JP3903743B2 - Galvanized steel sheet with excellent adhesiveness, workability, and weldability and its manufacturing method - Google Patents
Galvanized steel sheet with excellent adhesiveness, workability, and weldability and its manufacturing method Download PDFInfo
- Publication number
- JP3903743B2 JP3903743B2 JP2001168819A JP2001168819A JP3903743B2 JP 3903743 B2 JP3903743 B2 JP 3903743B2 JP 2001168819 A JP2001168819 A JP 2001168819A JP 2001168819 A JP2001168819 A JP 2001168819A JP 3903743 B2 JP3903743 B2 JP 3903743B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- steel sheet
- film
- acid
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 46
- 239000008397 galvanized steel Substances 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 125
- 239000011701 zinc Substances 0.000 claims description 123
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- 235000011007 phosphoric acid Nutrition 0.000 claims description 63
- 229910052725 zinc Inorganic materials 0.000 claims description 52
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims description 48
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 45
- 238000007747 plating Methods 0.000 claims description 45
- 239000007864 aqueous solution Substances 0.000 claims description 40
- 229910000165 zinc phosphate Inorganic materials 0.000 claims description 40
- 238000000576 coating method Methods 0.000 claims description 36
- 239000011248 coating agent Substances 0.000 claims description 32
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 26
- 238000009833 condensation Methods 0.000 claims description 25
- 230000005494 condensation Effects 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000007800 oxidant agent Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 229920000137 polyphosphoric acid Polymers 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 14
- 238000005406 washing Methods 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229960001716 benzalkonium Drugs 0.000 claims 1
- CYDRXTMLKJDRQH-UHFFFAOYSA-N benzododecinium Chemical compound CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 CYDRXTMLKJDRQH-UHFFFAOYSA-N 0.000 claims 1
- 125000004430 oxygen atom Chemical group O* 0.000 claims 1
- 125000004437 phosphorous atom Chemical group 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 description 103
- 239000000853 adhesive Substances 0.000 description 100
- 239000010410 layer Substances 0.000 description 53
- 230000001050 lubricating effect Effects 0.000 description 51
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 43
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 34
- 239000000243 solution Substances 0.000 description 26
- 238000012360 testing method Methods 0.000 description 25
- VUDJAFZYSMINQA-UHFFFAOYSA-L zinc metaphosphate Chemical compound [Zn+2].[O-]P(=O)=O.[O-]P(=O)=O VUDJAFZYSMINQA-UHFFFAOYSA-L 0.000 description 24
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 17
- 238000005530 etching Methods 0.000 description 17
- 239000011787 zinc oxide Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000013078 crystal Substances 0.000 description 15
- 230000018044 dehydration Effects 0.000 description 15
- 238000006297 dehydration reaction Methods 0.000 description 15
- 239000013521 mastic Substances 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 8
- 239000003513 alkali Substances 0.000 description 7
- 238000007598 dipping method Methods 0.000 description 7
- 238000007654 immersion Methods 0.000 description 7
- 238000005461 lubrication Methods 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 6
- 238000006482 condensation reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 5
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 229940005657 pyrophosphoric acid Drugs 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 229940007718 zinc hydroxide Drugs 0.000 description 4
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229910007567 Zn-Ni Inorganic materials 0.000 description 3
- 229910007614 Zn—Ni Inorganic materials 0.000 description 3
- 239000011260 aqueous acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 3
- -1 zinc phosphate compound Chemical class 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- 229910007570 Zn-Al Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- MPNNOLHYOHFJKL-UHFFFAOYSA-N peroxyphosphoric acid Chemical compound OOP(O)(O)=O MPNNOLHYOHFJKL-UHFFFAOYSA-N 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- SPDJAIKMJHJYAV-UHFFFAOYSA-H trizinc;diphosphate;tetrahydrate Chemical compound O.O.O.O.[Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SPDJAIKMJHJYAV-UHFFFAOYSA-H 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000008896 Opium Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000384512 Trachichthyidae Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- KHTPCDDBDQRIRX-UHFFFAOYSA-N azane;hydrate Chemical compound N.[NH4+].[OH-] KHTPCDDBDQRIRX-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- RKKOMEIYHHASIN-UHFFFAOYSA-N hydroperoxyboronic acid Chemical compound OOB(O)O RKKOMEIYHHASIN-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229960001027 opium Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- OMSYGYSPFZQFFP-UHFFFAOYSA-J zinc pyrophosphate Chemical compound [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O OMSYGYSPFZQFFP-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/10—Orthophosphates containing oxidants
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/23—Condensed phosphates
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、亜鉛めっき鋼板と亜鉛合金めっき鋼板(この両者を本発明では亜鉛系めっき鋼板と総称する)に対して、過酷なプレス成形にも耐える優れた加工性を確保でき、かつ接着性とスポット溶接性が低下しない無機潤滑皮膜を設けた表面処理鋼板およびその製造方法に関する。
【0002】
本発明に係る亜鉛系めっき鋼板は、接着強度の弱い接着剤 (例えば、鋼板補強用シート接着剤、高防錆スポットシーラ用接着剤、高発泡性充填シール剤等のマスチック型接着剤) を用いた接着でも安定した接着性を確保でき、極めて優れた接着性を示すことを特徴とする。
【0003】
【従来の技術】
電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、Zn−Ni合金電気めっき鋼板、Zn−Al合金溶融めっき鋼板等で代表される亜鉛系めっき鋼板は、その優れた耐食性から、自動車、家電、建材等に広く使用されており、今後もその需要はますます増大する傾向にある。
【0004】
この需要の増大に伴って、亜鉛系めっき鋼板には、耐食性以外の様々な性能が求められるようになってきている。例えば、自動車車体に使用する亜鉛系めっき鋼板には、プレス成形性に加え、組立てに必要なスポット溶接性や接着性が要求される。
【0005】
しかし、亜鉛系めっき鋼板は、軟質な亜鉛の存在により、めっき剥離や金型焼付きといった現象が起こり易いので、自動車車体のように高度のプレス成形性が要求される用途に対しては、加工性が十分ではないという問題があった。そのため、鋼板と金型の一方または両方に油を塗布して、両者の接触界面に油膜を介在させ、加工性を高めるという方法が通常は採られる。ところが、塗油では、加工性が厳しい条件下で金型と鋼板が接触する際に油膜切れを起こすことから、充分な成形性を確保することができない。
【0006】
このような背景から、例えば特開平3−183797号公報および特開平3−249180号公報には、Mn酸化物の皮膜、またはMn酸化物中にリン酸とMo、WもしくはVの酸化物を共存させた皮膜、からなる無機系潤滑皮膜を亜鉛系めっき鋼板表面に形成させて、めっき皮膜と金型との金属接触を防止することによりプレス成形性を高めることが提案されている。
【0007】
特許第2,819,427 号には、亜鉛系めっき鋼板表面にアモルファス状のリン酸化物皮膜を1〜500 mg/m2 形成してプレス成形性を向上させ、化成処理性を確保することが開示されている。特許第2,691,797 号と特許第2,826,902 号には、凝着防止機能を有する金属酸化物皮膜とコロガリ潤滑機能有するPまたはBの酸化物皮膜を共存させた被覆を形成した、プレス成形性と化成処理性に優れた亜鉛系めっき鋼板が提案されている。
【0008】
以上の特許公報に記載されている従来の無機潤滑皮膜はいずれも、亜鉛系めっき鋼板の加工性の向上と、さらには化成処理性の確保を目指したものであり、接着剤による接着性については何ら検討されていない。
【0009】
【発明が解決しようとする課題】
自動車車体用途にとって、亜鉛系めっき鋼板の加工性の向上は非常に重要ではあるが、自動車車体の組立には、溶接に加えて、多種多様の接着剤が使用されるようになってきており、自動車車体用として採用されている鋼板と同様に、あらゆる接着剤に対して適用できる広い接着剤適合性が求められる。
【0010】
自動車車体用に使用される接着剤には、大きく分けて2種類の接着剤がある。即ち、構造用接着剤、防錆シーラントのような比較的接着強度の高い車体用接着剤と、パネルの補強や溶接部の防錆性の向上を目的とした比較的接着強度の弱いマスチック型接着剤とである。
【0011】
一般に、前述したような従来の無機潤滑皮膜は、接着剤との適合性が極めて悪く、このような無機潤滑処理を施した亜鉛系めっき鋼板を自動車車体用鋼板として適用する際には、接着性の確保が大きな問題となっていた。
【0012】
かかる接着性の改善を目的として、例えば特開平8−296058号公報には、無機潤滑処理の前に、その前処理としてアルカリ脱脂等でめっき表面を活性化し、無機潤滑皮膜とめっき層との密着性を向上させて、接着剤適合性を確保することが提案されている。
【0013】
しかし、この活性化処理でも、接着強度の高い車体用接着剤に対しては接着性の改善効果が期待できるが、接着強度の弱い接着剤、特に合成ゴムを主成分としたマスチック型接着剤においては、充分な接着強度を確保できず、接着剤適合性を充分に改善できたとは言えない。
【0014】
自動車車体における接着剤の適用方法として、比較的焼き付け温度が低い状態で仮止めした後、塗装後の焼き付けで接着剤を充分に硬化させ、接着強度を確保するという2段焼き付けを行うことがあるが、この仮止め段階のプレキュア状態 (接着剤が充分に硬化しておらず、接着強度が弱い状態) で、従来の無機潤滑処理亜鉛系めっき鋼板では、その後の取り扱いに耐える充分な接着強度を確保できない。
【0015】
また、接着強度は、一般的に実施されている剪断引張りのような、接着剤に局部的な応力集中が起こりにくい試験方法では、充分に高い接着強度を示しても、T型接着して剥離試験を行う、接着剤に局部的応力集中がかかりやすい試験方法では、接着強度が極端に低下し、自動車車体の適用部位によっては接着強度を充分に確保できない。
【0016】
本発明は、以上に述べた亜鉛系めっき鋼板の従来の無機潤滑処理技術の問題点が解消され、マスチック型を含む多様な接着剤で接着した場合に高い接着強度を確保でき、プレキュア状態でも十分な接着強度を示し、かつT型の剥離試験でも高い接着強度を示すと同時に、加工性や溶接性も十分な、無機潤滑処理を施した亜鉛系めっき鋼板を提供するものである。
【0017】
【課題を解決するための手段】
本発明者らは、亜鉛系めっき鋼板の無機潤滑処理の検討にあたって、従来の無機潤滑皮膜がもつ極めて優れた加工性を損なうことなく、その問題点であった接着性の改善について検討を行った。
【0018】
具体的には、マスチック型接着剤、プレキュア状態、T型接着といった接着強度の確保が厳しい接着条件下において、従来の車体用鋼板と同等の接着強度を確保することができるように接着剤適合性を改善することを目指して、亜鉛系めっき鋼板をリン酸水溶液で処理することにより形成される無機潤滑皮膜が接着性に与える影響を種々検討した。
【0019】
その結果、この種の無機潤滑皮膜を有する亜鉛系めっき鋼板の接着・剥離試験では、無機潤滑皮膜/接着剤の界面で剥離が起こっており、この剥離が起こりにくくなるように皮膜組成を制御することにより、加工性や溶接性に加えて、極めて優れた接着性が確保できるという新知見を見出した。
【0020】
リン酸は、オリトリン酸(H3PO4) から、脱水縮合を受けると、直鎖状に高分子化 (巨大分子化) したピロリン酸 (二リン酸) 、トリポリリン酸 (三リン酸) 等のポリリン酸(Hn+4Pn+2O3n+7) になり、さらに脱水縮合が進むと、三次元的に架橋して高分子化したメタリン酸(HnPnO3n) を構成単位とするウルトラリン酸にまで、結合状態が大きく変化するという性質を有する。
【0021】
本発明者らは、脱水縮合の程度が異なる各種のリン酸水溶液で各種の亜鉛系めっき鋼板を処理し、接着性について調査した。その結果、処理に使用するリン酸の脱水縮合の程度によって形成される無機潤滑皮膜の接着性が大きく変化し、オルトリン酸処理では接着性が不十分であるが、ピロリン酸、トリポリリン酸、メタリン酸の順で接着性が向上し、特にメタリン酸による処理で形成された皮膜が極めて接着性にすぐれていた。
【0022】
メタリン酸処理により形成された無機潤滑皮膜が極めて優れた接着性を有する理由は、完全に解明されたわけではないが、以下の機構によるものではないかと推測される。
【0023】
亜鉛系めっき鋼板をオルトリン酸の水溶液で処理すると、リン酸のエッチング作用によってめっき中の亜鉛が溶解し [Zn→Zn2++2e- ] 、生成した亜鉛イオンとリン酸イオンが反応する [3Zn2++2PO4 3-→Zn3(PO4)2]ことにより、めっき表面にオルトリン酸亜鉛の皮膜が形成される。このオルトリン酸亜鉛は、100 ℃以下の温度では、4水塩のホパイト[Zn3(PO4)2・4H2O]結晶として析出する。このホパイト結晶は針状結晶であるので、ホパイトからなる無機潤滑皮膜が生成すると、皮膜の表面が荒れており、加工時の摺動性が低下して、加工性を劣化させる。また、ホパイト付着量が多いと、これが絶縁物であるため、スポット溶接等の抵抗溶接性も劣化する。
【0024】
さらに、結晶水を含むホパイトの皮膜がアルカリ性の接着剤と接触すると、アルカリ領域で溶解しやすいホパイト結晶の溶解を生じて、接着剤との界面のホパイト結晶が脆弱になり、この部分から接着剤との剥離を生じることになる。
【0025】
また、リン酸、特にpHが非常に低いオルトリン酸で亜鉛系めっき鋼板を処理すると、前述しためっき層のエッチングにより溶解した亜鉛(Zn2+ )が過剰になり、ホパイト生成で消費される以上に亜鉛が溶解して、消費しきれずに残った溶解亜鉛イオンが皮膜乾燥時に酸化亜鉛および/または水酸化亜鉛として析出するため、無機潤滑皮膜 (ホパイト皮膜) の上にこの酸化亜鉛および/または水酸化亜鉛の脆弱な層が形成されることも、接着性の劣化要因になる。
【0026】
一方、脱水縮合反応を経て高分子化されたポリリン酸やメタリン酸が、そのめっきエッチング作用により生成した亜鉛イオンと反応して生成する、ポリリン酸亜鉛やメタリン酸亜鉛からなる無機潤滑皮膜は、耐アルカリ性に優れる上、エッチングにより一旦溶解した過剰の溶解亜鉛も、脱水縮合中に効果的に皮膜中に取り込まれる結果、無機潤滑皮膜と接着剤との界面に亜鉛の酸化物または水酸化物の脆弱な層が形成されることがない。そのため、非常に優れた接着性が発現されるものと推測される。
【0027】
また、高分子化されたメタリン酸亜鉛が少なくとも部分的に生成している皮膜にすると、従来のホパイト主体のリン酸亜鉛皮膜に比較して、より少ないP付着量でも加工性が向上する。この理由は、前述のように、リン酸塩の高分子化が進行していくに従い、従来のホパイトを主体としたリン酸亜鉛皮膜に比較し、より緻密で強固な硬い皮膜に改質されるためであると考えられる。高分子化が進んで最終的にメタリン酸亜鉛の皮膜になると、極めて緻密で強固な硬質の皮膜が形成される結果、プレス成形時の金型とめっき層との金属接触による焼付きがより効果的に防止されることになる。
【0028】
このように、リン酸亜鉛からなる無機潤滑皮膜では、リン酸塩の部分的な高分子化の進行状態によってその皮膜性能が大きく変化し、接着性と加工性の向上のためには、ポリリン酸亜鉛からメタリン酸亜鉛までの高分子化されたリン酸亜鉛皮膜とする必要があり、中でも最も高分子化された状態であるメタリン酸亜鉛を皮膜中に極力多く生成させることが有利であるという結論に達した。但し、皮膜全体をこのようにする必要はなく、後述するように、無機潤滑皮膜の最表層にメタリン酸亜鉛が少なくとも部分的に生成していればよい。
【0029】
オルトリン酸とポリリン酸やメタリン酸とでは、Pに対するZnおよびOの原子比が異なることから、皮膜中のZn/P原子比とO/P原子比により皮膜中のオルトリン酸、ポリリン酸、メタリン酸の割合を判定することができる。本発明では皮膜の最表層が少なくとも部分的にメタリン酸化していればよいのであるから、慣用の表面分析手段による皮膜最表層の元素分析結果からZn/P原子比とO/P原子比を求め、それらの値がメタリン酸の生成を意味する一定範囲内に入っていればよい。
【0030】
メタリン酸亜鉛の皮膜は、亜鉛系めっき鋼板をメタリン酸の水溶液で処理することによって形成することができ、この方法では全体がメタリン酸亜鉛からなる無機潤滑皮膜が形成される。しかし、メタリン酸は非常に粘稠である上、液安定性が悪く、長期保存によりオリトリン酸やポリリン酸に分解してしまうので、使いにくいことがある。
【0031】
別の方法として、オルトリン酸やポリリン酸といった、より脱水縮合度の低いリン酸水溶液を処理に使用し、処理液に酸化剤等の縮合促進剤を含有させておき、皮膜形成時に脱水縮合反応を促進させて皮膜中のリン酸部分をその表面側から高分子化することにより、少なくとも皮膜最表層が少なくとも部分的にメタリン酸亜鉛化している無機潤滑皮膜を形成することができる。この方法の方が、塗布液の安定性に優れ、皮膜形成はより容易である。
【0032】
本発明は以上の知見に基づいて完成したものであり、下記の亜鉛系めっき鋼板およびその製造方法である。
(1) 亜鉛めっき鋼板または亜鉛合金めっき鋼板の表面に、最表層の元素組成が下記▲1▼式および▲2▼式を満たすZn/P原子比 [Zn/P] とO/P原子比 [O/P] とを与える、P換算付着量5〜500 mg/m2 のリン酸亜鉛系皮膜を有することを特徴とする、加工性、接着性、溶接性に優れた亜鉛系めっき鋼板:
▲1▼ [Zn/P] + 1.0 ≦ [O/P] ≦3×[Zn/P] + 1.5
▲2▼ 0.5 ≦ [Zn/P] ≦ 2.8。
【0033】
ここで、最表層とは、後で詳述するように、本発明においては、XPS (X線光電子分光法) で分析可能な、皮膜の表面から深さ60Åまでを意味する。即ち、上式における [O/P] および「Zn/P] の値は、XPSにより求めた最表層の元素組成から算出される。
【0034】
(2) 亜鉛めっき鋼板または亜鉛系合金めっき鋼板の表面に、オルトリン酸およびポリリン酸から選んだ1種以上を主成分とし、縮合促進剤を液中のリンに対するモル比が0.03〜3.0 となる濃度で含有するpH1〜5の水溶液を塗布し、水洗せずに50〜200 ℃の温度で焼付乾燥して、P換算付着量5〜500 mg/m2 のリン酸亜鉛系皮膜を形成することを特徴とする、上記亜鉛系めっき鋼板の製造方法。
【0035】
(3)亜鉛めっき鋼板または亜鉛系合金めっき鋼板の表面に、メタリン酸を主成分とするpH1〜7の水溶液を塗布し、水洗せずに50〜200 ℃の温度で焼付乾燥して、P換算付着量5〜500 mg/m2 のリン酸亜鉛系皮膜を形成することを特徴とする、加工性、接着性、溶接性に優れた亜鉛系めっき鋼板の製造方法。
【0036】
【発明の実施の形態】
本発明で対象とする亜鉛系めっき鋼板とは、溶融めっき法、電気めっき法、蒸着めっき法、溶射法等を含む各種方法で亜鉛含有めっき層を形成した鋼板を意味する。めっきは片面めっきと両面めっきのいずれでもよい。めっき目付量は特に制限されないが、通常は片面当たり10〜90 g/m2 の範囲である。
【0037】
めっき組成も、亜鉛を含有していれば特に制限されず、純Znめっき、ZnとFe、Al、Ni、Co等を含む1種もしくは2種以上の元素とのZn合金めっき、さらにはこれらのめっきにSiO2、炭素等の微粒子を析出させた析出めっきなどを含む。55%Al−Zn溶融めっき鋼板のように、Znが少量元素であるめっきであってもよい。また、めっき層は1層に限られない。2層以上のめっき皮膜を有したり、厚み方向に組成が連続的に変化するめっき皮膜とすることも可能であるが、その場合にはめっき表面が亜鉛を含有するめっきになっている必要がある。
【0038】
代表的な亜鉛系めっき鋼板としては、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、電気Zn−Ni合金めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融Zn−Al合金面鋼板などが挙げられる。このうち、自動車車体用としてよく使用されているのは、電気亜鉛めっき鋼板、電気Zn−Ni合金めっき鋼板、合金化溶融亜鉛めっき鋼板である。
【0039】
本発明では、少なくとも最表層の一部がメタリン酸にまで高分子化したリン酸亜鉛からなる無機潤滑皮膜を形成して、溶接性を劣化させずに、加工性に加え、多様な接着剤による接着性や接着剤適合性を著しく改善する。
【0040】
この無機潤滑皮膜の付着量は、P量として5〜500 mg/m2 の範囲とする。この付着量が5mg/m2 未満であると、潤滑効果を発現するには皮膜が薄すぎ、加工性が劣化する。この付着量が500 mg/m2 を越えると、潤滑皮膜が厚すぎ、接着試験において潤滑皮膜内で凝集破壊が生じやすくなり、接着性が低下する。また、絶縁皮膜であるリン酸亜鉛皮膜が厚くなりすぎると、溶接性も低下する。良好な加工性、接着性、溶接性を確保するには、本発明の無機潤滑皮膜の付着量は、P量として20〜300 mg/m2 の範囲が好適であり、より好ましくは50〜200 mg/m2 である。
【0041】
上記の無機潤滑皮膜は、少なくとも最表層の一部がメタリン酸亜鉛化したリン酸亜鉛からなる皮膜である。脱水縮合による高分子化によって少なくとも部分的にメタリン酸化したリン酸亜鉛皮膜では、オルトリン酸亜鉛はほぼ完全に消失しており、皮膜はメタリン酸亜鉛にポリリン酸亜鉛 (ピロリン酸亜鉛、トリポリリン酸亜鉛等) が共存した状態となる。
【0042】
本発明においては、形成した無機潤滑皮膜の最表層が少なくとも部分的にメタリン酸亜鉛化している組成になっていることを、表面分析から求めたZn/P原子比 [Zn/P] およびO/P原子比 [O/P] に基づいて決定する。即ち、これらの原子比が、次の▲1▼式と▲2▼式を満足していれば、皮膜最表層が上記組成になっている:
▲1▼ [Zn/P] + 1.0 ≦ [O/P] ≦3×[Zn/P] + 1.5
▲2▼ 0.5 ≦ [Zn/P] ≦ 2.8。
【0043】
▲1▼式は、皮膜が、オルトリン酸からメタリン酸までを含むリン酸亜鉛に対して酸素が過剰に存在していないことを規定し、皮膜の最表層に酸化亜鉛や水酸化亜鉛等(以下、亜鉛酸化物と総称する)が実質的に存在していないことを意味する式である。即ち、皮膜最表層では、Znとリン酸はすべてリン酸亜鉛系化合物として皮膜中に固定され、ZnとPが他の形では存在していないので、亜鉛酸化物が皮膜の最表層に存在することはない。
【0044】
▲2▼式は、リン酸の高分子化の程度を規定する式であり、本発明のリン酸亜鉛皮膜がオルトリン酸塩を主成分とするものではないことを意味している。
本発明者らは、最表層が完全にリン酸亜鉛(ホパイト結晶)になっている、ボンデライト処理した各種電気亜鉛めっき鋼板について、[Zn/P]と[O/P]の値を測定した結果、[Zn/P]は 3.0〜3.5 の範囲、[O/P]は8〜12の範囲であった。この結果から、[Zn/P]が3.0 より小さくなって、0.5 に近づくほど、リン酸の縮合が進行し、メタリン酸亜鉛の生成割合の増大を示すことがわかる。ボンデライト処理亜鉛めっき鋼板の[Zn/P]の値が、ホパイトにおける化学量論値である1.5 に一致しない理由は不明であるが、最表層では、残存している亜鉛酸化物の影響により相対的にZn量が多くなっているものと考えられる。また、通常のリン酸亜鉛結晶は、化学量論比より過剰のZnがボンデライト結晶中に取り込まれるていることと、皮膜の緻密さの点から、亜鉛系めっき鋼板に形成したリン酸亜鉛皮膜では、最表層でも下地めっきからのZnが検出されることが考えられる。
【0045】
▲1▼式に関して、 [O/P] < [Zn/P] + 1.0 になると、相対的にリン酸量が多く、反応により析出したリン酸亜鉛結晶以外のリン酸が残り、乾燥ができないか、またはリン酸過剰の脆弱なリン酸亜鉛粉末が鋼板表面に残り、加工性、接着性が著しく低下する。 [O/P] > 3×[Zn/P] + 1.5 では、相対的にZn、Oが多く、望ましくないオルトリン酸亜鉛や、過剰のめっきエッチングにより生成した亜鉛酸化物が表面に存在するため、接着性が著しく劣化する。また、このような皮膜は、皮膜自体の強度が低下して、著しい針状のホパイト結晶が生成することもあり、加工性が低下するとともに、皮膜の抵抗が増大して、溶接性が劣化するという問題もある。
【0046】
このように▲1▼式を満たす、Znとリン酸がすべてリン酸亜鉛になっている皮膜とした上で、良好な接着性を確保するため、▲2▼式に規定するように、Zn/P原子比を 0.5〜2.8 の範囲にする。 [Zn/P] が0.5 未満の皮膜は、リン酸と亜鉛の析出反応が正常に行われておらす、リン酸結晶がそのまま析出したような形態になるので、前述のように、乾燥が非常に困難である上、脆弱なリン酸亜鉛粉末が鋼板表面に残存した形態になるので、接着性、加工性が確保できない。この皮膜は、リン酸濃度が非常に低く、皮膜の付着量が少ない場合にも現れるが、十分な加工性が確保できない。このような場合はいずれも、無機潤滑皮膜として機能しうる強固な皮膜が形成されているとは言えない。
【0047】
一方、 [Zn/P] が2.8 超では、接着性に対して非常に優れた適合性を有するメタリン酸亜鉛が少なくとも一部生成した皮膜が形成しておらず、接着性に劣るオルトリン酸亜鉛が多量に存在する皮膜となる。オルトリン酸亜鉛の生成が増えるに伴い、皮膜の強度が低下し、加工性も劣化する傾向が認められる。
【0048】
本発明では、上述したように、リン酸亜鉛系の無機潤滑皮膜を上記▲1▼および▲2▼式を満たす、少なくとも一部分がメタリン酸塩化した皮膜とすることにより、接着性や加工性を改善する。この皮膜の接着試験では、潤滑皮膜と接着剤との界面で剥離が発生していることから、接着剤との界面近傍である潤滑皮膜の最表層が少なくとも部分的に緻密で強固なメタリン酸化した組成になっていると、加工性も改善される。即ち、皮膜全体をメタリン酸化する必要はなく、その最表層をメタリン酸亜鉛が少なくとも一部生成した組成にして、皮膜の厚さ方向に組成(Zn/P原子比やO/P原子比)が変動しても、本発明で意図する接着性、加工性の改善は充分に確保できる。
【0049】
このように、無機潤滑皮膜の最表層がメタリン酸亜鉛([Zn(PO3)2]n)となっていることが最良であり、皮膜の最表層が化学量論的にメタリン酸の組成比である[Zn/P]=0.5、[O/P]=3に可及的に近いことが好ましい。ただし、[Zn/P]については、前述したように、XPSによる測定で求めた値は化学量論値より大きくなるので、実際は0.7〜1.8の範囲が好ましい。
【0050】
かかる皮膜構造の判定は、固体表面の元素分析が可能なXPSにより皮膜最表層の元素分析を行い、上記組成比を求めることにより行う。XPSでは各元素の結合エネルギーにおけるXPS強度を測定し、その強度から各元素が表面に存在している量を元素存在比率として算出する。この元素分析値からZn/P原子比とO/P原子比を求め、上記▲1▼式と▲2▼式を満たしていればよい。なお、皮膜は結晶質と非晶質のいずれでもよく、両者が混在していてもよい。
【0051】
本発明において、皮膜の最表層とはXPSで分析可能な表面から深さ60Åまでを意味する。XPS分析で60Åの深さまでスパッタを行い、その際のZn/Pの原子比とO/Pの原子比を、皮膜最表層のZn/P原子比、O/P原子比とする。
【0052】
本発明で無機潤滑皮膜として利用するリン酸亜鉛系皮膜は、加工性の改善のために、他の金属塩 (例、金属石鹸) 、コロイド粒子 (例、コロイダルシリカ) を皮膜中に取り込むこともできる。ただし、その量は合計でリン酸亜鉛より多くならないようにする。他の金属塩は、不溶性のものが好ましい。水またはリン酸水溶液に可溶性であると、皮膜形成中にリン酸イオンと反応し、▲2▼式のZn/P原子比がメタリン酸化の程度を正確に反映しなくなる。
【0053】
本発明の少なくとも最表層の一部がメタリン酸亜鉛化している無機潤滑皮膜の形成方法は特に制限されず、最表層の組成が▲1▼式と▲2▼式を満たす皮膜が形成できる任意の方法で亜鉛系めっき鋼板を表面処理することができる。処理方式としては、廃液処理、設備、コスト等の面から塗布型処理が好ましい。
【0054】
上記の無機潤滑皮膜は、メタリン酸を含有する水溶液で亜鉛系めっき鋼板を処理することにより形成することができる。メタリン酸は無色ガラス状の固体であるが、水に易溶性であり、水溶液状態でもしばらくはメタリン酸の構造を保持する。メタリン酸水溶液からなる処理液で亜鉛系めっき鋼板を処理(例、塗布)した後、焼付・乾燥して水分を除去すると、亜鉛系めっき鋼板の表面に、実質的にメタリン酸亜鉛からなる無機潤滑皮膜を形成することができる。しかし、メタリン酸水溶液は、水溶液状態で放置しておくと、加水分解を受けて次第にオルトリン酸に変化するので、処理液の寿命が短いという問題がある。
【0055】
そこで、メタリン酸の代わりに、オルトリン酸およびポリリン酸 (ピロリン酸、トリポリリン酸等) の1種以上を用いて、メタリン酸亜鉛が少なくとも一部生成している無機潤滑皮膜を形成することができる。この方法では、処理液寿命が長い。
【0056】
オルトリン酸および/またはポリリン酸を使用する場合、脱水縮合によるメタリン酸化(高分子化)を進めるため、処理液中に縮合促進剤を共存させることが好ましい。縮合促進剤は、オルトリン酸やポリリン酸の脱水縮合反応による高分子化を促進できる任意の物質でよいが、代表的には酸化剤である。使用できる酸化剤としては、無機過酸化物、硝酸、過マンガン酸塩、重クロム酸塩、およびそれらの塩を挙げることができる。
【0057】
無機過酸化物としては、ペルオキソ酸もしくはその塩、ならびに過酸化水素等が使用できる。ペルオキソ酸の例は、ペルオキソ硫酸、ペルオキソ硼酸、ペルオキソ炭酸、ペルオキソリン酸などである。潤滑皮膜中に不純物として他の元素が入ることは、性能上好ましくない場合があるので、反応生成物が不純物とならないものが好ましい。例えば、分解しても皮膜中に構成元素としてそのまま取り込まれるペルオキソリン酸や、酸化還元反応で水と酸素に分解される過酸化水素が好ましい。
【0058】
同様の観点から、硝酸や硝酸亜鉛の使用も好ましい。硝酸は、脱水縮合中の酸化還元反応により二酸化窒素と酸素に分解し、ガス化して皮膜中に残らない。硝酸亜鉛の場合、硝酸イオンは硝酸と同様にガス化し、亜鉛イオンは潤滑皮膜中に構成元素として取り込まれる。
【0059】
過マンガン酸塩や重クロム酸塩は、反応生成物が潤滑皮膜中に金属塩として残存する。しかし、過マンガン酸カリウム等の過マンガン酸塩はリン酸皮膜の強化による加工性の向上が可能であり、重クロム酸カリウム等の重クロム酸塩は防錆性の向上が可能である。即ち、これらの酸化剤は、接着性以外の性能向上が期待できるため、最表層のZn/P原子比とO/P原子比を本発明で規定する範囲に確保できる限り、使用することができる。
【0060】
酸化剤 (または他の縮合促進剤) の添加量は、使用するリン酸がオルトリン酸かポリリン酸かによって異なるが、一般には液中のリン (P) に対する酸化剤のモル比が0.03〜3.0 、好ましくは0.08〜2.0 となる量である。酸化剤の添加量が少なすぎると、リン酸化合物の脱水縮合反応による高分子化が不充分で、最表層にメタリン酸化合物が形成されないため、Zn/P原子比が上昇する。酸化剤の添加量が多すぎると、脱水縮合反応による高分子化が促進され、メタリン酸化が進行するが、過剰の酸化剤が皮膜中に残ることになる。残存する酸化剤は、めっきのエッチング反応を促進させるため、過剰のZn2+が生成し、それが表面亜鉛酸化物として残るために、O/P原子比を上昇させるとともに、Zn/P原子比も上昇させ、接着性を劣化させるという問題がある。
【0061】
リン酸水溶液として、メタリン酸とオルトリン酸および/もしくはポリリン酸との混合水溶液を用いることも、もちろん可能である。その場合には、酸化剤等の縮合促進剤は添加しなくてもよい。
【0062】
オルトリン酸および/またはポリリン酸の水溶液を使用する場合、処理液pHは1〜5の範囲、好ましくは 1.5〜3.5 の範囲とする。処理液pHが高すぎると、めっき皮膜中のエッチング反応が生じにくく、皮膜中に効果的にZnが取り込まれず、皮膜形成が起こりにくくなる。また、縮合促進剤によるオルトリン酸やポリリン酸のメタリン酸への脱水縮合促進反応が進まなくなる。その結果、一方、処理液pHが低すぎると、エッチング反応が進みすぎ、めっき層の溶出が激しくなる。その結果、リン酸亜鉛を形成する以上に過剰のZnが皮膜中に取り込まれ、亜鉛酸化物が表層に残るため、▲2▼式を満たす皮膜が形成できなくなる。
【0063】
メタリン酸をリン酸水溶液として使用し、縮合促進剤が必要ない場合は、縮合促進反応のために低pHを維持する必要がなく、処理液pHは、めっき皮膜中のZnのエッチングが起こり、皮膜中にZnが取り込まれるだけでよい。この場合の処理液pHは1〜7、好ましくは1〜5の範囲である。
【0064】
必要に応じて、潤滑処理皮膜形成前の汚れの除去、あるいは潤滑皮膜形成時にZnを効果的に皮膜に取り込ませるためのエッチング促進を目的として、フッ酸等のエッチング剤を添加したり、処理液を加温することも可能である。処理液を加温する場合、処理液温度を70℃以下に保持することが好ましい。処理液温度が高すぎると、エッチングが過剰になるため、表面に亜鉛酸化物が残り易く、O/P原子比が上昇して、安定した接着性の確保が困難になる。また、処理液の蒸発量が多くなり、リン酸液の濃縮、酸化剤の分解等により、処理液組成を安定に保持することも困難になる。
【0065】
さらに、リン酸亜鉛皮膜の形成を促進するため、処理液中にZnを添加することも可能である。その場合には、可溶性の第一オルトリン酸亜鉛として、または縮合促進剤もかねて硝酸亜鉛として、Znを添加することが考えられる。
【0066】
処理液pHは、リン酸水溶液に、必要に応じてpH調製剤としてアルカリを添加することにより調整する。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム等の無機アルカリと、アミン等の有機塩基のいずれでもよい。
【0067】
処理液中のリン酸濃度は、皮膜の付着量を左右する。好ましいリン酸濃度は、処理液中のPとしてのモル濃度で0.05〜3.0 mol/l の範囲である。付着量はリン酸濃度と塗布量によって容易に制御することができる。
【0068】
上記処理液を亜鉛系めっき鋼板に塗布し、水洗しないで、50〜200 ℃に加熱して皮膜の焼付乾燥を行う。この焼付乾燥中に、塗布された処理液とめっきとの反応で、めっき皮膜の亜鉛の一部が溶解し、リン酸イオンと化合してリン酸亜鉛になると共に、リン酸がオルトリン酸および/またはポリリン酸である場合には、脱水縮合による高分子化 (メタリン酸化) も進行し、緻密なメタリン酸亜鉛が少なくとも一部に生成した皮膜になる。
【0069】
焼付乾燥は、高分子化したリン酸亜鉛皮膜中に残存する結晶水や皮膜表面の亜鉛酸化物が消失するように行う。それにより、皮膜の接着性が格段に向上する。加熱温度が50℃より低いと、脱水縮合反応が進行しにくく、高分子化したリン酸亜鉛皮膜を形成させることが非常に困難になり、実際的ではない非常な長時間を要するようになる。一方、加熱温度が200 ℃を超えると、高分子化の効率はそれ以上は向上せず、逆に表面の酸化が進みすぎて、最表層に亜鉛酸化物が生成し、最表層のO/Zn比が増加し、接着性の低下を招く。好ましい加熱温度は70〜150 ℃である。
【0070】
このように、水洗しない塗布型処理方法を用いるため、従来技術にみられるような、処理液によりめっき皮膜を溶解させ、その反応により皮膜を形成させ、その後で未反応物を水洗で除去する反応型処理に比べ、水洗工程を省略できる利点に加え、処理液の汚染を考慮せずにすむ点でも有利である。
【0071】
処理液の塗布方法は、処理液を均一にめっき鋼板に塗布できればよく、浸漬、スプレー、ロールコーター等の方法が可能である。処理液温度は、特に限定されるものではないが、前述のように、皮膜形成を促進する目的でめっき皮膜からのZnのエッチングを促進する観点から、処理液温度を高めることが好ましい。皮膜形成反応の均一性を確保するには、液温を一定温度に保持することが好ましい。また、蒸発による濃縮や液中の縮合促進剤の分解抑制による処理液組成の不安定化を避けるには、処理液の温度を高くしすぎることは好ましくない。
【0072】
以上を考慮して、処理液温度は30℃以上、70℃以下が好ましい。メタリン酸を含有する処理液でも、めっき皮膜からのエッチング促進を行うために、処理液を加温して30〜70℃の範囲の一定温度に保持することが好ましい。
【0073】
亜鉛系めっき鋼板が両面めっきの場合には、両面とも処理液を塗布することが好ましいが、片面のみを処理することも可能である。
上記処理液を塗布する前に、亜鉛系めっき鋼板をアルカリ水溶液、酸水溶液またはその両者を用いて前処理してもよい。この前処理により、めっき表面の汚れ、不純物成分を除去することができる上、表面がエッチングされて活性化し、Znの溶解および溶解Znとリン酸との反応によるメタリン酸亜鉛主体の皮膜形成が促進される。こうして皮膜のメタリン酸塩化が促進されると、前処理なしの場合より接着性や加工性も改善されることがある。
【0074】
アルカリ水溶液は、水に溶解してアルカリ性 (塩基性) を示す任意の化合物の水溶液でよい。例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム (アンモニア) 等の無機アルカリと、有機アミンのいずれも使用することができる。液温は特に限定しないが、処理時間を短縮するためには40〜70℃の範囲が望ましい。水溶液のpHは、めっき表面がエッチングされる程度のアルカリ性を示せばよく、9以上が望ましい。
【0075】
酸水溶液は、水に溶解して酸性を示す任意の化合物の水溶液でよい。例えば、硫酸、塩酸等の無機酸と、クエン酸、酢酸等の有機酸のいずれも使用することができる。また、Zn、Feなどを含有する酸性の電気めっき液を用いることもできる。液温は特に限定しないが、処理時間を短縮するためには40〜70℃の範囲が望ましい。水溶液のpHは、めっき表面がエッチングされる程度の酸性を示せばよく、5以下が望ましい。
【0076】
アルカリ水溶液および/または酸水溶液による前処理は、浸漬により行うことが経済的かつ簡便であるが、スプレー、ロール塗布等の他の方法で実施することもできる。処理時間は、水溶液の液温によっても異なるが、酸水溶液とアルカリ水溶液のいずれであっても、液温40〜70℃の場合で、1〜10秒程度が好ましい。1秒より短いと、エッチングが不足し、前処理の効果が十分に現れない。10秒を越えると、亜鉛めっきめっき皮膜のエッチングが過大になり、浸漬の場合には水溶液がすぐに劣化して、エッチング効果が失われる。
【0077】
この前処理を行う前に、亜鉛系めっき鋼板を水洗した方が好ましい。水洗しないと、浸漬により前処理した場合に、浸漬時に溶解しためっき表面の付着物が再び表面に付着し、リン酸亜鉛系皮膜の形成を阻害するばかりか、付着物がムラや模様を形成して製品外観を損ねることもある。アルカリ水溶液および/または酸水溶液で前処理した後も水洗することが好ましい。また、このような前処理を行わなわずに直接リン酸水溶液で処理する場合にも、処理前に亜鉛系めっき鋼板を水洗してもよい。
【0078】
本発明の方法により製造された、リン酸亜鉛系無機潤滑皮膜を有する亜鉛系めっき鋼板は、亜鉛系めっき鋼板の良好な溶接性、接着性、化成処理性を保持したまま、著しく改善されたプレス成形性を有し、カジリやパウダリングを発生させずに苛酷なプレス成形を行うことができる。そのため、プレス成形が多用される自動車用に特に適しているが、家電や建材にももちろん使用できる。
【0079】
また、接着性に関して、例えば自動車用には、構造用接着剤、防錆シーラントのような比較的接着強度の高い接着剤と、パネルの補強や溶接部の防錆性の向上を目的とした比較的接着強度の弱いマスチック型接着剤の両方が使われているが、本発明の無機潤滑皮膜は接着剤適合性に優れているため、いずれの種類の接着剤でも良好な接着結果を得ることができる。また、改善された接着性を示すため、仮止め (プレキュア) 段階やT型接着でも十分な接着力を確保できる。
【0080】
【実施例】
以下の実施例において、%は特に指定しない限り、質量%である。また、リン酸の濃度は、Pとしてのモル濃度(mol/l) である。
【0081】
(実施例1)
本実施例では、亜鉛系めっき鋼板の表面に、本発明の方法に従って、オルトリン酸またはポリリン酸と酸化剤を含有するリン酸処理液を用いた処理により無機潤滑皮膜を形成する例について示す。
【0082】
板厚0.80 mm の極低炭素IF鋼を被めっき素材とする、下記の両面亜鉛系めっき鋼板 (目付量は片面当たり) を処理に用いた。
亜鉛系めっき鋼板
記号 めっき種 目付量
EG 電気亜鉛めっき鋼板 40 g/m2
SZ 電気Zn−13%Ni合金めっき鋼板 30 g/m2
GA 合金化溶融亜鉛めっき鋼板(Fe:10%) 55 g/m2。
【0083】
これらの亜鉛系めっき鋼板の両面に、下記の種類、濃度 (mol/l)、pH、液温の各種リン酸処理液をスプレーまたは浸漬により塗布した。浸漬塗布では、3秒浸漬後、ロール絞りにより所定の付着量になるように調整した。塗布後の鋼板を、水洗を実施せずに、直ちに赤外線オーブンに入れ、最高到達板温30〜250 ℃、焼付時間7秒の条件で焼付乾燥を行って、めっき表面にリン酸亜鉛系皮膜を形成した。こうして無機潤滑皮膜を形成した亜鉛系めっき鋼板の加工性、接着性および溶接性を、後述する方法で試験した。
【0084】
リン酸亜鉛系無機潤滑皮膜の形成
リン酸の種類: オルトリン酸、ピロリン酸、トリポリリン酸
リン酸の濃度: 0.10〜1.0 mol/l
液中の酸化剤/リン酸のモル比:0〜0.3
液pH: 0.5 〜5.5
液温: 45℃
最高到達板温: 40〜250 ℃。
【0085】
一部のリン酸処理液には、脱水縮合による高分子化を促進させるために、pH調整剤としてアンモニア水を、および/または酸化剤として過酸化水素 (H2O2) 、過マンガン酸カリウム (KMnO4)、硝酸 (HNO3) もしくは硝酸亜鉛 [Zn(NO3)2] を添加して、形成されたリン酸亜鉛皮膜の改質を検討した。リン酸亜鉛系皮膜の付着量 (P量) は、処理液の濃度と塗布方法を変えることにより調整した。
【0086】
上記のリン酸処理液による処理に先立って、一部の亜鉛系めっき鋼板には、下記のアルカリ水溶液および/または酸水溶液による浸漬処理を前処理として実施した。前処理に両方の水溶液を使用した場合には、最初にアルカリ浸漬、次に酸浸漬を行った。
【0087】
アルカリ浸漬:60℃の10質量%水酸化ナトリウム水溶液に浸漬した後、80℃の温水で水洗;
酸浸漬:50℃の10質量%硫酸水溶液 (pH=1.5)に浸漬した後、80℃の温水で水洗。
【0088】
皮膜の付着量と表面組成
形成されたリン酸亜鉛系皮膜の付着量(P換算量)を、FX(蛍光X線)分析によるPの特性X線強度から求めた。また、被膜の最表層組成は、X線光電子分析装置(XPS)により測定した。XPSでは、固体表面の結合エネルギ−におけるXPS強度を測定し、その強度から各元素の表面存在比率を求めることができる。XPS測定は、下式の条件で実施した。
【0089】
(XPS測定条件)
X線源 :Mg-Kα (8 kA-30 mA)
スパッタリング:Ar高速イオンエッチング (50 kV-0.6A)
スパッタ速度 :12〜13Å/秒
上記条件で5秒間(深さ方向で約60Å)のスパッタリング後に、各元素の結合エネルギーにおけるXPSの強度ピークのピーク面積から、理論計算をもとに、表層の各元素の存在量を求め、Zn/P原子比とZn/O原子比を算出した。XPS測定前に、5秒間のスパッタリングで表面から約60Åの厚さの極表層を除去するのは、極表層は汚れ等により、正確な定量が困難なためである。
【0090】
こうして求めたZn/P原子比とZn/O原子比の値が、本発明で規定する▲1▼式および▲2▼式の条件を満たす場合、少なくとも皮膜最表層にメタリン酸亜鉛を含んでいる皮膜が生成していると判定できる。
【0091】
別に、X線回折法(XD)により、皮膜が少なくとも部分的に結晶質であるか、または完全に非晶質であるかを判定した。その際のX線回折の条件は次の通りである。
(XD測定条件)
管球 :Co-Kα
管電圧 :40 kV
管電流 :400 mA
回折角度:10〜100゜。
【0092】
判定については、オルトリン酸亜鉛であるホパイト[Zn3(PO4)2・4H2O] 結晶またはメタリン酸亜鉛 [Zn2P4O12・8H2O] 結晶の回折ピークが検出された場合、皮膜中に結晶質が存在していると判断した。その際の回折ピーク面としては、ホパイト結晶では(020) 面、(220) 面、(040) 面、(151) 面等が挙げられ、メタリン酸亜鉛結晶では(100) 面、(-110)面、(-201)面、(200) 面等が挙げられる。
【0093】
加工性評価
加工性は、円筒絞りプレス成形において、ブランクホルダー荷重を5kNピッチずつ増大させていった時の、成形可能な限界荷重を測定することにより評価した。加工条件と評価基準 (○までが合格) は次の通りである。
【0094】
(評価基準)
◎: >70 kN 、
○:50〜70 kN 、
×: <50 kN 。
【0095】
亜鉛系めっき鋼板の加工では、加工性確保のために、高潤滑性の防錆油を使用することが一般的である。参考のために、EG、SZおよびGAの各亜鉛系めっき鋼板に高潤滑性防錆油である出光製オイルコートSP2を2g/m2塗油して、同じ試験を行ったところ、成形限界荷重が50〜70 kN であった。この結果から、加工性の目標レベルを50 kN 以上、好ましくは70 kN 超に設定した。なお、本試験では、上記のように、一般防錆油である出光製オイルコートSKを2g/m2塗油してから、加工性試験に供した。
【0096】
接着性評価
接着性は、車体構造用接着剤 (アドヒーシブシーラー用のエポキシ系接着剤:ヘンケル白水製) と、車体構造用接着剤よりも接着強度が小さく、接着性に関してはより厳しいマスチック型接着剤という2種類を用いて試験した。その際の接着試験方法として、マスチック型接着剤では剪断引張強度を測定し、車体構造用接着剤は、より剥離を起こしやすいT字剥離での接着強度を測定した。また、車体構造用接着剤は、仮止め状態の接着強度も要求されるために、焼付け条件の影響を考慮し、170 ℃×30分焼き付けのフルキュア条件と、160 ℃×10分焼き付けのプレキュア条件の2種類の焼付け条件でT字剥離強度を測定した。
【0097】
油面接着性を評価するため、接着剤を塗布する前に、一般防錆油である出光製オイルコートSKを2g/m2を試験片2枚の両方の接着面に塗油し、湿潤雰囲気 (50℃×95%RH) 下で7日間スタックして保管した後、1枚の試験片の所定領域に接着剤を塗布し、スペーサーを用いて厚さ0.15 mm の接着剤厚みとなるように2枚の試験片を重ね合わせ、所定の焼付け条件で焼付けを行って接着剤を硬化させ、接着強度を調査した。
【0098】
各接着試験の試験条件と評価基準 (○までが合格) は次の通りである。
【0099】
(評価基準)
潤滑皮膜を形成しなかった同じ母材の冷延鋼板に一般防錆油(出光製オイルコートSK)を2.0 g/m2塗油したときの同じ試験条件での接着強度が0.20 MPaであり、それから30%強度が落ちた際の接着強度=0.14 MPa以上あれば、実用上問題は生じないことから、次の基準で接着性を評価した。
【0100】
◎:剪断強度≧0.20 MPa
○:剪断強度=0.14〜0.20 MPa
×:剪断強度<0.14 PMa。
【0101】
【0102】
(評価基準)
潤滑皮膜を形成しなかった同じ母材の冷延鋼板に一般防錆油(出光製オイルコートSK)を2.0 g/m2塗油したときの同じ試験条件での接着強度が、プレキュア条件で30 KPaであり、それから30%強度が落ちた際の接着強度=21 KPa以上あれば、実用上問題は生じないことから、次の基準で接着性を評価した。
【0103】
◎:剥離強度≧30 KPa、
○:剥離強度=21〜30 KPa、
×:剥離強度<21 KPa。
【0104】
溶接性評価
溶接性は、下記に示す条件で連続打点スポット溶接試験を実施し、100 打点毎にナゲット径をチェックし、ナゲットが形成できなくなる (ナゲット径が得られなくなる) までの連続打点限界数を求めることにより評価した。比較対照となる、EG、SZおよびGAの各亜鉛系めっき鋼板に高潤滑性防錆油である出光製オイルコートSP2を2g/m2塗油して同じ条件でスポット溶接性を試験した時の連続打点限界数が2500〜5000打点であることから、2500打点以上、好ましくは、4000打点以上を目標レベルとした。本試験でも、一般防錆油である出光製オイルコートSKを2g/m2塗油してから試験に供した。
【0105】
(溶接条件)
電極材質:Cu−1%Cr
電極形状:CF型 (先端径=5mm)
加圧力:200 kgf
スクイズ時間:15サイクル
(鋼板を押さえてから通電するまでの時間)
通電時間:10サイクル
保持時間:20サイクル
(通電完了してから、電極開放までの時間)
設定電流:10.5 kA
打点速度:2秒/点。
【0106】
(評価基準)(○までが合格)
◎:>4000打点、
○:2500〜4000打点、
×:<2500打点 。
【0107】
以上の試験結果を、亜鉛系めっき鋼板の種別、処理液の組成や処理条件と共に、表1、2にまとめて示す。
【0108】
【表1】
【0109】
【表2】
【0110】
表1、2からわかるように、亜鉛系めっき鋼板のままで、リン酸亜鉛系潤滑皮膜を形成しなかったNo.1の比較例では、溶接性および接着性は良好であるが、プレス成形性が非常に劣る。
【0111】
これに対し、本発明に従ってリン酸亜鉛系無機潤滑皮膜を形成した本発明例では、接着性や溶接性を保持したまま、プレス成形性が著しく向上している。めっき種、リン酸種、添加剤、塗布方法を変化させても、いずれの場合も十分な性能が得られる。
【0112】
しかし、皮膜最表層の組成もしくは皮膜付着量または製造条件が本発明の範囲から外れると、プレス成形性、溶接性、接着性のいずれかの性能が劣る。
例えば、縮合促進剤の酸化剤を添加しないと、最表層のZn/P比が高く、期待される接着強度の向上が得られない (No.2〜4)。酸化剤を添加した場合の接着強度の改善は、液中のPに対する酸化剤のモル比が本発明の範囲内である時に得られる。処理液のpHも影響を及ぼし、pHが0.7 以上、5以下、特に 1.5〜3.5 の範囲の時に、皮膜組成が適正となり、接着性が改善される。皮膜の付着量は、P換算付着量が5mg/m2 以上であると、十分な加工性が確保できる。好適な加工性を確保するには、下地のめっきの種類によって変わるが、亜鉛合金めっき鋼板で20 mg/m2以上、軟質な純亜鉛めっき鋼板で50 mg/m2以上の付着量が好ましい。付着量が500 mg/m2 を超えると、スポット溶接性が確保できず、最表層の皮膜組成が適正でも接着性が若干低下する。スポット溶接性の点では300 mg/m2 以下の付着量が好ましい。
【0113】
焼付け温度が低い場合は、皮膜が形成されるものの十分ではなく、接着強度が確保できない。焼付け温度が高い場合は、表面が過酸化状態になり、皮膜表面に亜鉛酸化物の脆弱層ができ、O/P原子比が高すぎ、接着性が不芳となる。P付着量が多すぎる場合、脆弱層が形成されやすく、接着性、溶接性ともに劣化する。P付着量が少なく、水洗工程で塗布したリン酸が洗い流された場合などは、十分な加工性が確保できなくなることが分かる。
【0114】
結晶質の存在の有無は、最表層Zn/P原子比、O/P原子比の確保による接着性への影響は少ないが、結晶質が存在すると加工性が低下する傾向が認められる。前処理として、酸および/またはアルカリへの浸漬を行うと、P付着量が多くなり、容易に加工性を改善できる。。
【0115】
(実施例2)
本実施例では、亜鉛系めっき鋼板の表面に、本発明の方法に従って、メタリン酸水溶液 (酸化剤を含有せず) を使用して無機潤滑皮膜を形成する例について示す。
【0116】
処理方法および試験条件は、処理液がリン酸としてメタリン酸を含有し、酸化剤を含有していない点を除いて、実施例1と同一である。試験結果を、亜鉛系めっき鋼板の種別、処理液の組成や処理条件と共に、表3にまとめて示す。
【0117】
【表3】
【0118】
表3に示すように、pHを適宜調整したメタリン酸水溶液を使用して無機潤滑皮膜を形成すると、酸化剤を添加しなくても、本発明に従った最表層のZn/P原子比とO/P原子比を容易に確保することができ、適正なP付着量を確保できれば、良好な性能が得られることが判る。
【0119】
本発明の条件を外れた比較例では、プレス成形性、溶接性、接着性のいずれかの性能が劣る。処理液のpHが高い場合は、リン酸塩皮膜の形成が不十分であり、皮膜組成が範囲外となり、皮膜が脆く、特に接着性を全く確保することができない。pHが低すぎると、エッチングが強すぎて、亜鉛酸化物が表面に残存し、最表層おんO/P原子比が高すぎるため、加工性と接着性に劣る。焼付け温度が低い場合は、皮膜が形成されるものの、十分ではなく、接着強度が確保できない。焼付け温度が高い場合は、表面が過酸化状態になり、皮膜表面に酸化亜鉛の脆弱層ができ、接着性が不芳となる。
【0120】
実施例1および実施例2で得られた接着性の総合的な試験結果を、皮膜最表層のZn/P原子比とO/P原子比との関係として図3に示す。図3に表示した試験結果 (記号) の判定基準を表4に記載する。これからわかるように、図3では、すべての接着性試験において最良の結果(◎)であったものを●、すべての試験において合格(○)以上であったものを○、すべての試験において一つでも不合格(×)であったものを×と表した。
【0121】
【表4】
【0122】
図3より、本発明に従った皮膜最表層の組成比を有するリン酸亜鉛系皮膜は、車体構造用接着剤だけでなく、接着強度の弱い接着剤であるマスチック型接着剤でも良好な接着性を確保できることが明らかである。特にZn/P= 0.7〜1.8 の範囲で接着性が優れており、最表層の亜鉛酸化物の残存を抑制し、最表層をメタリン酸亜鉛主体の皮膜にすると、接着性が著しく改善されることがわかる。
【0123】
【発明の効果】
本発明に従って亜鉛系めっき鋼板に無機潤滑皮膜を形成すると、亜鉛系めっき鋼板の溶接性と接着性を損なわずに、過酷なプレス成形に耐えるように加工性を大幅に向上させることができる。それにより、従来の無機潤滑皮膜では困難であった接着性と加工性の両立が可能となり、自動車車体用に使用されている多様な接着剤 (車体用接着剤だけでなく、強度の弱いマスチック型接着剤も含む) による接着を可能にする広範囲の接着剤適合性が付与され、焼付け条件の甘い仮止め状態 (プレキュア条件) での接着強度や各種条件での接着強度等、潤滑皮膜がない状態と同じように接着剤を使用することができる、無機潤滑処理亜鉛系めっき鋼板が提供される。
【0124】
従って、本発明の無機潤滑処理亜鉛系めっき鋼板は、プレス成形により所定形状に加工した後、スポット溶接と接着剤のいずれを利用しても組立てが可能であるので、自動車車体用鋼板として最適の性能を備えている。
【図面の簡単な説明】
【図1】マスチック型接着剤での接着性評価に用いた剪断引張試験方法を示す説明図である。
【図2】車体構造用接着剤での接着性評価に用いたT字剥離引張試験方法を示す説明図である。
【図3】各種潤滑処理皮膜のXPSにて測定した表層元素存在比と車体構造用接着剤およびマスチック型接着剤での接着強度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention can ensure excellent workability to withstand severe press forming, and can adhere to galvanized steel sheets and zinc alloy plated steel sheets (both are collectively referred to as galvanized steel sheets in the present invention) The present invention relates to a surface-treated steel sheet provided with an inorganic lubricating film that does not deteriorate spot weldability and a method for producing the same.
[0002]
The galvanized steel sheet according to the present invention uses an adhesive having a weak adhesive strength (for example, a sheet adhesive for reinforcing a steel sheet, an adhesive for a high rust prevention spot sealer, a mastic type adhesive such as a highly foaming filling sealant). It is characterized in that stable adhesion can be ensured even if it is adhered, and extremely excellent adhesion is exhibited.
[0003]
[Prior art]
Zinc-based galvanized steel sheets represented by electrogalvanized steel sheets, hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, Zn-Ni alloy electroplated steel sheets, Zn-Al alloy hot-dip steel sheets, etc. It is widely used in home appliances, building materials, etc., and its demand will continue to increase in the future.
[0004]
Along with this increase in demand, various performances other than corrosion resistance have been required for zinc-based plated steel sheets. For example, a zinc-based plated steel sheet used for an automobile body is required to have spot weldability and adhesiveness required for assembly in addition to press formability.
[0005]
However, galvanized steel sheets tend to cause phenomena such as plating peeling and die seizure due to the presence of soft zinc. There was a problem that the sex was not enough. Therefore, a method is generally employed in which oil is applied to one or both of the steel plate and the mold, and an oil film is interposed at the contact interface between the two to improve workability. However, in oil coating, oil film breakage occurs when the mold and the steel plate come into contact with each other under conditions where workability is severe, so that sufficient formability cannot be ensured.
[0006]
From such a background, for example, in Japanese Patent Laid-Open Nos. 3-183797 and 3-249180, an Mn oxide film or phosphoric acid and an oxide of Mo, W or V coexist in the Mn oxide. It has been proposed to increase the press formability by forming an inorganic lubricating film composed of a coated film on the surface of a zinc-based plated steel sheet to prevent metal contact between the plated film and the mold.
[0007]
In Patent No. 2,819,427, an amorphous phosphorus oxide film is applied to the surface of a zinc-based plated steel sheet in an amount of 1 to 500 mg / m.2It is disclosed to improve the press formability by forming and secure chemical conversion treatment. Patent No. 2,691,797 and Patent No. 2,826,902 describe the press formability and chemical conversion treatment in which a coating containing a metal oxide film having an anti-adhesion function and a P or B oxide film having a roller lubrication function is formed. A galvanized steel sheet excellent in resistance is proposed.
[0008]
All of the conventional inorganic lubricating films described in the above patent publications are aimed at improving the workability of galvanized steel sheets and further ensuring chemical conversion properties. Nothing has been considered.
[0009]
[Problems to be solved by the invention]
Improvement of workability of galvanized steel sheet is very important for automobile body applications, but in addition to welding, a wide variety of adhesives have been used for the assembly of automobile bodies. Similar to steel plates used for automobile bodies, wide adhesive compatibility applicable to all types of adhesives is required.
[0010]
There are roughly two types of adhesives used for automobile bodies. That is, structural adhesives, adhesives for vehicle bodies with relatively high adhesive strength, such as rust-proof sealants, and mastic adhesives with relatively low adhesive strength for the purpose of reinforcing panels and improving rust-proofing of welds With drugs.
[0011]
In general, the conventional inorganic lubricating film as described above has a very poor compatibility with the adhesive, and when applying a zinc-based plated steel sheet subjected to such an inorganic lubricating treatment as a steel sheet for an automobile body, it has an adhesive property. Ensuring of this was a big problem.
[0012]
For the purpose of improving the adhesiveness, for example, JP-A-8-296058 discloses that before the inorganic lubrication treatment, the plating surface is activated by alkali degreasing or the like as the pretreatment, and the adhesion between the inorganic lubrication film and the plating layer is achieved. It has been proposed to improve adhesiveness and ensure adhesive compatibility.
[0013]
However, even with this activation treatment, it can be expected to improve the adhesiveness for car body adhesives with high adhesive strength, but in adhesives with low adhesive strength, especially mastic adhesives mainly composed of synthetic rubber. However, it cannot be said that sufficient adhesive strength could not be secured and adhesive compatibility could be improved sufficiently.
[0014]
As a method of applying an adhesive in an automobile body, there is a case where a two-step baking is performed in which the adhesive is sufficiently hardened by baking after painting after securing temporarily at a relatively low baking temperature to ensure adhesive strength. However, in the pre-cured state of this temporary fixing stage (adhesive is not sufficiently hardened and the adhesive strength is weak), the conventional inorganic-lubricated galvanized steel sheet has sufficient adhesive strength to withstand subsequent handling. It cannot be secured.
[0015]
In addition, the adhesive strength can be peeled by T-type adhesion even if the adhesive strength is sufficiently high in a test method such as shear tension, which is generally practiced, where local stress concentration is unlikely to occur in the adhesive. In a test method in which a local stress concentration is easily applied to the adhesive, the adhesive strength is extremely lowered, and the adhesive strength cannot be sufficiently ensured depending on the application part of the automobile body.
[0016]
The present invention solves the problems of the conventional inorganic lubrication treatment technology of the above-described zinc-based plated steel sheet, can secure high adhesive strength when bonded with various adhesives including mastic type, and is sufficient even in a precure state It is intended to provide a zinc-based plated steel sheet that has been subjected to an inorganic lubrication treatment, exhibiting high adhesive strength and exhibiting high adhesive strength even in a T-type peel test, and having sufficient workability and weldability.
[0017]
[Means for Solving the Problems]
In examining the inorganic lubrication treatment of galvanized steel sheet, the present inventors have examined the improvement of adhesiveness, which was the problem without impairing the extremely excellent workability of the conventional inorganic lubricating film. .
[0018]
Specifically, adhesive compatibility so that adhesive strength equivalent to that of conventional steel plates for vehicle bodies can be secured under severe adhesive conditions such as mastic adhesive, precure condition, and T-type adhesion. With the aim of improving the above, various effects of the inorganic lubricating film formed by treating a zinc-based plated steel sheet with a phosphoric acid aqueous solution on the adhesion were studied.
[0019]
As a result, in the adhesion / peeling test of galvanized steel sheet having this kind of inorganic lubricating film, peeling occurs at the interface of the inorganic lubricating film / adhesive, and the film composition is controlled so that this peeling hardly occurs. As a result, in addition to workability and weldability, the inventors have found a new finding that extremely excellent adhesiveness can be secured.
[0020]
Phosphoric acid is oritriic acid (HThreePOFour) From polyphosphoric acid such as pyrophosphoric acid (diphosphoric acid), tripolyphosphoric acid (triphosphoric acid), etc.n + 4Pn + 2O3n + 7When the dehydration condensation proceeds further, metaphosphoric acid (HnPnO3n) To the ultraphosphoric acid having the structural unit as a structural unit.
[0021]
The present inventors investigated various adhesive properties by treating various zinc-based plated steel sheets with various phosphoric acid aqueous solutions having different degrees of dehydration condensation. As a result, the adhesiveness of the inorganic lubricating film formed varies greatly depending on the degree of dehydration condensation of phosphoric acid used in the treatment, and the adhesiveness is insufficient with the orthophosphoric acid treatment, but pyrophosphoric acid, tripolyphosphoric acid, metaphosphoric acid In this order, the adhesion improved, and the film formed by the treatment with metaphosphoric acid was particularly excellent in adhesion.
[0022]
The reason why the inorganic lubricating film formed by the metaphosphoric acid treatment has extremely excellent adhesiveness is not completely elucidated, but is presumed to be due to the following mechanism.
[0023]
When zinc-plated steel sheet is treated with an aqueous solution of orthophosphoric acid, zinc in the plating is dissolved by the etching action of phosphoric acid [Zn → Zn2++ 2e-] Zinc ions and phosphate ions react [3Zn2++ 2POFour 3-→ ZnThree(POFour)2As a result, a zinc orthophosphate film is formed on the plating surface. This zinc orthophosphate is a tetrahydrate hopite [Zn at temperatures below 100 ° C.Three(POFour)2・ 4H2O] precipitates as crystals. Since this hoplite crystal is a needle-like crystal, when an inorganic lubricating film made of hopite is formed, the surface of the film is rough, the slidability during processing is lowered, and the workability is deteriorated. Moreover, when there is much amount of hopping adhesion, since this is an insulator, resistance weldability, such as spot welding, will also deteriorate.
[0024]
Further, when the hopping film containing water of crystallization comes into contact with an alkaline adhesive, dissolution of the hopping crystals that easily dissolve in the alkaline region occurs, and the hopping crystals at the interface with the adhesive become brittle. Will cause peeling.
[0025]
In addition, when the zinc-based plated steel sheet is treated with phosphoric acid, particularly orthophosphoric acid having a very low pH, zinc (Zn) dissolved by the etching of the plating layer described above is obtained.2+ )As zinc is dissolved more than is consumed in the production of hopite, the remaining dissolved zinc ions that cannot be consumed are precipitated as zinc oxide and / or zinc hydroxide when the film is dried. The formation of a brittle layer of zinc oxide and / or zinc hydroxide on the coating) is also a cause for deterioration in adhesion.
[0026]
On the other hand, an inorganic lubricating film made of zinc polyphosphate or zinc metaphosphate, which is produced by reacting zinc ion produced by the plating etching action of polyphosphoric acid or metaphosphoric acid polymerized through a dehydration condensation reaction, In addition to being excellent in alkalinity, excess dissolved zinc once dissolved by etching is also effectively incorporated into the film during dehydration condensation, and as a result, zinc oxide or hydroxide is weak at the interface between the inorganic lubricating film and the adhesive. No layer is formed. Therefore, it is estimated that very excellent adhesiveness is expressed.
[0027]
In addition, when a film in which polymerized zinc metaphosphate is at least partially formed is used, the workability is improved even with a smaller amount of P adhesion compared to a conventional zinc phosphate film mainly composed of a white hopite. The reason for this is that, as described above, as the polymerization of the phosphate proceeds, it is modified to a denser and stronger hard film as compared with the conventional zinc phosphate film mainly composed of opium. This is probably because of this. When polymerization progresses and finally the zinc metaphosphate film is formed, an extremely dense and strong hard film is formed, and seizure due to metal contact between the mold and the plating layer during press molding is more effective. Will be prevented.
[0028]
As described above, in the inorganic lubricating film made of zinc phosphate, the film performance greatly changes depending on the progress of partial polymerization of the phosphate, and in order to improve adhesion and workability, polyphosphoric acid is used. The conclusion is that it is necessary to create a polymerized zinc phosphate film from zinc to zinc metaphosphate, and it is advantageous to produce as much of the polymerized zinc metaphosphate as possible in the film. Reached. However, it is not necessary to make the entire film in this manner, and it is sufficient that zinc metaphosphate is generated at least partially on the outermost layer of the inorganic lubricating film, as will be described later.
[0029]
Orthophosphoric acid and polyphosphoric acid or metaphosphoric acid have different atomic ratios of Zn and O to P. Therefore, orthophosphoric acid, polyphosphoric acid, and metaphosphoric acid in the film depend on the Zn / P atomic ratio and O / P atomic ratio in the film. Can be determined. In the present invention, since the outermost layer of the film only needs to be at least partially metaphosphorylated, the Zn / P atomic ratio and the O / P atomic ratio are obtained from the elemental analysis results of the outermost layer of the film by conventional surface analysis means. These values only need to be within a certain range that means the production of metaphosphoric acid.
[0030]
The zinc metaphosphate coating can be formed by treating a zinc-based plated steel sheet with an aqueous solution of metaphosphoric acid, and this method forms an inorganic lubricating coating consisting entirely of zinc metaphosphate. However, metaphosphoric acid is very viscous and has poor liquid stability, and may be difficult to use because it decomposes into oritriic acid and polyphosphoric acid after long-term storage.
[0031]
As another method, a phosphoric acid aqueous solution having a lower degree of dehydration condensation such as orthophosphoric acid or polyphosphoric acid is used for the treatment, and a condensation accelerator such as an oxidizing agent is included in the treatment liquid, and a dehydration condensation reaction is performed during film formation. By promoting and polymerizing the phosphoric acid portion in the film from the surface side, it is possible to form an inorganic lubricating film in which at least the outermost layer of the film is at least partially zinc metaphosphate. This method is superior in the stability of the coating solution, and the film formation is easier.
[0032]
This invention is completed based on the above knowledge, and is the following galvanized steel sheet and its manufacturing method.
(1) Zn / P atomic ratio [Zn / P] and O / P atomic ratio on the surface of the galvanized steel sheet or zinc alloy plated steel sheet satisfying the following formulas (1) and (2): O / P], P conversion adhesion amount 5 to 500 mg / m2A zinc-plated steel sheet excellent in workability, adhesion, and weldability, characterized by having a zinc phosphate-based film of:
(1) [Zn / P] + 1.0 ≤ [O / P] ≤ 3 x [Zn / P] + 1.5
(2) 0.5 ≦ [Zn / P] ≦ 2.8.
[0033]
Here, as described in detail later, the outermost layer means from the surface of the coating to a depth of 60 mm, which can be analyzed by XPS (X-ray photoelectron spectroscopy) in the present invention. That is, the values of [O / P] and “Zn / P” in the above formula are calculated from the elemental composition of the outermost layer obtained by XPS.
[0034]
(2) Concentration on the surface of a galvanized steel sheet or zinc-based alloy-plated steel sheet, the main component of which is one or more selected from orthophosphoric acid and polyphosphoric acid, and the molar ratio of the condensation accelerator to phosphorus in the liquid is 0.03 to 3.0 The aqueous solution having a pH of 1 to 5 contained in the solution is applied and baked and dried at a temperature of 50 to 200 ° C. without being washed with water.2A method for producing the zinc-based plated steel sheet, comprising forming a zinc phosphate-based film.
[0035]
(3) Apply an aqueous solution of pH 1-7 containing metaphosphoric acid as the main component to the surface of a galvanized steel sheet or zinc-based alloy-plated steel sheet, and bake and dry at a temperature of 50-200 ° C without washing with water. Amount of deposit 5 to 500 mg / m2A method for producing a zinc-based plated steel sheet excellent in workability, adhesion, and weldability, characterized by forming a zinc phosphate-based film.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
The zinc-based plated steel sheet targeted in the present invention means a steel sheet in which a zinc-containing plated layer is formed by various methods including a hot dipping method, an electroplating method, a vapor deposition plating method, a thermal spraying method and the like. The plating may be either single-sided plating or double-sided plating. The amount of plating is not particularly limited, but usually 10 to 90 g / m per side2Range.
[0037]
The plating composition is not particularly limited as long as it contains zinc, and is pure Zn plating, Zn alloy plating with one or more elements including Zn and Fe, Al, Ni, Co, etc. SiO for plating2Including precipitation plating in which fine particles such as carbon are deposited. It may be a plating in which Zn is a small amount of element, such as a 55% Al—Zn hot-dip plated steel sheet. Further, the plating layer is not limited to one layer. It is possible to have a plating film having two or more layers, or a plating film whose composition changes continuously in the thickness direction, but in this case, the plating surface must be plated with zinc. is there.
[0038]
Typical galvanized steel sheets include electrogalvanized steel sheets, hot dip galvanized steel sheets, electric Zn-Ni alloy plated steel sheets, alloyed hot dip galvanized steel sheets, and hot-dip Zn-Al alloy face steel sheets. Of these, electrogalvanized steel sheets, electric Zn-Ni alloy plated steel sheets, and galvannealed steel sheets are frequently used for automobile bodies.
[0039]
In the present invention, at least a part of the outermost layer forms an inorganic lubricating film made of zinc phosphate that has been polymerized to metaphosphoric acid, so that weldability is not deteriorated, and in addition to workability, various adhesives are used. Significantly improves adhesion and adhesive compatibility.
[0040]
The adhesion amount of this inorganic lubricating film is 5 to 500 mg / m as the P amount.2The range. This adhesion amount is 5mg / m2If it is less than 1, the film is too thin to exhibit the lubricating effect, and the workability deteriorates. This adhesion amount is 500 mg / m2If it exceeds 1, the lubricating film is too thick, and in the adhesion test, cohesive failure is likely to occur in the lubricating film, resulting in a decrease in adhesion. In addition, when the zinc phosphate coating that is an insulating coating becomes too thick, weldability also decreases. In order to ensure good workability, adhesion, and weldability, the amount of adhesion of the inorganic lubricating film of the present invention is 20 to 300 mg / m as the P amount.2Is preferred, more preferably 50-200 mg / m2It is.
[0041]
The inorganic lubricating film is a film made of zinc phosphate in which at least a part of the outermost layer is zinc metaphosphate. In zinc phosphate coatings that are at least partially metaphosphorylated by depolymerization and condensation, zinc orthophosphate has almost completely disappeared, and the coating is composed of zinc metaphosphate and zinc polyphosphate (such as zinc pyrophosphate and zinc tripolyphosphate). ) Coexist.
[0042]
In the present invention, the Zn / P atomic ratio [Zn / P] and O / O determined from the surface analysis indicate that the outermost layer of the formed inorganic lubricating film has a composition that is at least partially zincated. Determined based on P atomic ratio [O / P]. That is, if these atomic ratios satisfy the following formulas (1) and (2), the outermost layer of the coating has the above composition:
(1) [Zn / P] + 1.0 ≤ [O / P] ≤ 3 x [Zn / P] + 1.5
(2) 0.5 ≦ [Zn / P] ≦ 2.8.
[0043]
The formula (1) defines that the film does not contain excessive oxygen with respect to zinc phosphate including orthophosphoric acid to metaphosphoric acid, and zinc oxide, zinc hydroxide, etc. , Which is generically referred to as zinc oxide). That is, in the outermost layer of the film, all Zn and phosphoric acid are fixed in the film as a zinc phosphate compound, and Zn and P are not present in other forms, so zinc oxide is present in the outermost layer of the film. There is nothing.
[0044]
Formula (2) is a formula that defines the degree of polymerization of phosphoric acid, and means that the zinc phosphate coating of the present invention does not contain orthophosphate as a main component.
As a result of measuring the values of [Zn / P] and [O / P] for various electrogalvanized steel sheets treated with bonderite whose outermost layer is completely zinc phosphate (hopete crystal). [Zn / P] was in the range of 3.0 to 3.5, and [O / P] was in the range of 8 to 12. From this result, it can be seen that as [Zn / P] becomes smaller than 3.0 and approaches 0.5, the condensation of phosphoric acid proceeds and the production rate of zinc metaphosphate increases. The reason why the [Zn / P] value of the bondelite-treated galvanized steel sheet does not agree with the stoichiometric value of 1.5 in the Hopeite is unclear, but in the outermost layer, it is relatively affected by the effect of the remaining zinc oxide. It is thought that the amount of Zn increases. In addition, the normal zinc phosphate crystal has a zinc phosphate film formed on a galvanized steel sheet in view of the fact that Zn in excess of the stoichiometric ratio is incorporated into the bonderite crystal and the film is dense. It is conceivable that Zn from the base plating is detected even in the outermost layer.
[0045]
Regarding (1), if [O / P] <[Zn / P] + 1.0, the amount of phosphoric acid is relatively large, and phosphoric acid other than the zinc phosphate crystals precipitated by the reaction remains and cannot be dried. Alternatively, brittle zinc phosphate powder with excess phosphoric acid remains on the surface of the steel sheet, and the workability and adhesiveness are significantly lowered. [O / P]> 3 × [Zn / P] + 1.5, there is relatively much Zn and O, and undesirable zinc orthophosphate and zinc oxide produced by excessive plating etching are present on the surface. Adhesiveness deteriorates significantly. In addition, such a film may reduce the strength of the film itself, and may form a remarkable needle-like white crystal, resulting in a decrease in workability, an increase in the resistance of the film, and a deterioration in weldability. There is also a problem.
[0046]
Thus, in order to secure good adhesion after forming a film satisfying the formula (1) in which Zn and phosphoric acid are all zinc phosphates, as defined in the formula (2), Zn / The P atomic ratio is in the range of 0.5 to 2.8. Films with [Zn / P] of less than 0.5 have a form in which the precipitation reaction of phosphoric acid and zinc is normally carried out and the phosphoric acid crystals are deposited as they are. In addition, since the fragile zinc phosphate powder remains on the surface of the steel sheet, adhesion and workability cannot be ensured. This film appears even when the phosphoric acid concentration is very low and the amount of the film attached is small, but sufficient workability cannot be ensured. In such cases, it cannot be said that a strong film that can function as an inorganic lubricating film is formed.
[0047]
On the other hand, when [Zn / P] is more than 2.8, a film in which at least a part of zinc metaphosphate having very excellent compatibility with adhesiveness is not formed, and zinc orthophosphate having poor adhesion is not formed. The film becomes a large amount. As the production of zinc orthophosphate increases, the strength of the coating decreases and the workability tends to deteriorate.
[0048]
In the present invention, as described above, the adhesive property and workability are improved by forming the zinc phosphate-based inorganic lubricating coating into a coating that satisfies the above formulas (1) and (2) and is at least partially metaphosphated. To do. In the adhesion test of this film, peeling occurred at the interface between the lubricant film and the adhesive, so that the outermost layer of the lubricant film near the interface with the adhesive was at least partially dense and strongly metaphosphorylated. If it is a composition, workability is also improved. That is, it is not necessary to metaphosphorylate the entire film, and the outermost layer is made of a composition in which at least a part of zinc metaphosphate is formed, and the composition (Zn / P atomic ratio or O / P atomic ratio) is in the thickness direction of the film. Even if it fluctuates, the improvement of the adhesiveness and workability intended by the present invention can be sufficiently ensured.
[0049]
In this way, the outermost layer of the inorganic lubricating film is zinc metaphosphate ([Zn (POThree)2]n), And the outermost layer of the film is stoichiometrically close to [Zn / P] = 0.5, [O / P] = 3, which is the composition ratio of metaphosphoric acid Is preferred. However,,Regarding [Zn / P], as described above, the value obtained by the XPS measurement is larger than the stoichiometric value, and therefore, the range of 0.7 to 1.8 is actually preferable.
[0050]
The determination of the film structure is performed by conducting an elemental analysis of the outermost layer of the film by XPS capable of elemental analysis of the solid surface and obtaining the above composition ratio. In XPS, the XPS intensity at the binding energy of each element is measured, and the amount of each element present on the surface is calculated from the intensity as the element abundance ratio. The Zn / P atomic ratio and the O / P atomic ratio are obtained from the elemental analysis values, and the above formulas (1) and (2) may be satisfied. The film may be either crystalline or amorphous, and both may be mixed.
[0051]
In the present invention, the outermost layer of the film means from the surface that can be analyzed by XPS to a depth of 60 mm. Sputtering is performed to a depth of 60 mm by XPS analysis, and the atomic ratio of Zn / P and the atomic ratio of O / P at that time are taken as the Zn / P atomic ratio and O / P atomic ratio of the outermost layer of the film.
[0052]
The zinc phosphate coating used as an inorganic lubricating coating in the present invention may incorporate other metal salts (eg, metal soap) and colloidal particles (eg, colloidal silica) into the coating to improve workability. it can. However, the total amount should not be more than zinc phosphate. Other metal salts are preferably insoluble. If it is soluble in water or an aqueous phosphoric acid solution, it reacts with phosphate ions during film formation, and the Zn / P atomic ratio of formula (2) does not accurately reflect the degree of metaphosphorylation.
[0053]
The formation method of the inorganic lubricating film in which at least a part of the outermost layer of the present invention is zinc metaphosphate is not particularly limited, and an arbitrary film capable of forming a film whose composition of the outermost layer satisfies the formulas (1) and (2). The zinc-plated steel sheet can be surface-treated by the method. As a treatment method, a coating type treatment is preferable from the viewpoint of waste liquid treatment, equipment, cost, and the like.
[0054]
The inorganic lubricating film can be formed by treating a zinc-based plated steel sheet with an aqueous solution containing metaphosphoric acid. Metaphosphoric acid is a colorless glassy solid, but is readily soluble in water and retains the structure of metaphosphoric acid for a while even in an aqueous solution. Inorganic lubrication consisting essentially of zinc metaphosphate on the surface of the zinc-based plated steel sheet when the zinc-based plated steel sheet is treated (eg, coated) with a treatment solution comprising a metaphosphoric acid aqueous solution and then baked and dried to remove moisture. A film can be formed. However, if the metaphosphoric acid aqueous solution is left in an aqueous solution state, it undergoes hydrolysis and gradually changes to orthophosphoric acid, so that there is a problem that the life of the treatment liquid is short.
[0055]
Therefore, an inorganic lubricating film in which at least a part of zinc metaphosphate is generated can be formed using at least one of orthophosphoric acid and polyphosphoric acid (such as pyrophosphoric acid and tripolyphosphoric acid) instead of metaphosphoric acid. This method has a long processing solution life.
[0056]
In the case of using orthophosphoric acid and / or polyphosphoric acid, it is preferable that a condensation accelerator coexists in the treatment liquid in order to promote metaphosphorylation (polymerization) by dehydration condensation. The condensation accelerator may be any substance that can promote polymerization by the dehydration condensation reaction of orthophosphoric acid or polyphosphoric acid, but is typically an oxidizing agent. Oxidizing agents that can be used include inorganic peroxides, nitric acid, permanganate, dichromate, and salts thereof.
[0057]
As the inorganic peroxide, peroxo acid or a salt thereof, hydrogen peroxide and the like can be used. Examples of peroxo acids are peroxosulfuric acid, peroxoboric acid, peroxocarbonic acid, peroxophosphoric acid and the like. Since it is not preferable in terms of performance that other elements enter the lubricating film as impurities, it is preferable that the reaction product does not become an impurity. For example, peroxophosphoric acid that is directly incorporated into the film as a constituent element even when decomposed, or hydrogen peroxide that is decomposed into water and oxygen by an oxidation-reduction reaction is preferable.
[0058]
From the same viewpoint, use of nitric acid or zinc nitrate is also preferable. Nitric acid is decomposed into nitrogen dioxide and oxygen by an oxidation-reduction reaction during dehydration condensation, and is not gasified and remains in the film. In the case of zinc nitrate, nitrate ions are gasified in the same manner as nitric acid, and zinc ions are taken into the lubricating film as a constituent element.
[0059]
In the case of permanganate or dichromate, the reaction product remains as a metal salt in the lubricating film. However, permanganates such as potassium permanganate can improve workability by strengthening the phosphoric acid film, and dichromates such as potassium dichromate can improve rust prevention. That is, these oxidizers can be used as long as the Zn / P atomic ratio and the O / P atomic ratio of the outermost layer can be ensured within the range defined in the present invention, since performance improvement other than adhesiveness can be expected. .
[0060]
The amount of the oxidizing agent (or other condensation accelerator) added depends on whether the phosphoric acid used is orthophosphoric acid or polyphosphoric acid, but generally the molar ratio of the oxidizing agent to phosphorus (P) in the liquid is 0.03 to 3.0, The amount is preferably 0.08 to 2.0. If the addition amount of the oxidizing agent is too small, the polymerization by the dehydration condensation reaction of the phosphoric acid compound is insufficient, and the metaphosphoric acid compound is not formed on the outermost layer, so that the Zn / P atomic ratio increases. If the amount of the oxidant added is too large, polymerization by the dehydration condensation reaction is promoted and metaphosphorylation proceeds, but excess oxidant remains in the film. The remaining oxidizer accelerates the etching reaction of the plating, so excess Zn2+Is generated and remains as surface zinc oxide, which increases the O / P atomic ratio and also increases the Zn / P atomic ratio, thereby deteriorating the adhesion.
[0061]
It is of course possible to use a mixed aqueous solution of metaphosphoric acid and orthophosphoric acid and / or polyphosphoric acid as the phosphoric acid aqueous solution. In that case, a condensation accelerator such as an oxidizing agent may not be added.
[0062]
When an aqueous solution of orthophosphoric acid and / or polyphosphoric acid is used, the pH of the treatment solution is in the range of 1 to 5, preferably 1.5 to 3.5. If the treatment solution pH is too high, an etching reaction in the plating film is difficult to occur, Zn is not taken into the film effectively, and film formation is difficult to occur. Moreover, the dehydration condensation promotion reaction of orthophosphoric acid or polyphosphoric acid to metaphosphoric acid by the condensation accelerator does not proceed. As a result, if the treatment solution pH is too low, the etching reaction proceeds excessively and the elution of the plating layer becomes intense. As a result, excess Zn is formed in the film more than the formation of zinc phosphate, and zinc oxide remains in the surface layer, so that a film satisfying the formula (2) cannot be formed.
[0063]
When metaphosphoric acid is used as an aqueous phosphoric acid solution and a condensation accelerator is not required, it is not necessary to maintain a low pH for the condensation promoting reaction, and the pH of the treatment solution is such that etching of Zn in the plating film occurs. All that is necessary is to incorporate Zn. In this case, the treatment solution pH is in the range of 1 to 7, preferably 1 to 5.
[0064]
If necessary, an etchant such as hydrofluoric acid may be added to remove dirt before forming the lubricating film or to promote etching to effectively incorporate Zn into the film during the formation of the lubricating film. It is also possible to heat. When heating the treatment liquid, the treatment liquid temperature is preferably maintained at 70 ° C. or lower. If the treatment liquid temperature is too high, the etching becomes excessive, so that zinc oxide tends to remain on the surface, the O / P atomic ratio increases, and it becomes difficult to ensure stable adhesion. Further, the evaporation amount of the treatment liquid increases, and it becomes difficult to stably maintain the treatment liquid composition due to the concentration of the phosphoric acid solution, the decomposition of the oxidizing agent, and the like.
[0065]
Furthermore, Zn can be added to the treatment liquid in order to promote the formation of the zinc phosphate film. In that case, it is conceivable to add Zn as a soluble primary zinc orthophosphate or as a zinc nitrate as a condensation accelerator.
[0066]
The treatment solution pH is adjusted by adding an alkali as a pH adjuster to the phosphoric acid aqueous solution as necessary. As an alkali, any of inorganic alkalis, such as sodium hydroxide, potassium hydroxide, and ammonium hydroxide, and organic bases, such as an amine, may be sufficient.
[0067]
The concentration of phosphoric acid in the treatment liquid affects the amount of film deposited. A preferable phosphoric acid concentration is in a range of 0.05 to 3.0 mol / l as a molar concentration as P in the treatment liquid. The adhesion amount can be easily controlled by the phosphoric acid concentration and the coating amount.
[0068]
The above-mentioned treatment solution is applied to a galvanized steel sheet and heated to 50 to 200 ° C. without being washed with water, and the film is baked and dried. During this baking and drying, a part of the zinc of the plating film is dissolved by the reaction between the applied treatment solution and the plating, and is combined with phosphate ions to become zinc phosphate, and phosphoric acid is orthophosphoric acid and / or Alternatively, in the case of polyphosphoric acid, polymerization (metaphosphorylation) by dehydration condensation also proceeds, resulting in a film in which dense zinc metaphosphate is generated at least partially.
[0069]
Baking and drying is performed so that water of crystallization remaining in the polymerized zinc phosphate film and zinc oxide on the film surface disappear. Thereby, the adhesiveness of the film is significantly improved. When the heating temperature is lower than 50 ° C., the dehydration condensation reaction is difficult to proceed, and it becomes very difficult to form a polymerized zinc phosphate film, which requires a very long time which is not practical. On the other hand, when the heating temperature exceeds 200 ° C., the efficiency of the polymerization is not further improved, and on the contrary, the surface oxidation proceeds too much, and zinc oxide is formed in the outermost layer, and O / Zn of the outermost layer The ratio increases, resulting in a decrease in adhesion. A preferred heating temperature is 70 to 150 ° C.
[0070]
In this way, since a coating-type treatment method that does not wash with water is used, a reaction in which a plating film is dissolved by a treatment solution as in the prior art, a film is formed by the reaction, and then unreacted substances are removed by washing with water. Compared with mold processing, in addition to the advantage that the water washing step can be omitted, it is also advantageous in that it is not necessary to consider contamination of the processing liquid.
[0071]
The treatment liquid may be applied by any method such as dipping, spraying, and roll coater as long as the treatment liquid can be uniformly applied to the plated steel sheet. The treatment liquid temperature is not particularly limited, but as described above, it is preferable to increase the treatment liquid temperature from the viewpoint of promoting the etching of Zn from the plating film for the purpose of promoting film formation. In order to ensure the uniformity of the film forming reaction, it is preferable to maintain the liquid temperature at a constant temperature. Also, it is not preferable to make the temperature of the treatment liquid too high in order to avoid concentration by evaporation or destabilization of the treatment liquid composition due to suppression of decomposition of the condensation accelerator in the liquid.
[0072]
Considering the above, the treatment liquid temperature is preferably 30 ° C. or higher and 70 ° C. or lower. Even in a treatment liquid containing metaphosphoric acid, it is preferable to heat the treatment liquid and maintain it at a constant temperature in the range of 30 to 70 ° C. in order to accelerate etching from the plating film.
[0073]
When the galvanized steel sheet is double-sided plating, it is preferable to apply the treatment liquid on both sides, but it is also possible to treat only one side.
Before applying the treatment liquid, the galvanized steel sheet may be pretreated with an alkaline aqueous solution, an acid aqueous solution, or both. This pretreatment removes dirt and impurity components from the plating surface, and the surface is etched and activated, facilitating the formation of a zinc metaphosphate-based film by dissolution of Zn and the reaction between dissolved Zn and phosphoric acid. Is done. When the metaphosphate formation of the film is promoted in this way, the adhesion and workability may be improved as compared with the case without pretreatment.
[0074]
The aqueous alkaline solution may be an aqueous solution of any compound that is dissolved in water and exhibits alkalinity (basic). For example, any of inorganic alkalis such as sodium hydroxide, potassium hydroxide and ammonium hydroxide (ammonia) and organic amines can be used. The liquid temperature is not particularly limited, but is preferably in the range of 40 to 70 ° C. in order to shorten the processing time. The pH of the aqueous solution only needs to be alkaline enough to etch the plating surface, and is preferably 9 or more.
[0075]
The aqueous acid solution may be an aqueous solution of any compound that dissolves in water and exhibits acidity. For example, any of inorganic acids such as sulfuric acid and hydrochloric acid and organic acids such as citric acid and acetic acid can be used. An acidic electroplating solution containing Zn, Fe, or the like can also be used. The liquid temperature is not particularly limited, but is preferably in the range of 40 to 70 ° C. in order to shorten the processing time. The pH of the aqueous solution only needs to be acidic enough to etch the plating surface, and is preferably 5 or less.
[0076]
Pretreatment with an aqueous alkali solution and / or an aqueous acid solution is economical and simple to perform by immersion, but can also be carried out by other methods such as spraying and roll coating. The treatment time varies depending on the liquid temperature of the aqueous solution, but it is preferably about 1 to 10 seconds at a liquid temperature of 40 to 70 ° C., regardless of whether the aqueous solution is an acid aqueous solution or an alkaline aqueous solution. If it is shorter than 1 second, etching is insufficient and the effect of the pretreatment does not appear sufficiently. If it exceeds 10 seconds, etching of the galvanized plating film becomes excessive, and in the case of immersion, the aqueous solution deteriorates immediately and the etching effect is lost.
[0077]
Before performing this pretreatment, it is preferable to wash the galvanized steel sheet with water. Without washing with water, when pre-treated by dipping, the deposit on the plating surface that was dissolved during dipping will re-attach to the surface, hindering the formation of the zinc phosphate coating, and the deposit will form unevenness and patterns. The appearance of the product may be damaged. It is preferable to wash with water after pretreatment with an aqueous alkali solution and / or an aqueous acid solution. Moreover, also when processing directly with phosphoric acid aqueous solution, without performing such a pretreatment, you may wash a zinc-plated steel plate before a process.
[0078]
The zinc-based plated steel sheet having a zinc phosphate-based inorganic lubricating film produced by the method of the present invention is a remarkably improved press while maintaining the good weldability, adhesiveness, and chemical conversion property of the zinc-based plated steel sheet. It has moldability and can perform severe press molding without causing galling or powdering. Therefore, it is particularly suitable for automobiles where press molding is frequently used, but it can also be used for home appliances and building materials.
[0079]
In addition, with regard to adhesiveness, for example, for automobiles, comparative adhesives with relatively high adhesive strength such as structural adhesives and rust-proof sealants, and comparisons aimed at reinforcing panels and improving rust-proofing of welds Both mastic type adhesives with low mechanical bond strength are used, but the inorganic lubricant film of the present invention is excellent in adhesive compatibility, so that any type of adhesive can obtain good adhesion results. it can. Moreover, since the improved adhesiveness is exhibited, sufficient adhesive force can be secured even in a temporary fixing (precure) stage or T-type bonding.
[0080]
【Example】
In the following examples,% is% by mass unless otherwise specified. The concentration of phosphoric acid is the molar concentration (mol / l) as P.
[0081]
(Example 1)
In this example, an example in which an inorganic lubricating film is formed on the surface of a zinc-based plated steel sheet by a treatment using a phosphoric acid treatment solution containing orthophosphoric acid or polyphosphoric acid and an oxidizing agent according to the method of the present invention will be described.
[0082]
The following double-sided zinc-based plated steel sheet (weight per side) was used for the treatment, using an ultra-low carbon IF steel with a thickness of 0.80 mm as the material to be plated.
Galvanized steel sheet
Symbol Plating type Weight per unit area
EG Electrogalvanized steel sheet 40 g / m2
SZ Electric Zn-13% Ni alloy plated steel sheet 30 g / m2
GA alloyed hot-dip galvanized steel sheet (Fe: 10%) 55 g / m2.
[0083]
Various phosphoric acid treatment liquids of the following types, concentrations (mol / l), pH, and liquid temperature were applied to both surfaces of these galvanized steel sheets by spraying or dipping. In the dip coating, after the immersion for 3 seconds, it was adjusted so as to have a predetermined adhesion amount by roll drawing. The coated steel sheet is immediately put into an infrared oven without being washed with water, and baked and dried under the conditions of a maximum plate temperature of 30 to 250 ° C. and a baking time of 7 seconds to form a zinc phosphate coating on the plating surface. Formed. Thus, the workability, adhesion and weldability of the zinc-based plated steel sheet on which the inorganic lubricating film was formed were tested by the methods described later.
[0084]
Formation of zinc phosphate inorganic lubricant film
Types of phosphoric acid: orthophosphoric acid, pyrophosphoric acid, tripolyphosphoric acid
Phosphoric acid concentration: 0.10 to 1.0 mol / l
Molar ratio of oxidizing agent / phosphoric acid in liquid: 0 to 0.3
Solution pH: 0.5 to 5.5
Liquid temperature: 45 ℃
Maximum plate temperature: 40-250 ° C.
[0085]
In some phosphating solutions, aqueous ammonia is used as a pH adjuster and / or hydrogen peroxide (H2O2), Potassium permanganate (KMnOFour), Nitric acid (HNOThree) Or zinc nitrate [Zn (NOThree)2] Was added to study the modification of the formed zinc phosphate coating. The adhesion amount (P amount) of the zinc phosphate coating was adjusted by changing the concentration of the treatment liquid and the coating method.
[0086]
Prior to the treatment with the above phosphoric acid treatment liquid, some zinc-based plated steel sheets were subjected to the following immersion treatment with an alkaline aqueous solution and / or an acid aqueous solution as a pretreatment. When both aqueous solutions were used for the pretreatment, first, alkali immersion and then acid immersion were performed.
[0087]
Alkaline soaking: After soaking in a 10 mass% sodium hydroxide aqueous solution at 60 ° C, washing with warm water at 80 ° C;
Acid dipping: After dipping in a 10% by mass sulfuric acid aqueous solution (pH = 1.5) at 50 ° C., it was washed with warm water at 80 ° C.
[0088]
Amount of coating and surface composition
The adhesion amount (P equivalent amount) of the formed zinc phosphate coating was determined from the characteristic X-ray intensity of P by FX (fluorescence X-ray) analysis. Moreover, the outermost layer composition of the film was measured with an X-ray photoelectron analyzer (XPS). In XPS, the XPS intensity at the binding energy of the solid surface is measured, and the surface abundance ratio of each element can be obtained from the intensity. The XPS measurement was carried out under the following conditions.
[0089]
(XPS measurement conditions)
X-ray source: Mg-Kα (8 kA-30 mA)
Sputtering: Ar fast ion etching (50 kV-0.6A)
Sputtering speed: 12-13mm / s
After sputtering under the above conditions for 5 seconds (about 60 mm in the depth direction), the abundance of each element in the surface layer is determined from the peak area of the XPS intensity peak at the binding energy of each element based on theoretical calculations, and Zn / P atomic ratio and Zn / O atomic ratio were calculated. The reason why the electrode surface layer having a thickness of about 60 mm is removed from the surface by sputtering for 5 seconds before the XPS measurement is that the electrode layer is difficult to accurately determine due to contamination.
[0090]
When the values of the Zn / P atomic ratio and Zn / O atomic ratio thus obtained satisfy the conditions of the formulas (1) and (2) defined in the present invention, at least the outermost layer of the coating contains zinc metaphosphate. It can be determined that a film is formed.
[0091]
Separately, X-ray diffraction (XD) was used to determine whether the coating was at least partially crystalline or completely amorphous. The X-ray diffraction conditions at that time are as follows.
(XD measurement conditions)
Tube: Co-Kα
Tube voltage: 40 kV
Tube current: 400 mA
Diffraction angle: 10-100 °.
[0092]
For the determination, the zinc orthophosphate [ZnThree(POFour)2・ 4H2O] Crystal or zinc metaphosphate [Zn2PFourO12・ 8H2O] When a diffraction peak of the crystal was detected, it was judged that crystalline was present in the film. The diffraction peak planes in this case include (020) plane, (220) plane, (040) plane, (151) plane, etc. for the Hopeite crystal, and (100) plane, (-110) plane for the zinc metaphosphate crystal. Surface, (-201) surface, (200) surface and the like.
[0093]
Processability evaluation
The workability was evaluated by measuring the limit load that can be formed when the blank holder load was increased by 5 kN pitch in cylindrical drawing press forming. The processing conditions and evaluation criteria (up to ○ are acceptable) are as follows.
[0094]
(Evaluation criteria)
◎:> 70 kN
○: 50 to 70 kN
×: <50 kN.
[0095]
In the processing of galvanized steel sheets, it is common to use a highly lubricious rust preventive oil to ensure processability. For reference, 2 g / m of Idemitsu oil coat SP2, which is a highly lubricious rust preventive oil, is applied to each EG, SZ and GA galvanized steel sheet.2When the same test was carried out with oiling, the forming limit load was 50 to 70 kN. From this result, the target level of workability was set to 50 kN or more, preferably more than 70 kN. In this test, 2 g / m of Idemitsu oil coat SK, which is a general anti-rust oil, as described above.2After oiling, it was subjected to a workability test.
[0096]
Adhesive evaluation
Adhesion is an adhesive for car body structure (adhesive sealer epoxy adhesive: made by Henkel Hakusui) and has a lower adhesive strength than car body structure adhesive, and is said to be a more stringent mastic adhesive. Two types were tested. As an adhesion test method at that time, the shear tensile strength was measured for the mastic type adhesive, and the adhesive strength at the T-shaped peeling that was more likely to cause peeling was measured for the body structure adhesive. In addition, since the adhesive for body structure is also required to have an adhesive strength in the temporarily fixed state, considering the influence of baking conditions, full curing conditions for baking at 170 ° C for 30 minutes and precuring conditions for baking at 160 ° C for 10 minutes The T-peel strength was measured under the two types of baking conditions.
[0097]
In order to evaluate the oil level adhesion, before applying the adhesive, Idemitsu oil coat SK, a general anti-rust oil, is 2 g / m.2Apply oil to both adhesive surfaces of the two test pieces, store them in a humid atmosphere (50 ° C x 95% RH) for 7 days, and then apply the adhesive to a predetermined area of one test piece. Two test pieces were stacked using a spacer so that the thickness of the adhesive was 0.15 mm, and the adhesive was cured by baking under predetermined baking conditions, and the adhesive strength was investigated.
[0098]
The test conditions and evaluation criteria for each adhesion test (passed up to ○) are as follows.
[0099]
(Evaluation criteria)
2.0 g / m of general rust-preventive oil (Idemitsu oil coat SK) is applied to cold-rolled steel sheets of the same base material without a lubricating film.2If the adhesion strength under the same test conditions when oiled is 0.20 MPa and then the adhesive strength when the strength drops by 30% is 0.14 MPa or more, there is no practical problem. Sex was evaluated.
[0100]
A: Shear strength ≥ 0.20 MPa
○: Shear strength = 0.14 to 0.20 MPa
X: Shear strength <0.14 PMa.
[0101]
[0102]
(Evaluation criteria)
2.0 g / m of general rust-preventive oil (Idemitsu oil coat SK) is applied to cold-rolled steel sheets of the same base material without a lubricating film.2If the adhesive strength under the same test conditions when oiled is 30 KPa under the pre-curing condition, and the adhesive strength when the strength drops by 30% = 21 KPa or more, there will be no practical problem. The adhesiveness was evaluated based on the following criteria.
[0103]
A: Peel strength ≧ 30 KPa,
○: Peel strength = 21-30 KPa
X: Peel strength <21 KPa.
[0104]
Weldability evaluation
For weldability, a continuous spot spot welding test is performed under the conditions shown below, the nugget diameter is checked every 100 spots, and the limit number of continuous spots until the nugget cannot be formed (the nugget diameter cannot be obtained) is obtained. It was evaluated by. For comparison, each EG, SZ and GA galvanized steel sheet is coated with 2 g / m of Idemitsu oil coat SP2, which is a highly lubricating anti-rust oil.2When the spot weldability was tested under the same conditions after oiling, the limit number of continuous hit points was 2500 to 5000 hit points. Therefore, 2500 hit points or more, preferably 4000 hit points or more were set as target levels. In this test as well, Idemitsu oil coat SK, a general anti-rust oil, was 2 g / m.2After oiling, it was used for the test.
[0105]
(Welding conditions)
Electrode material: Cu-1% Cr
Electrode shape: CF type (tip diameter = 5mm)
Applied pressure: 200 kgf
Squeeze time: 15 cycles
(Time from pressing the steel plate to energizing)
Energizing time: 10 cycles
Retention time: 20 cycles
(Time from energization to electrode opening)
Setting current: 10.5 kA
Riding speed: 2 seconds / point.
[0106]
(Evaluation criteria) (Up to ○ pass)
A:> 4000 RBIs
○: 2500 to 4000 RBIs
×: <2500 RBIs.
[0107]
The above test results are shown in Tables 1 and 2 together with the type of galvanized steel sheet, the composition of the treatment liquid and the treatment conditions.
[0108]
[Table 1]
[0109]
[Table 2]
[0110]
As can be seen from Tables 1 and 2, in the No. 1 comparative example in which the zinc phosphate coated steel sheet was not formed and the zinc phosphate lubricant film was not formed, the weldability and adhesion were good, but the press formability Is very inferior.
[0111]
On the other hand, in the present invention example in which the zinc phosphate inorganic lubricating film is formed according to the present invention, the press formability is remarkably improved while maintaining the adhesiveness and weldability. Even if the plating type, phosphoric acid type, additives, and coating method are changed, sufficient performance can be obtained in any case.
[0112]
However, when the composition of the outermost layer of the film, the film adhesion amount, or the manufacturing conditions are out of the scope of the present invention, the performance of any of press formability, weldability, and adhesiveness is inferior.
For example, unless an oxidant as a condensation accelerator is added, the Zn / P ratio of the outermost layer is high, and the expected improvement in adhesive strength cannot be obtained (No. 2 to 4). An improvement in adhesion strength when an oxidizing agent is added is obtained when the molar ratio of oxidizing agent to P in the liquid is within the scope of the present invention. The pH of the treatment solution also has an effect, and when the pH is 0.7 or more and 5 or less, particularly in the range of 1.5 to 3.5, the coating composition becomes appropriate and the adhesiveness is improved. The amount of film deposited is 5 mg / m in P equivalent.2If it is above, sufficient workability can be secured. To ensure suitable workability, it depends on the type of plating on the base, but it is 20 mg / m for zinc alloy-plated steel sheets.250 mg / m for soft pure galvanized steel sheet2The above adhesion amount is preferable. Adhering amount is 500 mg / m2If it exceeds 1, spot weldability cannot be ensured, and even if the film composition of the outermost layer is appropriate, the adhesiveness is slightly lowered. 300 mg / m in terms of spot weldability2The following adhesion amounts are preferred.
[0113]
When the baking temperature is low, a film is formed but it is not sufficient, and the adhesive strength cannot be secured. When the baking temperature is high, the surface is in a peroxidized state, a fragile layer of zinc oxide is formed on the surface of the film, the O / P atomic ratio is too high, and the adhesiveness is poor. When the P adhesion amount is too large, a fragile layer is easily formed, and both adhesiveness and weldability deteriorate. It can be seen that when the amount of P deposited is small and the phosphoric acid applied in the water washing step is washed away, sufficient processability cannot be secured.
[0114]
The presence or absence of the crystalline material has little influence on the adhesiveness by securing the outermost layer Zn / P atomic ratio and the O / P atomic ratio, but when the crystalline material is present, there is a tendency for the workability to decrease. As pretreatment, when immersion in acid and / or alkali is performed, the amount of P adhesion increases and the processability can be easily improved. .
[0115]
(Example 2)
In this example, an example in which an inorganic lubricating film is formed on the surface of a zinc-based plated steel sheet using a metaphosphoric acid aqueous solution (containing no oxidizing agent) according to the method of the present invention will be described.
[0116]
The treatment method and the test conditions are the same as in Example 1 except that the treatment liquid contains metaphosphoric acid as phosphoric acid and no oxidizing agent. The test results are shown in Table 3 together with the type of galvanized steel sheet, the composition of the treatment liquid and the treatment conditions.
[0117]
[Table 3]
[0118]
As shown in Table 3, when an inorganic lubricating film is formed using a metaphosphoric acid aqueous solution whose pH is appropriately adjusted, the Zn / P atomic ratio and O of the outermost layer according to the present invention can be added without adding an oxidizing agent. It can be seen that a good performance can be obtained if the / P atomic ratio can be easily secured, and an appropriate amount of deposited P can be secured.
[0119]
In the comparative example which deviates from the conditions of the present invention, any one of the press formability, weldability and adhesiveness is inferior. When the pH of the treatment liquid is high, the formation of the phosphate film is insufficient, the film composition is out of range, the film is brittle, and in particular, adhesion cannot be ensured at all. If the pH is too low, etching is too strong, zinc oxide remains on the surface, and the O / P atomic ratio on the outermost layer is too high, resulting in poor workability and adhesion. When the baking temperature is low, a film is formed, but it is not sufficient, and the adhesive strength cannot be ensured. When the baking temperature is high, the surface is in a peroxidized state, and a fragile layer of zinc oxide is formed on the surface of the film, resulting in poor adhesion.
[0120]
FIG. 3 shows the comprehensive test results of adhesion obtained in Example 1 and Example 2 as the relationship between the Zn / P atomic ratio and the O / P atomic ratio of the outermost layer of the coating. Table 4 shows the criteria for the test results (symbols) displayed in FIG. As can be seen, in FIG. 3, the best results (◎) in all adhesion tests are marked with ●, all tests with a pass (◯) or better are marked with ○, and all tests have one. However, what was rejected (x) was represented as x.
[0121]
[Table 4]
[0122]
As shown in FIG. 3, the zinc phosphate-based coating having the composition ratio of the outermost coating layer according to the present invention is good not only for the vehicle structural adhesive but also for the mastic adhesive which is an adhesive having low adhesive strength. It is clear that can be secured. Adhesiveness is excellent particularly in the range of Zn / P = 0.7 to 1.8. When the outermost layer of zinc oxide is suppressed and the outermost layer is made of a zinc metaphosphate-based film, the adhesiveness is remarkably improved. I understand.
[0123]
【The invention's effect】
When an inorganic lubricating film is formed on a galvanized steel sheet according to the present invention, the workability can be greatly improved so as to withstand severe press forming without impairing the weldability and adhesiveness of the galvanized steel sheet. This makes it possible to achieve both adhesiveness and workability, which was difficult with conventional inorganic lubricating coatings. Various adhesives used for automobile bodies (not only body adhesives, but also low-strength mastic types) A wide range of adhesive compatibility that enables bonding with adhesives (including adhesives) is provided, and there is no lubricating film such as adhesive strength under pre-cure conditions (pre-cure conditions) and adhesive strength under various conditions. An inorganic lubricant-treated galvanized steel sheet that can use an adhesive in the same manner as described above is provided.
[0124]
Therefore, since the inorganic lubricated zinc-based plated steel sheet of the present invention can be assembled using either spot welding or adhesive after being processed into a predetermined shape by press molding, it is optimal as a steel sheet for automobile bodies. Has performance.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a shear tensile test method used for evaluating adhesiveness with a mastic type adhesive.
FIG. 2 is an explanatory view showing a T-peeling tensile test method used for adhesive evaluation with an adhesive for vehicle body structure.
FIG. 3 is a diagram showing the relationship between the surface layer element abundance ratio measured by XPS of various lubricating treatment films and the adhesive strength of an adhesive for body structure and a mastic type adhesive.
Claims (5)
(1) [Zn/P] + 1.0 ≦ [O/P] ≦3×[Zn/P] + 1.5
(2) 0.5 ≦ [Zn/P] ≦ 2.8On the surface of a galvanized steel sheet or a zinc alloy plated steel sheet, the zinc equivalent eluted from the plating is used as the zinc supply source, and the P conversion deposit is 5 to 500 mg / m 2 Zn / P atomic ratio [Zn / P] and O / P atoms in which the elemental composition of the outermost layer of the zinc phosphate coating satisfies the following formulas (1) and (2) : and wherein the benzalkonium give the ratio [O / P], processability, adhesion, good galvanized steel sheet weldability.
(1) [Zn / P] + 1.0 ≦ [O / P] ≦ 3 × [Zn / P] +1.5
(2) 0.5 ≤ [Zn / P] ≤ 2.8
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001168819A JP3903743B2 (en) | 2000-06-02 | 2001-06-04 | Galvanized steel sheet with excellent adhesiveness, workability, and weldability and its manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-166257 | 2000-06-02 | ||
JP2000166257 | 2000-06-02 | ||
JP2001168819A JP3903743B2 (en) | 2000-06-02 | 2001-06-04 | Galvanized steel sheet with excellent adhesiveness, workability, and weldability and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002053974A JP2002053974A (en) | 2002-02-19 |
JP3903743B2 true JP3903743B2 (en) | 2007-04-11 |
Family
ID=26593235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001168819A Expired - Fee Related JP3903743B2 (en) | 2000-06-02 | 2001-06-04 | Galvanized steel sheet with excellent adhesiveness, workability, and weldability and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3903743B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101068708B1 (en) | 2006-02-20 | 2011-09-28 | 수미도모 메탈 인더스트리즈, 리미티드 | Method for manufacturing hot-dip galvanized steel sheet having zinc phosphate coating |
JP5651280B2 (en) * | 2007-02-23 | 2015-01-07 | Jfeスチール株式会社 | Surface-treated galvanized steel sheet with excellent corrosion resistance and surface appearance after continuous high-speed press forming and method for producing the same |
JP2010116599A (en) * | 2008-11-13 | 2010-05-27 | Sumitomo Metal Ind Ltd | Surface-treated galvanized steel sheet and method for manufacturing the same |
CN110092364B (en) * | 2019-05-13 | 2021-08-20 | 承德莹科精细化工股份有限公司 | Preparation method of high-purity optical glass additive zinc metaphosphate |
CN114150252B (en) * | 2021-11-30 | 2023-08-29 | 马鞍山钢铁股份有限公司 | Plated hot-formed steel plate, hot-stamped part with excellent adhesive property, manufacturing method and application |
-
2001
- 2001-06-04 JP JP2001168819A patent/JP3903743B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002053974A (en) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU778285B2 (en) | Method for applying a phosphate covering and use of metal parts thus phospated | |
KR100605354B1 (en) | Zinc-Based Metal Plated Steel Sheet and Method for Production thereof | |
GB2224516A (en) | Phosphate conversion treatment liquid | |
WO2001021853A1 (en) | Surface treated steel sheet and method for production thereof | |
JP3903743B2 (en) | Galvanized steel sheet with excellent adhesiveness, workability, and weldability and its manufacturing method | |
JP2000144444A (en) | Production of surface treated steel sheet excellent in corrosion resistance | |
EP3601632B1 (en) | Aqueous acidic composition for treating metal surfaces, treating method using this composition and use of treated metal surface | |
JP4158879B2 (en) | Zinc-coated galvanized steel sheet for press work excellent in adhesiveness, workability, chemical conversion treatment and weldability, and method for producing the same | |
JP3587197B2 (en) | Galvanized steel sheet and manufacturing method thereof | |
JP3265973B2 (en) | Galvanized steel sheet excellent in press formability and method for producing the same | |
JPH08296058A (en) | Production of galvanized steel sheet excellent in pressability, chemical convertibility and adhesive compatibility | |
JP2008163364A (en) | Chemical conversion-treated steel sheet having excellent coating film adhesive strength and film adhesion after forming | |
JP2003089881A (en) | Galvanized steel sheet having inorganic lubricating film, and production method therefor | |
JP2968147B2 (en) | Acid displacement plating solution composition for zinc-containing metal plated steel sheet | |
JP3153098B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability | |
JP3132979B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties and adhesive compatibility | |
JP3449283B2 (en) | Galvanized steel sheet excellent in press formability and its manufacturing method | |
JP2004143549A (en) | Chemical treatment liquid for zinc plated steel plate | |
JP3425268B2 (en) | Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance | |
JP2713002B2 (en) | Manufacturing method of galvanized steel sheet | |
JP2004052021A (en) | Galvanized steel sheet and method of producing the same | |
JP3425270B2 (en) | Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance | |
JP4911095B2 (en) | Alloyed hot-dip galvanized steel sheet, method for producing the same, and zinc phosphate treatment liquid | |
JP3153097B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability | |
JPH05302179A (en) | Acidic substituted plating solution for zinc or zinc alloy coated steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3903743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140119 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |