacuum suction plate 52 is provided on the lower surface of the holding frame member 50, and the plate-like article P can be sucked and held on the lower surface of the vacuum suction plate 52. An edge f on one side of the plate-like article P supported by the vacuum suction plate 52 is disposed on the movement path of the grinding groove 12 of the grinding wheel 10 that moves in the X direction.
[0040]
The vacuum suction board 52 is attached to a turning motor 54 provided in the holding frame member 50 so as to be turnable in a horizontal plane via a gear mechanism. As a result, the plate-like article P supported by the vacuum suction board 52 can also turn in the horizontal plane.
One end of the holding frame member 50 is slidably supported by a rail 56 disposed along the Y direction, and the rotation force of the motor 58 is transmitted to the holding frame member 50 via a ball screw mechanism, thereby holding the holding frame member 50. The frame member 50 and the plate-shaped article P move in the Y direction. By moving the plate-like article P in the Y direction, an operation of inserting and disposing the edge f of the plate-like article P in the grinding groove 12 of the grinding wheel 10 or removing it from the grinding groove 12 can be performed.
[0041]
Next, a grindstone replacement unit 60 is disposed near the end of the rail 44 on which the third support 30 moves (near the left end in the figure). The grindstone replacement unit 60 accommodates a grinding wheel 10 for replacement. The grindstone replacement unit 60 includes a grindstone replacement mechanism 62. When the grinding wheel 10 attached to the first support base 20 comes to the position of the grinding wheel replacement unit 60, the grinding wheel replacement mechanism 62 operates and can be replaced with another grinding wheel 10. Specifically, it is possible to replace the grinding wheel 10 that has become unusable due to the progress of wear, or to replace the grinding wheel 10 for roughing with the grinding wheel 10 for finishing.
[0042]
Each of the operating mechanisms described above is connected to the control unit 110 via a control wiring (not shown), and the operation is controlled based on a command from the control unit 110. The first support 20 is equipped with a torque converter (not shown) for detecting torque with respect to the grinding wheel 10 or the rotation shaft of the motor 20, and is connected to the control unit 110 via a control wiring. Yes.
[Embodiment in which the rotation axis of the grinding wheel is tilted]
In the embodiment shown in FIG. 6, the grinding groove 12 is moved in the Y direction and the Z direction, and at the same time, the rotation center axis C of the grinding wheel 10 is inclined by an angle θ from the direction C 0 orthogonal to the plane of the plate-like article P. performing grinding while moving so as to be inclined to the state C 1 was. Although not shown, the rotation center axis is also inclined in a direction in which the inclination angle θ is measured in the direction opposite to the rotation center axis C 0 .
[0043]
As described above, when the grinding wheel 10 and the grinding groove 12 are tilted with respect to the plate-like article P, and the movement of changing the relative posture is applied, it is compared with the method of translating the same posture as in the above embodiment. Thus, the contact state or the grinding shape of the grinding groove 12 with respect to the plate-like article P can be changed in a wider range. Further, even if the grinding shape is the same, the contact position and posture between the edge f and the grinding groove 12 are changed, so that there is an advantage that the wear of the grinding groove 12 can be equalized.
[0044]
【The invention's effect】
In chamfering method and apparatus of the present invention, the edge of the grinding grooves and plate-like article of the grinding wheel, the relatively moving in the Y and Z directions, while sequentially changing the grinding point is to the edge By chamfering the edge of the plate-like article into a desired curved surface, various curved surfaces can be chamfered with a constant-shaped grinding groove. Each time the chamfering shape is changed, the trouble of replacing the grinding wheel or correcting the shape of the grinding groove is eliminated.
[0045]
In addition, since the wear of the grinding grooves progresses evenly throughout, even if chamfering is repeated, the shape of the grinding grooves will not be deformed or distorted, and the chamfered shape of the processed edge will be accurate. It will be stable. The dressing process that corrects the shape of the grinding groove can be made unnecessary, the period during which the dressing process is required can be extended, the trouble of the dressing process can be saved, and the productivity of the chamfering process can be increased. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a chamfering apparatus representing an embodiment of the present invention. FIG. 2 is an enlarged view illustrating a processing state. FIG. 3 is an explanatory diagram illustrating a processing state of a corner portion of a plate-shaped article. FIG. 5 is a plan view showing the entire structure of the chamfering apparatus. FIG. 6 is an explanatory diagram of the machining state representing another embodiment.
DESCRIPTION OF SYMBOLS 10 Grinding wheel 12 Grinding groove 14 Rotating shaft P Plate-shaped article f Edge g Grinding point

Claims (8)

板状物品の端縁に曲面状の面取加工を施す方法であって、
周面に凹状の研削溝を有する研削砥石を周面方向に回転させながら、前記研削溝を前記板状物品の端縁に押圧して、板状物品の端縁を研削する工程を含み、
前記研削工程では、
前記研削砥石として、前記凹状の研削溝が前記板状物品の端縁に形成される曲面状の面取加工の曲率半径よりも大きな曲率半径の断面形状を有する研削砥石を用いることとし、
前記研削砥石の研削溝を前記板状物品の端縁に対して、互いに近接離間するY方向およびこれと直交し研削砥石の軸方向に沿うZ方向に相対的に移動させて、前記端縁にとっての研削点を順次変えながら、前記板状物品の端縁を所望の曲面状に研削加工する、
面取方法。
A method of performing a curved chamfering process on an edge of a plate-shaped article,
A step of grinding the edge of the plate-like article by pressing the grinding groove against the edge of the plate-like article while rotating a grinding wheel having a concave grinding groove on the circumference in the circumferential direction;
In the grinding process,
As the grinding wheel, a grinding wheel having a cross-sectional shape with a curvature radius larger than the curvature radius of the curved chamfering process in which the concave grinding groove is formed at the edge of the plate-like article is used.
The grinding groove of the grinding wheel is moved relative to the edge of the plate-like article in the Y direction that is close to and away from the edge, and the Z direction that is orthogonal to the grinding wheel and along the axial direction of the grinding wheel. Grinding the edge of the plate-like article into a desired curved surface while sequentially changing the grinding points of
Chamfering method.
研削溝が前記断面形状が半円形状である、請求項1に記載の面取方法。  The chamfering method according to claim 1, wherein the grinding groove has a semicircular cross-sectional shape. 前記研削工程では、前記端縁から前記研削溝に加わる抵抗力を検出し、抵抗力の変動に対応して研削溝のY方向の位置を補正するようにする、請求項1または2に記載の面取方法。  3. The grinding process according to claim 1, wherein in the grinding step, a resistance force applied to the grinding groove from the edge is detected, and a position in the Y direction of the grinding groove is corrected in accordance with a change in the resistance force. Chamfering method. 前記研削工程では、前記研削砥石の回転軸をYZ平面において前記板状物品の面と直交する方向から傾けることもする、請求項1から3までのいずれかに記載の面取方法。The chamfering method according to any one of claims 1 to 3, wherein in the grinding step, a rotation axis of the grinding wheel is tilted from a direction orthogonal to the surface of the plate-like article on the YZ plane . 状物品の端縁に曲面状の面取加工を施す装置であって、
前記板状物品を保持する手段と、
周面に凹状であって前記板状物品の端縁に形成される曲面状の面取加工の曲率半径よりも大きな曲率半径の断面形状を有する研削溝を有し、周面方向に回転自在な研削砥石と、
前記研削砥石の研削溝と前記保持手段に保持された板状物品の端縁とを、互い近接離間するY方向およびこれと直交し研削砥石の軸方向に沿うZ方向に相対的に移動させる移動手段と
前記研削砥石の研削溝を前記板状物品の端縁に対して、互いに近接離間するY方向およびこれと直交し研削砥石の軸方向に沿うZ方向に相対的に移動させて、前記端縁にとっての研削点を順次変えながら、前記板状物品の端縁を所望の曲面状に研削加工する、制御装置と、
を備える面取装置。
A device that performs curved chamfering on the edge of a plate- like article,
Means for holding the plate-like article;
A grinding groove having a cross-sectional shape having a radius of curvature larger than the radius of curvature of a curved chamfering process formed on the edge of the plate-shaped article is concave on the circumferential surface, and is rotatable in the circumferential direction. A grinding wheel,
Movement for relatively moving the grinding groove of the grinding wheel and the edge of the plate-like article held by the holding means in the Y direction approaching and separating from each other and in the Z direction perpendicular to this and along the axial direction of the grinding wheel Means ,
The grinding groove of the grinding wheel is moved relative to the edge of the plate-like article in the Y direction that is close to and away from the edge, and the Z direction that is orthogonal to the grinding wheel and along the axial direction of the grinding wheel. A control device for grinding the edge of the plate-shaped article into a desired curved surface while sequentially changing the grinding points of
A chamfering device comprising:
前記移動手段が、前記研削砥石の研削溝と前記板状物品の端縁とを、端縁に沿うX方向にも相対的に移動させる、請求項5に記載の面取装置。  The chamfering device according to claim 5, wherein the moving unit relatively moves the grinding groove of the grinding wheel and the edge of the plate-like article also in the X direction along the edge. 前記移動手段が、前記板状物品を前記研削砥石の軸方向と直交する面内で旋回させる板状物品旋回手段を備える、請求項5または6に記載の面取装置。  The chamfering apparatus according to claim 5 or 6, wherein the moving means includes plate-like article turning means for turning the plate-like article in a plane perpendicular to the axial direction of the grinding wheel. 前記板状物品の端縁から前記研削砥石に加わる抵抗力を検出する検出手段と、前記抵抗力の変動に対応して、前記移動手段のY方向の移動を制御し、前記研削溝のY方向の位置を補正する制御手段と、をさらに備える、
請求項5から7までのいずれかに記載の面取装置。
Detecting means for detecting a resistance force applied to the grinding wheel from an edge of the plate-like article; and controlling movement of the moving means in the Y direction in response to fluctuations in the resistance force; Control means for correcting the position of
The chamfering device according to any one of claims 5 to 7.
JP33423397A 1997-12-04 1997-12-04 Chamfering method and apparatus Expired - Lifetime JP3969505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33423397A JP3969505B2 (en) 1997-12-04 1997-12-04 Chamfering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33423397A JP3969505B2 (en) 1997-12-04 1997-12-04 Chamfering method and apparatus

Publications (2)

Publication Number Publication Date
JPH11165247A JPH11165247A (en) 1999-06-22
JP3969505B2 true JP3969505B2 (en) 2007-09-05

Family

ID=18275041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33423397A Expired - Lifetime JP3969505B2 (en) 1997-12-04 1997-12-04 Chamfering method and apparatus

Country Status (1)

Country Link
JP (1) JP3969505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553061B1 (en) * 2014-04-24 2015-09-15 김미진 Tape-roll cutting machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305214B2 (en) * 2006-10-06 2013-10-02 日本電気硝子株式会社 End face processing method of plate glass
KR101107244B1 (en) * 2008-08-06 2012-01-30 (주)한 송 Apparatus for grinding glass using back tension and method thereof
WO2012017477A1 (en) * 2010-08-03 2012-02-09 坂東機工株式会社 Glass plate working device
EP3421232B1 (en) 2011-05-13 2021-12-15 Nippon Electric Glass Co., Ltd. Method for processing a laminate
JP5904457B2 (en) * 2011-05-13 2016-04-13 日本電気硝子株式会社 Laminated body
CN102275110A (en) * 2011-09-15 2011-12-14 上海晋飞复合材料科技有限公司 Method and device for polishing edge of panel
KR101395055B1 (en) * 2013-05-28 2014-05-14 삼성코닝정밀소재 주식회사 Method of determining flatness of a chmfer table
JP2017205809A (en) * 2014-09-26 2017-11-24 日本電気硝子株式会社 Chamfering device and chamfering method
JP7005120B2 (en) * 2015-03-31 2022-01-21 株式会社東京精密 Manufacturing method of chamfered substrate and chamfering device used for it
CN108081066B (en) * 2017-12-14 2019-06-18 浙江理工大学 Glass lace method for grinding
JP6973237B2 (en) * 2018-03-29 2021-11-24 日本電気硝子株式会社 How to manufacture flat glass
CN109968139A (en) * 2019-04-17 2019-07-05 安徽工程大学 A kind of face glass automatic chamfering equipment
JP7415267B2 (en) * 2019-12-23 2024-01-17 日本電気硝子株式会社 Glass plate manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553061B1 (en) * 2014-04-24 2015-09-15 김미진 Tape-roll cutting machine

Also Published As

Publication number Publication date
JPH11165247A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
JP3969505B2 (en) Chamfering method and apparatus
JP5930871B2 (en) Grinding apparatus and control method thereof
US9821392B2 (en) Rotary machining apparatus and machining method using the same
JP4862404B2 (en) Method and apparatus for polishing glass substrate for FPD
JP5057947B2 (en) Centerless grinding method
JP2002307271A (en) Double-end surface grinder and grinding method
US8257144B2 (en) Neck portion grinding apparatus and grinding device employed in the neck portion grinding apparatus
JPH10249689A (en) Wafer chamfering method and device
CN113508009B (en) Apparatus for manufacturing glass plate and method for manufacturing glass plate
JP6190654B2 (en) Method for uniformizing machining allowance and peripheral grinding apparatus for plate material
CN115720541A (en) Method and apparatus for manufacturing glass plate
JP2000180154A (en) Phase conforming method
JP2014008548A (en) Processing apparatus of shaft-shaped workpiece
JP3753769B2 (en) Polishing equipment
JPH08229792A (en) Grinding device and grinding method
KR102050766B1 (en) Apparatus for grinding
WO2016114013A1 (en) Device for forming dividing groove, and method for forming dividing groove
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP5010421B2 (en) Centerless grinding method and centerless grinding apparatus for workpiece outer diameter surface and flat surface
JPH1170471A (en) Glass chamfering method and machine therefor
JPH06258050A (en) Profile measuring apparatus for grinding wheel
JP2001006166A (en) Method and apparatus for grinding glass plate for hard disk
CN118493104A (en) Grinding device and method for adjusting position of protruding block
JP2023144719A (en) Grinding apparatus and method of manufacturing rare earth-based sintered magnet
JPS6384873A (en) Multi-spindle rotary dresser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term