JP3864165B2 - Thermal flow meter - Google Patents

Thermal flow meter Download PDF

Info

Publication number
JP3864165B2
JP3864165B2 JP2004170954A JP2004170954A JP3864165B2 JP 3864165 B2 JP3864165 B2 JP 3864165B2 JP 2004170954 A JP2004170954 A JP 2004170954A JP 2004170954 A JP2004170954 A JP 2004170954A JP 3864165 B2 JP3864165 B2 JP 3864165B2
Authority
JP
Japan
Prior art keywords
flow rate
pipe
thermal
sensor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004170954A
Other languages
Japanese (ja)
Other versions
JP2005351696A (en
Inventor
英司 下田
直基 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2004170954A priority Critical patent/JP3864165B2/en
Publication of JP2005351696A publication Critical patent/JP2005351696A/en
Application granted granted Critical
Publication of JP3864165B2 publication Critical patent/JP3864165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は主管路に設けた分流管路内に熱式流量計測部を設けて主管路の流量を測定する方式の熱式流量計に関するものであって、気体や液体の質量流量の測定に適したものである。   The present invention relates to a thermal flow meter of a type in which a thermal flow rate measuring unit is provided in a shunt pipe provided in a main pipeline to measure the flow rate of the main pipeline, and is suitable for measuring a mass flow rate of gas or liquid. It is a thing.

熱式流量計は可動部が無く、高感度で微小流量の測定が可能であって気体や液体の流量測定に用いられる。特に気体においては圧力の変動に依存することなく質量流量が測定できるといった特徴を有するため、適用範囲が拡大しつつある。一方、大口径の配管の流量の測定においても熱式流量計自体は適用可能であり、配管中に流量計測部すなわちセンサ等を挿入すれば測定ができる。また大口径の配管における流量を測定する方法として、分流管路を設けここに流量計測部を取り付けるものもある。この方法は流量を測定すべき主管路に流量に依存して差圧を発生させるためのやオリフィスや細孔の集合体であるフローエレメントなどを設け、これの上流側と下流側を連通する分流管路を設けるものである。この方法は主管路の口径が変わっても流量計測部がある分流管路の部分は同じものが使用でき、汎用性が優れているためコスト的に有利である。   Thermal flow meters have no moving parts, can measure minute flow rates with high sensitivity, and are used for gas and liquid flow measurement. In particular, gas has the feature that the mass flow rate can be measured without depending on the fluctuation of pressure, and therefore the application range is expanding. On the other hand, the thermal flow meter itself can also be applied to the measurement of the flow rate of a large-diameter pipe, and can be measured by inserting a flow rate measuring unit, that is, a sensor or the like in the pipe. As a method for measuring the flow rate in a large-diameter pipe, there is a method in which a flow dividing unit is provided and a flow rate measuring unit is attached thereto. In this method, a main flow line whose flow rate is to be measured is provided with a flow element or the like for generating a differential pressure depending on the flow rate, or an orifice or an aggregate of pores. A pipe line is provided. This method is advantageous in terms of cost because the same part of the branch pipe having the flow rate measuring unit can be used even if the diameter of the main pipe changes, and the versatility is excellent.

上記のような分流管路に流量計測部を設けた熱式流量計として特開昭49−54060号公報には、分流管路として細い管を使用してその一部分に発熱線を巻付けた発熱部を設け、さらにこの発熱部より上流側と下流側の少し離れた位置にそれぞれ温度センサを取り付けた熱式流量計が示されている。この流量計においては発熱部の表面温度を流体温度より一定温度高く保持しておき、上流側と下流側の温度センサによって検出された温度の差により流量を測定するものである。すなわち流量がゼロであれば上流側と下流側の温度センサの測定温度は同じであるが、流量が大きくなるに従って下流側の温度センサの測定温度が高くなるというものである。
特開昭49−54060号公報
Japanese Patent Application Laid-Open No. 49-54060 discloses a heat type flow meter in which a flow rate measuring unit is provided in a shunt pipe as described above. In addition, a thermal flow meter is shown in which a temperature sensor is provided at a position slightly away from the heat generating portion on the upstream side and the downstream side. In this flow meter, the surface temperature of the heat generating part is kept higher than the fluid temperature, and the flow rate is measured by the difference in temperature detected by the upstream and downstream temperature sensors. That is, if the flow rate is zero, the measured temperature of the upstream and downstream temperature sensors is the same, but the measured temperature of the downstream temperature sensor increases as the flow rate increases.
JP-A-49-54060

分流管路として細い管を使用してその一部分に発熱線を巻付けた発熱部を設ける方式の熱式流量計は前記の特開昭49−54060号公報のもの以外にもあるが、発熱部の熱が分流管路である細い管を伝導して温度センサの測定温度を上昇させ、しかもその温度上昇に対する影響が流量によっても変化するなど誤差の要因があり、精度の向上が困難であった。そこで本発明は主管路に設けた分流管路内に熱式流量計測部を設ける方式の熱式流量計において誤差の要因が少なく高精度のものであって、特に熱式流量計において問題となる低流量における誤差やゼロ点のドリフトが少ないものを提供することを目的とする。   Although there is a thermal flow meter of a type in which a thin pipe is used as a shunting pipe and a heating part is provided with a heating wire wound around a part thereof, there is a thermal flow meter other than that disclosed in the above-mentioned JP-A-49-54060. It is difficult to improve accuracy due to errors such as the temperature of the temperature sensor increases the temperature measured by the temperature sensor by passing through a thin pipe that is a shunt pipe, and the influence on the temperature rise also varies depending on the flow rate. . Therefore, the present invention has a high accuracy with few factors of error in a thermal flow meter of a type in which a thermal flow rate measurement unit is provided in a shunt pipe provided in a main pipeline, and particularly a problem in a thermal flow meter. The purpose is to provide a low flow rate error and zero drift.

本発明は前記課題を解決するものであって、主管路に設けた差圧発生機構とこれの上流側と下流側を連通する分流管路を有し、分流管路に設けた熱式流量計測部で流量を測定することにより主管路の流量を求める熱式流量計において、前記熱式流量計測部は流体温度センサと発熱式流量センサとを分流管路内に間隔を置いて設け、発熱式流量センサの温度と流体温度センサの測定温度との差を一定に維持するための発熱式流量センサの加熱電力に基づいて流量を計測するものであって、熱式流量計測部が設けられた個所における分流管路は主管路の方向に関わりなく垂直方向であって下流側が上になっており、かつ分流管路内において発熱式流量センサは流体温度センサに対して上下方向同位置ないし上方位置に設けられており、さらに前記分流管路には流量調節用絞り機構が設けられていることを特徴とする熱式流量計である。ここにおいて、流量調節用絞り機構は絞りの開度が可変になっていることも特徴とする。また主管路と分流管路の間の継手において、熱式流量計測部が設けられた個所における分流管路を垂直方向で下流側が上になるように位置させるための取付け方向の変更機構が設けられていることも特徴とする。   The present invention solves the above-mentioned problem, and has a differential pressure generating mechanism provided in a main pipe and a diversion pipe communicating with the upstream side and the downstream side of the differential pressure generation mechanism, and a thermal flow rate measurement provided in the diversion pipe In the thermal type flow meter for obtaining the flow rate of the main pipe line by measuring the flow rate at the head part, the thermal flow rate measuring part is provided with a fluid temperature sensor and a heat generation type flow rate sensor at intervals in the shunt pipe, The flow rate is measured based on the heating power of the heat generation type flow rate sensor to maintain the difference between the temperature of the flow rate sensor and the measurement temperature of the fluid temperature sensor, and the location where the thermal flow rate measurement unit is provided The shunt pipe in Fig. 2 is vertical regardless of the direction of the main pipe, and the downstream side is up, and in the shunt pipe, the exothermic flow sensor is located at the same position in the vertical direction or above the fluid temperature sensor. Further provided The flow conduit is a thermal flow meter, wherein a flow rate adjusting throttle mechanism is provided. Here, the throttle mechanism for adjusting the flow rate is also characterized in that the opening degree of the throttle is variable. In addition, in the joint between the main pipe and the shunt pipe, a mechanism for changing the mounting direction is provided to position the shunt pipe at the position where the thermal flow rate measuring unit is provided so that the downstream side is in the vertical direction. It is also characterized by.

本発明の分流管路を設けて測定する方式の熱式流量計によれば、熱式流量計測部が設けられた個所における分流管路は主管路の方向に関わりなく垂直方向であって下流側が上になっており、かつ分流管路内において発熱式流量センサは流体温度センサに対して上下方向同位置ないし上方位置に設けられているので、発熱式流量センサの熱で生ずる対流によって流体温度センサの測定値に誤差が生ずることがない。したがって低流量における誤差やゼロ点のドリフトが小さい熱式流量計が提供できる。   According to the thermal flow meter of the present invention for measuring by providing a shunt pipe, the shunt pipe at the place where the thermal flow measuring unit is provided is in the vertical direction regardless of the direction of the main pipe, and the downstream side is Since the heat generation type flow rate sensor is provided at the same position in the vertical direction or above the fluid temperature sensor in the shunt pipe, the fluid temperature sensor is caused by the convection generated by the heat of the heat generation type flow rate sensor. There is no error in the measured value. Therefore, it is possible to provide a thermal type flow meter with small error at low flow rate and small zero point drift.

図1は本発明の熱式流量計の断面図である。この図においては流量を測定すべき主管路1には上方に向かって流体が流れるものとする。主管路1には差圧発生機構としてオリフィス2が設けられており、これの上流側と下流側にそれぞれ分流管路3の流入口4と流出口5が接続されている。本発明における分流管路3は内径が10mm程度であるので、この部分で生ずる圧力損失は少ない。この点先に述べた特開昭49−54060号公報の熱式流量計では、同公報には特に記載はないが分流管路の内径は通常0.5mm程度であるので圧力損失が大きくなる。   FIG. 1 is a sectional view of a thermal flow meter of the present invention. In this figure, it is assumed that a fluid flows upward in the main pipe line 1 whose flow rate is to be measured. The main pipe 1 is provided with an orifice 2 as a differential pressure generating mechanism, and an inlet 4 and an outlet 5 of the branch pipe 3 are connected to the upstream side and the downstream side, respectively. Since the internal diameter of the shunt pipe 3 in the present invention is about 10 mm, the pressure loss generated in this portion is small. In the thermal flow meter disclosed in Japanese Patent Application Laid-Open No. 49-54060 described above, the pressure loss increases because the inner diameter of the branch pipe is usually about 0.5 mm, although there is no particular description in the publication.

また分流管路3には熱式流量計測部6が設けられているが、これは流体温度センサ7と発熱式流量センサ8からなり、これらは図示しない測定回路に接続されている。流体温度センサ7は一般には金属による抵抗温度計が使用されるが、サーミスタによる抵抗温度計や熱電対温度計なども使用可能である。これらの温度測定素子は通常はステンレス鋼製のシース(金属外被)に封入したものが使用されるがこれに限定するものではない。また発熱式流量センサ8はそれ自体は上記の流体温度センサと同様に抵抗温度計や熱電対温度計などからなるが、加熱した状態で使用される。通常は流体温度センサ7と同様にシースに封入されている。加熱は抵抗温度計では抵抗体自体を通電加熱すれば良いが、シースに通電して加熱する方法も採用でき、この方法は熱電対温度計にも適用できる。   The shunt pipe 3 is provided with a thermal flow rate measuring unit 6, which includes a fluid temperature sensor 7 and a heat generation type flow rate sensor 8, which are connected to a measurement circuit (not shown). The fluid temperature sensor 7 is generally a metal resistance thermometer, but a thermistor resistance thermometer or thermocouple thermometer can also be used. These temperature measuring elements are usually encapsulated in a stainless steel sheath (metal sheath), but are not limited thereto. The exothermic flow sensor 8 itself is composed of a resistance thermometer, a thermocouple thermometer, etc., like the fluid temperature sensor, but is used in a heated state. Usually, like the fluid temperature sensor 7, it is enclosed in a sheath. In the resistance thermometer, the resistance itself may be heated by energizing the resistor itself, but a method of energizing and heating the sheath can also be adopted, and this method can also be applied to a thermocouple thermometer.

前記流体温度センサ7と発熱式流量センサ8とは分流管路3内において間隔を置いて設けられている。そして発熱式流量センサ8は通電加熱されることにより流体温度センサ7の測定温度より一定温度だけ高い温度、たとえば10〜100℃高い温度に維持されている。このとき発熱式流量センサ8に流体の流れが当たると熱が奪われるので、同じ温度を維持するためには流速に応じて加熱電力を大きくする必要がある。したがって発熱式流量センサの温度と流体温度センサの測定温度との差を一定に維持するための発熱式流量センサの加熱電力に基づいて、流体の温度の影響を受けずに流量を計測することができる。なお発熱式流量センサを一定電力で加熱しておき、発熱式流量センサの測定温度と流体温度センサの測定温度との差に基いて流量を計測することも可能であるが、前記の加熱電力に基いて測定する方が流体の温度上昇が少なくまた広い範囲の流量を正確に測定できる。   The fluid temperature sensor 7 and the exothermic flow rate sensor 8 are provided in the shunt pipe 3 with a space therebetween. The heat generation type flow rate sensor 8 is maintained at a temperature that is higher than the measurement temperature of the fluid temperature sensor 7 by a certain temperature, for example, 10 to 100 ° C. higher than the temperature measured by the fluid temperature sensor 7. At this time, when the fluid flow hits the exothermic flow sensor 8, heat is taken away. Therefore, in order to maintain the same temperature, it is necessary to increase the heating power in accordance with the flow velocity. Therefore, the flow rate can be measured without being affected by the temperature of the fluid based on the heating power of the heat generation type flow sensor for maintaining the difference between the temperature of the heat generation type flow sensor and the measured temperature of the fluid temperature sensor constant. it can. It is possible to heat the exothermic flow sensor with constant power and measure the flow rate based on the difference between the measured temperature of the exothermic flow sensor and the measured temperature of the fluid temperature sensor. The measurement based on this method has less temperature rise of the fluid and can accurately measure a wide range of flow rates.

ここで本発明においては図1に示すように、熱式流量計測部6が設けられた個所における分流管路3は垂直方向、すなわち重力の向きと平行な方向であって下流側が上になるようにする。分流管路3は主管路1から分岐して主管路に戻るから、真っすぐではありえず必ず途中で屈曲することになるが、垂直方向にするのは上記のように熱式流量計測部6が設けられた個所であって、分流管路の長さの中間点付近になるのが普通である。図1の例では主管路1も垂直になっているが、一般的に主管路の方向は様々であって流量計の方からは指定することは不可能である。このような主管路の方向やその中での流体の流れの向きに関わりなく、分流管路の熱式流量計測部が設けられた個所は垂直方向であって下流側が上になるようにするのである。   Here, in the present invention, as shown in FIG. 1, the shunt pipe 3 at the place where the thermal flow rate measuring unit 6 is provided is in the vertical direction, that is, the direction parallel to the direction of gravity, and the downstream side is up. To. Since the shunt line 3 branches off from the main line 1 and returns to the main line, it cannot be straight and is always bent halfway, but the vertical flow direction is provided by the thermal flow rate measuring unit 6 as described above. Usually, it is near the midpoint of the length of the shunt line. In the example of FIG. 1, the main pipeline 1 is also vertical, but generally the direction of the main pipeline is various and cannot be specified from the flowmeter. Regardless of the direction of the main pipe and the direction of the fluid flow in the main pipe, the location where the thermal flow rate measurement unit of the shunt pipe is provided in the vertical direction and the downstream side is on the upper side. is there.

さらに本発明においては、分流管路3内で熱式流量計測部6を構成する発熱式流量センサ8は流体温度センサ7に対して上下方向同位置ないし上方位置に設ける。たとえば図1においては発熱式流量センサ8は流体温度センサ7に対して上方位置に設けられている。このように配置することにより特に低流量や流量ゼロのときに発熱式流量センサ8に触れて温度が上昇した流体が上昇流に乗って流体温度センサ7に流れることが無くなる。したがって低流量のときの測定誤差や流量ゼロのときのゼロ点のドリフトを少なくできる。   Further, in the present invention, the heat generation type flow rate sensor 8 constituting the thermal type flow rate measuring unit 6 in the shunt pipe 3 is provided at the same position in the vertical direction or above the fluid temperature sensor 7. For example, in FIG. 1, the heat generation type flow rate sensor 8 is provided at an upper position with respect to the fluid temperature sensor 7. With this arrangement, the fluid whose temperature has risen by touching the heat-generating flow rate sensor 8, especially when the flow rate is low or zero, does not ride on the upward flow and flow to the fluid temperature sensor 7. Therefore, measurement error at low flow rate and zero point drift at zero flow rate can be reduced.

また図1においては流体温度センサ7と発熱式流量センサ8は同じ流線上にあるように、すなわちすなわち上下重なる位置に設けられているが、流線に直角に並べて設けてもよい。図2はこのような流体温度センサと発熱式流量センサの配置を示す図である。図2において10は分流管路内壁の一部を示しているが、流体温度センサ7と発熱式流量センサ8は流線に直角に、すなわち同じ上下位置に並べて設けられている。さらには図2において流体温度センサ7を流線に沿って下方に移動し(7aで示す)、流体温度センサと発熱式流量センサが流線に対して斜めに並んだ位置にしてもよい。このように本発明においてはいずれにしても発熱式流量センサは流体温度センサに対して上下方向同位置ないし上方になるような位置関係にする。   In FIG. 1, the fluid temperature sensor 7 and the heat generation type flow rate sensor 8 are provided on the same stream line, that is, provided at positions that overlap each other, but may be provided side by side at right angles to the stream line. FIG. 2 is a view showing the arrangement of such a fluid temperature sensor and a heat generation type flow rate sensor. In FIG. 2, reference numeral 10 denotes a part of the inner wall of the shunt pipe, but the fluid temperature sensor 7 and the heat generation type flow rate sensor 8 are provided at right angles to the stream line, that is, at the same vertical position. Further, in FIG. 2, the fluid temperature sensor 7 may be moved downward along the stream line (indicated by 7a), and the fluid temperature sensor and the heat generation type flow rate sensor may be positioned obliquely with respect to the stream line. Thus, in any case, in the present invention, the exothermic flow sensor is in a positional relationship such that it is in the same position in the vertical direction or above the fluid temperature sensor.

また先に述べたように、本発明においては分流管路の熱式流量計測部が設けられた個所を垂直方向で下流側が上になるようにしたため、低流量や流量ゼロのときに発熱式流量センサから発生する上昇流が流体温度センサの所に流れるのをさらに確実に防止できる。すなわちもし分流管路が水平であると発熱式流量センサから発生する上昇流が上側の管壁に当たって横に流れたり反転した気流となり、流体温度センサに達するおそれがあるが、垂直で下流側が上にすることによりこれを防止できる。従来の流体温度センサと発熱式流量センサとを分流管路内に間隔を置いて設ける方式の熱式流量計においては、これらセンサの取り付け位置において分流管路は水平方向になっていたが、本発明においてはこのように垂直方向で下流側が上になるようにするのである。   In addition, as described above, in the present invention, the portion where the thermal flow rate measuring unit of the shunt pipe is provided is arranged in the vertical direction so that the downstream side is on the upper side. It is possible to more reliably prevent the upward flow generated from the sensor from flowing to the fluid temperature sensor. That is, if the shunt pipe is horizontal, the upward flow generated from the exothermic flow sensor hits the upper pipe wall and flows sideways or reverses, which may reach the fluid temperature sensor. This can be prevented. In the conventional thermal flow meter in which the fluid temperature sensor and the exothermic flow sensor are provided in the shunt pipe with a space, the shunt pipe is in the horizontal direction at the mounting position of these sensors. In the present invention, the downstream side is thus directed upward in the vertical direction.

また発熱式流量センサの分流管への挿入深さは、先端部が分流管路の中心位置から奥寄りの管壁近傍(先端が管壁に接触するのは好ましくない)までの間になるように差し込むのが好ましく、これより浅いと測定精度が低下する。センサにおいて感度があるのは通常は先端部のみであるのに挿入深さが浅いと精度が低下する理由は、挿入深さが浅くて先端部が分流管路の中心位置より手前にあると発熱式流量センサにおいて流れに当たる部分が減少し、センサ自体を伝わって逃げる熱の影響が相対的に大きくなるためと考えられる。   Also, the insertion depth of the exothermic flow sensor into the shunt pipe is such that the tip is between the center position of the shunt pipe and the vicinity of the back pipe wall (it is not preferable that the tip touches the pipe wall). It is preferable to insert it in the case, and if it is shallower than this, the measurement accuracy is lowered. Sensors are usually sensitive only to the tip, but the accuracy decreases if the insertion depth is shallow.The reason is that if the insertion depth is shallow and the tip is in front of the center of the shunt line, heat is generated. This is considered to be because the portion of the flow rate sensor that hits the flow decreases and the influence of the heat that escapes through the sensor itself becomes relatively large.

また本発明においては図1に示すように分流管路内に流量調節用絞り機構9を設ける。これにより流量に対応した差圧を発生させ、主管路に設けたオリフィスなどの差圧発生機構との関係によって、主管路と分流管路との流量比を流量の測定範囲全体に亘って一定にすることができる。この流量調節用絞り機構は熱式流量計測部の上流側、下流側いずれに設けてもよいが熱式流量計測部における流れを乱すことがないようにする必要があり、特に上流側においては熱式流量計測部から充分離した位置に設けることが好ましい。図1の例においては流量調節用絞り機構9は分流管路の熱式流量計測部が設けられた直管部ではなく、これより下流の別の直管部に設けられている。   Further, in the present invention, as shown in FIG. 1, a flow rate adjusting throttle mechanism 9 is provided in the diversion pipe. As a result, a differential pressure corresponding to the flow rate is generated, and the flow rate ratio between the main pipe and the shunt pipe is made constant over the entire flow measurement range by the relationship with the differential pressure generation mechanism such as an orifice provided in the main pipe. can do. This flow regulating throttle mechanism may be provided on either the upstream side or downstream side of the thermal flow rate measuring unit, but it is necessary to prevent the flow in the thermal type flow rate measuring unit from being disturbed. It is preferable to provide it at a position charged and separated from the flow rate measuring unit. In the example of FIG. 1, the flow rate adjusting throttle mechanism 9 is provided not in the straight pipe part provided with the thermal flow rate measuring part of the shunt pipe, but in another straight pipe part downstream thereof.

またさらに流量調節用絞り機構を絞り開度が可変なものにしておくと分流管路への流体の分配比率を微調整できて好ましい。図3はそのような絞り開度が可変な流量調節用絞り機構の例を示す断面図である。図3において21は流路であって矢印の方向に流体が流れるようになっている。したがってこの流量調節用絞り機構は分流管路の曲がり部分に組み込んで使用するものである。22がオリフィスであって、この中にテーパを有する弁棒23を挿入する度合いによって絞り開度が変化する。図3では絞り開度が中間程度における位置を示しており、図面左端の部分をねじ回しで回すことによって絞り開度を調節できる。なお図3中24は、流量計の校正の際に絞り開度を調節した後にその位置で固定するためのロックナットである。   Further, it is preferable to make the flow rate adjusting throttle mechanism variable in the throttle opening so that the distribution ratio of the fluid to the branch flow path can be finely adjusted. FIG. 3 is a cross-sectional view showing an example of such a flow rate adjusting throttle mechanism having a variable throttle opening. In FIG. 3, reference numeral 21 denotes a flow path in which fluid flows in the direction of the arrow. Therefore, this throttle mechanism for adjusting the flow rate is used by being incorporated in the bent portion of the shunt pipe. Reference numeral 22 denotes an orifice, and the throttle opening varies depending on the degree of insertion of the tapered valve stem 23 therein. FIG. 3 shows a position where the throttle opening is at an intermediate level, and the throttle opening can be adjusted by turning the leftmost part of the drawing with a screwdriver. In FIG. 3, reference numeral 24 denotes a lock nut for adjusting at the position after adjusting the throttle opening when the flow meter is calibrated.

先に述べたように主管路の方向は様々であって流量計の方からは指定することは不可能であるが、流量計を主管路の向きによって作り分けるのは煩わしい。これに対処するため主管路と分流管路の間の継手において、熱式流量計測部が設けられた個所における分流管路を垂直方向で下流側が上になるように位置させるための取付け方向の変更機構を設けることが好ましい。   As described above, the directions of the main pipes are various and cannot be specified from the flowmeter, but it is troublesome to make the flowmeters according to the directions of the main pipes. In order to cope with this, in the joint between the main pipe and the shunt pipe, the mounting direction is changed so that the shunt pipe at the position where the thermal flow rate measuring unit is provided is positioned so that the downstream side is in the vertical direction. It is preferable to provide a mechanism.

図4は分流管路の部分の取付け方向変更機構の例を示す図であって、図4(a)は主管路側の継手12、図4(b)は分流管路側の継手13を示している。図4(a)においては紙面の表側に図示しない主管路があり、また図4(b)においては紙面の裏側に図示しない流量計の分流管路側の部分がある。したがって図4(b)の上に図4(a)を重ねた形で継手が連結されることになり、これらの周囲に設けられた複数のボルト穴14にボルトを通して締付けて固定する。なおボルト穴14は正方形の頂点位置にあり、主管路側の継手12と分流管路側の継手13を相互に90度ずつ回した位置でも固定できるようになっている。   4A and 4B are diagrams showing an example of the attachment direction changing mechanism for the part of the branch pipe. FIG. 4A shows the joint 12 on the main pipe side, and FIG. 4B shows the joint 13 on the branch pipe side. . In FIG. 4 (a), there is a main pipeline (not shown) on the front side of the page, and in FIG. 4 (b), there is a portion on the shunt pipeline side of a flow meter (not shown) on the back side of the page. Accordingly, the joint is connected in such a manner that FIG. 4A is overlapped on FIG. 4B, and the bolts 14 are tightened and fixed to a plurality of bolt holes 14 provided around these joints. The bolt hole 14 is located at the apex position of the square, and can be fixed even at a position where the joint 12 on the main pipeline side and the joint 13 on the shunt pipeline side are turned 90 degrees each other.

さらに図4(a)の主管路側の継手12には分流流入口15と分流排出口16とが設けられているが、その一方は4つのボルト穴14が形成する正方形の中心位置にある(ここでは分流流入口が中心位置にあるとして説明する)。なおこの主管路側の継手12の分流管路側の継手13と向き合う面(紙面の裏側)は単なる平面である。一方図4(b)の分流管路側の継手13にも、主管路側の継手12の分流流入口15と分流排出口16に対向する位置にそれぞれ分流流入口17と分流排出口18が設けられているが、さらに主管路側の継手12と向き合う面に環状の溝19が分流排出口18と連通して設けてある。このように溝を設けることにより、主管路側の継手12と分流管路側の継手13とを相互に90度ずつ回したどの位置でボルト穴14により結合しても、継手間で流体を送ることができる。したがって主管路が垂直、水平いずれであっても、また流れの向きがどちら方向であっても、熱式流量計測部が設けられた個所における分流管路が垂直方向であって下流側が上になるように取付けることができる。   Further, the joint 12 on the main pipeline side in FIG. 4A is provided with a branch flow inlet 15 and a branch discharge outlet 16, one of which is at the center of a square formed by four bolt holes 14 (here In the following description, it is assumed that the diversion inlet is at the center position). In addition, the surface (back side of the paper surface) of the joint 12 on the main pipeline side facing the joint 13 on the flow dividing pipeline side is a mere plane. On the other hand, the joint 13 on the branch pipe side in FIG. 4B is also provided with a branch inlet 17 and a branch outlet 18 at positions facing the branch inlet 15 and the branch outlet 16 of the joint 12 on the main pipe side, respectively. However, an annular groove 19 is further provided in communication with the shunt discharge port 18 on the surface facing the joint 12 on the main pipeline side. By providing the groove in this way, the fluid can be sent between the joints regardless of the position of the joint 12 on the main pipe side and the joint 13 on the shunt pipe side that are turned 90 degrees each other by the bolt hole 14. it can. Therefore, regardless of whether the main pipe line is vertical or horizontal, and in which direction the flow is, the shunt pipe line at the location where the thermal flow rate measuring unit is provided is vertical and the downstream side is up. Can be installed as.

分流管路の部分の取付け方向変更機構は図4に示したものに限定されるものではない。たとえば主管路側の継手12の分流管路側の継手13と向き合う面は単なる平面であると先に述べたが、主管路側の継手においても環状の溝を分流管路側の継手の溝と対向する位置に設けてもよい。また分流排出口(分流排出口が継手の中心のときは分流流入口)の位置は環状の溝のどの円周位置にあってもよい。また主管路側の継手と分流管路側の継手の間には図示しないガスケットを設けて流体の漏れ止めをすることが好ましい。なお主管路の向きが傾斜していることはあまり無いが、継手を図4のような正方形ではなく円形にして任意の回転位置で固定するようにすれば、主管路の向きがこのような場合にも対処できる。この場合には継手同士の固定はボルトの代わりにクランプなどの締付け金具を別途設けて行なえばよい。   The attachment direction changing mechanism for the part of the diversion pipe is not limited to that shown in FIG. For example, the surface of the joint 12 on the main pipe side facing the joint 13 on the shunt line side is described above as a mere plane. However, in the joint on the main pipe side, the annular groove is located at a position facing the groove of the joint on the shunt pipe side. It may be provided. Further, the position of the diversion outlet (the diversion inlet when the diversion outlet is the center of the joint) may be at any circumferential position of the annular groove. Further, it is preferable to provide a gasket (not shown) between the joint on the main pipe side and the joint on the branch pipe side to prevent fluid leakage. The direction of the main pipe line is not so inclined, but if the joint is made circular instead of the square as shown in FIG. Can also deal with. In this case, the joints may be fixed by separately providing a clamp such as a clamp instead of the bolt.

本発明の熱式流量計の断面図Sectional view of the thermal flow meter of the present invention 流体温度センサと発熱式流量センサの配置を示す図Diagram showing arrangement of fluid temperature sensor and exothermic flow sensor 絞り開度が可変な流量調節用絞り機構を示す断面図Sectional view showing the flow rate adjusting throttle mechanism with variable throttle opening 分流管路の部分の取付け方向変更機構を示す図であって、(a)は主管路側の継手、(b)は分流管路側の継手It is a figure which shows the attachment direction change mechanism of the part of a shunt line, Comprising: (a) is a joint by the side of a main pipe line, (b) is a joint by the side of a shunt line

符号の説明Explanation of symbols

1 主管路
2 オリフィス
3 分流管路
4 流入口
5 流出口
6 熱式流量計測部
7 流体温度センサ
8 発熱式流量センサ
9 流量調節用絞り機構
10 分流管路内壁
12 主管路側の継手
13 分流管路側の継手
14 ボルト穴
15、17 分流流入口
16、18 分流排出口
19 溝
21 流路
22 オリフィス
23 弁棒
24 ロックナット
DESCRIPTION OF SYMBOLS 1 Main pipe line 2 Orifice 3 Divided pipe line 4 Inlet 5 Outlet 6 Thermal type flow measurement part 7 Fluid temperature sensor 8 Heat generation type flow sensor 9 Flow control throttle mechanism 10 Shunt pipe inner wall 12 Joint on main pipe side 13 Divided pipe side Joint 14 Bolt hole 15, 17 Split flow inlet 16, 18 Split flow outlet 19 Groove 21 Flow path 22 Orifice 23 Valve rod 24 Lock nut

Claims (3)

主管路に設けた差圧発生機構とこれの上流側と下流側を連通する分流管路を有し、分流管路に設けた熱式流量計測部で流量を測定することにより主管路の流量を求める熱式流量計において、前記熱式流量計測部は流体温度センサと発熱式流量センサとを分流管路内に間隔を置いて設け、発熱式流量センサの温度と流体温度センサの測定温度との差を一定に維持するための発熱式流量センサの加熱電力に基づいて流量を計測するものであって、熱式流量計測部が設けられた個所における分流管路は主管路の方向に関わりなく垂直方向であって下流側が上になっており、かつ分流管路内において発熱式流量センサは流体温度センサに対して上下方向同位置ないし上方位置に設けられており、さらに前記分流管路には流量調節用絞り機構が設けられていることを特徴とする熱式流量計。 It has a differential pressure generating mechanism provided in the main pipe and a diversion pipe that connects the upstream side and the downstream side of the mechanism, and the flow rate of the main pipe is determined by measuring the flow rate with a thermal flow rate measuring unit provided in the diversion pipe. In the thermal type flow meter to be obtained, the thermal type flow rate measuring unit is provided with a fluid temperature sensor and a heat generation type flow rate sensor at intervals in the shunt pipe, and the temperature of the heat generation type flow rate sensor and the measurement temperature of the fluid temperature sensor are The flow rate is measured based on the heating power of the exothermic flow sensor to keep the difference constant, and the shunt pipe at the location where the thermal flow meter is installed is vertical regardless of the direction of the main pipe The heat generation type flow rate sensor is provided at the same position in the vertical direction or above the fluid temperature sensor in the flow dividing line, and the flow rate is further in the flow dividing line. An adjustment throttle mechanism is provided. Thermal flow meter, characterized in that there. 流量調節用絞り機構は絞りの開度が可変になっていることを特徴とする請求項1記載の熱式流量計。 2. The thermal flow meter according to claim 1, wherein the throttle mechanism for flow rate adjustment has a variable opening degree. 主管路と分流管路の間の継手において、熱式流量計測部が設けられた個所における分流管路を垂直方向で下流側が上になるように位置させるための取付け方向の変更機構が設けられていることを特徴とする請求項1または2記載の熱式流量計。 At the joint between the main pipe and the shunt pipe, there is provided a mechanism for changing the mounting direction for positioning the shunt pipe at the location where the thermal flow rate measuring unit is provided so that the downstream side is in the vertical direction. The thermal type flow meter according to claim 1 or 2, wherein
JP2004170954A 2004-06-09 2004-06-09 Thermal flow meter Expired - Lifetime JP3864165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170954A JP3864165B2 (en) 2004-06-09 2004-06-09 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170954A JP3864165B2 (en) 2004-06-09 2004-06-09 Thermal flow meter

Publications (2)

Publication Number Publication Date
JP2005351696A JP2005351696A (en) 2005-12-22
JP3864165B2 true JP3864165B2 (en) 2006-12-27

Family

ID=35586310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170954A Expired - Lifetime JP3864165B2 (en) 2004-06-09 2004-06-09 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP3864165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304396A (en) * 2007-06-08 2008-12-18 Yamatake Corp Flowmeter

Also Published As

Publication number Publication date
JP2005351696A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP5652315B2 (en) Flow measuring device
US10969263B2 (en) Fluid meter
CN102483339B (en) Fluid dram flow regulator
JP2017040668A (en) Thermal mass flow meter, thermal mass flow controller, and method of preventing thermal siphoning in mass flow controller
CN113532563A (en) Flow measurement probe
EP2893300B1 (en) Differential pressure flow meter with angled pressure ports
US20060053902A1 (en) Devices, installations and methods for improved fluid flow measurement in a conduit
US7228733B2 (en) Fluid detection device
JP2008026153A (en) Mass flowmeter
KR20130135136A (en) Micro flow sensor
CN105021236B (en) Flow meter
US9696187B2 (en) Device for measuring total pressure of fluid flow
JP5336640B1 (en) Thermal flow meter
JP3864165B2 (en) Thermal flow meter
KR101824866B1 (en) Thermal Micro Flow Meter and Flow Measuring Method Using Thereof
US7509880B2 (en) Fluid flow meter body with high immunity to inlet/outlet flow disturbances
KR100547708B1 (en) Fuzzy Vortex Flowmeter
JPH09101186A (en) Pitot-tube type mass flowmeter
KR101519837B1 (en) flow meter using heat pulse
KR101041434B1 (en) Mass Flow Meter and Controller
JPH11190647A (en) Flowmeter utilizing thermal flow sensor and gas meter utilizing it
JP3719802B2 (en) Multipoint flow meter
JP2014515491A (en) Measuring device for measuring fluid flow rate
JP3398251B2 (en) Flowmeter
JP2023165580A (en) hot wire flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Ref document number: 3864165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term