JP3882078B2 - Manufacturing method of high purity ultrafine cubic boron nitride sintered body - Google Patents

Manufacturing method of high purity ultrafine cubic boron nitride sintered body Download PDF

Info

Publication number
JP3882078B2
JP3882078B2 JP2002364754A JP2002364754A JP3882078B2 JP 3882078 B2 JP3882078 B2 JP 3882078B2 JP 2002364754 A JP2002364754 A JP 2002364754A JP 2002364754 A JP2002364754 A JP 2002364754A JP 3882078 B2 JP3882078 B2 JP 3882078B2
Authority
JP
Japan
Prior art keywords
cbn
sintered body
sintering
particle size
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002364754A
Other languages
Japanese (ja)
Other versions
JP2004196567A (en
Inventor
尚 谷口
實 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002364754A priority Critical patent/JP3882078B2/en
Publication of JP2004196567A publication Critical patent/JP2004196567A/en
Application granted granted Critical
Publication of JP3882078B2 publication Critical patent/JP3882078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンドに次ぐ硬度を持ち、鉄系金属に対してはダイヤモンドよりも安定であるため、鉄系金属の切削工具、研削材等として従来の機械加工分野に技術革新をもたらすことが期待できる高純度超微粒子cBN焼結体とその製造方法に関する。
【0002】
【従来の技術】
鉄系金属の切削工具、研削材として多様な形態のcBN焼結体が用いられてきた。これらは鉄系材料の機械加工に優れた特徴を有し、現代の産業基盤である機械加工分野で重要な位置を占めている。これまでに用いられてきたcBN焼結体は4〜5万気圧領域において種々の焼結助剤と供に焼結した複合焼結体であり、cBNの含有量は約40〜90wt%程度まで種々のものが開発されている。切削工具として用いる際には被削材の特性に応じてcBNの含有量が制御されているが、近年cBN及び不可避の不純物の合計含有量が100%の高純度焼結体により優れた切削性能が現れることが見いだされている(非特許文献1、2)。
【0003】
焼結助剤を含まないcBN及び不可避の不純物の合計含有量が100%の高純度cBN焼結体の合成には2通りの方法がある。一つは六方晶などの低圧相窒化ホウ素を原料として、高圧高温度下で高圧相であるcBNへの相転移を進めながら同時に焼結反応を進行させるものである。これにより7.7万気圧、2000℃領域において緻密な透光性cBN焼結体の合成が報告されている(非特許文献3)。また、原料の六方晶窒化ホウ素に塩酸を少量添加することにより6.5万気圧、1900℃の温度圧力条件下で透光性cBN焼結体の合成が報告されている(非特許文献4)。
【0004】
もう一方は、市販のcBN粉末を原料として、これを焼結助剤無添加で焼結するもので、7.7GPa、2000℃領域においてやはり緻密な透光性cBN焼結体と、これに半導体特性を付与した焼結体の合成が報告されている(非特許文献5、特許文献1)。これら高純度cBN焼結体は高硬度であり、とりわけ7.7万気圧、2000℃領域で合成された高純度焼結体は優れた切削性能を有し、今後の機械加工分野において重要な役割を果たすと予想されている。
【0005】
しかしながら、これら高純度cBN焼結体の合成条件は6.5〜7.7万気圧、1900℃以上と云う過酷なものである。現在の工業的規模、技術的水準を勘案すると、現行の低圧領域で合成される複合焼結体と比較した場合、大型の焼結体工具素材としての安定供給、製造コストの点で従来技術による高純度焼結体の合成方法には改善の余地が大きい。
【0006】
一方、焼結体を切削工具として使用する際には、被削材の加工面の面粗さは焼結体の構成粒子径の大きさの影響を受ける。このため、材料の鏡面加工などの精密加工を目的とした場合、焼結体の粒子径は可能な限り微少であることが望まれる。現在までに得られている高純度cBN焼結体の粒子径は微粒径のものでも0.5μm程度までであり、これ以下の粒子径の緻密な高純度焼結体の合成は報告されていない。
【0007】
【非特許文献1】
山岡,赤石,植田,New Diamond,22 28(1991)
【非特許文献2】
H.Sumiya and S.Uesaka,J.Mater.Res.,35,1181(2000)
【非特許文献3】
M.Akaishi、他、J.Mater.Sci.Let., 12,1883(1993)
【非特許文献4】
H.Sei 他, Diamond Relat.Mater.,2,1160(1993)
【非特許文献5】
T.Taniguchi,et.al.,J.Mater.Res.,14,162(1999)
【特許文献1】
特許第2725733号公報
【0008】
【発明が解決しようとする課題】
自動車産業等に代表される機械加工工程の高効率化、環境保全を実現する上で、既存のcBN(立方晶窒化ホウ素)焼結体工具の特性向上が求められている。工具の特性向上には、焼結体構造の微細な制御が不可欠であり、その為には現在需要が増大しているcBN焼結体工具の高純度化と微粒子化を実現することには大きな意義がある。従来の技術では7.7万気圧、2000℃以上の圧力、温度領域で高純度cBN焼結体の合成が可能であったが、工具として広く普及するためにはその合成条件の厳しさに由来する供給の不安定性、コスト高の問題があった。
【0009】
焼結体の合成条件が5万気圧領域であることは、現在の工業的規模で工具材料としての安定供給、普及を図る点で重要である。このため焼結助剤の使用は焼結条件の緩和のためには有効であるが、得られた焼結体の切削工具としてのcBN本来の特性を阻害する要因となる。また、焼結体の強度は構成粒子径に依存することが知られているが、微粒子が緻密に焼結した組織では焼結体組織中に内在する微少亀裂のサイズが小さくなるために焼結体としての強度が向上すること、また切削工具として用いた場合には被削材の面粗さが微小粒子径からなる工具材料により向上することなどが期待できる。
【0010】
すなわち、本発明が解決しようとする課題は、6.5GPa以上という従来の厳しい焼結条件を緩和し、切削工具材料として有用な焼結体の構成粒子径が超微粒の高純度cBN焼結体の合成を現行の工業生産技術が適用できる5万気圧領域において可能にすることである。
【0011】
【課題を解決するための手段】
焼結助剤無添加で高純度cBN焼結体を合成するプロセスを検討したところ、上述の低圧相窒化ホウ素からの相転移を利用したプロセスでは合成圧力の低減を図ることは困難であり、低圧力領域では原料の低圧相成分が焼結体中に残留し、良好な焼結体が得られない。
【0012】
これに対してcBN粒子を直接焼結する後者のプロセスでは低圧領域の焼結では低圧相窒化ホウ素が残留する等の阻害要因は見いだされない。7.7万気圧領域において0.5〜1.2μm、2〜4μm、8〜12μmの各初期粒子径のcBN粒子の焼結助剤無添加における焼結特性を評価した結果、粒径が小さい粒子ほど焼結が進行しやすく、透光性となる温度下限も低いという結果が見いだされた(T.Taniguchi,et.al.,J.Mater.Res.,14,162(1999),T.Taniguchi Sci & Technol.High Press,in Proc.AIRAPT-17(Univ. Press (India),2000) pp893.)。
【0013】
ここで見いだされたcBN粒子の一連の焼結挙動の中で、緻密で強固な焼結体組織を形成する上では、構成粒子間の結合が良好に形成されることが前提となること、その際の駆動力として構成粒子が自身の表面積を減少させようとして働く表面エネルギーの効果が重要であることに着目した。すなわち、微小な粒子は粗い粒子よりも表面積が大きいため、焼結のための駆動力が高く、焼結と緻密化が進行しやすいと考えることができる。7.7万気圧領域におけるcBN粒子の焼結実験において検証されたこの考えは、低圧領域におけるcBN粒子の焼結にも適用が可能であると考えられるが、これまで低圧力領域における焼結助剤を用いない微粒子の焼結挙動は明らかにされていなかった。そこで、7.7万気圧領域で用いた場合よりも更に微細なcBN超微粒子を原料として、低圧力領域における焼結助剤無添加での高圧焼結を試みた。
【0014】
なお、cBN超微粒子については規格化された測定方法に基づく粒度規格は存在しないが、粒径幅を0〜1/10、0〜1/4、0〜1/2、0〜1、0〜2、1〜3、2〜4、4〜8のように区分して標準粒度規格(中心粒径は粒径幅の中間値)としたものに基づいて市販されており、本明細書において、cBN超微粒子の粒径幅はこのような区分に基づくものである。
【0015】
尚、焼結助剤無添加で焼結を進行させる上では、物質の固相反応を促進するために焼結温度を高めに設定する必要があり、この際には対象物質の高温度下での安定性が重要な条件となる。cBNや類似の超硬質材料であるダイヤモンド等の高圧安定相の焼結温度の上限は、これら物質の熱力学的に安定な温度条件以下に規定される。これ以上の温度では低圧相への逆転換が進行し、良好な焼結体は得られない。
【0016】
この熱力学的安定性に着目するとcBNはダイヤモンドと比較して高温度まで安定であり、5万気圧領域における焼結温度条件はダイヤモンドが1500℃程度であるのに対してcBNは1900℃程度の高温度まで設定が可能である。この熱力学的安定条件を考慮すると、微細なcBN粒子は従来よりも低い圧力条件での焼結が可能であるとの作業仮説を立てることができる。
【0017】
5〜6万気圧領域において市販の粒径幅0〜0.1μm及び0〜0.25μm、0〜1μmの各種粒径(以下「初期粒子径」という)範囲のcBN粉末を1400〜2000℃迄の範囲で高圧、高温処理し、得られた焼結体の特性を評価した。得られた焼結体は初期粒子径が0〜0.25μm、0〜1μmの場合、合成条件を制御しているにも拘わらずその特性にばらつきが見られ、焼結組織は不均質で強度も不十分なものであった。
【0018】
一方、初期粒子径0〜0.1μmの場合には5万気圧、1600℃以上の圧力、温度条件において焼結助剤無添加で緻密なcBN焼結体が得られた。焼結体のビッカース硬度は45GPa程度(試験加重9.8N)であり、焼結助剤を添加したcBN複合焼結体の特性を大きく上回る特性が得られた。また、焼結後の構成粒子径は平均粒径0.1〜0.2μm程度であり、これにより高純度超微粒子cBN焼結体の合成が可能となった。
【0019】
一方、微粒子の焼結条件を最適化する上で留意すべき点は原料粉末の凝集状態や粒子表面の汚染状況にある。市販のcBN超微粒子粉末は、一次粒子が凝集により数ミクロン程度の凝集体となっている。そこで、これらcBN超微粒子の洗浄を行った。cBNは強酸に対しては安定であるが、アルカリ溶液により高温でエッチングされることが知られている。0〜0.1μmの粒径範囲のcBN超微粒子を5モルのアルカリ水溶液で清浄化処理した後に純水で洗浄し、凍結乾燥処理して焼結のための原料粉末とした。
【0020】
この粉末を4.5〜6万気圧、1500〜1800℃領域で高圧焼結し、得られた焼結体を評価した。その結果、下限が5万気圧、1600℃の圧力、温度条件において焼結助剤無添加で緻密なcBN焼結体が得られた。この際、焼結温度1800℃において透光性の焼結体が得られた。焼結体のビッカース硬度は45GPa程度(試験加重9.8N)であり、焼結助剤を添加したcBN複合焼結体の特性を大きく上回る特性が得られた。また、走査型及び透過型電子顕微鏡観察により測定した焼結後の構成粒子の平均粒径は0.1〜0.2μm程度であり、これにより透光性の高純度超微粒子cBN焼結体の合成が可能となった。
【0021】
以上の実験から、初期粒子径0〜0.1μmのcBN超微粒子粉末を5 6万気圧、1600℃以上 1900 ℃未満の圧力、温度条件で焼結することにより緻密で微細な組織を有する高硬度高純度超微粒子cBN焼結体が合成できることを見いだした。本発明は、この知見に基づいて成されたものである。
【0022】
すなわち、本発明は以下、(1)から(3)に記載する構成を講じることにより、従来技術、先行技術では得ることのできなかった、高硬度超微粒子cBN焼結体を提供しようとするものである。
【0023】
(1)超微粒子cBN焼結体の原料粉末として粒径範囲0〜0.1μmのcBN超微粒子を用い、5 6万気圧、1600以上 1900 ℃未満の圧力、温度条件で焼結することによりcBN 含有量及び不可避の不純物の合計が 100% で、焼結体の平均粒子径が 0.1 0.2 μ m 高硬度高純度超微粒子cBN焼結体が得られる。
【0024】
(2)アルカリ溶液により粒子表面の清浄化処理を施した前記cBN超微粒子粉末を5万気圧、1800℃以上1900 ℃未満の圧力、温度条件で焼結助剤を無添加で焼結することにより、cBN 含有量及び不可避の不純物の合計が 100% で、焼結体の平均粒子径が 0.1 0.2 μ m 透光性の高硬度高純度超微粒子cBN焼結体が得られる。
【0025】
(3)上記(1)及び(2)の合成条件において圧力が5万気圧未満では焼結温度によらず、良好な焼結体は得られない。また焼結温度が1600℃未満では強固な焼結体組織が得られず、焼結温度が1900℃以上では顕著な粒成長が見られ、焼結体の強度は低下する。このため、良好な焼結体を得るための条件は5〜6万気圧領域において1600以上 1900 ℃未満、透光性のc BN 焼結体を得る場合は 1800 ℃以上 1900 ℃未満の温度範囲となる。この条件下で初期粒子径が0〜0.1μmの原料粉末を用いた場合、焼結体の平均粒子径は0.1〜0.2μm程度であり、ビッカース硬度は45GPa程度(試験加重9.8N)であり、従来の助剤を添加した複合焼結体の特性を著しく上回る特性が得られた。
【0026】
【実施例】
以下、本発明を実施例及び図面に基づいて説明する。
実施例1
市販の粒径幅(初期粒子径)0〜0.1μmのcBN粉末を高圧容器内のタンタルカプセルに充填し、ベルト型超高圧力発生装置により5.5万気圧、1600℃の圧力、温度条件で30分間焼結した。この際にいっさいのcBN焼結助剤は添加しなかった。昇温速度は5℃/分程度である。焼結後500℃/分程度で冷却後除圧し、試料を圧力容器内のタンタルカプセルと共に回収した。機械的あるいは化学処理(弗酸−;硝酸混液)によりタンタルカプセルを除去し試料を回収した。
【0027】
試料の評価はダイヤモンド砥粒による研磨を施した後に硬度測定、破面の走査型電子顕微鏡(SEM)及び透過型顕微鏡(TEM)観察、X線回折による相の同定を行った。図1に示すとおり、X線回折図形より、焼結体はcBN単相であり、図2に示すSEM及び図3に示すTEM観察によれば平均粒子径0.1〜0.2μm程度である。試験加重9.8Nにおいてビッカース硬度45GPa程度であり、得られた焼結体は高硬度高純度超微粒子cBN焼結体であることが示された。
【0028】
実施例2
市販の初期粒子径0〜0.1μmのcBN粉末を2gr、水酸化ナトリウム5mol水溶液と共にフッ素樹脂製密閉容器(内容積100ml)に充填し、150℃で24時間保持した。これを室温まで冷却した後、フッ素樹脂容器内のアルカリ溶液を純水で洗浄した。初期のアルカリ溶液の100倍以上の純水による5回の洗浄を施した後、20cc程度の純水に浸されたcBN超微粒子粉末に凍結乾燥処理を施し、焼結のための原料粉末とした。この粉末を高圧容器内のタンタルカプセルに充填し、実施例1と同様の高圧高温処理を行った。
【0029】
X線回折による相の同定、SEMとTEMによる破断面の組織観察、研磨面のビッカース硬度試験による焼結体の評価を行った。図1に示した焼結体のX線回折図形より、焼結体はcBN単相であり、図2及び3のSEM及びTEM観察写真が示すように平均粒子径0.1〜0.2μm程度であり、異常粒成長による粗大粒子のない均質な組織である。試験加重9.8Nにおいてビッカース硬度45GPa程度であり、得られた焼結体は高硬度高純度超微粒子cBN焼結体であることが示された。また、焼結温度が1800℃の場合には、同様の条件で得られた焼結体は透光性を呈することが見いだされた。
【0030】
実施例3
実施例1記載のcBN微粉末の前処理において、無水のNaOHをジルコニア製ルツボ内で溶融し、400℃程度に保持した状態で5g程度のcBN微粒子粉末を投入し、3分間程度煮沸することにより、実施例2と同様の清浄化処理を行った。初期粒子径0〜0.1μmのcBN粒子にこの処理を施した後、純水により洗浄し、凍結乾燥処理を行い、5万気圧、1600℃で高圧焼結した。得られた試料は実施例2に記載したものと同様に高硬度高純度超微粒子cBN焼結体であった。
【0031】
比較例1
実施例1記載のプロセスにおいて初期粒子径0〜0.25μm及び0〜1μmのcBN粒子を原料として焼結体を作製した。焼結条件5〜6万気圧、1600〜1800℃においては、得られた焼結体はビッカース硬度は30GPa(試験加重9.8N)以下であり、実施例1で見られた初期粒子径0〜0.1μmの場合と比較して著しく強度が劣るものであった。本高純度超微粒子焼結体の製造法において、その高強度化と透光性の発現挙動にはcBNの粒子サイズが重要であることが比較例から明らかとなった。
【0032】
比較例2
実施例1記載のプロセスにおいて焼結条件4.5万気圧、1600〜1800℃においては、得られた焼結体のビッカース硬度は30GPa(試験加重9.8N)以下であった。また5〜6万気圧領域において1500℃で焼結した場合、得られた焼結体のビッカース硬度は30GPa(試験加重9.8N)以下であった。同様の圧力領域において1900℃で焼結した場合、得られた焼結体の強度は粒成長により著しく低下し、ビッカース硬度は30GPa(試験加重9.8N)であった。本高純度超微粒子焼結体の製造法において、その高強度化と透光性の発現挙動には焼結温度と圧力の最適化が重要であることが比較例から明らかとなった。
【0033】
各実施例並びに比較例は、本発明において高純度cBN焼結体を5〜6万気圧の領域で作製する際に、焼結温度の最適化と供に原料粉末の初期粒子径の選択と前処理が重要であることを示している。原料粉末は微細であれば焼結のための駆動力が大きいために焼結が進行しやすいが、この効果を実現するためには適当な初期粒子径の選択と粒子表面の清浄化の為の前処理が重要となる。本発明においては適当な粒子径のcBN超微粒子粉末を選択し、望ましくは適当な前処理を施して清浄化することで、従来技術では不可能であった5万気圧領域で、焼結助剤を用いることなく高硬度高純度超微粒子cBN焼結体が得られた。
【0034】
【発明の効果】
本発明では通常のcBN複合焼結体を合成する圧力、温度領域においてcBN及び不可避的な不純物の合計含有量が100%の高純度cBN焼結体を合成できる点に価値があり、同時に従来の技術では得られなかった平均粒径0.1〜0.2μm程度の超微粒子cBN焼結体の供給が可能となった。
【0035】
本発明に見られるような機械加工工具の技術革新により、機械加工分野における生産性の向上とエネルギー消費量の低減、従来の湿式から乾式工程への移行に伴う冷却水の消費、産業排水の削減が可能となることが期待される。更に研磨・研削比の向上に伴い、従来型の砥粒の使用に比して研磨屑、研削液の排出量が減少する。即ち加工に伴う廃棄物の減量が可能であり、省資源、省エネルギーに加えて、環境保全にも貢献する等の多大な効果が期待できる。
【図面の簡単な説明】
【図1】実施例1において合成した高純度超微粒子cBN焼結体のX線回折図形である。
【図2】実施例1において合成した高純度超微粒子cBN焼結体の破断面の図面代用走査型電子顕微鏡写真である。
【図3】実施例1において合成した高純度超微粒子cBN焼結体の破断面の図面代用透過型電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
Since the present invention has the second hardness after diamond and is more stable than diamond for iron-based metals, it is expected to bring technological innovation to the conventional machining field as iron-based metal cutting tools, abrasives, etc. The present invention relates to a high-purity ultrafine cBN sintered body that can be produced and a method for producing the same.
[0002]
[Prior art]
Various forms of cBN sintered bodies have been used as cutting tools and abrasives for ferrous metals. These have excellent characteristics in machining of iron-based materials and occupy an important position in the machining field, which is the modern industrial base. The cBN sintered body used so far is a composite sintered body sintered together with various sintering aids in the range of 40 to 50,000 atm. The cBN content is about 40 to 90 wt%. Various things have been developed. When used as a cutting tool, the content of cBN is controlled according to the characteristics of the work material, but in recent years high cutting performance is achieved by a high-purity sintered body with a total content of cBN and inevitable impurities of 100%. Has been found to appear (Non-Patent Documents 1 and 2).
[0003]
There are two methods for synthesizing a high-purity cBN sintered body having a total content of cBN containing no sintering aid and inevitable impurities of 100%. One is to use a low-pressure phase boron nitride such as hexagonal crystal as a raw material and proceed the sintering reaction at the same time while proceeding the phase transition to cBN which is a high-pressure phase under high pressure and high temperature. As a result, synthesis of a dense translucent cBN sintered body at 77,000 atmospheres and 2000 ° C. has been reported (Non-patent Document 3). Further, synthesis of a translucent cBN sintered body has been reported by adding a small amount of hydrochloric acid to a raw material hexagonal boron nitride under a temperature and pressure condition of 65,000 atm and 1900 ° C. (Non-patent Document 4).
[0004]
The other is a commercially available cBN powder, which is sintered without the addition of a sintering aid. It is also a dense translucent cBN sintered body in the 7.7 GPa and 2000 ° C region, and semiconductor characteristics. There has been reported synthesis of a sintered body imparted with (Non-patent Document 5, Patent Document 1). These high-purity cBN sintered bodies have high hardness, and in particular, high-purity sintered bodies synthesized at 77,000 atm and 2000 ° C have excellent cutting performance and will play an important role in the future machining field. It is expected.
[0005]
However, the conditions for synthesizing these high-purity cBN sintered bodies are as severe as 65 to 77,000 atmospheres and 1900 ° C. or higher. Considering the current industrial scale and technical level, when compared with the composite sintered body synthesized in the current low pressure region, it is based on the conventional technology in terms of stable supply and manufacturing cost as a large sintered body tool material. There is much room for improvement in the method for synthesizing a high-purity sintered body.
[0006]
On the other hand, when the sintered body is used as a cutting tool, the surface roughness of the work surface of the work material is affected by the size of the constituent particle diameter of the sintered body. For this reason, when aiming at precision processing, such as mirror finishing of material, it is desired that the particle diameter of a sintered compact is as small as possible. The particle size of the high-purity cBN sintered body obtained so far is up to about 0.5 μm even if it is a fine particle size, and synthesis of a dense high-purity sintered body with a particle size smaller than this has not been reported .
[0007]
[Non-Patent Document 1]
Yamaoka, Akaishi, Ueda, New Diamond, 22 28 (1991)
[Non-Patent Document 2]
H. Sumiya and S. Uesaka, J. Mater. Res., 35, 1181 (2000)
[Non-Patent Document 3]
M. Akaishi, et al., J. Mater. Sci. Let., 12, 1883 (1993)
[Non-Patent Document 4]
H. Sei et al., Diamond Relat. Mater., 2, 1160 (1993)
[Non-Patent Document 5]
T. Taniguchi, et.al., J. Mater. Res., 14, 162 (1999)
[Patent Document 1]
Japanese Patent No. 2725733 [0008]
[Problems to be solved by the invention]
In order to improve the efficiency of machining processes represented by the automobile industry and the like and to preserve the environment, it is required to improve the characteristics of existing cBN (cubic boron nitride) sintered body tools. In order to improve the characteristics of the tool, fine control of the sintered body structure is indispensable, and for that purpose, it is a great way to realize high purity and fine particles of cBN sintered body tools that are currently in increasing demand. it makes sense. The conventional technology made it possible to synthesize high-purity cBN sintered bodies at a pressure of 77,000 atm, pressures over 2000 ° C, and temperature range. There were problems of instability and high cost.
[0009]
The synthesis condition of the sintered body is in the range of 50,000 atm is important in terms of stable supply and spread as a tool material on the current industrial scale. For this reason, the use of a sintering aid is effective for relaxing the sintering conditions, but it becomes a factor that hinders the original characteristics of cBN as a cutting tool of the obtained sintered body. In addition, the strength of the sintered body is known to depend on the constituent particle diameter, but in the structure in which the fine particles are densely sintered, the size of the microcracks inherent in the sintered body structure is reduced, so that the sintered body is sintered. It can be expected that the strength as a body is improved, and that when used as a cutting tool, the surface roughness of the work material is improved by a tool material having a fine particle diameter.
[0010]
That is, the problem to be solved by the present invention is to relax the conventional severe sintering conditions of 6.5 GPa or more, and to provide a high-purity cBN sintered body having a fine particle size of a sintered body useful as a cutting tool material. To enable synthesis in the 50,000 atmospheres range where current industrial production technology can be applied.
[0011]
[Means for Solving the Problems]
The process of synthesizing a high-purity cBN sintered body without adding a sintering aid was examined. It was difficult to reduce the synthesis pressure in the process using the phase transition from the low-pressure phase boron nitride described above. In the pressure region, the low-pressure phase component of the raw material remains in the sintered body, and a good sintered body cannot be obtained.
[0012]
On the other hand, in the latter process of directly sintering cBN particles, no inhibiting factors such as low-pressure phase boron nitride remain in low-pressure sintering. As a result of evaluating the sintering characteristics of cBN particles having an initial particle size of 0.5 to 1.2 μm, 2 to 4 μm, and 8 to 12 μm without adding a sintering aid in the 77,000 atmospheric pressure region, the smaller the particle size, the more the particles are sintered. It was found that the lower temperature limit at which light is easy to proceed and translucency is low (T. Taniguchi, et.al., J. Mater. Res., 14, 162 (1999), T. Taniguchi Sci & Technol. High Press , in Proc.AIRAPT-17 (Univ. Press (India), 2000) pp893.).
[0013]
Among the series of sintering behavior of cBN particles found here, the formation of a dense and strong sintered body structure is based on the premise that the bonds between the constituent particles are well formed. It was noted that the effect of surface energy, which acts as a driving force when the constituent particles try to reduce their surface area, is important. That is, since the fine particles have a larger surface area than the coarse particles, the driving force for sintering is high, and it can be considered that the sintering and densification easily proceed. This idea, which was verified in the cBN particle sintering experiment in the 77,000 atmosphere region, is thought to be applicable to the sintering of cBN particles in the low pressure region. The sintering behavior of unused fine particles has not been clarified. Therefore, we attempted high-pressure sintering in the low-pressure region without adding a sintering aid, using finer cBN ultrafine particles as raw materials than those used in the 77,000-atmosphere region.
[0014]
Although there is no particle size standard based on a standardized measurement method for cBN ultrafine particles, the particle size range is 0 to 1/10, 0 to 1/4, 0 to 1/2, 0 to 1, 0 to 2, 1-3, 2-4, 4-8 are divided into the standard particle size standard (the center particle size is the intermediate value of the particle size width) is commercially available, in this specification, The particle size width of the cBN ultrafine particles is based on such classification.
[0015]
In order to advance the sintering without adding a sintering aid, it is necessary to set the sintering temperature higher in order to promote the solid phase reaction of the substance. The stability of is an important condition. The upper limit of the sintering temperature of high-pressure stable phases such as cBN and similar super-hard materials such as diamond is defined below the thermodynamically stable temperature conditions of these materials. At a temperature higher than this, reverse conversion to the low-pressure phase proceeds and a good sintered body cannot be obtained.
[0016]
Focusing on this thermodynamic stability, cBN is stable up to a higher temperature than diamond, and the sintering temperature condition in the 50,000 atm region is about 1500 ° C for diamond, whereas cBN is about 1900 ° C. Setting up to high temperatures is possible. Considering this thermodynamic stability condition, it is possible to make a working hypothesis that fine cBN particles can be sintered under a lower pressure condition than before.
[0017]
In the range of 5 to 60,000 atmospheres, commercially available cBN powders with various particle sizes ranging from 0 to 0.1 μm, 0 to 0.25 μm, and 0 to 1 μm (hereinafter referred to as “initial particle size”) range from 1400 to 2000 ° C. Then, the properties of the obtained sintered body were evaluated. When the obtained sintered body has an initial particle size of 0 to 0.25 μm and 0 to 1 μm, the characteristics are varied despite controlling the synthesis conditions, the sintered structure is inhomogeneous and the strength is also high. It was insufficient.
[0018]
On the other hand, when the initial particle size was 0 to 0.1 μm, a dense cBN sintered body was obtained without adding a sintering aid under the conditions of 50,000 atm, pressure of 1600 ° C. or higher, and temperature. The Vickers hardness of the sintered body was about 45 GPa (test load 9.8 N), and the characteristics greatly exceeded those of the cBN composite sintered body to which the sintering aid was added. The constituent particle diameter after sintering was an average particle diameter of about 0.1 to 0.2 μm, which made it possible to synthesize a high-purity ultrafine particle cBN sintered body.
[0019]
On the other hand, points to be noted in optimizing the sintering conditions of the fine particles are the aggregation state of the raw material powder and the contamination state of the particle surface. In the commercially available cBN ultrafine particle powder, primary particles are aggregated to a few microns due to aggregation. Therefore, these cBN ultrafine particles were washed. Although cBN is stable against strong acids, it is known to be etched at high temperature with an alkaline solution. The cBN ultrafine particles having a particle size in the range of 0 to 0.1 μm were cleaned with a 5 molar aqueous alkali solution, washed with pure water, and freeze-dried to obtain a raw material powder for sintering.
[0020]
This powder was subjected to high-pressure sintering in the range of 1500 to 1800 ° C. at 4.5 to 60,000 atmospheres, and the obtained sintered body was evaluated. As a result, a dense cBN sintered body was obtained without adding a sintering aid under the conditions of a lower limit of 50,000 atm, a pressure of 1600 ° C., and a temperature condition. At this time, a translucent sintered body was obtained at a sintering temperature of 1800 ° C. The Vickers hardness of the sintered body was about 45 GPa (test load 9.8 N), and the characteristics greatly exceeded those of the cBN composite sintered body to which the sintering aid was added. In addition, the average particle size of the sintered constituent particles measured by scanning and transmission electron microscope observation is about 0.1 to 0.2 μm, which enables the synthesis of translucent high-purity ultrafine particle cBN sintered bodies. It became.
[0021]
From the above experiments, high hardness having an initial particle size 50,000-60,000 atm cBN ultrafine powder 0~0.1Myuemu, pressure below 1600 ° C. or higher 1900 ° C., a dense and fine structure by sintering at a temperature We found that high-purity ultrafine particle cBN sintered bodies can be synthesized. The present invention has been made based on this finding.
[0022]
That is, the present invention intends to provide a high-hardness ultrafine particle cBN sintered body that cannot be obtained by the prior art and the prior art by adopting the configurations described in (1) to (3) below. It is.
[0023]
(1) using a cBN ultrafine particle size range 0~0.1μm as a raw material powder of ultrafine particles cBN sintered body 5-6 GPa, 1600 or 1900 ° C. under a pressure, cBN by sintering at a temperature a total of 100% of the content and unavoidable impurities, high hardness, high-purity ultrafine particle cBN sintered body having an average particle size of 0.1 ~ 0.2 μ m of the sintered body is obtained.
[0024]
(2) 50,000 atmospheres the cBN fine particles powder subjected to the cleaning treatment of the particle surface by an alkaline solution, a pressure of less than 1900 ° C. 1800 ° C. or higher, by sintering without the addition of sintering aid at a temperature , a total of 100% of the cBN content and unavoidable impurities, transparent high hardness, high-purity ultrafine particle cBN sintered body having an average particle size of 0.1 ~ 0.2 μ m of the sintered body is obtained.
[0025]
(3) If the pressure is less than 50,000 atm under the synthesis conditions (1) and (2 ) above, a good sintered body cannot be obtained regardless of the sintering temperature. Further, when the sintering temperature is lower than 1600 ° C., a strong sintered body structure cannot be obtained, and when the sintering temperature is 1900 ° C. or higher, remarkable grain growth is observed, and the strength of the sintered body decreases. For this reason, the conditions for obtaining a good sintered body are a temperature range of 1600 to less than 1900 ° C. in the range of 5 to 60,000 atmospheres, and 1800 ° C. to less than 1900 ° C. in order to obtain a translucent cBN sintered body. Become. When raw material powder having an initial particle size of 0 to 0.1 μm is used under these conditions, the average particle size of the sintered body is about 0.1 to 0.2 μm, and the Vickers hardness is about 45 GPa (test load 9.8 N). The characteristic which exceeded the characteristic of the composite sintered compact which added the conventional auxiliary agent was acquired.
[0026]
【Example】
Hereinafter, the present invention will be described based on examples and drawings.
Example 1
Commercially available particle sizes range (initial particle diameter) 0~0.1μm cBN powder was filled into a tantalum capsule high pressure vessel 5.5 GPa by a belt-type ultra high pressure generating apparatus, a pressure of 1600 ° C., 30 minutes at a temperature condition Sintered. At this time, no cBN sintering aid was added. The heating rate is about 5 ° C / min. After sintering, the pressure was reduced after cooling at about 500 ° C./min, and the sample was collected together with the tantalum capsule in the pressure vessel. The tantalum capsules were removed by mechanical or chemical treatment (hydrofluoric acid-mixed nitric acid), and the sample was collected.
[0027]
The sample was evaluated by hardness measurement, observation of the fracture surface by a scanning electron microscope (SEM) and transmission microscope (TEM), and identification of phases by X-ray diffraction after polishing with diamond abrasive grains. As shown in FIG. 1, from the X-ray diffraction pattern, the sintered body is a single phase of cBN, and has an average particle diameter of about 0.1 to 0.2 μm according to the SEM shown in FIG. 2 and the TEM observation shown in FIG. At a test load of 9.8 N, the Vickers hardness was about 45 GPa, and the obtained sintered body was shown to be a high hardness and high purity ultrafine particle cBN sintered body.
[0028]
Example 2
A commercially available cBN powder with an initial particle size of 0 to 0.1 μm was filled in a fluororesin sealed container (internal volume 100 ml) together with 2 gr of 5 mol of sodium hydroxide and held at 150 ° C. for 24 hours. After cooling this to room temperature, the alkaline solution in the fluororesin container was washed with pure water. After washing 5 times with pure water more than 100 times the initial alkaline solution, freeze drying treatment was performed on cBN ultrafine particle powder soaked in about 20 cc of pure water to obtain a raw material powder for sintering . This powder was filled into a tantalum capsule in a high-pressure vessel and subjected to the same high-pressure and high-temperature treatment as in Example 1.
[0029]
Phase identification by X-ray diffraction, structural observation of the fracture surface by SEM and TEM, and evaluation of the sintered body by Vickers hardness test on the polished surface were performed. From the X-ray diffraction pattern of the sintered body shown in FIG. 1, the sintered body is a single phase of cBN, and the average particle diameter is about 0.1 to 0.2 μm as shown in the SEM and TEM observation photographs of FIGS. It is a homogeneous structure without coarse particles due to abnormal grain growth. At a test load of 9.8 N, the Vickers hardness was about 45 GPa, and the obtained sintered body was shown to be a high hardness and high purity ultrafine particle cBN sintered body. It was also found that when the sintering temperature was 1800 ° C., the sintered body obtained under the same conditions exhibited translucency.
[0030]
Example 3
In the pretreatment of the cBN fine powder described in Example 1, anhydrous NaOH was melted in a zirconia crucible and charged with about 5 g of cBN fine particle powder while being kept at about 400 ° C. and boiled for about 3 minutes. The same cleaning treatment as in Example 2 was performed. This treatment was performed on cBN particles having an initial particle size of 0 to 0.1 μm, then washed with pure water, freeze-dried, and sintered at a high pressure of 50,000 atm and 1600 ° C. The obtained sample was a high-hardness and high-purity ultrafine particle cBN sintered body as described in Example 2.
[0031]
Comparative Example 1
In the process described in Example 1, sintered bodies were prepared using cBN particles having initial particle diameters of 0 to 0.25 μm and 0 to 1 μm as raw materials. Under the sintering conditions of 5 to 60,000 atmospheres and 1600 to 1800 ° C., the obtained sintered body has a Vickers hardness of 30 GPa (test load 9.8 N) or less, and the initial particle size 0 to 0.1 seen in Example 1 Compared to the case of μm, the strength was remarkably inferior. From the comparative example, it was clarified that the particle size of cBN is important for the high-strength ultrafine particle sintered body manufacturing method and the development of translucency.
[0032]
Comparative Example 2
In the process described in Example 1, under the sintering conditions of 45,000 atm and 1600-1800 ° C., the obtained sintered body had a Vickers hardness of 30 GPa (test load 9.8 N) or less. Further, when sintered at 1500 ° C. in the region of 50,000 to 60,000 atmospheres, the obtained sintered body had a Vickers hardness of 30 GPa (test load 9.8 N) or less. When sintered at 1900 ° C. in the same pressure region, the strength of the obtained sintered body was remarkably reduced by grain growth, and the Vickers hardness was 30 GPa (test load 9.8 N). From the comparative example, it was clarified that the optimization of the sintering temperature and pressure is important for the high-strength and light-transmitting behavior in the manufacturing method of the high purity ultrafine particle sintered body.
[0033]
In each of the examples and comparative examples, the high-purity cBN sintered body was prepared in the present invention in the region of 50,000 to 60,000 atm. Indicates that processing is important. If the raw material powder is fine, the driving force for sintering is large and sintering is likely to proceed. To achieve this effect, however, it is necessary to select an appropriate initial particle size and clean the particle surface. Preprocessing is important. In the present invention, a cBN ultrafine particle powder having an appropriate particle size is selected, and preferably subjected to an appropriate pretreatment to be cleaned, so that the sintering aid can be used in a region of 50,000 atmospheres, which is impossible with the prior art. A high hardness and high purity ultrafine particle cBN sintered body was obtained without using.
[0034]
【The invention's effect】
The present invention is valuable in that a high-purity cBN sintered body having a total content of cBN and inevitable impurities of 100% can be synthesized in the pressure and temperature range for synthesizing a normal cBN composite sintered body, and at the same time, It became possible to supply an ultrafine cBN sintered body having an average particle size of about 0.1 to 0.2 μm, which could not be obtained by the technology.
[0035]
Innovations in machining tools such as those seen in the present invention improve productivity and reduce energy consumption in the machining field, consumption of cooling water from the transition from conventional wet to dry processes, and reduction of industrial wastewater Is expected to be possible. Further, as the polishing / grinding ratio is improved, the amount of polishing waste and grinding fluid discharged is reduced as compared with the use of conventional abrasive grains. That is, the amount of waste associated with processing can be reduced, and in addition to resource saving and energy saving, a great effect such as contributing to environmental conservation can be expected.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of a high-purity ultrafine particle cBN sintered body synthesized in Example 1. FIG.
FIG. 2 is a drawing-substitute scanning electron micrograph of a fracture surface of a high-purity ultrafine particle cBN sintered body synthesized in Example 1.
FIG. 3 is a transmission electron micrograph in place of a drawing of a fracture surface of a high purity ultrafine particle cBN sintered body synthesized in Example 1.

Claims (3)

粒径幅0〜0.1μmの立方晶窒化ホウ素粉末(以下、cBNとして記載する)をcBNが熱力学的に安定な5GPa以上 6GPa 以下、1600℃以上1900 ℃未満の高圧高温条件で焼結し、 cBN 含有量及び不可避の不純物の合計が 100% で、焼結体の平均粒子径が 0.1 0.2 μ m の焼結体を製造することを特徴とする高純度超微粒子cBN焼結体の製造法。Grain radial width 0~0.1μm of cubic boron nitride powder (hereinafter referred to as cBN) the cBN is thermodynamically stable 5GPa more 6GPa less, sintering at high pressure and temperature conditions of less than 1600 ° C. or higher 1900 ° C., a total of 100% of the cBN content and unavoidable impurities, producing an average particle size of you characterized by producing a sintered body of 0.1 ~ 0.2 μ m high purity ultrafine particle cBN sintered body of the sintered body mETHODS. 前記cBN粉末をアルカリ水溶液またはアルカリ融液中で処理した後に、焼結することを特徴とする請求項記載の高純度超微粒子cBN焼結体の製造法。 After the cBN powder was treated with an aqueous alkaline solution or alkaline melt in producing how high purity ultrafine particle cBN sintered body according to claim 1, wherein the sintering. 前記cBN粉末をThe cBN powder 18001800 ℃以上の温度条件で焼結し、透光性を有する焼結体を製造することを特徴とする請求項2記載の高純度超微粒子The high-purity ultrafine particles according to claim 2, wherein the sintered body has a light-transmitting property by being sintered at a temperature condition of not less than ° C. cBNcBN 焼結体の製造方法。A method for producing a sintered body.
JP2002364754A 2002-12-17 2002-12-17 Manufacturing method of high purity ultrafine cubic boron nitride sintered body Expired - Lifetime JP3882078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364754A JP3882078B2 (en) 2002-12-17 2002-12-17 Manufacturing method of high purity ultrafine cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364754A JP3882078B2 (en) 2002-12-17 2002-12-17 Manufacturing method of high purity ultrafine cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JP2004196567A JP2004196567A (en) 2004-07-15
JP3882078B2 true JP3882078B2 (en) 2007-02-14

Family

ID=32762484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364754A Expired - Lifetime JP3882078B2 (en) 2002-12-17 2002-12-17 Manufacturing method of high purity ultrafine cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP3882078B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192474A1 (en) 2009-01-30 2010-08-05 Lehigh University Ultrahard stishovite nanoparticles and methods of manufacture
RU2525005C2 (en) * 2011-02-28 2014-08-10 Закрытое Акционерное Общество "Микробор Нанотех" Method of producing polycrystalline composite material
RU2587364C2 (en) * 2014-11-13 2016-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") Method of making articles from powder composition based on superhard materials
CN110342943B (en) * 2019-07-18 2021-08-20 燕山大学 Method for synthesizing binderless polycrystalline boron nitride block under industrial pressure and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880616A (en) * 1972-02-03 1973-10-29
JPS595547B2 (en) * 1982-04-07 1984-02-06 科学技術庁無機材質研究所長 Method for manufacturing cubic boron nitride sintered body
JP2590413B2 (en) * 1989-11-17 1997-03-12 科学技術庁無機材質研究所長 Method for producing translucent high-purity cubic boron nitride sintered body
JP3223275B2 (en) * 1992-02-04 2001-10-29 東芝タンガロイ株式会社 Method for producing cubic boron nitride sintered body
JP3346117B2 (en) * 1995-08-21 2002-11-18 三菱マテリアル株式会社 Method for producing cubic boron nitride sintered body having excellent wear resistance
JPH10158065A (en) * 1996-11-28 1998-06-16 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact and its production
JP4106574B2 (en) * 1998-02-28 2008-06-25 住友電気工業株式会社 Cubic boron nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2004196567A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
CA2585437C (en) Cubic boron nitride compact
JP5607846B2 (en) Abrasive grains with unique morphology
CN107973606B (en) Polycrystalline cubic boron nitride, preparation method and application thereof, and cutter containing polycrystalline cubic boron nitride
JP6293669B2 (en) Sintered cubic boron nitride cutting tool
JP2008019164A (en) Superfine particulate cubic boron nitride sintered compact
JP4684599B2 (en) Method for producing cubic boron nitride
ZA200504183B (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
JP4811853B2 (en) Manufacturing method of high purity cubic boron nitride sintered body
CN103569976A (en) Ultrahigh-hardness nano-twin crystal boron nitride bulk material and synthesis method thereof
CN110342943B (en) Method for synthesizing binderless polycrystalline boron nitride block under industrial pressure and application thereof
RU2312844C2 (en) Heat-resistant composite diamond sintered article and the method of its production
CN114315361A (en) Nanocrystalline silicon carbide superhard block and preparation method thereof
JP3882078B2 (en) Manufacturing method of high purity ultrafine cubic boron nitride sintered body
CN107531578B (en) Polycrystalline abrasive structure
US8426043B2 (en) Boron suboxide composite materials
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
RU2455262C2 (en) Solution-based method of producing silicon carbide mixture with oxide sintering activator and method of producing ceramic based thereon
CN114763306A (en) Layered boron nitride grain boundary phase toughened zinc blende boron nitride ceramic and preparation method thereof
JPS60215570A (en) High strength zirconia sintered body dice
CN114787315A (en) Breakable diamond abrasive grain and method for producing same
JP2010024103A (en) Method for producing high-purity boron nitride sintered compact having high hardness and high toughness
JPS60239357A (en) Member for high strength zirconia cutting tool
Ben–Arfaa et al. The influence of processing parameters on morphology and granulometry of a wet comminuted sol–gel glass powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3882078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term