JP3915770B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3915770B2
JP3915770B2 JP2003372508A JP2003372508A JP3915770B2 JP 3915770 B2 JP3915770 B2 JP 3915770B2 JP 2003372508 A JP2003372508 A JP 2003372508A JP 2003372508 A JP2003372508 A JP 2003372508A JP 3915770 B2 JP3915770 B2 JP 3915770B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
compressor
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003372508A
Other languages
Japanese (ja)
Other versions
JP2005134070A (en
Inventor
昌宏 尾浜
竹司 渡辺
啓次郎 國本
宣彦 藤原
立群 毛
誠一 安木
一彦 丸本
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003372508A priority Critical patent/JP3915770B2/en
Publication of JP2005134070A publication Critical patent/JP2005134070A/en
Application granted granted Critical
Publication of JP3915770B2 publication Critical patent/JP3915770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明はヒートポンプによる給湯機に関するものである。   The present invention relates to a water heater using a heat pump.

従来から、ヒートポンプサイクルを利用した給湯機が提案されており、例えば図7に示すように、貯湯槽を備え、この貯湯槽にあらかじめ溜めたお湯を利用する貯湯型の給湯機が提案されている(例えば特許文献1参照)。すなわち、同図において、圧縮機1、放熱器としての冷媒水熱交換器2、減圧装置3、蒸発器としての空気熱交換器4を接続した冷媒回路と、貯湯槽5、循環ポンプ6、前記冷媒水熱交換器2を接続した水回路などからなり、圧縮機1より吐出された高温高圧の過熱ガス冷媒は冷媒水熱交換器2に流入し、ここで循環ポンプ6から送られてきた水を加熱する。そして、放熱した冷媒は減圧装置3で減圧され、空気熱交換器4に流入にし、ここで大気熱を吸熱して蒸発ガス化し、圧縮機1に戻る。一方、冷媒水熱交換器2で加熱された湯は貯湯槽5の上部に流入し、上から次第に貯湯されていく。この時、冷媒水熱交換器2の水側出口に設けられた沸き上げ温度検出手段7からの信号で回転数制御手段8は循環ポンプ6の回転数を制御して、冷媒水熱交換器2の出口水温(沸き上げ温度)をほぼ一定になるように沸き上げる。そして、前記冷媒水熱交換器2の入口水温が設定値に達すると入水温度検出手段9が検知し、給湯加熱運転を停止するしかし、このような貯湯型の給湯機では、貯湯槽が小さいと湯切れを生じる場合がある。湯切れを生じないためには貯湯槽が大きくなり、それに伴って、必要な設置スペースも大きくなるので、設置の自由度が小さくなるため、設置できない場合が多くなる。   Conventionally, a water heater using a heat pump cycle has been proposed. For example, as shown in FIG. 7, a hot water storage type water heater that includes a hot water storage tank and uses hot water previously stored in the hot water storage tank has been proposed. (For example, refer to Patent Document 1). That is, in the figure, a compressor circuit, a refrigerant water heat exchanger 2 as a radiator, a decompression device 3, a refrigerant circuit connected to an air heat exchanger 4 as an evaporator, a hot water tank 5, a circulation pump 6, The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the refrigerant water heat exchanger 2, and the water sent from the circulation pump 6 here is composed of a water circuit connected to the refrigerant water heat exchanger 2. Heat. The radiated refrigerant is decompressed by the decompression device 3 and flows into the air heat exchanger 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated by the refrigerant water heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. At this time, the rotation speed control means 8 controls the rotation speed of the circulation pump 6 by a signal from the boiling temperature detection means 7 provided at the water side outlet of the refrigerant water heat exchanger 2, and the refrigerant water heat exchanger 2. The outlet water temperature (boiling temperature) is boiled so that it is almost constant. When the inlet water temperature of the refrigerant water heat exchanger 2 reaches a set value, the incoming water temperature detecting means 9 detects it and stops the hot water supply heating operation. However, in such a hot water storage type hot water heater, if the hot water storage tank is small There may be a shortage of hot water. In order to prevent the hot water from running out, the hot water storage tank becomes large, and accordingly, the necessary installation space also becomes large. Therefore, the degree of freedom in installation becomes small, and there are many cases where it cannot be installed.

そこで、図8に示すように、貯湯槽を利用することなく、熱交換器で加熱したお湯をそのまま出湯する、瞬間湯沸かし型の給湯機が提案されている(例えば特許文献2参照)。同図において、冷媒回路は圧縮機1より冷媒水熱交換器2の冷媒流路2aと減圧装置3と空気熱交換器4とを経て、圧縮機1に戻る循環経路により形成されている。また、給水回路は給水管10より冷媒水熱交換器2の水流路2bを経て、給湯端末11に至る経路により形成されている。しかし、この瞬間湯沸かし型の給湯機は、浴槽の湯張り等の大きな給湯負荷を賄う性能を保証するためには機器を構成するすべての要素部品に対して大きな性能が要求されることになるので、各要素部品および機器全体の大きさや重さが大きくなり、イニィシャルコストが大きくなるという課題がある。さらに、ヒートポンプの特性として、立ち上がりが遅く、所定の給湯温度に達するまでの時間がかかり、快適性に問題がある。   Therefore, as shown in FIG. 8, there has been proposed an instantaneous hot water heater in which hot water heated by a heat exchanger is discharged as it is without using a hot water tank (see, for example, Patent Document 2). In the figure, the refrigerant circuit is formed by a circulation path from the compressor 1 through the refrigerant flow path 2 a of the refrigerant water heat exchanger 2, the decompression device 3, and the air heat exchanger 4 to return to the compressor 1. The water supply circuit is formed by a path from the water supply pipe 10 to the hot water supply terminal 11 through the water flow path 2 b of the refrigerant water heat exchanger 2. However, in order to guarantee the performance to cover a large hot water supply load such as a hot water bath in a bathtub, this instant water heater type requires a large performance for all the component parts constituting the equipment. However, there is a problem that the size and weight of each component part and the entire device are increased, and the initial cost is increased. Furthermore, as a characteristic of the heat pump, the start-up is slow and it takes time to reach a predetermined hot water supply temperature, which causes a problem in comfort.

そこで、図9に示すように、貯湯型の給湯機と瞬間湯沸かし型の給湯機のそれぞれの特性を生かした小型の貯湯槽を備えた瞬間型の給湯機が考えられる。同図において、圧縮機1、放熱器としての冷媒水熱交換器2、減圧手段3、蒸発器としての空気熱交換器4により冷媒回路が構成されている。また、冷媒水熱交換器2は冷媒流路12とこの冷媒流路12と熱交換を行う水流路13とからなる。冷媒回路で加熱することによって貯湯槽に湯を貯湯する沸き上げ運転は、循環ポンプによって貯留槽下部の水を水流路に通水させることによって、加熱し、そして、開閉弁を通って、貯湯槽の上部から高温の湯が貯湯されることによって行われる。また、給湯加熱運転は、給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水することによって行われる。しかし、冷媒回路で加熱しそのまま給湯する場合、加熱能力は徐々にしか上昇しないので、給湯端末において、すぐには所定の給湯温度が得られない。そこで、前述の給湯加熱運転の立ち上げ時には、市水を冷媒回路で加熱した比較的低温の湯と貯湯槽上部の高温の湯とを混合手段で混合して所定の湯温にして給湯端末から給湯する。そして、冷媒回路で加熱する水の温度が上昇するに従い、貯湯槽上部の高温の湯の混合比率を少なくする。最終的には、貯湯槽上部の湯は使用せず、すべて冷媒回路で加熱した湯で給湯することになる。   Therefore, as shown in FIG. 9, an instantaneous water heater having a small hot water tank that takes advantage of the characteristics of a hot water storage type water heater and an instantaneous water heater type water heater can be considered. In the figure, a compressor circuit, a refrigerant water heat exchanger 2 as a radiator, a decompression means 3, and an air heat exchanger 4 as an evaporator constitute a refrigerant circuit. The refrigerant water heat exchanger 2 includes a refrigerant channel 12 and a water channel 13 that exchanges heat with the refrigerant channel 12. The boiling operation in which hot water is stored in the hot water tank by heating in the refrigerant circuit is heated by passing the water in the lower part of the storage tank through the water flow path by the circulation pump, and then the hot water tank through the on-off valve. This is done by storing hot water from the top. The hot water supply heating operation is performed by opening the hot water supply terminal, heating the city water supplied from the water supply pipe by the refrigerant circuit, and passing the water to the hot water supply terminal. However, when heating in the refrigerant circuit and supplying hot water as it is, the heating capacity increases only gradually, so that a predetermined hot water supply temperature cannot be obtained immediately at the hot water supply terminal. Therefore, at the start of the hot water supply heating operation described above, a relatively low temperature hot water in which city water is heated by the refrigerant circuit and a high temperature hot water at the top of the hot water storage tank are mixed by a mixing means to obtain a predetermined hot water temperature from the hot water supply terminal. Hot water. And as the temperature of the water heated by the refrigerant circuit rises, the mixing ratio of the hot water in the upper part of the hot water tank is reduced. Eventually, the hot water in the upper part of the hot water tank is not used, and all the hot water is supplied with hot water heated in the refrigerant circuit.

ところで、ヒートポンプサイクルを利用した給湯機の場合、効率の良い加熱運転を行うために冷媒回路を流れる冷媒の循環量の制御が必要である。貯湯型の給湯機では、前述した図7の特許文献1に冷媒循環量の制御について記載されている。以下、その構成、作用について図7を参照しながら説明する。制御手段16は、外気温度を検出する外気温度検出手段17と圧縮機1の吐出温度を検出する吐出温度検出手段18からの信号で、前記吐出温度を所定の吐出温度(目標吐出温度)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。このとき、この目標吐出温度を記憶しているのが目標記憶手段19である。
特開2000−346447号公報 特開平2−223767号公報
By the way, in the case of a water heater using a heat pump cycle, it is necessary to control the circulation amount of the refrigerant flowing through the refrigerant circuit in order to perform an efficient heating operation. In the hot water storage type water heater, the control of the refrigerant circulation amount is described in Patent Document 1 in FIG. 7 described above. The configuration and operation will be described below with reference to FIG. The control means 16 is a signal from the outside temperature detecting means 17 that detects the outside air temperature and the discharge temperature detecting means 18 that detects the discharge temperature of the compressor 1, and the discharge temperature becomes a predetermined discharge temperature (target discharge temperature). As described above, the optimum refrigerant circulation amount is obtained by controlling the valve opening degree of the decompression device 3. At this time, the target storage means 19 stores the target discharge temperature.
JP 2000-346447 A JP-A-2-223767

一日の給湯負荷を考えた時、ほとんどの場合の給湯時間は数分間程度の短時間で終了してしまう。通常、もっとも時間のかかる場合でも、浴槽への湯の落とし込み負荷で約20分前後である。一方、ヒートポンプサイクルを利用した給湯機の場合、加熱運転を開始して、圧縮機1が起動してから、圧縮機1の吐出温度などが定常状態に達するまで比較的長時間必要とする。だから、給湯端末11が開かれて、給水管から供給された市水を冷媒回路で加熱し、直接、給湯端末11へと通水する給湯加熱運転の場合、給湯負荷を検出した後、圧縮機1が起動してから圧縮機1の吐出温度が所定の吐出温度に上昇する前に、給湯時間が終了してしまう。例えば、前述した吐出温度による冷媒循環量の制御をした場合について、図10を用いて説明をする。同図において、横軸に運転を起動してからの運転時間をとり、縦軸に圧縮機1の周波数、吐出圧力、吐出温度および減圧装置の弁開度をとり、起動後の運転時間に対する圧縮機の周波数、吐出圧力、吐出温度および減圧装置の弁開度の変化を説明したものである。給湯加熱運転が始まると圧縮機1が起動する。一般に、圧縮機1としてはインバータ制御で能力可変のものが使用されることが多い。そこで、起動後、徐々に運転周波数を上昇していき、目標の運転周波数に達する。この時、吐出温度は比較的ゆっくりと上昇するため、目標吐出温度になかなか到達しないので、減圧装置3の弁開度を徐々に絞っていく。それに伴い、吐出圧力も上昇し、圧縮機1の圧縮比が大きくなり、運転効率が低下する。場合によっては、急激に圧力が上昇し、圧力の保護装置(図示せず)が動作して、運転を停止してしまうこともある。結局、適正な冷媒循環量ができないので、運転効率が悪くなるという課題を有している。   When considering the daily hot water supply load, the hot water supply time in most cases ends in a short time of about several minutes. Usually, even when it takes the most time, it takes about 20 minutes due to the dropping load of hot water into the bathtub. On the other hand, in the case of a water heater using a heat pump cycle, a relatively long time is required until the discharge temperature of the compressor 1 reaches a steady state after starting the heating operation and starting the compressor 1. Therefore, in the case of hot water heating operation in which the hot water supply terminal 11 is opened and the city water supplied from the water supply pipe is heated in the refrigerant circuit and directly passed to the hot water supply terminal 11, the hot water supply load is detected, and then the compressor The hot water supply time ends before the discharge temperature of the compressor 1 rises to a predetermined discharge temperature after the 1 is started. For example, the case where the refrigerant circulation amount is controlled by the discharge temperature described above will be described with reference to FIG. In the figure, the horizontal axis indicates the operation time after starting the operation, the vertical axis indicates the frequency of the compressor 1, the discharge pressure, the discharge temperature, and the valve opening of the pressure reducing device, and compression with respect to the operation time after the start. It explains changes in the machine frequency, discharge pressure, discharge temperature, and valve opening of the pressure reducing device. When the hot water supply heating operation starts, the compressor 1 is started. In general, the compressor 1 is often used with a variable capacity by inverter control. Therefore, after starting, the operating frequency is gradually increased to reach the target operating frequency. At this time, since the discharge temperature rises relatively slowly, the target discharge temperature is not easily reached. Therefore, the valve opening of the decompression device 3 is gradually reduced. Along with this, the discharge pressure also increases, the compression ratio of the compressor 1 increases, and the operating efficiency decreases. In some cases, the pressure suddenly increases, and a pressure protection device (not shown) is operated to stop the operation. Eventually, there is a problem that the operation efficiency is deteriorated because an appropriate amount of refrigerant circulation cannot be achieved.

また、一般に圧縮機1の吐出温度を測定するために、圧縮機1の出口と冷媒水熱交換器2の冷媒流路12入口とを接続する配管の表面をサーミスタなどで温度検出する場合が多い。この場合、一旦加熱運転を終了後、すぐに再度、加熱運転を起動するとき、前記サーミスタが設置部の(前回の運転で加熱されて高温になったままの)配管の温度を検出してしまい、正しい吐出温度に基づく適正な冷媒循環量ができないので、効率が悪くなるという課題も有している。   In general, in order to measure the discharge temperature of the compressor 1, the temperature of the surface of the pipe connecting the outlet of the compressor 1 and the inlet of the refrigerant flow path 12 of the refrigerant water heat exchanger 2 is often detected with a thermistor or the like. . In this case, when the heating operation is started again immediately after finishing the heating operation, the thermistor detects the temperature of the pipe of the installation section (heated in the previous operation and remains at a high temperature). In addition, since an appropriate refrigerant circulation amount based on the correct discharge temperature cannot be obtained, there is a problem that efficiency is deteriorated.

本発明は上記課題を解決するもので、比較的運転時間が長く、冷媒水熱交換器の水流路の出口の水温度が高い沸き上げ運転と、比較的運転時間が短く、冷媒水熱交換器の水流路の出口の水温度が低い給湯加熱運転に対して、それぞれ最適な冷媒循環量に制御をすることによって、運転の高効率化をはかることを主目的とするものである。   SUMMARY OF THE INVENTION The present invention solves the above-described problem, and a boiling operation in which the operation time is relatively long, the water temperature at the outlet of the water flow path of the refrigerant water heat exchanger is high, and the operation time is relatively short. The main purpose is to increase the efficiency of the operation by controlling the coolant circulation amount to be optimal for the hot water supply heating operation in which the water temperature at the outlet of the water flow path is low.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、放熱器としての冷媒水熱交換器、減圧装置、蒸発器としての空気熱交換器を有する冷媒回路と、前記放熱器と熱交換する前記冷媒水熱交換器に設けられた水流路に市水を供給する給水管と
、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記冷媒回路で加熱した温水を貯湯する貯湯槽と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを備え、前記冷媒水熱交換器で加熱された湯を前記貯湯槽に貯湯する沸き上げ運転と、前記冷媒水熱交換器で加熱された湯を給湯端末へ通水する給湯加熱運転の2つの運転動作を有し、前記沸き上げ運転時よりも前記給湯加熱運転時の方が、前記圧縮機から吐出する冷媒の温度を低く設定するものである。
In order to solve the conventional problems, a heat pump water heater of the present invention includes a compressor, a refrigerant water heat exchanger as a radiator, a decompression device, a refrigerant circuit having an air heat exchanger as an evaporator, and the heat dissipation. A water supply pipe for supplying city water to a water flow path provided in the refrigerant water heat exchanger for exchanging heat with a heater, a hot water supply circuit connected so as to pass water from the water flow path to a hot water supply terminal, and the refrigerant circuit A hot water storage tank for storing heated hot water, and a discharge temperature detecting means for detecting a discharge temperature of the compressor; a boiling operation for storing hot water heated by the refrigerant water heat exchanger in the hot water storage tank; It has two operation operations of a hot water supply heating operation for passing hot water heated by the refrigerant water heat exchanger to a hot water supply terminal, and the hot water supply heating operation is more effective than the boiling operation from the compressor. it is for setting the temperature of the refrigerant discharged low

これによって、比較的運転時間が長く、冷媒水熱交換器の水流路の出口の水温度が高い沸き上げ運転と、比較的運転時間が短く、冷媒水熱交換器の水流路の出口の水温度が低い給湯加熱運転に対して、それぞれ最適な冷媒循環量に制御をすることによって、運転の高効率化をはかることができる。   As a result, a boiling operation with a relatively long operation time and a high water temperature at the outlet of the water flow path of the refrigerant water heat exchanger, and a water temperature at the outlet of the water flow path of the refrigerant water heat exchanger with a relatively short operation time. For the hot water supply heating operation with low temperature, the efficiency of the operation can be increased by controlling the refrigerant circulation amount to be optimum.

本発明のヒートポンプ給湯機は、比較的運転時間の長い沸き上げ運転時には所定の吐出温度になるように冷媒循環量を制御するので加熱運転の効率の向上を図ることができる。   Since the heat pump water heater of the present invention controls the refrigerant circulation amount so as to reach a predetermined discharge temperature during a boiling operation with a relatively long operation time, it is possible to improve the efficiency of the heating operation.

本発明は各請求項に記載の形態で実施できるものであり、第1の発明は、圧縮機、放熱器としての冷媒水熱交換器、減圧装置、蒸発器としての空気熱交換器を有する冷媒回路と、前記放熱器と熱交換する前記冷媒水熱交換器に設けられた水流路に市水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記冷媒回路で加熱した温水を貯湯する貯湯槽と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを備え、前記冷媒水熱交換器で加熱された湯を前記貯湯槽に貯湯する沸き上げ運転と、前記冷媒水熱交換器で加熱された湯を給湯端末へ通水する給湯加熱運転の2つの運転動作を有し、前記沸き上げ運転時よりも前記給湯加熱運転時の方が、前記圧縮機から吐出する冷媒の温度を低く設定するめ、沸き上げ運転と給湯加熱運転ともに加熱運転の効率の向上になる。 The present invention can be implemented in the form described in each claim, and the first invention is a refrigerant having a compressor, a refrigerant water heat exchanger as a radiator, a decompression device, and an air heat exchanger as an evaporator. A water supply pipe that supplies city water to a water flow path provided in the refrigerant water heat exchanger that exchanges heat with the radiator, and a hot water supply circuit that is connected to pass water from the water flow path to the hot water supply terminal. A hot water storage tank for storing hot water heated by the refrigerant circuit; and a discharge temperature detecting means for detecting a discharge temperature of the compressor, wherein hot water heated by the refrigerant water heat exchanger is stored in the hot water storage tank. There are two operation operations, a boiling operation and a hot water heating operation for passing hot water heated by the refrigerant water heat exchanger to a hot water supply terminal, and the hot water heating operation is more than the boiling operation. , order to set the temperature of the refrigerant discharged from the compressor low, Made in improving the efficiency of the pressurized heat operation to increase operation and the hot water supply heating operation both can.

第2の発明のヒートポンプ給湯機は、特に第1の発明において、沸き上げ運転時には、圧縮機の吐出温度が所定の吐出温度になるように、減圧装置の弁開度を制御し、給湯加熱運転時には、起動時の循環量制御後は、前記減圧装置の弁開度を所定の弁開度に設定することにより、効率の良い加熱運転ができる。 In the heat pump water heater of the second invention, particularly in the first invention, during the boiling operation, the valve opening of the decompression device is controlled so that the discharge temperature of the compressor becomes a predetermined discharge temperature, and the hot water supply heating operation is performed. Sometimes, after the circulation amount control at the start-up, an efficient heating operation can be performed by setting the valve opening of the pressure reducing device to a predetermined valve opening.

第3の発明のヒートポンプ給湯機は、特に第2の発明において、給湯加熱運転が起動して所定の時間経過後、圧縮機の吐出温度が所定の吐出温度になるように前記減圧装置の弁開度を制御することにより、給湯加熱運転が長時間続いた場合は、吐出温度制御を行うので効率の良い運転が可能になる。 In the heat pump water heater of the third invention, particularly in the second invention, the valve opening of the pressure reducing device is set so that the discharge temperature of the compressor becomes a predetermined discharge temperature after a hot water heating operation is started and a predetermined time has elapsed. By controlling the degree, when the hot water supply heating operation continues for a long time, the discharge temperature control is performed, so that an efficient operation is possible.

第4の発明のヒートポンプ給湯機は、特に第2の発明において、所定の弁開度を、圧縮機の周波数、外気温度、熱交換器の入口温度、熱交換器の出口温度のうち、複数の情報に基づいて決定するので、給湯加熱運転の性能を決定する諸条件が変化しても効率の良い運転が可能となる。 The heat pump water heater of the fourth invention is the heat pump water heater of the second invention , in particular, in the second invention, the predetermined valve opening is a plurality of compressor frequency, outside air temperature, heat exchanger inlet temperature, heat exchanger outlet temperature. Since it determines based on information, even if various conditions which determine the performance of hot water supply heating operation change, efficient operation is attained.

第5の発明のヒートポンプ給湯機は、特に第1〜第4の発明において、冷媒回路に用いる冷媒を二酸化炭素とし、高圧側では臨界圧を超える状態で運転するので、高温高効率化と地球環境保全をはかることができる。 In the heat pump water heater of the fifth invention, particularly in the first to fourth inventions, the refrigerant used in the refrigerant circuit is carbon dioxide, and the high pressure side is operated in a state exceeding the critical pressure. Conservation can be achieved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態におけるヒートポンプ給湯機の構成図、図2は同ヒートポンプ給湯機の運転時間に対する圧縮機の周波数と吐出圧力と吐出温度と減圧装置の弁開度との変化を示す説明図である。なお、従来例で説明した図7〜図9と同じ構成部材には同一符号を用い説明を省略する。
(Embodiment 1)
FIG. 1 is a block diagram of the heat pump water heater in the first embodiment of the present invention, and FIG. 2 shows the frequency of the compressor, the discharge pressure, the discharge temperature, and the valve opening of the pressure reducing device with respect to the operation time of the heat pump water heater. It is explanatory drawing which shows a change. In addition, the same code | symbol is used for the same component as FIGS. 7-9 demonstrated in the prior art example, and description is abbreviate | omitted.

冷媒の循環量を制御する場合、その制御対象となる、冷凍サイクルの状態を決める物理量として、圧縮機1の吐出温度や吐出圧力がある。さらに、冷凍サイクルの状態を決める物理量から計算される圧縮機1の吸入冷媒の過熱度などがある。そこで、図1においては、一例として、制御対象を圧縮機1の吐出温度を用いた場合を示す。すなわち、冷媒循環量制御手段20は、減圧装置3と吐出温度検出手段18と制御装置16とから成り立っている。また、圧縮機1として、インバータ制御などで能力可変のものであれば、冷媒循環量制御手段20のなかに、圧縮機1を含んでも良い。さらに、冷媒としては、高圧側の冷媒圧力が臨界圧力以上となる二酸化炭素を用いている。   When controlling the circulation amount of the refrigerant, there are a discharge temperature and a discharge pressure of the compressor 1 as physical quantities that determine the state of the refrigeration cycle, which is a control target. Furthermore, there is the degree of superheat of the refrigerant sucked in the compressor 1 calculated from the physical quantity that determines the state of the refrigeration cycle. Therefore, in FIG. 1, as an example, a case where the discharge temperature of the compressor 1 is used as a control target is shown. That is, the refrigerant circulation amount control means 20 includes the decompression device 3, the discharge temperature detection means 18, and the control device 16. Further, the compressor 1 may be included in the refrigerant circulation amount control means 20 as long as the compressor 1 has variable capacity by inverter control or the like. Further, as the refrigerant, carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure is used.

動作、作用について説明する。まず、冷媒回路で加熱することによって貯湯槽に湯を貯湯する沸き上げ運転について説明する。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、所定の条件が成り立てば、圧縮機1の吐出温度を検出する吐出温度検出手段18からの信号で、前記吐出温度を所定の吐出温度(目標吐出温度)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。なお、前記所定の条件としては、圧縮機1の起動後の運転時間が所定の時間に達するか、吐出温度が安定するか、吐出温度が所定の吐出温度に達するかなどである。   The operation and action will be described. First, a boiling operation for storing hot water in a hot water tank by heating in a refrigerant circuit will be described. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. If the predetermined condition is satisfied after the compressor 1 reaches the predetermined operating frequency, the discharge temperature is detected by a signal from the discharge temperature detecting means 18 for detecting the discharge temperature of the compressor 1. By controlling the valve opening degree of the pressure reducing device 3 so as to be (target discharge temperature), an optimum refrigerant circulation amount is obtained. The predetermined condition includes whether the operation time after starting up the compressor 1 reaches a predetermined time, whether the discharge temperature is stable, whether the discharge temperature reaches a predetermined discharge temperature, or the like.

次に、給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水する給湯加熱運転について説明する。制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定し、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、減圧装置3の弁開度を所定の弁開度に設定する。なお、ヒートポンプによる加熱運転の場合、その効率などの性能は、蒸発器や放熱器において熱交換する媒体の条件で決定される。すなわち、圧縮機の周波数、外気温度、冷媒水熱交換器2の水流路13の入口温度、冷媒水熱交換器2の水流路13の出口温度、減圧装置3の弁開度などである。そこで、これらの相互の関係を予め求めておいて、その情報を制御手段16に記憶させておき、減圧装置3の弁開度を決定すればよい。このとき、すべての情報に基づいて、減圧装置3の弁開度を決定しなくても、特に影響の大きい情報を基に決定しても良い。たとえば、圧縮機の周波数、外気温度、冷媒水熱交換器2の水流路13の出口温度などである。   Next, a hot water supply heating operation in which the hot water supply terminal is opened and the city water supplied from the water supply pipe is heated by the refrigerant circuit and passed to the hot water supply terminal will be described. The control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, and starts the compressor 1 To do. Then, after the compressor 1 reaches the predetermined operating frequency, the valve opening of the decompression device 3 is set to a predetermined valve opening. In the case of a heating operation by a heat pump, the performance such as efficiency is determined by the condition of the medium for heat exchange in the evaporator or the radiator. That is, the frequency of the compressor, the outside air temperature, the inlet temperature of the water passage 13 of the refrigerant water heat exchanger 2, the outlet temperature of the water passage 13 of the refrigerant water heat exchanger 2, the valve opening degree of the decompression device 3, and the like. Therefore, these mutual relationships are obtained in advance, and the information is stored in the control means 16, and the valve opening degree of the pressure reducing device 3 is determined. At this time, the valve opening degree of the decompression device 3 may not be determined based on all the information, but may be determined based on information having a particularly large influence. For example, the frequency of the compressor, the outside air temperature, the outlet temperature of the water flow path 13 of the refrigerant water heat exchanger 2, and the like.

上記のように、比較的運転時間が長く、冷媒水熱交換器2の出口の水温度が高い沸き上げ運転時には圧縮機1の吐出温度を所定の吐出温度(目標吐出温度)になるように減圧装置3の弁開度を制御し、比較的運転時間が短く、冷媒水熱交換器2の出口の水温度が低い給湯加熱運転時には減圧装置3の弁開度を所定の弁開度に設定するため、沸き上げ運転、給湯加熱運転それぞれに対して、最適な冷媒循環量になるように制御するので効率の良い運転ができる。   As described above, during the heating operation in which the operation time is relatively long and the water temperature at the outlet of the refrigerant water heat exchanger 2 is high, the discharge temperature of the compressor 1 is reduced to a predetermined discharge temperature (target discharge temperature). The valve opening degree of the apparatus 3 is controlled, and the valve opening degree of the pressure reducing device 3 is set to a predetermined valve opening degree during hot water supply heating operation in which the operation time is relatively short and the water temperature at the outlet of the refrigerant water heat exchanger 2 is low. Therefore, since the control is performed so that the refrigerant circulation amount is optimum for each of the boiling operation and the hot water supply heating operation, an efficient operation can be performed.

給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水する給湯加熱運転は前述したように、ほとんどの場合、短時間で終了してしまう。しかし、浴槽への湯の落とし込みなどは比較的長時間になる。このような場合には、給湯加熱運転が起動して所定の時間経過後、圧縮機1の吐出温度が所定の吐出温度になるように減圧装置3の弁開度を制御すればよい。図2は横軸に圧縮機1が起動してからの運転時間をと
り、縦軸に圧縮機1の周波数と吐出圧力と吐出温度と減圧装置3の弁開度をとって、運転時間に対する圧縮機1の周波数と吐出圧力と吐出温度と減圧装置3の弁開度の変化を示したものである。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、減圧装置3の弁開度を所定の弁開度に設定する。給湯時間が続き、給湯加熱運転時間が所定の時間以上経過すれば、圧縮機1の吐出温度を検出する吐出温度検出手段18からの信号で、前記吐出温度を所定の吐出温度(目標吐出温度)になるように、減圧装置3の弁開度を制御する。このようにすれば、給湯加熱運転が長時間続いた場合でも、最適な冷媒循環量が得られ、効率の良い運転ができる。
As described above, the hot water supply heating operation in which the hot water supply terminal is opened and the city water supplied from the water supply pipe is heated by the refrigerant circuit and passed through the hot water supply terminal is almost completed in a short time. However, dropping hot water into the bathtub takes a relatively long time. In such a case, the valve opening degree of the decompression device 3 may be controlled so that the discharge temperature of the compressor 1 becomes a predetermined discharge temperature after the hot water supply heating operation is started and a predetermined time elapses. In FIG. 2, the horizontal axis indicates the operation time after the compressor 1 is started, and the vertical axis indicates the frequency of the compressor 1, the discharge pressure, the discharge temperature, and the valve opening degree of the decompression device 3, and compression with respect to the operation time The change of the frequency of the machine 1, discharge pressure, discharge temperature, and the valve opening degree of the decompression device 3 is shown. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. Then, after the compressor 1 reaches the predetermined operating frequency, the valve opening of the decompression device 3 is set to a predetermined valve opening. If the hot water supply time continues and the hot water heating operation time elapses a predetermined time or more, the discharge temperature is detected by a signal from the discharge temperature detecting means 18 that detects the discharge temperature of the compressor 1 and the predetermined discharge temperature (target discharge temperature). The valve opening of the decompression device 3 is controlled so that In this way, even when the hot water supply heating operation continues for a long time, the optimum refrigerant circulation amount can be obtained, and an efficient operation can be performed.

沸き上げ運転は貯湯槽5に高温の湯(一般に65〜90℃)を貯める運転であり、給湯加熱運転は直接給湯端末11で湯を使うために、中温の湯(一般に42℃前後)を作る運転である。また、沸き上げ運転と給湯加熱運転とでは、冷媒回路での加熱能力がほぼ一定であるとするならば、冷媒水熱交換器2の水流路13を流れる水の流量は、給湯加熱運転の方が当然多くなる。さらに、冷媒水熱交換器2では、通常、冷媒と水とは対向流となるように冷媒流路12と水流路13とを構成する。このとき、冷媒流路12の入口温度(冷媒入口温度)と水流路13の出口温度(水出口温度)との差には、運転効率を考慮した場合、最適値がある。だから、高温の湯を作る沸き上げ運転と中温の湯を作る給湯加熱運転とでは、最適な冷媒循環量が得られる所定の吐出温度(目標吐出温度)が異なることになる。そこで、沸き上げ運転時よりも給湯加熱運転時の方が、所定の吐出温度(目標吐出温度)を低く設定すると、効率の良い運転が可能となる。言い換えれば、冷媒水熱交換器2の水流路13を流れる水の流量が多いほど、所定の吐出温度(目標吐出温度)を低く設定する方が、効率の良い運転ができることになる。   The boiling operation is an operation in which hot water (generally 65 to 90 ° C.) is stored in the hot water storage tank 5, and the hot water heating operation is to use medium hot water (generally around 42 ° C.) in order to use the hot water directly at the hot water supply terminal 11. Driving. Further, in the boiling operation and the hot water supply heating operation, if the heating capacity in the refrigerant circuit is substantially constant, the flow rate of water flowing through the water flow path 13 of the refrigerant water heat exchanger 2 is equal to that in the hot water supply heating operation. Naturally increases. Further, in the refrigerant water heat exchanger 2, the refrigerant flow path 12 and the water flow path 13 are usually configured so that the refrigerant and water are opposed to each other. At this time, the difference between the inlet temperature of the refrigerant channel 12 (refrigerant inlet temperature) and the outlet temperature of the water channel 13 (water outlet temperature) has an optimum value when operating efficiency is considered. Therefore, a predetermined discharge temperature (target discharge temperature) at which an optimum refrigerant circulation amount is obtained is different between a boiling operation for producing high-temperature hot water and a hot-water supply heating operation for producing medium-temperature hot water. Therefore, if the predetermined discharge temperature (target discharge temperature) is set lower in the hot water supply heating operation than in the boiling operation, an efficient operation is possible. In other words, the more the flow rate of water flowing through the water flow path 13 of the refrigerant water heat exchanger 2 is, the more efficiently the operation can be performed when the predetermined discharge temperature (target discharge temperature) is set lower.

(実施の形態2)
図3は本発明の第2の実施の形態におけるヒートポンプ給湯機の構成図である。なお、本発明の第1の実施の形態で説明した図1と同じ構成部材には同一符号を用い説明を省略する。図1と異なる点は、冷媒の循環量の制御対象として、冷凍サイクルの状態を決める物理量である圧縮機1の吐出圧力としたことである。つまり、冷媒循環量制御手段20として,圧縮機1の吐出圧力を検出する吐出圧力検出手段21と減圧装置3と制御装置16とを用いたことである。第1の実施の形態と同様、冷媒循環量制御手段20のなかに、圧縮機1を含んでも良い。
(Embodiment 2)
FIG. 3 is a configuration diagram of a heat pump water heater in the second embodiment of the present invention. In addition, the same code | symbol is used for the same component as FIG. 1 demonstrated in the 1st Embodiment of this invention, and description is abbreviate | omitted. The difference from FIG. 1 is that the discharge pressure of the compressor 1, which is a physical quantity that determines the state of the refrigeration cycle, is set as the control target of the refrigerant circulation amount. That is, as the refrigerant circulation amount control means 20, the discharge pressure detection means 21 that detects the discharge pressure of the compressor 1, the decompression device 3, and the control device 16 are used. Similarly to the first embodiment, the compressor 1 may be included in the refrigerant circulation amount control means 20.

そして、この吐出圧力検出手段24から検出される圧縮機の吐出圧力を適正な所定の吐出圧力に制御すれば、効率の良い給湯加熱運転が可能となる。図3において、この適正な所定の吐出圧力である目標吐出圧力を記憶しているのが目標記憶手段19である。   And if the discharge pressure of the compressor detected from this discharge pressure detection means 24 is controlled to an appropriate predetermined discharge pressure, an efficient hot water supply heating operation becomes possible. In FIG. 3, the target storage means 19 stores the target discharge pressure, which is an appropriate predetermined discharge pressure.

動作、作用について説明する。まず、冷媒回路で加熱することによって貯湯槽に湯を貯湯する沸き上げ運転について説明する。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、所定の条件が成り立てば、圧縮機1の吐出圧力を検出する吐出圧力検出手段21からの信号で、前記吐出圧力を所定の吐出圧力(目標吐出圧力)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。なお、前記所定の条件としては、圧縮機1の起動後の運転時間が所定の時間に達するか、吐出圧力が安定するか、吐出圧力が所定の吐出圧力に達するかなどである。   The operation and action will be described. First, a boiling operation for storing hot water in a hot water tank by heating in a refrigerant circuit will be described. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. When the predetermined condition is satisfied after the compressor 1 reaches the predetermined operating frequency, the discharge pressure is determined by a signal from the discharge pressure detecting means 21 that detects the discharge pressure of the compressor 1. By controlling the valve opening degree of the decompression device 3 so as to be (target discharge pressure), the optimum refrigerant circulation amount is obtained. The predetermined condition includes whether the operation time after starting up the compressor 1 reaches a predetermined time, whether the discharge pressure is stabilized, whether the discharge pressure reaches a predetermined discharge pressure, or the like.

次に、給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水する給湯加熱運転について説明する。この場合についても、沸き上げ運転と同様の
吐出圧力の制御を行うことによって、最適な冷媒循環量になるようにする。
Next, a hot water supply heating operation in which the hot water supply terminal is opened and the city water supplied from the water supply pipe is heated by the refrigerant circuit and passed to the hot water supply terminal will be described. Also in this case, the optimum refrigerant circulation amount is obtained by controlling the discharge pressure in the same manner as in the boiling operation.

上記のように、応答が速い吐出圧力を制御対象にしているため、比較的運転時間が長い沸き上げ運転でも、比較的運転時間が短い給湯加熱運転でも、圧縮機1の吐出圧力を所定の吐出圧力(目標吐出圧力)になるように、減圧装置3の弁開度を制御する。このようにすれば、加熱運転の時間の長さに関係なく、最適な冷媒循環量が得られ、効率の良い運転ができる。   As described above, since the discharge pressure having a quick response is targeted for control, the discharge pressure of the compressor 1 can be controlled to a predetermined level even in a heating operation with a relatively long operation time or a hot water supply heating operation with a relatively short operation time. The valve opening degree of the decompression device 3 is controlled so as to be a pressure (target discharge pressure). In this way, an optimum refrigerant circulation amount can be obtained regardless of the length of time of the heating operation, and an efficient operation can be performed.

(実施の形態3)
図4は本発明の第3の実施の形態におけるヒートポンプ給湯機の構成図である。なお、本発明の第1の実施の形態で説明した図1と同じ構成部材には同一符号を用い説明を省略する。図1と異なる点は、冷媒の循環量の制御対象として、冷凍サイクルの状態を決める物理量から計算される圧縮機1の吸入冷媒の過熱度としたことである。つまり、冷媒循環量制御手段20として,圧縮機1の吸入冷媒の過熱度を検出する過熱度検出手段22と減圧装置3と制御装置16とを用いたことである。第1の実施の形態と同様、冷媒循環量制御手段20のなかに、圧縮機1を含んでも良い。さらに、過熱度検出手段22の一例として、空気熱交換器4と圧縮機1の間の冷媒の温度を検出する吸入温度検出手段23と空気熱交換器4で蒸発する冷媒の温度を検出する蒸発温度検出手段24とを用いている。そして、過熱度は、吸入温度検出手段23の検出温度と蒸発温度検出手段24の検出温度との差で求まる。この過熱度を適正な所定の過熱度に制御すれば、効率の良い給湯加熱運転が可能となる。図4において、この適正な所定の過熱度である目標過熱度を記憶しているのが目標記憶手段16である。
(Embodiment 3)
FIG. 4 is a configuration diagram of a heat pump water heater in the third embodiment of the present invention. In addition, the same code | symbol is used for the same component as FIG. 1 demonstrated in the 1st Embodiment of this invention, and description is abbreviate | omitted. The difference from FIG. 1 is that the degree of superheat of the suction refrigerant of the compressor 1 calculated from the physical quantity that determines the state of the refrigeration cycle is set as the control target of the refrigerant circulation amount. That is, as the refrigerant circulation amount control means 20, the superheat degree detection means 22 that detects the superheat degree of the refrigerant sucked in the compressor 1, the decompression device 3, and the control device 16 are used. Similarly to the first embodiment, the compressor 1 may be included in the refrigerant circulation amount control means 20. Furthermore, as an example of the superheat degree detection means 22, the suction temperature detection means 23 that detects the temperature of the refrigerant between the air heat exchanger 4 and the compressor 1 and the evaporation that detects the temperature of the refrigerant evaporated by the air heat exchanger 4. The temperature detecting means 24 is used. The degree of superheat is obtained from the difference between the temperature detected by the suction temperature detecting means 23 and the temperature detected by the evaporating temperature detecting means 24. If this superheat degree is controlled to an appropriate predetermined superheat degree, an efficient hot water supply heating operation becomes possible. In FIG. 4, the target storage means 16 stores the target superheat degree which is an appropriate predetermined superheat degree.

動作、作用について説明する。まず、冷媒回路で加熱することによって貯湯槽に湯を貯湯する沸き上げ運転について説明する。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、所定の条件が成り立てば、圧縮機1の吸入冷媒の過熱度を検出する過熱度検出手段22からの信号で、前記吸入冷媒の過熱度を所定の過熱度(目標過熱度)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。なお、前記所定の条件としては、圧縮機1の起動後の運転時間が所定の時間に達するか、過熱度が安定するか、過熱度が所定の過熱度に達するかなどである。   The operation and action will be described. First, a boiling operation for storing hot water in a hot water tank by heating in a refrigerant circuit will be described. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. Then, after the compressor 1 reaches the predetermined operating frequency, if a predetermined condition is satisfied, the superheat of the suction refrigerant is detected by a signal from the superheat degree detection means 22 that detects the superheat degree of the suction refrigerant of the compressor 1. By controlling the valve opening degree of the pressure reducing device 3 so that the degree becomes a predetermined degree of superheat (target degree of superheat), an optimum refrigerant circulation amount is obtained. The predetermined condition includes whether the operation time after starting up the compressor 1 reaches a predetermined time, whether the degree of superheat is stable, whether the degree of superheat reaches a predetermined degree of superheat, and the like.

次に、給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水する給湯加熱運転について説明する。この場合についても、沸き上げ運転と同様の圧縮機1の吸入冷媒の過熱度の制御を行うことによって、最適な冷媒循環量になるようにする。   Next, a hot water supply heating operation in which the hot water supply terminal is opened and the city water supplied from the water supply pipe is heated by the refrigerant circuit and passed to the hot water supply terminal will be described. Also in this case, the optimum refrigerant circulation amount is obtained by controlling the degree of superheat of the refrigerant sucked in the compressor 1 as in the boiling operation.

上記のように、比較的応答が速い圧縮機1の吸入冷媒の過熱度を制御対象にしているため、比較的運転時間が長い沸き上げ運転でも、比較的運転時間が短い給湯加熱運転でも、圧縮機1の吸入冷媒の過熱度を所定の過熱度(目標過熱度)になるように、減圧装置3の弁開度を制御する。このようにすれば、加熱運転の時間の長さに関係なく、最適な冷媒循環量が得られ、効率の良い運転ができる。   As described above, since the degree of superheat of the refrigerant sucked by the compressor 1 that has a relatively fast response is controlled, it can be compressed even in a boiling operation with a relatively long operation time or a hot water heating operation with a relatively short operation time. The valve opening degree of the decompression device 3 is controlled so that the superheat degree of the refrigerant sucked in the machine 1 becomes a predetermined superheat degree (target superheat degree). In this way, an optimum refrigerant circulation amount can be obtained regardless of the length of time of the heating operation, and an efficient operation can be performed.

上記説明では、圧縮機1の吸入冷媒の過熱度を、吸入の冷媒温度と蒸発器での冷媒の蒸発温度とから求めたが、圧縮機1の吸入圧力を検出する吸入圧力検出手段(図示せず)を設け、圧縮機1の吸入圧力から求めた吸入の飽和温度と吸入温度とから求めても良い。   In the above description, the degree of superheat of the refrigerant sucked in the compressor 1 is obtained from the refrigerant temperature of the suction and the evaporation temperature of the refrigerant in the evaporator, but suction pressure detecting means (not shown) for detecting the suction pressure of the compressor 1 is shown. And the suction saturation temperature and the suction temperature obtained from the suction pressure of the compressor 1 may be obtained.

(実施の形態4)
図5は本発明の第4の実施の形態におけるヒートポンプ給湯機の構成図である。なお、
本発明の第1の実施の形態で説明した図1と同じ構成部材には同一符号を用い説明を省略する。図1と異なる点は、冷媒の循環量の制御対象として、冷凍サイクルの状態を決める物理量である圧縮機1の吐出温度と吐出圧力としたことである。つまり、冷媒循環量制御手段20として,圧縮機1の吐出温度を検出する吐出温度検出手段18と圧縮機1の吐出圧力を検出する吐出圧力検出手段21と減圧装置3と制御装置16とを用いたことである。第1の実施の形態と同様、冷媒循環量制御手段20のなかに、圧縮機1を含んでも良い。
(Embodiment 4)
FIG. 5 is a configuration diagram of a heat pump water heater in the fourth embodiment of the present invention. In addition,
The same components as those in FIG. 1 described in the first embodiment of the present invention are denoted by the same reference numerals, and description thereof is omitted. The difference from FIG. 1 is that the discharge temperature and discharge pressure of the compressor 1, which are physical quantities that determine the state of the refrigeration cycle, are controlled as the circulation amount of the refrigerant. That is, as the refrigerant circulation amount control means 20, the discharge temperature detection means 18 that detects the discharge temperature of the compressor 1, the discharge pressure detection means 21 that detects the discharge pressure of the compressor 1, the decompression device 3, and the control device 16 are used. It was. Similarly to the first embodiment, the compressor 1 may be included in the refrigerant circulation amount control means 20.

そして、この吐出温度検出手段18から検出される圧縮機1の吐出温度を適正な所定の吐出温度に制御するか、または、吐出圧力検出手段21から検出される圧縮機の吐出圧力を適正な所定の吐出圧力に制御すれば、効率の良い加熱運転が可能となる。図5において、この適正な所定の吐出温度である目標吐出温度および適正な所定の吐出圧力である目標吐出圧力を記憶しているのが目標記憶手段19である。   Then, the discharge temperature of the compressor 1 detected from the discharge temperature detection means 18 is controlled to an appropriate predetermined discharge temperature, or the compressor discharge pressure detected from the discharge pressure detection means 21 is set to an appropriate predetermined value. If the discharge pressure is controlled, an efficient heating operation is possible. In FIG. 5, the target storage means 19 stores the target discharge temperature, which is an appropriate predetermined discharge temperature, and the target discharge pressure, which is an appropriate predetermined discharge pressure.

動作、作用について説明する。まず、冷媒回路で加熱することによって貯湯槽に湯を貯湯する沸き上げ運転について説明する。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、所定の条件が成り立てば、圧縮機1の吐出温度を検出する吐出温度検出手段18からの信号で、前記吐出温度を所定の吐出温度(目標吐出温度)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。なお、前記所定の条件としては、圧縮機1の起動後の運転時間が所定の時間に達するか、吐出温度が安定するか、吐出温度が所定の吐出温度に達するかなどである。   The operation and action will be described. First, a boiling operation for storing hot water in a hot water tank by heating in a refrigerant circuit will be described. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. If the predetermined condition is satisfied after the compressor 1 reaches the predetermined operating frequency, the discharge temperature is detected by a signal from the discharge temperature detecting means 18 for detecting the discharge temperature of the compressor 1. By controlling the valve opening degree of the pressure reducing device 3 so as to be (target discharge temperature), an optimum refrigerant circulation amount is obtained. The predetermined condition includes whether the operation time after starting up the compressor 1 reaches a predetermined time, whether the discharge temperature is stable, whether the discharge temperature reaches a predetermined discharge temperature, or the like.

次に、給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水する給湯加熱運転について説明する。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、所定の条件が成り立てば、圧縮機1の吐出圧力を検出する吐出圧力検出手段21からの信号で、前記吐出圧力を所定の吐出圧力(目標吐出圧力)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。   Next, a hot water supply heating operation in which the hot water supply terminal is opened and the city water supplied from the water supply pipe is heated by the refrigerant circuit and passed to the hot water supply terminal will be described. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. When the predetermined condition is satisfied after the compressor 1 reaches the predetermined operating frequency, the discharge pressure is determined by a signal from the discharge pressure detecting means 21 that detects the discharge pressure of the compressor 1. By controlling the valve opening degree of the decompression device 3 so as to be (target discharge pressure), the optimum refrigerant circulation amount is obtained.

上記のように、比較的運転時間が長く、冷媒水熱交換器2の出口の水温度が高い沸き上げ運転時には圧縮機1の吐出温度を制御し、比較的運転時間が短く、冷媒水熱交換器2の出口の水温度が低い給湯加熱運転時には変化の応答の速い吐出圧力を制御するので、沸き上げ運転、給湯加熱運転それぞれに対して、最適な冷媒循環量になるため、効率の良い運転ができる。   As described above, during the boiling operation in which the operation time is relatively long and the water temperature at the outlet of the refrigerant water heat exchanger 2 is high, the discharge temperature of the compressor 1 is controlled, the operation time is relatively short, and the refrigerant water heat exchange is performed. Since the discharge pressure with a quick response to change is controlled during the hot water supply heating operation when the water temperature at the outlet of the water heater 2 is low, the refrigerant circulation amount is optimum for each of the boiling operation and the hot water supply heating operation. Can do.

(実施の形態5)
図6は本発明の第5の実施の形態におけるヒートポンプ給湯機の構成図である。なお、本発明の第1の実施の形態で説明した図1と同じ構成部材には同一符号を用い説明を省略する。図1と異なる点は、冷媒の循環量の制御対象として、冷凍サイクルの状態を決める物理量である圧縮機1の吐出温度と吸入冷媒の過熱度としたことである。つまり、冷媒循環量制御手段20として,圧縮機1の吐出温度を検出する吐出温度検出手段18と圧縮機1の吸入冷媒の過熱度を検出する過熱度検出手段22と減圧装置3と制御装置16とを用いたことである。第1の実施の形態と同様、冷媒循環量制御手段20のなかに、圧縮機1を含んでも良い。さらに、第3の実施の形態で説明した図4と同様、過熱度検出手段22の一例として、空気熱交換器4と圧縮機1の間の冷媒の温度を検出する吸入温度検出手段23と空気熱交換器4で蒸発する冷媒の温度を検出する蒸発温度検出手段24とを用いている。そして、この吐出温度検出手段18から検出される圧縮機1の吐出温度を適正な所
定の吐出温度に制御するか、または、過熱度検出手段22から検出される圧縮機の吸入冷媒の過熱度を適正な所定の過熱度に制御すれば、効率の良い加熱運転が可能となる。図6において、この適正な所定の吐出温度である目標吐出温度および適正な所定の過熱度である目標過熱度を記憶しているのが目標記憶手段19である。
(Embodiment 5)
FIG. 6 is a configuration diagram of a heat pump water heater in the fifth embodiment of the present invention. In addition, the same code | symbol is used for the same component as FIG. 1 demonstrated in the 1st Embodiment of this invention, and description is abbreviate | omitted. A difference from FIG. 1 is that the discharge temperature of the compressor 1 and the superheat degree of the suction refrigerant, which are physical quantities that determine the state of the refrigeration cycle, are controlled as the circulation amount of the refrigerant. That is, as the refrigerant circulation amount control means 20, the discharge temperature detection means 18 that detects the discharge temperature of the compressor 1, the superheat degree detection means 22 that detects the superheat degree of the refrigerant sucked in the compressor 1, the decompression device 3, and the control device 16. And that. Similarly to the first embodiment, the compressor 1 may be included in the refrigerant circulation amount control means 20. Further, similarly to FIG. 4 described in the third embodiment, as an example of the superheat degree detection means 22, an intake temperature detection means 23 for detecting the temperature of the refrigerant between the air heat exchanger 4 and the compressor 1 and air The evaporating temperature detecting means 24 for detecting the temperature of the refrigerant evaporating in the heat exchanger 4 is used. Then, the discharge temperature of the compressor 1 detected from the discharge temperature detection means 18 is controlled to an appropriate predetermined discharge temperature, or the superheat degree of the refrigerant sucked in the compressor detected from the superheat degree detection means 22 is set. If the temperature is controlled to an appropriate predetermined degree of superheat, an efficient heating operation can be performed. In FIG. 6, the target storage means 19 stores the target discharge temperature, which is an appropriate predetermined discharge temperature, and the target superheat, which is an appropriate predetermined superheat.

動作、作用について説明する。まず、冷媒回路で加熱することによって貯湯槽に湯を貯湯する沸き上げ運転についは、図1で説明した本発明の第1の実施の形態と同様である。   The operation and action will be described. First, the boiling operation in which hot water is stored in a hot water tank by heating in a refrigerant circuit is the same as that of the first embodiment of the present invention described in FIG.

次に、給湯端末が開かれて、給水管から供給された市水を冷媒回路で加熱し給湯端末へと通水する給湯加熱運転について説明する。この場合、制御手段16は、減圧装置3の弁開度を所定の起動弁開度に設定し、さらに、必要な加熱能力を得るために圧縮機1の所定の運転周波数を設定して、圧縮機1を起動する。そして、圧縮機1が前記所定の運転周波数に達した後、所定の条件が成り立てば、圧縮機1の吸入冷媒の過熱度を検出する過熱度検出手段22からの信号で、前記吸入冷媒の過熱度を所定の過熱度(目標過熱度)になるように、減圧装置3の弁開度を制御することによって最適な冷媒循環量になるようにしている。なお、前記所定の条件としては、圧縮機1の起動後の運転時間が所定の時間に達するか、過熱度が安定するか、過熱度が所定の過熱度に達するかなどである。   Next, a hot water supply heating operation in which the hot water supply terminal is opened and the city water supplied from the water supply pipe is heated by the refrigerant circuit and passed to the hot water supply terminal will be described. In this case, the control means 16 sets the valve opening of the decompression device 3 to a predetermined starting valve opening, and further sets a predetermined operating frequency of the compressor 1 to obtain a required heating capacity, The machine 1 is started. Then, after the compressor 1 reaches the predetermined operating frequency, if a predetermined condition is satisfied, the superheat of the suction refrigerant is detected by a signal from the superheat degree detection means 22 that detects the superheat degree of the suction refrigerant of the compressor 1. By controlling the valve opening degree of the pressure reducing device 3 so that the degree becomes a predetermined degree of superheat (target degree of superheat), an optimum refrigerant circulation amount is obtained. The predetermined condition includes whether the operation time after starting up the compressor 1 reaches a predetermined time, whether the degree of superheat is stable, whether the degree of superheat reaches a predetermined degree of superheat, and the like.

上記のように、比較的運転時間が長く、冷媒水熱交換器2の出口の水温度が高い沸き上げ運転時には圧縮機1の吐出温度を制御し、比較的運転時間が短く、冷媒水熱交換器2の出口の水温度が低い給湯加熱運転時には変化の応答が比較的速い吸入冷媒の過熱度を制御するので、沸き上げ運転、給湯加熱運転それぞれに対して、最適な冷媒循環量になるため、効率の良い運転ができる。   As described above, during the boiling operation in which the operation time is relatively long and the water temperature at the outlet of the refrigerant water heat exchanger 2 is high, the discharge temperature of the compressor 1 is controlled, the operation time is relatively short, and the refrigerant water heat exchange is performed. Since the superheat degree of the suction refrigerant whose response to change is relatively fast is controlled during the hot water supply heating operation where the water temperature at the outlet of the water heater 2 is low, the refrigerant circulation amount is optimum for each of the boiling operation and the hot water supply heating operation. Efficient operation is possible.

本発明の第1の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 1st Embodiment of this invention 同、ヒートポンプ給湯機の運転時間に対する圧縮機の周波数と吐出圧力と吐出温度と減圧装置の弁開度との変化を示す図The figure which shows the change of the frequency of a compressor with respect to the operation time of a heat pump water heater, discharge pressure, discharge temperature, and the valve opening degree of a pressure reduction device. 本発明の第2の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 2nd Embodiment of this invention 本発明の第3の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 3rd Embodiment of this invention 本発明の第4の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 4th Embodiment of this invention 本発明の第5の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 5th Embodiment of this invention 従来例におけるの貯湯型ヒートポンプ給湯機の構成図Configuration diagram of a hot water storage type heat pump water heater in the conventional example 従来例におけるの瞬間湯沸かし型ヒートポンプ給湯機の構成図Configuration diagram of instant water heater type heat pump water heater in the conventional example 従来例におけるの貯湯槽を備えた瞬間湯沸かし型ヒートポンプ給湯機の構成図Configuration diagram of an instantaneous water heater type heat pump water heater equipped with a hot water storage tank in the conventional example 同、ヒートポンプ給湯機の運転時間に対する圧縮機の周波数と吐出圧力と吐出温度と減圧装置の弁開度との変化を示す図The figure which shows the change of the frequency of a compressor with respect to the operation time of a heat pump water heater, discharge pressure, discharge temperature, and the valve opening degree of a pressure reduction device.

符号の説明Explanation of symbols

1 圧縮機
2 冷媒水熱交換器
3 減圧装置
4 空気熱交換器
5 貯湯槽
10 給水管
11 給湯端末
13 水流路
18 吐出温度検出手段
20 冷媒循環量制御手段
21 吐出圧力検出手段
22 過熱度検出手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant water heat exchanger 3 Pressure reducing device 4 Air heat exchanger 5 Hot water storage tank 10 Water supply pipe 11 Hot water supply terminal 13 Water flow path 18 Discharge temperature detection means 20 Refrigerant circulation amount control means 21 Discharge pressure detection means 22 Superheat degree detection means

Claims (5)

圧縮機、放熱器としての冷媒水熱交換器、減圧装置、蒸発器としての空気熱交換器を有する冷媒回路と、前記放熱器と熱交換する前記冷媒水熱交換器に設けられた水流路に市水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記冷媒回路で加熱した温水を貯湯する貯湯槽と、前記圧縮機の吐出温度を検出する吐出温度検出手段とを備え、前記冷媒水熱交換器で加熱された湯を前記貯湯槽に貯湯する沸き上げ運転と、前記冷媒水熱交換器で加熱された湯を給湯端末へ通水する給湯加熱運転の2つの運転動作を有し、前記沸き上げ運転時よりも前記給湯加熱運転時の方が、前記圧縮機から吐出する冷媒の温度を低く設定することを特徴とするヒートポンプ給湯機。 A refrigerant circuit having a compressor, a refrigerant water heat exchanger as a radiator, a decompressor, an air heat exchanger as an evaporator, and a water flow path provided in the refrigerant water heat exchanger for exchanging heat with the radiator A water supply pipe for supplying city water, a hot water supply circuit connected so as to pass water from the water flow path to the hot water supply terminal, a hot water storage tank for storing hot water heated by the refrigerant circuit, and a discharge temperature of the compressor are detected. And a discharge temperature detecting means for performing boiling operation for storing hot water heated by the refrigerant water heat exchanger in the hot water storage tank, and passing hot water heated by the refrigerant water heat exchanger to a hot water supply terminal. A heat pump water heater having two operation operations of a hot water supply heating operation, wherein the temperature of the refrigerant discharged from the compressor is set lower in the hot water supply heating operation than in the boiling operation . 沸き上げ運転時には、圧縮機の吐出温度が所定の吐出温度になるように、減圧装置の弁開度を制御し、給湯加熱運転時には、起動時の循環量制御後は、前記減圧装置の弁開度を所定の弁開度に設定することを特徴とする請求項1に記載のヒートポンプ給湯機。 During heating operation, as the discharge temperature of the compressors becomes a predetermined discharge temperature, and controls the valve opening degree of the reduced pressure device, at the time of hot water heating operation, after circulation quantity control at the time of startup, the decompression device The heat pump water heater according to claim 1, wherein the valve opening is set to a predetermined valve opening. 給湯加熱運転が起動して所定の時間経過後、圧縮機の吐出温度が所定の吐出温度になるように前記減圧装置の弁開度を制御することを特徴とする請求項2に記載のヒートポンプ給湯機。 3. The heat pump hot water supply according to claim 2, wherein the valve opening degree of the decompression device is controlled so that the discharge temperature of the compressor becomes a predetermined discharge temperature after a hot water supply heating operation is started and a predetermined time elapses. Machine. 所定の弁開度は、圧縮機の周波数、外気温度、冷媒水熱交換器の入口温度、冷媒水熱交換器の出口温度のうち、複数の情報に基づいて決定されることを特徴とする請求項2に記載のヒートポンプ給湯機。 A predetermined valve opening degree, the frequency of the compressor, outside air temperature, inlet temperature of the refrigerant-water heat exchanger, of the outlet temperature of the refrigerant-water heat exchanger, claims characterized in that it is determined based on the plurality of information Item 3. A heat pump water heater according to Item 2 . 冷媒回路に用いる冷媒を二酸化炭素とし、高圧側では臨界圧を超える状態で運転することを特徴とする請求項1〜請求項4のいずれか1項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 4 , wherein the refrigerant used in the refrigerant circuit is carbon dioxide and is operated in a state exceeding a critical pressure on a high pressure side.
JP2003372508A 2003-10-31 2003-10-31 Heat pump water heater Expired - Lifetime JP3915770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372508A JP3915770B2 (en) 2003-10-31 2003-10-31 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372508A JP3915770B2 (en) 2003-10-31 2003-10-31 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005134070A JP2005134070A (en) 2005-05-26
JP3915770B2 true JP3915770B2 (en) 2007-05-16

Family

ID=34648874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372508A Expired - Lifetime JP3915770B2 (en) 2003-10-31 2003-10-31 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3915770B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643689B1 (en) 2005-11-01 2006-11-10 주식회사 대우일렉트로닉스 Heat pump air-conditioner
JP2007155157A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Heat pump water heater
JP4822874B2 (en) * 2006-02-27 2011-11-24 三洋電機株式会社 Cooling and heating device
JP4613916B2 (en) * 2006-03-17 2011-01-19 三菱電機株式会社 Heat pump water heater
JP4839141B2 (en) * 2006-06-26 2011-12-21 日立アプライアンス株式会社 Heat pump water heater
JP4281770B2 (en) 2006-08-31 2009-06-17 株式会社日立製作所 Heat pump system
JP5094217B2 (en) * 2007-06-01 2012-12-12 日立アプライアンス株式会社 Heat pump water heater
JP4665954B2 (en) * 2007-10-10 2011-04-06 ダイキン工業株式会社 Heat pump equipment
JP4948374B2 (en) * 2007-11-30 2012-06-06 三菱電機株式会社 Refrigeration cycle equipment
JP5032284B2 (en) * 2007-12-05 2012-09-26 株式会社コロナ Heat pump water heater
JP5372072B2 (en) * 2011-06-08 2013-12-18 三菱電機株式会社 HEAT PUMP DEVICE AND HEAT PUMP DEVICE CONTROL METHOD
JP5856042B2 (en) * 2012-12-11 2016-02-09 日立アプライアンス株式会社 Heat pump water heater
JP6092606B2 (en) * 2012-12-14 2017-03-08 シャープ株式会社 Air conditioner
JP5479625B2 (en) * 2013-03-18 2014-04-23 三菱電機株式会社 Refrigeration cycle apparatus and refrigeration cycle control method
CN104755856B (en) * 2013-06-20 2017-03-08 三菱电机株式会社 Heat pump device
EP3128256A4 (en) * 2014-03-10 2017-12-27 Mitsubishi Electric Corporation Heat pump system
JP2020079649A (en) * 2017-02-21 2020-05-28 株式会社前川製作所 Control method of heat pump device and heat pump device
EP3967948B1 (en) 2019-05-10 2023-08-30 Mitsubishi Electric Corporation Thermal storage system
CN113983692B (en) * 2021-09-30 2023-05-26 青岛海尔空调电子有限公司 Method and device for controlling hot water supply equipment and hot water supply equipment

Also Published As

Publication number Publication date
JP2005134070A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP3915770B2 (en) Heat pump water heater
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP4698697B2 (en) Heat pump water heater
JP2010243111A (en) Heat pump type water heater
JP2009236403A (en) Geothermal use heat pump device
JP5034367B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP2009264715A (en) Heat pump hot water system
JPWO2015064347A1 (en) Steam generating apparatus and steam generating heat pump
JP3632645B2 (en) Heat pump water heater
JP2009092258A (en) Refrigerating cycle device
JP2008082601A (en) Heat pump hot water supply device
JP2005308344A (en) Heat pump water heater
JP2011075257A (en) Heat pump type water heater
JP4552836B2 (en) Heat pump type water heater
JP2005147437A (en) Heat pump device
JP2006017377A (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP5478403B2 (en) Heat pump water heater
JP3856025B2 (en) Heat pump water heater
JP4631365B2 (en) Heat pump heating device
JP5929464B2 (en) Heat pump and heat pump activation method
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2010133598A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R151 Written notification of patent or utility model registration

Ref document number: 3915770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

EXPY Cancellation because of completion of term