JP3885100B2 - Multi-component composite film and method for producing the same - Google Patents

Multi-component composite film and method for producing the same Download PDF

Info

Publication number
JP3885100B2
JP3885100B2 JP2002520328A JP2002520328A JP3885100B2 JP 3885100 B2 JP3885100 B2 JP 3885100B2 JP 2002520328 A JP2002520328 A JP 2002520328A JP 2002520328 A JP2002520328 A JP 2002520328A JP 3885100 B2 JP3885100 B2 JP 3885100B2
Authority
JP
Japan
Prior art keywords
film
support layer
separation membrane
polymer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002520328A
Other languages
Japanese (ja)
Other versions
JP2004506542A (en
Inventor
ソン−ジン・イ
ヒャン−モク・イ
スン−ホ・アン
ジン−ヨン・チョ
ヒュン−ハン・ヨン
ヒュン−コン・イ
サン−ヨン・イ
ホン−シク・ソン
スン−ヨン・パク
ユ−ジン・キュン
ビョン−イン・アン
Original Assignee
エルジー・ケミカル・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2000-0046735A external-priority patent/KR100373204B1/en
Priority claimed from KR10-2001-0011191A external-priority patent/KR100406689B1/en
Application filed by エルジー・ケミカル・カンパニー・リミテッド filed Critical エルジー・ケミカル・カンパニー・リミテッド
Publication of JP2004506542A publication Critical patent/JP2004506542A/en
Application granted granted Critical
Publication of JP3885100B2 publication Critical patent/JP3885100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は多成分系複合フィルム及びその製造方法に関し、特に、電気化学素子用高分子電解質として利用できる多成分系複合フィルム及びその製造方法と、それを適用した高分子電解質システムに関する。
【0002】
【従来の技術】
最近、エネルギー保存技術に対する関心が高まっている。例えば、携帯電話、カムコーダ、ノートブックコンピュータ、及び電気自動車等におけるエネルギー保存技術は重要であるので、エネルギー保存手段の一種である電池に対する研究、開発が活発に行われており、その中でも充放電が可能な二次電池は関心の焦点となっている。最近では、電池を開発するにあたってその性能を向上させ、電池製作工程の収率と経済性を高めるために新たな電極と高分子電解質を開発するための研究が絶えず進められている。特に、新たな高分子電解質に対する開発は安全性が向上した新たな高性能電池の創出という観点から大きな関心となっている。
【0003】
電解質は大きく液体電解質と固体電解質の2種類に分類できる。液体電解質とは塩が有機溶媒に溶解、解離されて正極と負極との間でイオン伝導できるものであって、イオンの伝導度が高いという長所を持っている。しかし、液体電解質は、実際電池に高分子分離膜と共に用いられるが、例えば、ポリオレフィン類のような高分子フィルム内部に微細多孔構造を作ってその気孔内部に液体電解質を満たしてイオン伝導性を有するようにする。高分子分離膜が有する気孔率とその構造によって差異はあるが、この場合イオンの伝導度は約1mS/cm程度となる。しかし、気孔内部に存在する液体電解質の高い流動性によって非正常状態である時、高分子分離膜外に液体電解質が容易に滲みでたり洩れたりする問題を招くことがある。しかも、電極との界面形成においてそれらの間が接着されていないため常に単純接触で電池を構成しなければならない短所がある。長所は高分子分離膜自体が高い結晶化度を有しているので、優れた機械的強度を有していて、液体電解質による影響が殆どないために決して過度に膨潤されたり分解されたりしないということである。
【0004】
その反面、固体電解質の場合、常温でのイオンの伝導度が電池の性能実現に十分でないという短所がある。これを解決するために、塩が有機溶媒に溶解された状態の液体電解質が固体高分子電解質に含浸された状態のゲル化性高分子電解質が利用されているが、その例としてベルコア(Bellcore)社で開発したハイブリッド型(米国特許第5,418,091号)がある。しかし、ゲル型高分子電解質の場合、機械的強度が低い短所があって電池組立上の問題点を有し、電極間の絶縁を維持し工程上要求される機械的強度のためにゲル型高分子電解質の厚さは一般に50μmを超えるものでなければならないが、このような高分子電解質の厚さはゲル型高分子の過度な膨潤による厚さ増加など非正常的な問題を誘発し、体積の増加によるエネルギー密度の減少などの問題を招く。以上に言及した問題点の他にまた、環境的に問題となる低分子量の可塑剤の使用と抽出工程の負担が量産における大きな障害となっている。
【0005】
高分子電解質が備えなければならない条件としては、作動電圧範囲内で電気化学的安定性と熱的、化学的安定性がある。常温でのイオンの伝導度は電池作動上1mS/cmを超えるものでなければならず、非水系電解液の場合より含浸性及び耐化学性が優れていなければならない。また、電池組立時に電極との界面抵抗を減少させるために接着性がなければならず、組立工程時に要求される充分な機械的強度も要求される。しかし、一般的な場合、イオンの伝導度を向上させると機械的物性が悪くなり、機械的物性を良くするとイオン電導度が減少する問題点がある。
【0006】
上記のイオンの伝導度と機械的物性が相反する問題を解決するために多孔質高分子層とゲル化性高分子の多層構造フィルムを利用して電池の分離膜として使用することが提案されたことがある(米国特許第5,639,573号、第5,716,421号、第5,631,103号、第5,849,433号、ヨーロッパ公開特許公報第0933824A2号)。ここで、多孔質高分子は液体電解液を気孔内部に限定的に吸収していて殆ど膨潤していない物質であって、たとえばポリエチレン(polyethylene)、ポリプロピレン(polypropylene)、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリエチレンテレフタレート(polyethylene terephthalate)、ポリブチレンテレフタレート(polybutyleneterephthalate)、ポリエチレンナフタレート(polyethylenenaphthalate)などとそれらのフィルムの組み合わせによって製造される多層あるいはブレンドフィルムである。ゲル化性高分子は液体電解質と接触する場合、自らゲル化して膨潤する高分子を意味し、たとえば、ポリフッ化ビニリデン(polyvinylidenefluoride)、ポリウレタン(polyurethane)、ポリエチレンオキシド(polyethyleneoxide)、ポリアクリロニトリル(polyacrylonitrile)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリルアミド(polycrylamide)、ポリビニルアセテート(polyvinylacetate)、ポリビニルピロリジノン(polyvinylpyrrolidinone)、ポリテトラエチレングリコールジアクリレート(polytetracthylene glycol diacrylate)及びこのような高分子の共重合体などが使用できる。
【0007】
【発明が解決しようとする課題】
このような構造は機械的物性を向上させることはできるが、ゲル化性高分子の抗イオン伝導性によって多孔質高分子層とこれに含浸された液体電解質だけのイオンの伝導度に比べて低いイオン伝導性を有することになる。従って、イオンの伝導度の向上のためにジブチルフタレート(dibutyl phthalate)のような低分子量の可塑剤の利用が要求される(米国特許第5,631,103号、米国特許第5,849,433号)。しかし、可塑剤の利用は上述したように多様な問題点を招く。また、このような方法によって製造された多層構造フィルムの場合、多孔質高分子層の外面に存在するゲル化高分子層が気孔のない緻密な構造になっていてイオン電導抵抗が大きく、二つの層間の界面接着力が弱くなる短所がある。
【0008】
本発明は前記従来技術の問題点を考慮して、電気化学的安定性、電極との接着性、電解液含浸性及び安定性などが満足されながら可塑剤を抽出したり除去したりする工程なく製造され、イオンの伝導度と機械的物性を同時に満足させる多成分系複合フィルム、その製造方法、及びこの多成分系複合フィルムを利用する高分子電解質システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は前記目的を達成するために、多成分系複合フィルムにおいて、
a)高分子支持層(support layer)フィルム;及び
b)前記フィルムの一面または両面に形成される多孔質ゲル化性高分子層(gellable polymer layer)
を含み、前記a)成分である支持層フィルムとb)成分である多孔質ゲル化性高分子層は界面なく一体化している多成分系複合フィルムを提供する。
【0010】
また、本発明は前記多成分系複合フィルムの製造方法において、
a)高分子支持層フィルムを製造する段階;
b)ゲル化性高分子を溶媒に溶解してゲル化性高分子溶液を製造する段階;
c)前記b)段階のゲル化性高分子溶液を前記a)段階の支持層フィルムの一面または両面に塗布してゲル化性高分子層を形成し多層フィルムを製造する段階;及び
d)前記c)段階の多層フィルムを延伸した後、熱固定する段階
を含む支持層フィルムとゲル化性高分子層が界面なく一体化している多成分系複合フィルムの製造方法を提供する。
【0011】
また、本発明は前記多成分系複合フィルムを分離膜として利用する高分子電解質システム、及びこれを含む電気化学素子を提供する。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0013】
本発明は従来の一定の大きさの気孔を有する微細気孔膜上にゲル化性高分子液を塗布して製造する気孔膜とゲル化性高分子物質が界面を有する高分子電解質用多層フィルムとは異なって、気孔を全く有しない一般的な高分子フィルム上にゲル化性高分子物質を塗布して高分子フィルム上にゲル化性高分子層を形成した後、高温延伸して気孔を形成させることによって高分子フィルムとゲル化性高分子層の間に界面が形成されずに一体化した多成分系複合フィルムを製造する。
【0014】
このように高分子フィルム(高分子支持層)とゲル化性高分子物質(多孔質ゲル化性高分子層)の間に界面が形成されずに一体化することは延伸工程の高温で相互拡散(inter-diffusion)によるものであり、支持層とゲル化性高分子層の高分子間に相互結合が増大して各々を離しがたい程度に一体化する。具体的には、本発明の多成分系複合フィルムをJIS Z 0237の方法で界面接着力を測定すれば、少なくとも100gf以上の界面接着力を有し、好ましくは少なくとも150gf以上を有する。
【0015】
また、前記多成分系複合フィルムを適用した電気化学素子用高分子電解質システムはこのような多成分系複合フィルムに塩、及び有機溶媒を含有する液体電解質を含浸することで実現される。特に、このような高分子電解質システムは電池のような電気化学素子において支持層一面または両面に塗布されるゲル化性高分子物質単独、またはゲル化性高分子と塩とが配位結合して形成される高分子−塩の錯体を電解質として利用できるようになる。
【0016】
以下、前記多成分系複合フィルムの構成について説明する。
【0017】
前記a)の支持層フィルムは高密度ポリエチレン(high density polyethylene)、低密度ポリエチレン(low density polyethylene)、線状低密度ポリエチレン(linear low density polyethylene)、ポリプロピレン(polypropylene)、高結晶性ポリプロピレン(high crystalline polypropylene)、ポリエチレン−プロピレン共重合体(polyethylene-propylene copolymer)、ポリエチレン−ブチレン共重合体(polyethylene-butylene copolymer)、ポリエチレン−ヘキセン共重合体(polyethylene-hexene copolymer)、ポリエチレン−オクテン共重合体(polyethylene-octene copolymer)、ポリスチレン−ブチレン−スチレン共重合体(polystyrene-butylene-styrene copolymer)、ポリスチレン−エチレン−ブチレン−スチレン共重合体(polystyrene-ethylene-butylene-styrene copolymer)、ポリスチレン(polystyrene)、ポリフェニレンオキシド(polyphenylene oxide)、ポリスルホン(polysulfone)、ポリカーボネート(polycarbonate)、ポリエステル(polyester)、ポリアミド(polyamide)、ポリウレタン(polyurethane)、ポリアクリレート(polyacrylate)、ポリ塩化ビニリデン(polyvinylidene chloride)、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリシロキサン(polysiloxane)、ポリオレフィンアイオノマー(polyolefin ionomer)、ポリメチルペンテン(polymethyl pentene)、水素添加オリゴシクロペンタジエン(hydrogenated oligocyclopentadiene, HOCP)、及びこれらの共重合体または誘導体からなる群より1種以上選択される高分子がブレンド、または積層(lamination)形態で製造されるのが好ましい。
【0018】
特に、前記高結晶性ポリプロピレンは密度0.905g/cc以上、溶融温度164℃以上、結晶化温度125℃以上、結晶化度50%以上、アイソタクチシティ(またはペンタド比率)96%以上、及びアタクチック比率5%未満の条件の中で1種以上の条件を満足するのが好ましい。
【0019】
前記b)のゲル化性高分子層はその材質が多成分系複合フィルムの用途によって選択されるが、一般的にポリフッ化ビニリデン、ポリフッ化ビニリデン−三フッ化塩化エチレン共重合体(polyvinylidene fluoride-chlorotrifluoroethylene copolymer)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(polyvinyliden fluoride-hexafluoropropylene copolymer)、ポリエチレンオキシド(polyethylene oxide)、ポリプロピレンオキシド(polypropylene oxide)、ポリブチレンオキシド(polybutylene oxide)、ポリウレタン(polyurethane)、ポリアクリロニトリル(polyacrylonitrile)、ポリアクリレート(polyacrylate)、ポリメチルメタクリレート(polymethyl methacrylate)、ポリアクリル酸(polyacrylic acid)、ポリアミド(polyamide)、ポリアクリルアミド(polyacrylamide)、ポリビニルアセテート(polyvinyl acetate)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリテトラエチレングリコールジアクリレート(polytetraethylene glycol diacrylate)、ポリスルホン(polysulfone)、ポリフェニレンオキシド(polyphenylene oxide)、ポリカーボネート(polycarbonate)、ポリエステル(polyester)、ポリ塩化ビニリデン(polyvinylidene chloride)、ポリシロキサン(polysiloxane)、ポリオレフィンアイオノマー(polyolefin ionomer)、及びこれらの共重合体または誘導体からなる群より1種以上選択される。
【0020】
前記ゲル化性高分子層は陰イオンの固定によるイオン転移数(ion transference number)を向上させるために高分子−リチウム塩の錯体を含有するのが好ましい。従って、電子を与えることができる元素とリチウムイオンの配位結合を形成するのに関与する溶解エネルギーがリチウムの格子(lattice)エネルギーより大きい物質としてLiSCN、LiClO4、LiCF3SO3、LiAsF6、LiN(CF3SO22、及びLiBF4からなる群より1種以上選択されるリチウム塩をさらに含むことができる。
【0021】
また、前記ゲル化性高分子層はイオン転移数をさらに向上させるためにシリカ(SiO2)、酸化チタン(TiO2)、アルミナ(Al2O3)、酸化マグネシウム(MgO)、及び酸化バリウム(B2O3)からなる群より1種以上選択される多孔質無機粒子をさらに含むことができる。
【0022】
以下、前記多成分系複合フィルムの製造方法について説明する。
【0023】
本発明の多成分系複合フィルムは上述した様々な材質の支持層フィルムの一面または両面に前記で説明したゲル化性高分子を溶媒に溶解した溶液でゲル化性高分子層を形成させ、これを延伸してフィルムに気孔を形成させることによって高分子フィルムとゲル化性高分子物質の間に界面が形成されず一体化して製造する。この時、支持層フィルムの他にゲル化性高分子層にも気孔が形成される。
【0024】
前記a)段階の支持層フィルムは上述した高分子をT−ダイ(T-die)または管状ダイ(tubular die)が設けられた押出機(extruder)で押出した後、結晶化度及び弾性復元率を高めるために乾燥オーブンで常温乃至最大高分子の最高融点の温度下でアニーリング(annealing)して製造することが好ましい。
【0025】
また、このような支持層フィルムは、ゲル化性高分子層との界面接着力をさらに向上させるために反応性ガス導入下でイオンビームを照射することも可能である。このようなイオンビーム照射は一種の表面改質方法であって、フィルムのアニーリング前あるいは後の全てに適用でき、最終多成分系複合フィルムの物性によってその実施の可否を判断する。
【0026】
前記反応性ガス導入下のイオンビーム照射工程を具体的に説明すると、10-1乃至10-6torr程度の高真空に維持された真空槽内に支持層フィルム11を投入した後、イオン銃に電子、水素、ヘリウム、酸素、窒素、二酸化炭素、空気、フッ化物、ネオン、アルゴン、クリプトン、及びN2Oからなる群より1種以上選択されるイオン生成ガスを注入して0.01乃至106keV程度のエネルギーを有する粒子を生成させた後、イオンビーム電流を変化させながらエネルギーを有する粒子を支持層フィルムの一側面または両側面に照射する。このようなイオンビームを照射する時、イオン粒子の照射量は105乃至1020ions/cm2が好ましい。また、イオンビーム照射と同時にフィルム周囲にヘリウム、水素、酸素、窒素、アンモニア、一酸化炭素、二酸化炭素、クロロフルオロ、メタン、及びN2Oからなる群より1種以上選択される反応性ガスを反応性ガス注入器によって0.5乃至20ml/分の注入量で注入して表面を改質する。
【0027】
本発明の多成分系複合フィルムは前記支持層フィルムの一面または両面にゲル化性高分子の溶液を使ってゲル化性高分子層を形成させる。このゲル化性高分子溶液は上述したゲル化性高分子を溶媒に溶解することによって製造される。
【0028】
前記溶媒は1−メチル−2−ピロリドン(NMP)、アセトン、エタノール、n−プロパノール、n−ブタノール、n−ヘキサン、シクロヘキサノール、酢酸、酢酸エチル、ジエチルエーテル、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジオキサン、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、シクロヘキサン、ベンゼン、トルエン、キシレン、及び水からなる群より1種以上選択される単独溶媒または混合溶媒である。このようなゲル化性高分子溶液の濃度及び塗布条件は使用物質によって多様に変化できるが、特に濃度は0.01乃至90重量%が好ましい。また、このようなゲル化性高分子溶液は製造する時に上述したリチウム塩、無機多孔質粒子、またはこれらの混合物をゲル化性高分子と共に投入してもよい。
【0029】
ゲル化性高分子層の形成は二つの方法で実施できる。一つの方法は、前記ゲル化性高分子溶液を支持層フィルムに塗布した後、適切な条件で乾燥して層状に作る方法である。また、他の一つの方法はゲル化性高分子溶液を離型紙または離型フィルム上に塗布した後、第1の方法と類似した条件で乾燥してフィルム形態に製造しこれを離型フィルムから剥離して支持層フィルム上に位置させた後、ラミネータ等で熱接着する方法である。この時の熱接着は支持層フィルム材質とゲル化性高分子の熱融着温度を考慮して選択すれば容易に接着できる。つまり、常温乃至支持層またはゲル化性高分子層の高分子融点の温度で行う。
【0030】
前記工程の具体的な製造過程は下記の通りである。
【0031】
前記ゲル化性高分子溶液を支持層フィルムに塗布した後、適切な条件で乾燥して薄膜形態に作った後、延伸する第1の方法は、
a)支持層として用いられる高分子を押出機に投入してフィルム前駆体を製造する段階;
b)前記製造されたフィルム前駆体を高分子の融点以下の温度でアニーリングする段階;
c)必要な時、前記アニーリングしたフィルム前駆体の一面または両面に反応性ガスの助けによるイオンビームを照射する段階;
d)前記イオンビームを照射されたフィルム前駆体の一面または両面にゲル化性高分子溶液を塗布する段階;
e)前記フィルム前駆体の一面または両面に塗布された高分子溶液を乾燥する段階;
f)前記高分子溶液が乾燥されたフィルム前駆体を常温以下の温度で低温延伸する段階;
g)前記低温延伸されたフィルム前駆体を高分子の融点以下の温度で高温延伸する段階;及び
h)前記高温延伸されたフィルム前駆体を高分子の融点以下の温度で張力が与えられた状態で熱固定する段階
を含む。
【0032】
ゲル化性高分子溶液を離型紙または離型フィルム上に塗布してこれを支持層フィルムに熱接着した後、延伸する他の方法は
a)支持層として用いられる高分子を押出機に投入してフィルム前駆体を製造する段階;
b)前記製造されたフィルム前駆体を高分子の融点以下の温度でアニーリングする段階;c)必要な時、前記アニーリングしたフィルム前駆体の一面または両面に反応性ガスの助けによるイオンビームを照射する段階;
d)ゲル化性高分子溶液を離型紙又は離型フィルム上に塗布する段階;
e)前記離型フィルム上に塗布された高分子溶液を乾燥する段階;
f)前記乾燥されたゲル化性高分子層フィルムを離型フィルムから剥離した後、前記フィルム前駆体の一面または両面に熱接着する段階;
g)前記ゲル化性高分子フィルムが熱接着されたフィルム前駆体を常温以下の温度で低温延伸する段階;
h)前記低温延伸されたフィルム前駆体を高分子の融点以下の温度で高温延伸する段階;及び
i)前記高温延伸されたフィルム前駆体を高分子の融点以下の温度で張力が与えられた状態で熱固定する段階
を含む。
【0033】
前記ゲル化性高分子溶液を支持層フィルムに直接塗布したり離型紙または離型フィルムに塗布する方法はディップコーティング(Dip coating)、噴射コーティング(Spray coating)、スピンコーティング(Spin coating)、ダイコーティング(Die coating)、ロールコーティング(Roll coating)などの方式で実施することができ、特にいずれかに制限されるものではない。塗布の厚さは最終多成分系複合フィルムの用途によって異なるが、支持層フィルムの厚さが1乃至50μmであれば、乾燥後、ゲル化性高分子層の厚さが0.01乃至25μmになるようにするのが好ましい。
【0034】
このような塗布はフィルムのアニーリング前もしくは後、または前及び後で実施でき、多成分系複合フィルムの物性によって塗布過程の前に反応性ガスの助けによるイオンビーム照射過程を行うことができる。
【0035】
塗布されたゲル化性高分子溶液の乾燥は、ゲル化性高分子溶液の溶媒飽和蒸気圧以下で窒素、酸素、二酸化炭素、及び空気からなる群より1種以上選択されるガスで囲まれた雰囲気下で実施するのが好ましく、湿度は相対湿度で1乃至100%の条件下で実施されることが好ましい。
【0036】
本発明の多成分系複合フィルムは支持層フィルムの一面または両面にゲル化性高分子層が形成された後、支持層フィルムと支持層フィルムの一面または両面に塗布されたゲル化性高分子層に気孔が形成される。
【0037】
一般的に、高分子フィルムに気孔を形成させる方法は相転移法と乾式法がある。相転移法は高分子溶液を作った後、温度または非溶媒などを適切に使用して高分子と溶媒との相転移を起こして気孔を形成する方法で、相転移条件によって製造されたフィルムの特性が決められる。また、乾式法は高分子結晶部分を一定の方向に配向させた後、冷延伸によって相対的に弱い無定形部分を破裂させ気孔を形成する方法であって、結晶部分の均一な配向及び程度によって製造されたフィルムの特性が決められる。
【0038】
本発明では適切な気孔形成のために支持層フィルムの一面または両面にゲル化性高分子層が形成された後に延伸する。この時、支持層及びゲル化性高分子層各々の気孔の大きさ及び分布は互いに異なる。これを説明すると、支持層は、フィルム前駆体はその製造工程で結晶構造が一定の方向に配向された後、前記延伸によって気孔が形成されるのである。一方、ゲル化性高分子層には相転移法および乾式法によって気孔が形成されるのであるが、その際は、ゲル化性高分子層にはゲル化性高分子と溶媒間での相転移により微細気孔ないし微細亀裂が生じるのであって、その気孔の径ないし亀裂の大きさは延伸処理によって大きくなるのである。特に、ゲル化性高分子層は相転移条件によって緻密な構造、微細亀裂または微細気孔などの多様な形態を延伸前に形成することができ、また、その形成程度が調節できる。
【0039】
従って、支持層の気孔とゲル化性高分子層の気孔は、製造工程上の差異によって気孔の大きさ及び分布が異なるものとなる。
【0040】
前記延伸は低温延伸工程と高温延伸工程を含む。
【0041】
前記低温延伸は、支持層フィルムの一面または両面にゲル化性高分子層が形成された多層フィルムをロールまたはその他の延伸機を利用して0乃至50℃の温度条件下で1軸延伸して支持層に微細亀裂を生成させてゲル化性高分子層12に既に形成された気孔の大きさを拡大する。
【0042】
前記高温延伸は、前記低温延伸によって形成された微細亀裂をロールまたはその他の延伸機を利用して50℃乃至最大支持層またはゲル化性高分子層の高分子の融点の温度条件下で1軸または2軸延伸し、所望の大きさを有する微細気孔を形成し、また、このような高温延伸を通じて膜に機械的物性を付与する。
【0043】
前記のように低温及び高温延伸された多層フィルムは延伸後、熱固定を行う。このような熱固定は50℃乃至最大支持層またはゲル化性高分子層の高分子の融点の温度条件下で張力を受けた状態そのまま10秒乃至1時間の一定の時間実施されるが、この過程を通じて最終的に支持層フィルムとゲル化性高分子層を含む多成分系複合フィルムが製造される。
【0044】
本発明の多成分系複合フィルムは、前記高温延伸及び熱固定段階を通じて、支持層フィルムとゲル化性高分子層の間の高分子鎖の相互拡散(inter-diffusion)が増大して支持層フィルムとゲル化性高分子層の間の界面接着力が増加し、これによって支持層とゲル化性高分子層の界面が不明確になって一体化する。特に、既述したが、支持層フィルムを反応性ガス導入下でイオンビーム照射をすると、このような界面の接着力はさらに増加する。
【0045】
前記高温延伸と熱固定段階を経た後の多成分系複合フィルムは、支持層フィルムにおいて気孔の大きさが0.001乃至10μmで、厚さが1乃至50μmであり、支持層フィルムの一面または両面に位置する多孔質ゲル化性高分子層は、気孔の大きさが最大10μm、厚さが0.01乃至25μmであり、これを高分子電解質システム、または電気化学素子などに使用することが好適である。
【0046】
図1は、このような本発明の多成分系複合フィルムの構造の一例であって、支持層フィルム11の両面にゲル化性高分子層12が位置した図面である。この時、上記の多成分系複合フィルム製造工程のうち支持層フィルム11表面にゲル化性高分子層12を塗布した後に実施される延伸及び熱固定過程によって支持層フィルム11とゲル化性高分子層12間の界面13が不明確となったことを示す。また、このような界面なく一体化した多成分系複合フィルムは優れたイオン伝導性、及び電気化学的安定性を有する。
【0047】
本発明の多成分系複合フィルムの製造方法は、各々の段階が所望の最終用途によって一部段階を省略したり追加工程を付加したりすることができ、各段階のうち一部はその順序も変更できる。
【0048】
本発明の多成分系複合フィルムは、様々な分離膜たとえば、微細ろ過膜(microfiltration membrane)、限外ろ過膜(ultrafiltration membrane)、気体分離膜(gas separation)、透過蒸発膜(pervaporation membrane)、逆浸透膜(reverse osmosis membrane)、電気化学素子用分離膜に用いることができる。特に、高分子電解質システムでは電気化学的安定性、電極との接着性、電解液含浸性及び安定性を付与することができる。
【0049】
本発明は
a)i)多孔質支持層フィルム;及び
ii)前記i)支持層フィルムの一面または両面に形成される多孔質ゲル化性高分子層を含み、前記i)の支持層フィルムとii)の多孔質ゲル化性高分子層は界面なく一体化している多成分系複合フィルムの分離膜;及び
b)i)下記の化学式2で示される塩;及び
ii)有機溶媒
を含む液体電解質
を含む高分子電解質システムを提供する。
【0050】
[化学式2]
+-
前記式において、
+はLi+、Na+、及びK+からなるアルカリ金属陽イオン群、及びこれらの誘導体から1種以上選択され、
-はPF6 -、BF4 -、Cl-、Br-、I-、AsF6 -、CH3CO2 -、CF3SO3 -、N(CH3SO22 -、及びC(CH3SO23 -からなる群より1種以上選択される。
【0051】
前記a)の多成分系複合フィルムは、高分子膜で、隔離膜、固体電解質などの役割を果たし、通気度は100乃至20,000秒/100ccである。
【0052】
前記b)の液体電解質は前記a)の多成分系複合フィルムと接触する時、支持層フィルム内部の気孔を満たしながらゲル化性高分子層を膨潤させ、ゲル化させる。液体電解質のイオン電導性向上のためにゲル化性高分子層の厚さを支持層フィルムの厚さより薄くする。これは高分子電解質の厚さに左右されるインピーダンス値を小さくするためである。
【0053】
前記b)の液体電解質はi)前記化学式2で示される塩がii)有機溶媒に溶解、解離している。
【0054】
前記b)ii)の有機溶媒は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)、ジメチルスルホキシド、アセトニトリル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、N−メチル−2−ピロリドン(NMP)、及びエチルメチルカーボネート(EMC)からなる群より1種以上選択されるのが好ましい。
【0055】
このような本発明の高分子電解質システムは、スーパーコンデンサー(super capacitor)、ウルトラコンデンサー(ultra capacitor)、2次電池、1次電池、燃料電池、各種センサー、電気分解装置、電気化学的反応器などの様々な電気化学素子に適用できる。
【0056】
以下の実施例、及び比較例を通じて本発明をさらに詳細に説明する。但し、実施例は本発明を例示するためのものであって、これらだけに限定されるわけではない。
【0057】
[実施例]
実施例1
支持層フィルムとして高結晶性ポリプロピレンを、ゲル化性高分子層としてフッ化ポリビニリデン−三フッ化塩化エチレン共重合体32008(ソルベイポリマー(Solvay Polymer)社製造)を使用して次のような過程で高分子電解質用多成分系複合フィルムを製造した。
【0058】
(フィルム前駆体の製造)
支持層として用いられるフィルム前駆体成分として溶融指数(melt index)2.0g/10分、密度0.91g/cc、DSCで測定された溶融温度166.5℃、結晶化温度116.5℃、結晶化度57%、C13NMRで測定されたアイソタクチシティ98%、キシレンで溶かした後、測定されたアタクチック比率約2%である高結晶性ポリプロピレンを用い、高結晶性ポリプロピレンをT−ダイが設けてある一軸押出機(single screw extruder)及び巻取り装置(take-up device)を利用して支持層フィルムを製造した。この時の押出温度は220℃、巻取り装置の冷却ロール温度は80℃、巻取り速度は20m/分であり、巻取り比は60であった。
前記で製造されたフィルム前駆体を乾燥オーブンで150℃の温度で1時間アニーリングした。
【0059】
(塗布)
アニーリング後、前記32008を、アセトンを溶媒として溶解した溶液をアニーリングが終わったフィルム前駆体上にディップコーティング方式で両面に塗布した。この時、塗布は大気中で60%程度の相対湿度を維持する条件で行い、同一な湿度条件でアセトンを蒸発させた。
【0060】
(延伸)
塗布が終わった後、フィルムを常温で当初の長さに対して50%の延伸倍率で1軸低温延伸し、再びフィルムを140℃の温度で100%の延伸倍率で高温1軸延伸した。
【0061】
(熱固定)
高温延伸後、140℃の温度で張力を受けた状態で10分間熱固定をした後、冷却して多成分系複合フィルムを製造し、製造された多成分系複合フィルムの物性を測定してその結果を下記の表1に示した。
この時、通気度はJISP 8117方法、界面接着力はJIS Z 0237方法によって測定し、気孔の大きさは、走査型電子顕微鏡(scanning electron microscopy)により、そして電解液の含浸速度は、体積比が4:6であるエチレンカーボネート:ジメチルカーボネート混合の電解液が面積2cm2のフィルム試料に完全に含浸される時間を測定した。
【0062】
実施例2
(フィルム前駆体の製造)
前記実施例1と同一なフィルム前駆体を製造した。
【0063】
(塗布)
ゲル化性高分子層としてフッ化ポリビニリデン−三フッ化塩化エチレン共重合体32008(ソルベイポリマー(Solvay Polymer)社製造)をアセトン溶媒に溶かした溶液を離型紙上にディップコーティング方式で両面に塗布させた。この時、塗布は大気中で60%程度の相対湿度を維持する条件で行い、同一な湿度条件でアセトンを蒸発させた。
【0064】
(熱融着)
前記で乾燥されたゲル化性高分子層2枚を離型紙から剥離し、この高分子層を前記フィルム前駆体の両面に位置させた後、140℃温度の加熱ラミネータを通過させてフィルム前駆体とゲル化性高分子層を熱融着した。
【0065】
(延伸)
前記ゲル化性高分子層がフィルム前駆体の両面に熱融着されたフィルムを常温で当初の長さに対して50%の延伸倍率で1軸延伸し、再びフィルムを140℃の温度で100%の延伸倍率で高温1軸延伸した。
【0066】
(熱固定)
高温延伸の後、140℃の温度で張力を受けた状態で10分間熱固定した後、冷却して多成分系複合フィルムを製造し、製造された多成分系複合フィルムの物性を測定した結果、実施例1の多成分系複合フィルムと同一な物性を示した。
【0067】
実施例3
(イオンビーム照射工程を経た高結晶性ポリプロピレン/フッ化ポリビニリデン−三フッ化塩化エチレン共重合体で構成された高分子電解質用多成分系複合フィルムの製造)
ゲル化性高分子層溶液を塗布する前にフィルム前駆体にイオンビームを照射したことを除いては前記実施例1と同様な方法で高分子電解質用多成分系複合フィルムを製造した。前記実施例1と同様な方法で製造されたフィルム前駆体を10-5乃至10-6torrに維持させた真空槽に投入した後、アルゴン陽イオン(Ar+)を、イオン銃を利用してフィルム前駆体の両面に照射しながら同時にフィルム周囲に反応性ガス(酸素)の注入量を4ml/分にして、反応性ガス注入器によって注入し表面処理を行った。この時、イオンビームのエネルギーは0.5keV、イオン照射量は1016ions/cm2であった。
イオンビーム照射工程が終わった後、前記実施例1と同様な方法で高分子電解質用多成分系複合フィルムを測定し、その結果製造した。製造された高分子電解質用多成分系複合フィルムの多様な物性を測定し、その結果を下記の表1に示した。
下記の表1を見てみると、実施例1と同様に実施例2の場合にも支持層及びゲル化性高分子層の双方に気孔が形成されており、高い透過度を示すことが観察でき、特に支持層とゲル化性高分子層の間の界面接着力が大きく改善されていて、電解液含浸速度も大きく改善されたことが分かる。
【0068】
実施例4
(高密度ポリエチレン/フッ化ポリビニリデン−三フッ化塩化エチレン共重合体で構成された高分子電解質用多成分系複合フィルムの製造)
支持層として高結晶性ポリプロピレンの代りに高密度ポリエチレンを使用したことを除いては前記実施例1と同様な方法で多成分系複合フィルムを製造した。用いられた高密度ポリエチレンは溶融指数0.3g/10分、密度0.964g/ccであった。フィルム前駆体は前記実施例1と同様な方法で製造した。この時、押出温度は200℃、巻取り装置の冷却ロール温度は80℃、巻取り速度は30m/分、巻取り比は80であった。製造されたフィルム前駆体を乾燥オーブンで125℃で1時間アニーリングした。アニーリングの後、実施例1と同様な方法でゲル化性高分子溶液をフィルム前駆体両面に塗布した。塗布が終わった後、常温で当初の長さに対して50%の延伸倍率で1軸延伸し、その後、引続き120℃で50%の延伸倍率で高温1軸延伸した。高温延伸後、120℃で張力を受けた状態で10分間熱固定した後、冷却して多成分系複合フィルムを製造した。製造された高分子電解質用多成分系複合フィルムの多様な物性を下記の表1に示した。
【0069】
下記の表1を見てみると、実施例1と同じく支持層及びゲル化性高分子層に共に気孔が形成されていて、高い透過度を示すことが分かり、支持層とゲル化性高分子層の間の界面接着力及び電解液含浸速度も改善されたことが分かる。
【0070】
比較例1
各々の実施例で製造された高分子電解質と物性を比較するために、多孔質支持層フィルム上にゲル化性高分子層溶液を塗布する従来の方式によって高分子電解質を製造した。
支持層フィルムである微細気孔膜にはポリプロピレン単独で製造された製品である米国セラニズ(Celanese)社のセルガード2400(Celanese2400)を用い、ゲル化性高分子層は前記実施例1と同一に前記32008を使用した。ゲル化性高分子層溶液を製造した後、気孔を有している前記セルガード2400上にゲル化性高分子層溶液を塗布して乾燥した後、多層フィルムを製造して実施例1と同様な方法で物性を測定しその物性値を下記の表1に示した。
【0071】
【表1】

Figure 0003885100
【0072】
前記表1に示したように、比較例1の多層フィルムの場合、ゲル化性高分子層薄膜には微細気孔が観察されないのに反し、本発明の方法で製造された実施例1の多成分系複合フィルムは支持層フィルムの他にゲル化性高分子層にも微細気孔が形成されていることが見られ、これによって通気度が顕著に改善されたことが分かった。また、実施例1の場合、比較例1のフィルムより支持層フィルムとゲル化性高分子層の間の界面接着力、及び電解液含浸速度が向上したことが分かった。
【0073】
実施例5
実施例1で製造された多成分系複合フィルムを1M LiPF6塩が含まれている有機電解液(EC/EMCの体積比は1:2)に浸漬させた後、SUS電極を作業電極としてLi金属を相手方電極とするLi/多成分系複合分離膜/SUSのセルを構成した後、線状領域電解電量(Linear Sweep Voltametry)を常温の3乃至6V領域で1mV/secの速度で測定した。
【0074】
図2は測定結果を示したグラフで、5V以下の電位では製造された複合フィルムが電気化学的に安定であるので高分子電解質として使用可能であることが確認できた。
【0075】
従来の高分子電解質用多層フィルムの場合、通気度が殆ど測定できない程度の低い透過特性を示すのに反し、本発明によって製造された高分子電解質用多成分系複合フィルムは通気度が500乃至600sec/100ccを示すことによって、微細気孔を有する支持層以外にゲル化性高分子層にも気孔が形成されていることが分かる。
【0076】
【発明の効果】
本発明によって製造された多成分系複合フィルムのゲル化性高分子層は従来のフィルムと同様に緻密な構造形態を有しており、加工条件によって気孔を形成することができ、また、その気孔の大きさが調節できて従来の多層フィルムに比べて顕著に改善された透過特性を示す。また、改善された透過特性以外に外郭層に存在するゲル化性高分子層の特性発現もやはり可能になる。つまり、本発明によって製造された高分子電解質用多成分系複合フィルムはその支持層が従来の乾式法工程を利用して製造された微細気孔分離膜と同一な物性を有し、ゲル化性高分子層はその工程条件によって多様に変化した形態を有する。
【0077】
また、従来の高分子電解質用多層フィルムの場合、75gfの界面接着力を示すのに対し、本発明によって製造された高分子電解質用多成分系複合分離フィルムの場合、150乃至250gfの界面接着力を示す。つまり、本発明の製造段階の一つである延伸工程中で高温を使用する高温延伸及び熱固定段階が存在するが、このような高温での工程を通じて支持層とゲル化性高分子層の間の高分子鎖の相互結合が増大して支持層とゲル化性高分子層の間の界面接着力が増加すると考えられる。このような界面接着力はイオンビーム照射工程を経る場合にさらに向上できる。また、このような界面接着力向上及び既に言及した形態変化によって電解液含浸速度も大きく改善できる。
【0078】
電解質の含浸量が増加すれば電解質の漏出を減少させることができるので、電池が安定化する。また、含浸量が増加するために電解質の漏出量が減少するから、サイクル寿命特性は充放電をくり返しても低下しない。
【0079】
本発明の多成分系複合フィルムは、電気化学的安定性、電極との接着性、電解液含浸性及び安定性などが満足されながらも可塑剤を抽出したり除去したりする工程が不要であり、イオンの伝導度と機械的物性を同時に満足する多成分系複合フィルムであって、高分子電解質システムや電気化学素子、及び分離膜に用いられる。
【図面の簡単な説明】
【図1】 ゲル化性高分子層12が支持層フィルム11の両面に位置する多成分系複合フィルムの構造を示す図面であって、ゲル化性高分子層12を支持層フィルム11上に塗布した後、延伸及び熱固定の過程を経て二つの層間の界面13が不明確となったことを示す断面図である。
【図2】 実施例2のLi/多成分系複合フィルム(ゲル化性高分子層はフッ化ポリビニリデン−三フッ化塩化エチレン、支持層フィルムはpolypropylene)/SUS構造のセルでLinear Sweep Voltametryを実施した結果を示すグラフである。
【符号の説明】
11 支持層フィルム
12 ゲル化性高分子層
13 界面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multicomponent composite film and a method for producing the same, and more particularly to a multicomponent composite film that can be used as a polymer electrolyte for an electrochemical device, a method for producing the same, and a polymer electrolyte system to which the multicomponent composite film is applied.
[0002]
[Prior art]
Recently, interest in energy conservation technology has increased. For example, energy conservation technology is important in mobile phones, camcorders, notebook computers, electric vehicles, etc., so research and development on batteries, which are a kind of energy conservation means, are actively conducted, and among them, charging / discharging Possible secondary batteries are the focus of interest. In recent years, research on developing new electrodes and polymer electrolytes has been continuously carried out in order to improve the performance of battery development and increase the yield and economy of the battery manufacturing process. In particular, the development of new polymer electrolytes is of great interest from the perspective of creating new high performance batteries with improved safety.
[0003]
Electrolytes can be broadly classified into two types: liquid electrolytes and solid electrolytes. The liquid electrolyte is one in which a salt is dissolved and dissociated in an organic solvent and can conduct ions between the positive electrode and the negative electrode, and has an advantage of high ion conductivity. However, the liquid electrolyte is actually used in a battery together with a polymer separation membrane. For example, a microporous structure is formed inside a polymer film such as polyolefin, and the pores are filled with the liquid electrolyte and have ionic conductivity. Like that. Although there are differences depending on the porosity of the polymer separation membrane and its structure, in this case, the ion conductivity is about 1 mS / cm. However, when the liquid electrolyte existing inside the pores is in a non-normal state due to the high fluidity, the liquid electrolyte may easily bleed or leak out of the polymer separation membrane. In addition, there is a disadvantage that the battery must always be configured with simple contact since the interface between the electrodes is not bonded in forming the interface. The advantage is that the polymer separation membrane itself has a high degree of crystallinity, so it has excellent mechanical strength and is never excessively swollen or decomposed due to little influence from the liquid electrolyte. That is.
[0004]
On the other hand, in the case of a solid electrolyte, there is a disadvantage that the ion conductivity at room temperature is not sufficient for realizing the performance of the battery. In order to solve this problem, a gelled polymer electrolyte in which a solid electrolyte is impregnated with a liquid electrolyte in which a salt is dissolved in an organic solvent is used. For example, Bellcore There is a hybrid type (US Pat. No. 5,418,091) developed by the company. However, the gel type polymer electrolyte has a disadvantage that the mechanical strength is low and has a problem in assembling the battery. The gel type polymer electrolyte maintains the insulation between the electrodes and has a high gel type due to the mechanical strength required in the process. The thickness of the molecular electrolyte must generally exceed 50 μm, but the thickness of such a polyelectrolyte induces abnormal problems such as an increase in thickness due to excessive swelling of the gel polymer, and the volume This causes problems such as a decrease in energy density due to an increase in energy consumption. In addition to the problems mentioned above, the use of low molecular weight plasticizers, which are environmentally problematic, and the burden of the extraction process are major obstacles in mass production.
[0005]
The conditions that the polymer electrolyte must have include electrochemical stability and thermal and chemical stability within the operating voltage range. The ion conductivity at room temperature must exceed 1 mS / cm for battery operation, and the impregnation and chemical resistance must be better than in the case of a non-aqueous electrolyte. Further, in order to reduce the interfacial resistance with the electrode when assembling the battery, it must have adhesiveness, and sufficient mechanical strength required during the assembling process is also required. However, in general, when the conductivity of ions is improved, mechanical properties are deteriorated, and when the mechanical properties are improved, ion conductivity is decreased.
[0006]
In order to solve the above-mentioned problems of ionic conductivity and mechanical properties conflicting, it was proposed to use a porous polymer layer and a gelled polymer multilayer film as a battery separation membrane. (US Pat. Nos. 5,639,573, 5,716,421, 5,631,103, 5,849,433, European Patent Publication No. 0933824 A2). Here, the porous polymer is a substance that absorbs the liquid electrolyte limitedly in the pores and hardly swells. For example, polyethylene (polyethylene), polypropylene (polypropylene), polytetrafluoroethylene (polytetrafluoroethylene) , Polyethylene terephthalate, polybutyleneterephthalate, polyethylenenaphthalate, etc. and a combination of these films. A gelling polymer means a polymer that gels and swells when it comes into contact with a liquid electrolyte, such as polyvinylidene fluoride, polyurethane, polyethylene oxide, and polyacrylonitrile. , Polymethylmethacrylate, polycrylamide, polyvinylacetate, polyvinylpyrrolidinone, polytetracthylene glycol diacrylate and copolymers of such polymers it can.
[0007]
[Problems to be solved by the invention]
Such a structure can improve the mechanical properties, but is lower than the ionic conductivity of the porous polymer layer and the liquid electrolyte impregnated in the porous polymer layer due to the antiionic conductivity of the gelling polymer. It will have ionic conductivity. Therefore, the use of a low molecular weight plasticizer such as dibutyl phthalate is required to improve ion conductivity (US Pat. No. 5,631,103, US Pat. No. 5,849,433). issue). However, the use of the plasticizer causes various problems as described above. Further, in the case of a multilayer structure film manufactured by such a method, the gelled polymer layer present on the outer surface of the porous polymer layer has a dense structure without pores, and has a large ion conduction resistance. There is a disadvantage that the interfacial adhesion between the layers is weakened.
[0008]
In consideration of the problems of the prior art, the present invention eliminates the step of extracting or removing the plasticizer while satisfying the electrochemical stability, adhesion to the electrode, electrolyte solution impregnation property and stability. It is an object of the present invention to provide a multicomponent composite film that is manufactured and satisfies the ionic conductivity and mechanical properties at the same time, a manufacturing method thereof, and a polymer electrolyte system using the multicomponent composite film.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a multicomponent composite film,
a) a polymeric support layer film; and
b) A porous gellable polymer layer formed on one or both sides of the film
The support layer film as component a) and the porous gelling polymer layer as component b) are integrated without an interface.
[0010]
Further, the present invention provides a method for producing the multicomponent composite film,
a) producing a polymeric support layer film;
b) dissolving the gelling polymer in a solvent to produce a gelling polymer solution;
c) applying the gelling polymer solution of step b) to one or both sides of the support layer film of step a) to form a gelling polymer layer to produce a multilayer film; and
d) A step of heat setting after stretching the multilayer film of step c).
There is provided a method for producing a multi-component composite film in which a support layer film containing a gel and a gelling polymer layer are integrated without an interface.
[0011]
In addition, the present invention provides a polymer electrolyte system using the multi-component composite film as a separation membrane, and an electrochemical device including the polymer electrolyte system.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
The present invention relates to a porous film produced by applying a gelling polymer liquid on a conventional microporous film having pores of a certain size, a multilayer film for polymer electrolyte having a gelling polymer substance having an interface, In contrast, a gelling polymer material is coated on a general polymer film having no pores to form a gelling polymer layer on the polymer film, and then stretched at a high temperature to form pores. As a result, an integrated multi-component composite film is produced without forming an interface between the polymer film and the gelling polymer layer.
[0014]
In this way, integration without forming an interface between the polymer film (polymer support layer) and the gelling polymer substance (porous gelling polymer layer) is an interdiffusion at a high temperature in the stretching process. (Inter-diffusion), the mutual bond increases between the polymer of the support layer and the gelling polymer layer, and they are integrated to the extent that they are difficult to separate. Specifically, when the interfacial adhesive force of the multi-component composite film of the present invention is measured by the method of JIS Z 0237, it has an interfacial adhesive force of at least 100 gf, preferably at least 150 gf.
[0015]
In addition, a polymer electrolyte system for an electrochemical element to which the multicomponent composite film is applied is realized by impregnating such a multicomponent composite film with a liquid electrolyte containing a salt and an organic solvent. In particular, such a polymer electrolyte system has a gelling polymer substance alone or a gelling polymer and a salt that are applied to one or both sides of a support layer in an electrochemical element such as a battery. The formed polymer-salt complex can be used as an electrolyte.
[0016]
Hereinafter, the configuration of the multicomponent composite film will be described.
[0017]
The support layer film of a) is a high density polyethylene, a low density polyethylene, a linear low density polyethylene, a polypropylene, a high crystalline polypropylene. polypropylene), polyethylene-propylene copolymer, polyethylene-butylene copolymer, polyethylene-hexene copolymer, polyethylene-octene copolymer (polyethylene) -octene copolymer), polystyrene-butylene-styrene copolymer, polystyrene-ethylene-butylene-styrene copolymer, polystyrene, polyphenylene oxide ( Polyphenylene oxide, Polysulfone, Polycarbonate, Polyester, Polyamide, Polyurethane, Polyacrylate, Polyvinylidene chloride, Polyvinylidene fluoride 1 or more selected from the group consisting of polysiloxane, polyolefin ionomer, polymethyl pentene, hydrogenated oligocyclopentadiene (HOCP), and copolymers or derivatives thereof Preferably, the polymer to be produced is produced in a blended or laminated form.
[0018]
In particular, the high crystalline polypropylene has a density of 0.905 g / cc or higher, a melting temperature of 164 ° C. or higher, a crystallization temperature of 125 ° C. or higher, a crystallinity of 50% or higher, an isotacticity (or pentad ratio) of 96% or higher, and an atactic. It is preferable that one or more conditions are satisfied within a ratio of less than 5%.
[0019]
The material of the gelling polymer layer b) is selected depending on the use of the multi-component composite film. Generally, polyvinylidene fluoride, polyvinylidene fluoride-polyethyleneidene fluoride-polyvinylidene fluoride- chlorotrifluoroethylene copolymer, polyvinylidene fluoride-hexafluoropropylene copolymer, polyethylene oxide, polypropylene oxide, polybutylene oxide, polyurethane, poly Acrylonitrile, polyacrylate, polymethyl methacrylate, polyacrylic acid, polyamide, polyacrylamide, polyvinyl acetate polyvinyl acetate, polyvinylpyrrolidone, polytetraethylene glycol diacrylate, polysulfone, polyphenylene oxide, polycarbonate, polyester, polyvinylidene chloride ), Polysiloxane, polyolefin ionomer, and copolymers or derivatives thereof.
[0020]
The gelling polymer layer preferably contains a polymer-lithium salt complex in order to improve the ion transference number due to the fixation of anions. Accordingly, LiSCN and LiClO are materials that have a higher melting energy than lithium lattice energy that is involved in forming a coordinate bond between lithium ions and an element capable of donating electrons.Four, LiCFThreeSOThree, LiAsF6, LiN (CFThreeSO2)2, And LiBFFourA lithium salt selected from at least one selected from the group consisting of:
[0021]
In addition, the gelling polymer layer is made of silica (SiO 2) to further improve the ion transition number.2), Titanium oxide (TiO2), Alumina (Al2OThree), Magnesium oxide (MgO), and barium oxide (B2OThree1) or more porous inorganic particles selected from the group consisting of:
[0022]
Hereinafter, a method for producing the multicomponent composite film will be described.
[0023]
The multi-component composite film of the present invention is formed by forming a gelling polymer layer on one or both sides of the above-mentioned support layer film of various materials with a solution in which the gelling polymer described above is dissolved in a solvent. The film is stretched to form pores in the film, so that an interface is not formed between the polymer film and the gelling polymer substance, and the film is integrated. At this time, pores are formed in the gelling polymer layer in addition to the support layer film.
[0024]
The support layer film in step a) is obtained by extruding the above-described polymer with an extruder equipped with a T-die or a tubular die, and then crystallinity and elastic recovery rate. In order to increase the temperature, it is preferable to manufacture by annealing in a drying oven at room temperature to the maximum melting point of the maximum polymer.
[0025]
Further, such a support layer film can be irradiated with an ion beam under introduction of a reactive gas in order to further improve the interfacial adhesive force with the gelling polymer layer. Such ion beam irradiation is a kind of surface modification method, and can be applied to all before or after annealing of the film, and the feasibility of the implementation is determined by the physical properties of the final multi-component composite film.
[0026]
The ion beam irradiation process with the reactive gas introduced will be described in detail.-1Thru 10-6After the support layer film 11 is put into a vacuum chamber maintained at a high vacuum of about torr, electrons, hydrogen, helium, oxygen, nitrogen, carbon dioxide, air, fluoride, neon, argon, krypton, N20.01 to 10 by injecting one or more ion generating gases selected from the group consisting of O6After producing particles having an energy of about keV, one side or both sides of the support layer film are irradiated with the particles having energy while changing the ion beam current. When such an ion beam is irradiated, the irradiation amount of ion particles is 10FiveThru 1020ions / cm2Is preferred. Simultaneously with ion beam irradiation, helium, hydrogen, oxygen, nitrogen, ammonia, carbon monoxide, carbon dioxide, chlorofluoro, methane, and N around the film2One or more reactive gases selected from the group consisting of O are injected at a rate of 0.5 to 20 ml / min with a reactive gas injector to modify the surface.
[0027]
In the multi-component composite film of the present invention, a gelling polymer layer is formed on one or both sides of the support layer film using a gelling polymer solution. This gelling polymer solution is produced by dissolving the above-described gelling polymer in a solvent.
[0028]
The solvent is 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n-butanol, n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethylformamide (DMF), dimethylacetamide ( DMAc), a single solvent or a mixed solvent selected from the group consisting of dioxane, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), cyclohexane, benzene, toluene, xylene, and water. The concentration and application conditions of such a gelling polymer solution can vary depending on the substance used, but the concentration is particularly preferably 0.01 to 90% by weight. Further, when such a gelling polymer solution is produced, the above-described lithium salt, inorganic porous particles, or a mixture thereof may be added together with the gelling polymer.
[0029]
The gelling polymer layer can be formed by two methods. One method is a method in which the gelling polymer solution is applied to a support layer film and then dried under suitable conditions to form a layer. In another method, a gelling polymer solution is coated on a release paper or a release film and then dried under the same conditions as in the first method to produce a film form. In this method, after peeling and positioning on the support layer film, heat bonding is performed with a laminator or the like. The thermal bonding at this time can be easily bonded by selecting the material of the support layer film and the heat fusion temperature of the gelling polymer. That is, it is performed at room temperature or a temperature of the melting point of the support layer or the gelling polymer layer.
[0030]
The specific manufacturing process of the process is as follows.
[0031]
After applying the gelling polymer solution to the support layer film, drying it under appropriate conditions to form a thin film, and then stretching the first method,
a) introducing a polymer used as a support layer into an extruder to produce a film precursor;
b) annealing the prepared film precursor at a temperature below the melting point of the polymer;
c) irradiating one or both surfaces of the annealed film precursor with an ion beam with the aid of a reactive gas when necessary;
d) applying a gelling polymer solution to one or both sides of the film precursor irradiated with the ion beam;
e) drying the polymer solution applied to one or both surfaces of the film precursor;
f) a step of low-temperature stretching the film precursor from which the polymer solution has been dried at a temperature below room temperature;
g) stretching the low temperature stretched film precursor at a temperature below the melting point of the polymer; and
h) heat-setting the high-temperature stretched film precursor in a tensioned state at a temperature below the melting point of the polymer;
including.
[0032]
Other methods of stretching after applying the gelling polymer solution on the release paper or release film and thermally bonding it to the support layer film are as follows:
a) introducing a polymer used as a support layer into an extruder to produce a film precursor;
b) annealing the prepared film precursor at a temperature below the melting point of the polymer; c) irradiating one or both surfaces of the annealed film precursor with an ion beam with the aid of a reactive gas when necessary. Stage;
d) applying a gelling polymer solution onto a release paper or release film;
e) drying the polymer solution coated on the release film;
f) a step of thermally bonding to one or both sides of the film precursor after peeling the dried gellable polymer layer film from the release film;
g) a step of subjecting the film precursor, to which the gelling polymer film is thermally bonded, to low temperature stretching at a temperature of room temperature or lower;
h) high temperature stretching the low temperature stretched film precursor at a temperature below the melting point of the polymer; and
i) Step of heat-setting the high-temperature stretched film precursor in a state where tension is applied at a temperature not higher than the melting point of the polymer.
including.
[0033]
The gelling polymer solution may be applied directly to the support layer film or to the release paper or release film by dip coating, spray coating, spin coating, or die coating. (Die coating), roll coating (Roll coating) and the like can be carried out, and the method is not particularly limited. The thickness of the coating varies depending on the use of the final multicomponent composite film, but if the thickness of the support layer film is 1 to 50 μm, the thickness of the gelling polymer layer is 0.01 to 25 μm after drying. It is preferable to do so.
[0034]
Such coating can be performed before or after film annealing, or before and after, and depending on the properties of the multi-component composite film, an ion beam irradiation process can be performed with the aid of a reactive gas before the coating process.
[0035]
Drying of the applied gelling polymer solution was surrounded by a gas selected from the group consisting of nitrogen, oxygen, carbon dioxide, and air at a temperature equal to or lower than the solvent saturation vapor pressure of the gelling polymer solution. It is preferably carried out under an atmosphere, and the humidity is preferably carried out under conditions of 1 to 100% relative humidity.
[0036]
The multicomponent composite film of the present invention has a gelling polymer layer coated on one or both sides of the support layer film and the support layer film after the gelling polymer layer is formed on one or both sides of the support layer film. Pore is formed in
[0037]
In general, methods for forming pores in a polymer film include a phase transition method and a dry method. The phase transition method is a method of forming pores by creating a polymer solution and then causing a phase transition between the polymer and the solvent by appropriately using temperature or a non-solvent. Characteristics are determined. The dry method is a method in which the polymer crystal part is oriented in a certain direction and then a relatively weak amorphous part is ruptured by cold drawing to form pores, depending on the uniform orientation and degree of the crystal part. The characteristics of the manufactured film are determined.
[0038]
In the present invention, in order to form appropriate pores, the gelling polymer layer is formed on one side or both sides of the support layer film and then stretched. At this time, the pore size and distribution of the support layer and the gelling polymer layer are different from each other. Explaining this, the support layer has pores formed by stretching after the crystal structure of the film precursor is oriented in a certain direction in the manufacturing process. On the other hand, pores are formed in the gelable polymer layer by the phase transition method and the dry method. In this case, the gelable polymer layer has a phase transition between the gelable polymer and the solvent. As a result, fine pores or fine cracks are generated, and the diameter or size of the pores is increased by the stretching treatment. In particular, the gelling polymer layer can be formed in various forms such as a dense structure, fine cracks or fine pores before stretching depending on the phase transition conditions, and the degree of formation can be adjusted.
[0039]
Therefore, the pores of the support layer and the gelling polymer layer have different pore sizes and distributions due to differences in the manufacturing process.
[0040]
The stretching includes a low temperature stretching step and a high temperature stretching step.
[0041]
The low-temperature stretching is performed by uniaxially stretching a multilayer film having a gelling polymer layer formed on one or both sides of a support layer film under a temperature condition of 0 to 50 ° C. using a roll or other stretching machine. A fine crack is generated in the support layer to enlarge the size of the pores already formed in the gelling polymer layer 12.
[0042]
The high-temperature stretching is performed by uniaxially forming a microcrack formed by the low-temperature stretching using a roll or other stretching machine under a temperature condition of 50 ° C. to the maximum supporting layer or the melting point of the polymer of the gelling polymer layer. Alternatively, biaxial stretching is performed to form fine pores having a desired size, and mechanical properties are imparted to the film through such high-temperature stretching.
[0043]
The multilayer film stretched at a low temperature and a high temperature as described above is heat-set after stretching. Such heat fixation is carried out for a certain period of time of 10 seconds to 1 hour as it is under tension in the temperature range from 50 ° C. to the maximum support layer or the melting point of the polymer of the gelling polymer layer. Through the process, a multi-component composite film including a support layer film and a gelling polymer layer is finally produced.
[0044]
In the multi-component composite film of the present invention, the inter-diffusion of the polymer chain between the support layer film and the gelling polymer layer is increased through the high-temperature stretching and heat setting steps, and the support layer film The interfacial adhesive force between the gel layer and the gelling polymer layer is increased, whereby the interface between the support layer and the gelling polymer layer is unclear and integrated. In particular, as described above, when the support layer film is irradiated with an ion beam while introducing a reactive gas, the adhesive force at such an interface further increases.
[0045]
The multi-component composite film after passing through the high-temperature stretching and heat setting steps has a pore size of 0.001 to 10 μm and a thickness of 1 to 50 μm in the support layer film, and one or both sides of the support layer film. The porous gelling polymer layer located in the layer has a maximum pore size of 10 μm and a thickness of 0.01 to 25 μm, and is preferably used for a polymer electrolyte system or an electrochemical device. It is.
[0046]
FIG. 1 is an example of the structure of such a multi-component composite film of the present invention, in which a gelling polymer layer 12 is located on both sides of a support layer film 11. At this time, the support layer film 11 and the gelling polymer are formed by the stretching and heat setting processes performed after the gelling polymer layer 12 is applied to the surface of the support layer film 11 in the multicomponent composite film manufacturing process. It shows that the interface 13 between the layers 12 has become unclear. In addition, a multi-component composite film integrated without such an interface has excellent ionic conductivity and electrochemical stability.
[0047]
In the method for producing a multi-component composite film of the present invention, each step may be omitted in some steps or additional steps may be added depending on the desired end use. Can change.
[0048]
The multicomponent composite film of the present invention can be used in various separation membranes such as microfiltration membranes, ultrafiltration membranes, gas separations, pervaporation membranes, reverse It can be used as a reverse osmosis membrane or a separation membrane for electrochemical devices. In particular, in a polymer electrolyte system, electrochemical stability, adhesion to electrodes, electrolyte solution impregnation, and stability can be imparted.
[0049]
The present invention
a) i) a porous support layer film; and
ii) The above-mentioned i) includes a porous gelling polymer layer formed on one side or both sides of the supporting layer film, and the supporting layer film of i) and the porous gelling polymer layer of ii) are integrated without any interface. A separation membrane of a multicomponent composite film that has been converted; and
b) i) a salt of formula 2 below; and
ii) Organic solvent
Liquid electrolyte containing
A polyelectrolyte system is provided.
[0050]
[Chemical formula 2]
A+B-
In the above formula,
A+Li+, Na+, And K+At least one selected from the group consisting of alkali metal cations and derivatives thereof,
B-Is PF6 -, BFFour -, Cl-, Br-, I-, AsF6 -, CHThreeCO2 -, CFThreeSOThree -, N (CHThreeSO2)2 -, And C (CHThreeSO2)Three -One or more selected from the group consisting of:
[0051]
The multi-component composite film a) is a polymer film, and serves as a separator, a solid electrolyte, etc., and has an air permeability of 100 to 20,000 seconds / 100 cc.
[0052]
When the liquid electrolyte of b) comes into contact with the multicomponent composite film of a), the gelling polymer layer is swollen and gelled while filling the pores inside the support layer film. In order to improve the ionic conductivity of the liquid electrolyte, the gelling polymer layer is made thinner than the support layer film. This is to reduce the impedance value that depends on the thickness of the polymer electrolyte.
[0053]
In the liquid electrolyte of b), i) the salt represented by the chemical formula 2 is dissolved and dissociated in ii) an organic solvent.
[0054]
The organic solvent of b) ii) is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, di It is preferable that at least one selected from the group consisting of ethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), and ethyl methyl carbonate (EMC).
[0055]
Such a polymer electrolyte system of the present invention includes a super capacitor, an ultra capacitor, a secondary battery, a primary battery, a fuel cell, various sensors, an electrolysis apparatus, an electrochemical reactor, and the like. It can be applied to various electrochemical devices.
[0056]
The present invention will be described in more detail through the following examples and comparative examples. However, the examples are for illustrating the present invention and are not limited thereto.
[0057]
[Example]
Example 1
Using highly crystalline polypropylene as the support layer film and polyvinylidene fluoride-trifluoroethylene chloride copolymer 32008 (manufactured by Solvay Polymer) as the gelling polymer layer, the following process A multi-component composite film for polymer electrolyte was produced.
[0058]
(Production of film precursor)
As a film precursor component used as a support layer, a melt index of 2.0 g / 10 min, a density of 0.91 g / cc, a melting temperature measured by DSC of 166.5 ° C., a crystallization temperature of 116.5 ° C., Crystallinity 57%, C13A single screw extruder in which a high crystallinity polypropylene having a measured atactic ratio of about 2% is dissolved in 98% isotacticity measured by NMR and xylene, and a high crystalline polypropylene is provided with a T-die ( A support layer film was produced using a single screw extruder and a take-up device. At this time, the extrusion temperature was 220 ° C., the cooling roll temperature of the winding device was 80 ° C., the winding speed was 20 m / min, and the winding ratio was 60.
The film precursor prepared above was annealed in a drying oven at a temperature of 150 ° C. for 1 hour.
[0059]
(Application)
After annealing, the 32008 was applied on both sides by a dip coating method on the film precursor after the annealing with a solution of acetone as a solvent. At this time, the application was performed under the condition of maintaining a relative humidity of about 60% in the atmosphere, and acetone was evaporated under the same humidity condition.
[0060]
(Stretching)
After coating, the film was uniaxially cold stretched at a stretch ratio of 50% with respect to the original length at room temperature, and the film was stretched uniaxially at a stretch ratio of 100% at a temperature of 140 ° C. again.
[0061]
(Heat fixing)
After high-temperature stretching, heat-fixed for 10 minutes in a state of receiving a tension at a temperature of 140 ° C., and then cooled to produce a multi-component composite film. The physical properties of the produced multi-component composite film were measured and The results are shown in Table 1 below.
At this time, the air permeability was measured by the JISP 8117 method, the interfacial adhesion was measured by the JIS Z 0237 method, the pore size was measured by scanning electron microscopy, and the impregnation rate of the electrolyte was determined by the volume ratio. The electrolyte of 4: 6 ethylene carbonate: dimethyl carbonate is 2cm in area.2The time for complete impregnation of the film sample was measured.
[0062]
Example 2
(Production of film precursor)
The same film precursor as in Example 1 was manufactured.
[0063]
(Application)
As a gelling polymer layer, a solution prepared by dissolving polyvinylidene fluoride-trifluoroethylene chloride copolymer 32008 (manufactured by Solvay Polymer) in acetone solvent is applied to both sides by dip coating on release paper. I let you. At this time, the application was performed under the condition of maintaining a relative humidity of about 60% in the atmosphere, and acetone was evaporated under the same humidity condition.
[0064]
(Heat fusion)
The two gelling polymer layers dried above are peeled off from the release paper, and after the polymer layers are positioned on both sides of the film precursor, the film precursor is passed through a heating laminator at 140 ° C. And the gelling polymer layer were heat-sealed.
[0065]
(Stretching)
The film in which the gelling polymer layer is thermally fused on both sides of the film precursor is uniaxially stretched at a stretch ratio of 50% with respect to the original length at room temperature, and the film is again stretched at a temperature of 140 ° C. to 100. The film was uniaxially stretched at a high temperature at a stretch ratio of%.
[0066]
(Heat fixing)
After hot stretching, after heat fixing for 10 minutes in a state of receiving tension at a temperature of 140 ° C., cooling to produce a multi-component composite film, and as a result of measuring the physical properties of the produced multi-component composite film, The same physical properties as those of the multi-component composite film of Example 1 were exhibited.
[0067]
Example 3
(Manufacture of multi-component composite film for polymer electrolytes composed of highly crystalline polypropylene / polyvinylidene fluoride-ethylene trifluoride chloroethylene copolymer through ion beam irradiation process)
A multi-component composite film for polymer electrolyte was produced in the same manner as in Example 1 except that the film precursor was irradiated with an ion beam before applying the gelling polymer layer solution. A film precursor produced by the same method as in Example 1 was used.-FiveThru 10-6After putting into a vacuum chamber maintained at torr, an argon cation (Ar+) Is irradiated on both sides of the film precursor using an ion gun, and at the same time, the amount of reactive gas (oxygen) is 4 ml / min. It was. At this time, the energy of the ion beam is 0.5 keV, and the ion irradiation amount is 1016ions / cm2Met.
After the ion beam irradiation process was finished, the multicomponent composite film for polymer electrolyte was measured by the same method as in Example 1 and manufactured as a result. Various physical properties of the produced multi-component composite film for polymer electrolyte were measured, and the results are shown in Table 1 below.
Looking at Table 1 below, it is observed that in the case of Example 2 as well as in Example 1, pores are formed in both the support layer and the gelling polymer layer and show high permeability. In particular, it can be seen that the interfacial adhesive force between the support layer and the gelling polymer layer is greatly improved, and the electrolyte impregnation rate is also greatly improved.
[0068]
Example 4
(Manufacture of multicomponent composite films for polymer electrolytes composed of high density polyethylene / polyvinylidene fluoride-trifluoroethylene chloride copolymer)
A multicomponent composite film was produced in the same manner as in Example 1 except that high-density polyethylene was used in place of the highly crystalline polypropylene as the support layer. The high density polyethylene used had a melt index of 0.3 g / 10 min and a density of 0.964 g / cc. The film precursor was produced in the same manner as in Example 1. At this time, the extrusion temperature was 200 ° C., the cooling roll temperature of the winding device was 80 ° C., the winding speed was 30 m / min, and the winding ratio was 80. The produced film precursor was annealed in a drying oven at 125 ° C. for 1 hour. After annealing, a gelling polymer solution was applied to both sides of the film precursor in the same manner as in Example 1. After the coating was completed, the film was uniaxially stretched at a stretch ratio of 50% with respect to the original length at room temperature, and then stretched uniaxially at 120 ° C. at a stretch ratio of 50%. After stretching at high temperature, the film was heat-set for 10 minutes in a state of receiving a tension at 120 ° C., and then cooled to produce a multicomponent composite film. Various physical properties of the produced multi-component composite film for polymer electrolyte are shown in Table 1 below.
[0069]
Looking at Table 1 below, it can be seen that both the support layer and the gelling polymer layer have pores formed in the same manner as in Example 1 and show high permeability. It can be seen that the interfacial adhesion between the layers and the electrolyte impregnation rate were also improved.
[0070]
Comparative Example 1
In order to compare the properties with the polymer electrolytes produced in the respective examples, polymer electrolytes were produced by a conventional method in which a gelling polymer layer solution was applied onto a porous support layer film.
For the microporous membrane as the support layer film, Cellguard 2400 (Celanese 2400) of US Celanese Co., Ltd., which is a product made of polypropylene alone, was used. It was used. After preparing the gelling polymer layer solution, the gelling polymer layer solution was applied on the cell guard 2400 having pores and dried, and then a multilayer film was manufactured to obtain the same as in Example 1. The physical properties were measured by the method, and the physical property values are shown in Table 1 below.
[0071]
[Table 1]
Figure 0003885100
[0072]
As shown in Table 1, in the case of the multilayer film of Comparative Example 1, the multi-component of Example 1 produced by the method of the present invention was contrary to the fact that no fine pores were observed in the gelled polymer layer thin film. The system composite film was found to have fine pores formed in the gelling polymer layer in addition to the support layer film, and this proved that the air permeability was remarkably improved. Moreover, in the case of Example 1, it turned out that the interface adhesive force between a support layer film and a gelling polymer layer and the electrolyte solution impregnation rate improved from the film of the comparative example 1.
[0073]
Example 5
The multi-component composite film produced in Example 1 was replaced with 1M LiPF.6After immersing in an organic electrolyte containing salt (volume ratio of EC / EMC is 1: 2), Li / multicomponent composite separation membrane / SUS with SUS electrode as working electrode and Li metal as counter electrode After the above cell was constructed, the linear area sweep electric capacity (Linear Sweep Voltametry) was measured at a rate of 1 mV / sec in a 3 to 6 V region at room temperature.
[0074]
FIG. 2 is a graph showing the measurement results, and it was confirmed that the composite film produced was electrochemically stable at a potential of 5 V or less and could be used as a polymer electrolyte.
[0075]
In the case of the conventional multilayer film for polymer electrolyte, the multicomponent composite film for polymer electrolyte produced according to the present invention has an air permeability of 500 to 600 sec. By indicating / 100 cc, it can be seen that pores are formed not only in the support layer having fine pores but also in the gelling polymer layer.
[0076]
【The invention's effect】
The gelable polymer layer of the multi-component composite film produced according to the present invention has a dense structure form as in the conventional film, and can form pores depending on processing conditions. The size of the film can be adjusted, and the transmission characteristics are remarkably improved as compared with the conventional multilayer film. In addition to the improved permeation characteristics, it is also possible to develop the characteristics of the gelling polymer layer present in the outer layer. That is, the multi-component composite film for polymer electrolytes produced according to the present invention has the same physical properties as the microporous separation membrane produced by using the conventional dry process, and has a high gelling property. The molecular layer has various shapes that vary depending on the process conditions.
[0077]
In the case of a conventional multilayer film for polymer electrolyte, 75 gfIn the case of the multi-component composite separation film for polymer electrolyte produced according to the present invention, 150 to 250 gfThe interfacial adhesive strength of is shown. In other words, there is a high temperature drawing and heat setting step that uses a high temperature in the drawing process, which is one of the production steps of the present invention. Between the support layer and the gelling polymer layer through the high temperature process, It is considered that the mutual bond between the polymer chains increases and the interfacial adhesive force between the support layer and the gelling polymer layer increases. Such an interfacial adhesive force can be further improved when an ion beam irradiation process is performed. Also, the electrolyte solution impregnation rate can be greatly improved by the improvement of the interfacial adhesive force and the above-described change in form.
[0078]
If the amount of electrolyte impregnation increases, leakage of the electrolyte can be reduced, so that the battery is stabilized. In addition, since the amount of electrolyte leakage decreases due to an increase in the amount of impregnation, the cycle life characteristics do not deteriorate even if charging and discharging are repeated.
[0079]
The multi-component composite film of the present invention does not require a step of extracting or removing a plasticizer while satisfying electrochemical stability, adhesion to an electrode, electrolyte solution impregnation property and stability. A multi-component composite film that satisfies both ionic conductivity and mechanical properties at the same time, and is used for a polymer electrolyte system, an electrochemical device, and a separation membrane.
[Brief description of the drawings]
FIG. 1 is a view showing the structure of a multi-component composite film in which a gelling polymer layer 12 is located on both sides of a support layer film 11, and the gelling polymer layer 12 is applied on the support layer film 11; It is sectional drawing which shows that the interface 13 between two layers became indefinite after passing through the process of extending | stretching and heat setting.
2] Li / multicomponent composite film of Example 2 (gelling polymer layer is polyvinylidene fluoride-trifluoroethylene chloride, support layer film is polypropylene) / Linear Sweep Voltametry in SUS cell. It is a graph which shows the implemented result.
[Explanation of symbols]
11 Support layer film
12 Gelling polymer layer
13 Interface

Claims (19)

a) 高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、高結晶性ポリプロピレン、ポリエチレン−プロピレン共重合体、ポリエチレン−ブチレン共重合体、ポリエチレン−ヘキセン共重合体、ポリエチレン−オクテン共重合体、ポリスチレン−ブチレン−スチレン共重合体、ポリスチレン−エチレン−ブチレン−スチレン共重合体、ポリスチレン、ポリフェニレンオキシド、ポリスルホン、ポリカーボネートポリウレタン、ポリアクリレート、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリシロキサン、ポリオレフィンアイオノマー、ポリメチルペンテン、水素添加オリゴシクロペンタジエン、及びこれらの共重合体または誘導体からなる群より1種以上選択される高分子支持層フィルムを製造する段階;
b) ポリフッ化ビニリデン、ポリフッ化ビニリデン−三フッ化塩化エチレン共重合体、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、ポリウレタン、ポリアクリロニトリル、ポリアクリレート、ポリメチルメタクリレート、ポリアクリル酸ポリアクリルアミド、ポリビニルアセテート、ポリビニルピロリドン、ポリテトラエチレングリコールジアクリレート、ポリスルホン、ポリフェニレンオキシド、ポリカーボネートポリ塩化ビニリデン、ポリシロキサン、ポリオレフィンアイオノマー及びこれらの共重合体または誘導体からなる群より1種以上選択されるゲル化性高分子を溶媒に溶解してゲル化性高分子溶液を製造する段階;
c)前記b)段階のゲル化性高分子溶液を前記a)段階の支持層フィルムの一面または両面に塗布してゲル化性高分子層を形成させて多層フィルムを製造する段階;及び
d)前記c)段階の多層フィルムを延伸して高分子支持層フィルムとゲル化性高分子層に気孔を形成させた後、熱固定する段階
を含む電気化学素子用分離膜の製造方法。
a) High density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, highly crystalline polypropylene, polyethylene-propylene copolymer, polyethylene-butylene copolymer, polyethylene-hexene copolymer, polyethylene-octene copolymer , Polystyrene-butylene-styrene copolymer, polystyrene-ethylene-butylene-styrene copolymer, polystyrene, polyphenylene oxide, polysulfone, polycarbonate , polyurethane, polyacrylate, polyvinylidene chloride, polyvinylidene fluoride, polysiloxane, polyolefin ionomer, poly Producing a polymer support layer film selected from the group consisting of methylpentene, hydrogenated oligocyclopentadiene, and copolymers or derivatives thereof. Stage;
b) Polyvinylidene fluoride, polyvinylidene fluoride-trifluoroethylene chloride copolymer, polyvinylidene fluoride-hexafluoropropylene copolymer, polyethylene oxide, polypropylene oxide, polybutylene oxide, polyurethane, polyacrylonitrile, polyacrylate, polymethyl From the group consisting of methacrylate, polyacrylic acid , polyacrylamide, polyvinyl acetate, polyvinyl pyrrolidone, polytetraethylene glycol diacrylate, polysulfone, polyphenylene oxide, polycarbonate , polyvinylidene chloride, polysiloxane, polyolefin ionomer, and copolymers or derivatives thereof. Dissolving one or more selected gelling polymers in a solvent to produce a gelling polymer solution;
c) applying the gelling polymer solution of step b) to one or both sides of the support layer film of step a) to form a gelling polymer layer to produce a multilayer film; and d) A method for producing a separation membrane for an electrochemical element , comprising the step of stretching the multilayer film in step c) to form pores in the polymer support layer film and the gelling polymer layer and then heat-setting.
前記c)段階のゲル化性高分子層の形成は前記b)段階のゲル化性高分子溶液を前記a)段階の支持層フィルムの一面または両面に塗布した後、乾燥して実施される、請求項1に記載の電気化学素子用分離膜の製造方法。The formation of the gellable polymer layer in step c) is performed by applying the gellable polymer solution in step b) to one or both sides of the support layer film in step a) and then drying. The manufacturing method of the separation membrane for electrochemical elements of Claim 1. 前記c)段階のゲル化性高分子層の形成は、前記b)段階のゲル化 性高分子溶液を離型フィルム上に塗布して乾燥した後、離型フィルムから剥離して、剥離されたフィルムを前記a)段階の支持層フィルムの一面または両面に熱接着して実施される、請求項1に記載の電気化学素子用分離膜の製造方法。In the formation of the gellable polymer layer in the step c), the gellable polymer solution in the step b) was applied on the release film and dried, and then peeled off from the release film. The method for producing a separation membrane for an electrochemical element according to claim 1, which is carried out by thermally bonding the film to one surface or both surfaces of the support layer film in the step a). 前記各々の塗布がディップコーティング、噴射コーティング、スピンコーティング、ダイコーティング、及びロールコーティングからなるコーティング群より選択される方法で実施される、請求項2または3に記載の多電気化学素子用分離膜の製造方法。The separation membrane for a multi- electrochemical device according to claim 2 or 3, wherein each application is performed by a method selected from a coating group consisting of dip coating, spray coating, spin coating, die coating, and roll coating. Production method. 前記各々の乾燥は1乃至100%の相対湿度、及び窒素、酸素、二酸化炭素、及び空気からなる群より1種以上選択されるガスの雰囲気下で実施される、請求項2または3に記載の電気化学素子用分離膜の製造方法。4. The drying according to claim 2, wherein each drying is performed in an atmosphere of 1 to 100% relative humidity and one or more gases selected from the group consisting of nitrogen, oxygen, carbon dioxide, and air. A method for producing a separation membrane for an electrochemical element . 前記d)段階の延伸は低温延伸した後、高温延伸を実施する、請求項1に記載の多成分系複合フィルムの製造方法。The method for producing a multicomponent composite film according to claim 1, wherein the stretching in the step d) is performed at a low temperature and then at a high temperature. 前記低温延伸はフィルムをロールまたは延伸機で0乃至50℃の温度条件下で1軸延伸する、請求項6に記載の電気化学素子用分離膜の製造方法。The said low temperature extending | stretching is a manufacturing method of the separation membrane for electrochemical elements of Claim 6 which extends | stretches a film uniaxially on 0-50 degreeC temperature conditions with a roll or a extending machine. 前記高温延伸はフィルムをロールまたは延伸機で50℃乃至最大に支持層またはゲル化性高分子層の高分子融点の温度下で1軸または2軸延伸する、請求項6に記載の電気化学素子用分離膜の製造方法。The electrochemical device according to claim 6, wherein the high-temperature stretching is performed by uniaxially or biaxially stretching the film at a temperature of a polymer melting point of the support layer or the gelling polymer layer from 50 ° C to a maximum with a roll or a stretching machine. Method for manufacturing a separation membrane . 前記d)段階の熱固定は50℃乃至最大支持層またはゲル化性高分子層の高分子の融点の温度下でフィルムが張力を受けた状態で10秒乃至1時間の一定の時間固定して実施される、請求項1に記載の電気化学素子用分離膜の製造方法。The heat setting in the step d) is performed at a fixed time of 10 seconds to 1 hour in a state where the film is under tension at a temperature of 50 ° C. to the maximum melting point of the polymer of the maximum support layer or the gelling polymer layer. The manufacturing method of the separation membrane for electrochemical elements of Claim 1 implemented. 前記高結晶性ポリプロピレンが密度0.905g/cc以上の条件を満足する、請求項1に記載の電気化学素子用分離膜の製造方法。The method for producing a separation membrane for an electrochemical element according to claim 1, wherein the highly crystalline polypropylene satisfies a condition of a density of 0.905 g / cc or more. 前記a)段階の支持層フィルムがブレンドフィルムまたは積層フィルムである、請求項1に記載の電気化学素子用分離膜の製造方法。The method for producing a separation membrane for an electrochemical element according to claim 1, wherein the support layer film in the step a) is a blend film or a laminated film. 前記a)段階の支持層フィルムが高分子をT−ダイまたは円形管ダイが設けられた押出機に投入して押出した後、乾燥オーブンで常温乃至最大支持層の高分子融点の温度下でアニーリングして製造されるフィルムである、請求項1に記載の電気化学素子用分離膜の製造方法。The support layer film in the step a) is extruded at a temperature ranging from room temperature to the polymer melting point of the maximum support layer in a drying oven after the polymer is put into an extruder provided with a T-die or a circular tube die and extruded. The manufacturing method of the separation membrane for electrochemical elements of Claim 1 which is a film manufactured by manufacturing. 前記a)段階の支持層フィルムが反応性ガス雰囲気下で支持層フィルムの一面または両面にイオンビームが照射され製造されるフィルムである、請求項1に記載の電気化学素子用分離膜の製造方法。The method for producing a separation membrane for an electrochemical element according to claim 1, wherein the support layer film in step a) is a film produced by irradiating one or both surfaces of the support layer film with an ion beam in a reactive gas atmosphere. . 前記イオンビーム照射が10−1乃至10−6torrの真空度を有する真空槽でヘリウム、水素、酸素、窒素、アンモニア、一酸化炭素、二酸化炭素、クロロフルオロカーボン、メタン、及びNOからなる群より1種以上選択される反応性ガスを0.5乃至20ml/分の注入量で注入することによって形成される反応性ガス雰囲気下で電子、水素、ヘリウム、酸素、窒素、二酸化炭素、空気、フッ素、ネオン、アルゴン、クリプトン、及びNOからなる群より1種以上選択される粒子を励起して10−2乃至10keVのエネルギーを有するものにして生成されたイオンビームを10乃至1020ions/cm2の照射量で照射する、請求項13に記載の電気化学素子用分離膜の製造方法。A group consisting of helium, hydrogen, oxygen, nitrogen, ammonia, carbon monoxide, carbon dioxide, chlorofluorocarbon, methane, and N 2 O in a vacuum chamber in which the ion beam irradiation has a vacuum degree of 10 −1 to 10 −6 torr. Electron, hydrogen, helium, oxygen, nitrogen, carbon dioxide, air, in a reactive gas atmosphere formed by injecting one or more selected reactive gases at an injection rate of 0.5 to 20 ml / min. An ion beam generated by exciting at least one particle selected from the group consisting of fluorine, neon, argon, krypton, and N 2 O to have an energy of 10 −2 to 10 6 keV is generated from 10 5 to 10 5. The method for producing a separation membrane for an electrochemical element according to claim 13, wherein the irradiation is performed at an irradiation dose of 10 20 ions / cm 2 . 前記b)段階のゲル化性高分子溶液がLiSCN、LiClO、LiCFSO、LiAsF、LiN(CFSO、及びLiBFからなる群より1種以上選択されるリチウム塩を溶媒にさらに加えて製造される、請求項1に記載の電気化学素子用分離膜の製造方法。In the step b), the gelling polymer solution is a lithium salt selected from the group consisting of LiSCN, LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and LiBF 4. The method for producing a separation membrane for an electrochemical element according to claim 1, wherein the separation membrane is produced in addition to a solvent. 前記b)段階のゲル化性高分子溶液がシリカ、酸化チタン、アルミナ、酸化マグネシウム、及び酸化バリウムからなる群より1種以上選択される多孔質無機粒子を溶媒にさらに加えて製造される、請求項1に記載の電気化学素子用分離膜の製造方法。The gelling polymer solution in step b) is produced by further adding porous inorganic particles selected from the group consisting of silica, titanium oxide, alumina, magnesium oxide, and barium oxide to a solvent. Item 2. A method for producing a separation membrane for an electrochemical element according to Item 1. 前記b)段階の溶媒が1−メチル−2−ピロリドン、アセトン、エタノール、n−プロパノール、n−ブタノール、n−ヘキサン、シクロヘキサノール、酢酸、酢酸エチル、ジエチルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、ジオキサン、テトラヒドロフラン、ジメチルスルホキシド、シクロヘキサン、ベンゼン、トルエン、キシレン、水、及びこれらの誘導体からなる群より1種以上選択される、請求項1に記載の電気化学素子用分離膜の製造方法。The solvent in step b) is 1-methyl-2-pyrrolidone, acetone, ethanol, n-propanol, n-butanol, n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethylformamide, dimethylacetamide, dioxane, The method for producing a separation membrane for an electrochemical element according to claim 1, wherein at least one selected from the group consisting of tetrahydrofuran, dimethyl sulfoxide, cyclohexane, benzene, toluene, xylene, water, and derivatives thereof. 前記b)段階のゲル化性高分子溶液の濃度が0.01乃至90重量%である、請求項1に記載の電気化学素子用分離膜の製造方法。The method for producing a separation membrane for an electrochemical device according to claim 1, wherein the concentration of the gelling polymer solution in step b) is 0.01 to 90% by weight. 前記多成分系複合フィルムは支持層フィルムの気孔の大きさが0.001乃至10μmであり、支持層フィルムの厚さが1乃至50μmであり、多孔質ゲル化性高分子層の気孔の大きさが最大10μmであり、多孔質ゲル化性高分子層の厚さが0.01乃至25μmである、請求項1に記載の電気化学素子用分離膜の製造方法。The multi-component composite film has a pore size of the support layer film of 0.001 to 10 μm, a thickness of the support layer film of 1 to 50 μm, and a pore size of the porous gelling polymer layer. The method for producing a separation membrane for an electrochemical device according to claim 1, wherein the maximum thickness is 10 µm and the thickness of the porous gelling polymer layer is 0.01 to 25 µm.
JP2002520328A 2000-08-12 2001-08-11 Multi-component composite film and method for producing the same Expired - Lifetime JP3885100B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2000-0046735A KR100373204B1 (en) 2000-08-12 2000-08-12 Multi-component composite membrane for polymer electrolyte and method of preparing the same
KR10-2001-0011191A KR100406689B1 (en) 2001-03-05 2001-03-05 Multicomponent composite film for electrochemical device and method for preparing the same
PCT/KR2001/001374 WO2002015299A1 (en) 2000-08-12 2001-08-11 Multi-component composite film method for preparing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006135816A Division JP4624304B2 (en) 2000-08-12 2006-05-15 Multi-component composite film, polymer separation membrane including the same, and polymer electrolyte system including the same

Publications (2)

Publication Number Publication Date
JP2004506542A JP2004506542A (en) 2004-03-04
JP3885100B2 true JP3885100B2 (en) 2007-02-21

Family

ID=26638300

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002520328A Expired - Lifetime JP3885100B2 (en) 2000-08-12 2001-08-11 Multi-component composite film and method for producing the same
JP2006135816A Expired - Lifetime JP4624304B2 (en) 2000-08-12 2006-05-15 Multi-component composite film, polymer separation membrane including the same, and polymer electrolyte system including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006135816A Expired - Lifetime JP4624304B2 (en) 2000-08-12 2006-05-15 Multi-component composite film, polymer separation membrane including the same, and polymer electrolyte system including the same

Country Status (6)

Country Link
US (3) US7470488B2 (en)
EP (1) EP1310005B9 (en)
JP (2) JP3885100B2 (en)
CN (1) CN1258234C (en)
DE (1) DE60144235D1 (en)
WO (1) WO2002015299A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289985A (en) * 2000-08-12 2006-10-26 Lg Chemical Co Ltd Multi-component composite film, polymer separation membrane containing the same, and polymer electrolyte system containing the same
US8835073B2 (en) 2009-10-07 2014-09-16 Samsung Sdi Co., Ltd. Polymer membrane for battery, method of preparing same and battery including same

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
KR100409017B1 (en) * 2000-06-23 2003-12-06 주식회사 엘지화학 Multi-component composite membrane and method for preparing the same
KR100406690B1 (en) * 2001-03-05 2003-11-21 주식회사 엘지화학 Electrochemical device using multicomponent composite membrane film
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US7379765B2 (en) 2003-07-25 2008-05-27 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
TW543225B (en) * 2002-04-11 2003-07-21 Ind Tech Res Inst Manufacturing method of rechargeable polymer cell
EP1610347A4 (en) 2003-03-28 2009-02-25 Sumitomo Chemical Co Continuous process for producing polymer electrolyte membrane and apparatus therefor
JP4493287B2 (en) * 2003-03-28 2010-06-30 住友化学株式会社 Method and apparatus for continuous production of polymer electrolyte composite membrane
GB2402021A (en) * 2003-05-19 2004-11-24 Nec Corp Rate control method and apparatus for data packet transmission from a mobile phone to a base station
US20040241550A1 (en) * 2003-05-28 2004-12-02 Wensley C. Glen Battery separator for lithium polymer battery
TWI283493B (en) * 2003-05-30 2007-07-01 Lg Chemical Ltd Rechargeable lithium battery using separator partially coated with gel polymer
CN1882436B (en) * 2003-11-19 2010-12-15 东燃化学株式会社 Composite microporous film, and production method and use thereof
JP4747492B2 (en) * 2003-11-25 2011-08-17 富士ゼロックス株式会社 Battery and power generation method
US20050202163A1 (en) * 2004-03-09 2005-09-15 Celgard Inc. Method of making a composite microporous membrane
JP4974448B2 (en) * 2004-04-07 2012-07-11 株式会社巴川製紙所 Manufacturing method of separator for electronic parts
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
JP2008503049A (en) 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
EP3745494A1 (en) * 2004-09-02 2020-12-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
TWI318018B (en) * 2004-09-02 2009-12-01 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100775310B1 (en) 2004-12-22 2007-11-08 주식회사 엘지화학 Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
FR2881275B1 (en) * 2005-01-24 2007-04-27 Batscap Sa BILOUD ELECTROLYTE FOR LTHIUM BATTERY
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
CN100401565C (en) * 2005-04-27 2008-07-09 剩沅科技股份有限公司 Lithium polymer batteries
KR100686848B1 (en) * 2005-10-11 2007-02-26 삼성에스디아이 주식회사 Lithium rechargeable battery
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
WO2007066966A1 (en) * 2005-12-06 2007-06-14 Lg Chem Ltd. Electrode with enhanced safety and electrochemical device having the same
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
JP2008140428A (en) 2006-11-30 2008-06-19 Tanashin Denki Co Disk guide of disk transfer unit
JP5657856B2 (en) * 2007-01-29 2015-01-21 日立マクセル株式会社 Porous membrane, battery separator and lithium secondary battery
KR100727248B1 (en) * 2007-02-05 2007-06-11 주식회사 엘지화학 Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
KR100966024B1 (en) * 2007-04-24 2010-06-24 주식회사 엘지화학 A electrochemical device having a different kind of separators
US20090047541A1 (en) * 2007-08-15 2009-02-19 Lithium Power Technologies, Inc. Methods and Systems of Dielectric Film Materials For Use in Capacitors
KR101002161B1 (en) * 2007-11-29 2010-12-17 주식회사 엘지화학 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same
KR100969011B1 (en) 2008-02-20 2010-07-09 현대자동차주식회사 High Temperature Blended Polymer Electrolyte Membrane and Method of Preparing the Same
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
KR101404461B1 (en) * 2008-04-08 2014-06-10 에스케이이노베이션 주식회사 Microporous polyolefin composite film with a thermally stable porous layer at high temperature
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
DE102008040896A1 (en) 2008-07-31 2010-02-04 Evonik Degussa Gmbh Use of ceramic or ceramic-containing cutting or punching tools as cutting or punching for ceramic-containing composites
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100143611A1 (en) * 2008-12-05 2010-06-10 General Electric Company Methods for making an asymmetric composite membrane
US20100178568A1 (en) * 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
JP2010245133A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Gel electrolyte and method for producing the same, and electrochemical element using the gel electrolyte
DE102009002680A1 (en) 2009-04-28 2010-11-04 Evonik Litarion Gmbh Production and use of ceramic composite materials based on polymer carrier film
KR20170045366A (en) 2009-05-26 2017-04-26 옵토도트 코포레이션 Batteries utilizing anode coating directly on nanoporous separators
WO2010144057A1 (en) * 2009-06-10 2010-12-16 National University Of Singapore Double selective-layer membranes
JP5745512B2 (en) 2009-06-29 2015-07-08 ナノエイチツーオー・インコーポレーテッド Improved hybrid TFCRO membrane containing nitrogen additive
EP3444867B1 (en) 2010-07-19 2020-03-25 Optodot Corporation Separators for electrochemical cells
US8801935B2 (en) 2010-11-10 2014-08-12 Nanoh2O, Inc. Hybrid TFC RO membranes with non-metallic additives
WO2012091309A2 (en) * 2010-12-29 2012-07-05 주식회사 엘지화학 Multilayer film and photovoltaic module including same
KR101351902B1 (en) 2011-06-02 2014-01-22 주식회사 엘지화학 Anode For Secondary Battery And Secondary Battery Having The Same
WO2013013132A1 (en) * 2011-07-20 2013-01-24 Novomer, Inc. Aliphatic polycarbonate extrusion coatings
EP2768060B1 (en) 2011-10-13 2016-05-18 LG Chem, Ltd. Cable-type secondary battery
CN103875113B (en) 2011-10-13 2016-06-29 株式会社Lg化学 Cable Type Rechargeable Battery
JP5890529B2 (en) * 2011-10-13 2016-03-22 エルジー・ケム・リミテッド Cable type secondary battery
CN103875112B (en) 2011-10-13 2015-09-09 株式会社Lg化学 Cable Type Rechargeable Battery
CN103891027B (en) 2011-10-25 2016-10-26 株式会社Lg化学 Cable Type Rechargeable Battery
TWI455756B (en) * 2011-12-02 2014-10-11 Ind Tech Res Inst Hybrid porous materials, manufacturing methods and use thereof
CN102420300A (en) * 2011-12-07 2012-04-18 保定市山河日月实业有限公司 Preparation method of lithium ion battery diaphragm
US20130189511A1 (en) * 2012-01-24 2013-07-25 Interfacial Solutions Ip, Llc High Strength Multilayered Articles
KR20150027168A (en) 2012-05-30 2015-03-11 마그마 플로어링 엘엘씨 Polymeric composites, resulting panels, and method for producing the same
CN104428920B (en) * 2012-07-26 2017-06-30 旭化成株式会社 Separator for electricity storage device, laminate, and porous film
KR101702986B1 (en) * 2012-08-23 2017-02-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery
CN102856588B (en) * 2012-08-29 2016-01-20 深圳新宙邦科技股份有限公司 Lithium ion battery nonaqueous electrolytic solution and lithium ion battery
US10020526B2 (en) 2012-09-12 2018-07-10 GM Global Technology Operations LLC Reverse osmosis membranes made with PFSA ionomer and ePTFE
CN102964679B (en) * 2012-10-31 2015-06-17 安徽省易达电子有限公司 Capacitor film containing modified talc and preparation method thereof
CN102888599B (en) * 2012-11-01 2014-06-11 哈尔滨工业大学 Method for preparing high-density metal oxide membrane on porous base material
CN103199301A (en) * 2013-01-23 2013-07-10 浙江地坤键新能源科技有限公司 Composite gel polymer electrolyte based on solid polymer electrolyte, and preparation method and application thereof
JP6093636B2 (en) * 2013-04-24 2017-03-08 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102294032B1 (en) 2013-04-29 2021-08-27 옵토도트 코포레이션 Nanoporous composite separators with increased thermal conductivity
US10112154B2 (en) 2013-08-01 2018-10-30 Lg Chem, Ltd. Polyamide-based water-treatment separation membrane having excellent durability, and manufacturing method therefor
CN103400697B (en) * 2013-08-15 2016-01-20 厦门大学 A kind of all-solid-state flexible sensitization solar battery and preparation method thereof
CN103446680B (en) * 2013-08-19 2016-08-31 武汉龙飞翔科技产品制造有限公司 Five of the anti-PM2.5 of energy with polymer ultra-thin film composite membrane prevent oxygen-enriched mouth mask
WO2015065122A1 (en) 2013-10-31 2015-05-07 주식회사 엘지화학 Method for preparing separation membrane for electrochemical device, and separation membrane for electrochemical device prepared thereby
CN103753906A (en) * 2013-12-06 2014-04-30 苏州瑞邦塑胶有限公司 Composite plastic film and making technology thereof
CN103647035B (en) * 2013-12-18 2016-08-17 深圳市慧通天下科技股份有限公司 High porosity composite diaphragm and preparation method thereof, high-power battery
MX2016008147A (en) * 2013-12-19 2016-09-14 Treofan Germany Gmbh & Co Kg Ion-exchange membrane made of a biaxially stretched î²-porous film.
US10903467B2 (en) 2013-12-24 2021-01-26 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including same
US10010835B2 (en) 2014-03-13 2018-07-03 3M Innovative Properties Company Asymmetric membranes and related methods
EP3157078B1 (en) 2014-06-13 2018-10-17 LG Chem, Ltd. Lithium electrode and lithium secondary battery comprising same
CN106663785B (en) 2014-06-13 2019-09-10 株式会社Lg 化学 Lithium electrode and lithium battery comprising the lithium electrode
KR101685129B1 (en) * 2014-07-31 2016-12-09 주식회사 엘지화학 Porous polypropylene film and method of making the same
CN104371230B (en) * 2014-11-13 2016-08-24 无锡中洁能源技术有限公司 A kind of back membrane material used for solar batteries and preparation method thereof
CN104497229B (en) * 2014-12-10 2017-02-01 华东理工大学 Stretchable flexible supercapacitor and preparation method thereof
US10037850B2 (en) 2014-12-18 2018-07-31 3M Innovative Properties Company Multilayer film capacitor
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US10573933B2 (en) * 2015-05-15 2020-02-25 Samsung Electronics Co., Ltd. Lithium metal battery
US10569230B2 (en) * 2015-05-30 2020-02-25 Core Energy Recovery Solutions Inc. Supported water vapor transport membrane comprising polyethylene oxide copolymer
JP6553962B2 (en) * 2015-07-06 2019-07-31 日東電工株式会社 Sheet for Transferring Layer and Sheet Having Electrode Catalyst Layer Using the Same
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US10792846B2 (en) 2015-10-07 2020-10-06 Magma Flooring LLC Method for producing composite substrates
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10414911B2 (en) 2016-02-25 2019-09-17 Interfacial Consultants Llc Highly filled polymeric concentrates
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
CN105826603B (en) * 2016-04-06 2018-06-19 中国科学院青岛生物能源与过程研究所 A kind of polymerized thylene carbonate vinyl ester lithium ion battery polymer electrolyte and its preparation method and application
CN108258169A (en) * 2016-12-29 2018-07-06 东莞东阳光科研发有限公司 A kind of preparation method of lithium battery Kynoar composite diaphragm
JP2018176745A (en) * 2017-04-14 2018-11-15 トヨタ紡織株式会社 Resin molding and method for producing the same
CN107230803B (en) * 2017-05-22 2020-02-07 郑州轻工业学院 Sandwich structure multilayer gel polymer electrolyte for lithium ion battery and preparation method thereof
CN107230766B (en) * 2017-06-13 2019-10-18 深圳市星源材质科技股份有限公司 A kind of multicore-single shell structure gelatin polymer coating diaphragm and preparation method thereof
CN109289548A (en) * 2017-07-24 2019-02-01 天津工业大学 A kind of preparation method of forward osmosis membrane
JP7015159B2 (en) * 2017-12-08 2022-02-02 旭化成株式会社 Multi-layer separator, its winding body and manufacturing method
CN108172745B (en) * 2018-01-05 2021-08-06 杨晓丽 Preparation method of lithium ion battery diaphragm
KR102157935B1 (en) * 2018-01-10 2020-09-18 주식회사 엘지화학 Method for manufacturing reinforced seperarion membrane and reinforced seperarion membrane, redox flow battery prepared by thereof
EP3671934B1 (en) * 2018-03-27 2022-01-19 LG Energy Solution Ltd. Lithium metal battery
JP7045593B2 (en) 2018-03-27 2022-04-01 エルジー エナジー ソリューション リミテッド Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
CN108767312B (en) * 2018-04-19 2021-08-27 中国科学院青岛生物能源与过程研究所 Polyamide-based solid electrolyte and preparation method thereof
CN109346648B (en) * 2018-10-15 2021-11-02 苏州清陶新能源科技有限公司 Flame-retardant gel ceramic diaphragm and preparation method thereof
CN109309186A (en) * 2018-12-03 2019-02-05 河北金力新能源科技股份有限公司 A kind of PVDF diaphragm and preparation method thereof
CN112886067B (en) * 2021-02-01 2022-04-26 上海恩捷新材料科技有限公司 Preparation method of synchronous substrate-supported solid composite electrolyte membrane
CN113381046B (en) * 2021-03-29 2022-11-18 浙江汉丞新能源有限公司 Preparation method of enhanced fluorine-containing composite membrane or membrane electrode
CN114069039A (en) * 2021-09-30 2022-02-18 恒大新能源技术(深圳)有限公司 Polymer electrolyte, preparation method and application thereof, solid-state battery and application thereof
CN116598583B (en) * 2023-05-30 2023-12-01 沧州中孚新能源材料有限公司 Modified gel electrolyte diaphragm and preparation method and application thereof

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0082393B1 (en) * 1981-12-18 1990-06-13 Cuno Incorporated Reinforced microporous membrane
US4650730A (en) * 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
JPH07103260B2 (en) * 1988-02-03 1995-11-08 ダイアホイルヘキスト株式会社 Polyester film with coating layer
JPH01293102A (en) * 1988-05-23 1989-11-27 Tokuyama Soda Co Ltd Microporous hollow yarn membrane and its production
JPH02123141A (en) 1988-11-02 1990-05-10 Teijin Ltd Antistatic readily bondable polyester film
JPH0214142A (en) 1989-03-28 1990-01-18 Diafoil Co Ltd Surface cured polyester film
JPH04117436A (en) 1990-09-05 1992-04-17 Konica Corp Production of antistatic polyester film
DE69218820T2 (en) 1991-03-07 1997-10-02 Minnesota Mining & Mfg Polymer with a cross-linked area
JP3099416B2 (en) 1991-05-29 2000-10-16 ダイキン工業株式会社 Method for producing polytetrafluoroethylene porous membrane with asymmetric pore size
JP3214006B2 (en) 1991-12-27 2001-10-02 住友化学工業株式会社 Manufacturing method of surface hardened resin plate
JPH0676808A (en) * 1992-06-29 1994-03-18 Japan Gore Tex Inc Battery diaphragm and battery
US5418091A (en) 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
WO1994022432A1 (en) * 1993-04-07 1994-10-13 Rexham Industries Corp. Method of coating microporous membranes and resulting products
JPH071574A (en) 1993-06-21 1995-01-06 Teijin Ltd Manufacture of easy adhesion high strength polyester film
US5691047A (en) * 1994-05-12 1997-11-25 Ube Industries, Ltd. Porous multi-layer film
JPH08104064A (en) 1994-10-05 1996-04-23 Diafoil Co Ltd Sublimable thermal transfer polyester film
US5523179A (en) * 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
US6004695A (en) * 1995-04-19 1999-12-21 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP3212833B2 (en) 1995-06-06 2001-09-25 帝人株式会社 Antistatic film
US5658685A (en) 1995-08-24 1997-08-19 Motorola, Inc. Blended polymer gel electrolytes
JPH0976441A (en) 1995-09-19 1997-03-25 Teijin Ltd Laminated film
US5631103A (en) * 1996-09-27 1997-05-20 Motorola, Inc. Highly filled solid polymer electrolyte
JPH10151713A (en) 1996-11-21 1998-06-09 Unitika Ltd Manufacture of polyamide film with gas barrier and easy tearing property
JPH10198641A (en) 1996-12-28 1998-07-31 Nec Corp Method for evaluating performance of distributed processing type computer system
US5849433A (en) 1997-03-10 1998-12-15 Motorola, Inc. Polymer blend electrolyte system and electrochemical cell using same
JPH10249974A (en) 1997-03-13 1998-09-22 Nitto Denko Corp Laminated porous film, its application, and manufacture
US5716421A (en) 1997-04-14 1998-02-10 Motorola, Inc. Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
KR19990040319A (en) * 1997-11-17 1999-06-05 성재갑 Preparation of Microporous Membrane by Irradiation of Ion Particles on Polymer Surface
JP4302806B2 (en) 1998-01-16 2009-07-29 三菱樹脂株式会社 Laminated film for thermal transfer
US6322923B1 (en) * 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
JP3608944B2 (en) 1998-06-16 2005-01-12 株式会社ユポ・コーポレーション Surface treatment method for thermoplastic resin film
KR100371398B1 (en) 1998-12-08 2003-05-12 주식회사 엘지화학 Air-permeable film made of polyolefin blend and method for preparing thereof and separator of secondary cell
CN1239226C (en) * 2000-01-10 2006-02-01 Lg化学株式会社 High crystalline polypropylene microporous membrane, multi-component microporous membrane and methods for preparing same
KR100409017B1 (en) * 2000-06-23 2003-12-06 주식회사 엘지화학 Multi-component composite membrane and method for preparing the same
US7470488B2 (en) * 2000-08-12 2008-12-30 Lg Chemical Co., Ltd. Multi-component composite film method for preparing the same
US6881515B2 (en) * 2001-05-08 2005-04-19 Celgard Inc. Separator for polymer battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289985A (en) * 2000-08-12 2006-10-26 Lg Chemical Co Ltd Multi-component composite film, polymer separation membrane containing the same, and polymer electrolyte system containing the same
JP4624304B2 (en) * 2000-08-12 2011-02-02 エルジー・ケミカル・カンパニー・リミテッド Multi-component composite film, polymer separation membrane including the same, and polymer electrolyte system including the same
US8835073B2 (en) 2009-10-07 2014-09-16 Samsung Sdi Co., Ltd. Polymer membrane for battery, method of preparing same and battery including same

Also Published As

Publication number Publication date
EP1310005A4 (en) 2006-10-25
DE60144235D1 (en) 2011-04-28
CN1258234C (en) 2006-05-31
US20020187401A1 (en) 2002-12-12
JP2004506542A (en) 2004-03-04
EP1310005B1 (en) 2011-03-16
EP1310005B9 (en) 2011-06-22
US20090263591A1 (en) 2009-10-22
US8617645B2 (en) 2013-12-31
JP4624304B2 (en) 2011-02-02
EP1310005A1 (en) 2003-05-14
US20090042104A1 (en) 2009-02-12
JP2006289985A (en) 2006-10-26
CN1388993A (en) 2003-01-01
US7470488B2 (en) 2008-12-30
WO2002015299A1 (en) 2002-02-21
US7709153B2 (en) 2010-05-04

Similar Documents

Publication Publication Date Title
JP3885100B2 (en) Multi-component composite film and method for producing the same
KR100406690B1 (en) Electrochemical device using multicomponent composite membrane film
KR100406689B1 (en) Multicomponent composite film for electrochemical device and method for preparing the same
KR100409017B1 (en) Multi-component composite membrane and method for preparing the same
US7087343B2 (en) High melt integrity battery separator for lithium ion batteries
EP1294031A1 (en) Sealing material for electrochemical element and electrochemical element containing the same
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
KR100373204B1 (en) Multi-component composite membrane for polymer electrolyte and method of preparing the same
CN111244369B (en) Polyolefin microporous membrane
JP4307065B2 (en) Method for producing polyolefin microporous membrane
KR20020064590A (en) Multicomponent composite membrane and method for preparing the same
JP2004204162A (en) Polyolefin microporous membrane, battery separator using the same, and battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3885100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term