JP3864011B2 - Insect repellent and textile products - Google Patents
Insect repellent and textile products Download PDFInfo
- Publication number
- JP3864011B2 JP3864011B2 JP05383499A JP5383499A JP3864011B2 JP 3864011 B2 JP3864011 B2 JP 3864011B2 JP 05383499 A JP05383499 A JP 05383499A JP 5383499 A JP5383499 A JP 5383499A JP 3864011 B2 JP3864011 B2 JP 3864011B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- repellent
- insect
- insect repellent
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は敷物、中綿、側地および毛布等、ダニの生息が指摘される繊維製品に使用される防虫繊維に関するものであり、その防虫機能の初期性能および耐久性に優れた防虫繊維を提供するものである。
【0002】
【従来の技術】
従来、防ダニ繊維と呼ばれる防虫繊維としては、防虫または/および忌避効果を有する物質(以下これを防虫薬剤と略記する場合がある)を繊維表面へ後加工により付着させたものや繊維に練り込まれたものが商品化されている。
【0003】
【発明が解決しようとする課題】
ところが、後加工により繊維表面に防虫薬剤を付着させたものについては初期の消費性能には一応の効果は得られるが、家庭洗濯や工業洗濯により効果が著しく低下することがあった。一方、繊維中へ防虫薬剤が練り込まれている場合は上記の洗濯過程で効果が低下する傾向はあるものの、著しく低下するようなことはない反面、初期の効果が低いことが欠点として挙げられる。
【0004】
本発明は上記の問題点を解決するためになされたものであって、初期での高い消費性能が洗濯等の過程においても低下が非常に少ない、防虫薬剤の練込繊維と防虫薬剤の後加工により得られる繊維との両方の性能を兼ね備えた防虫繊維を提供することにある。
【0005】
【課題を解決するための手段】
防虫性能の耐久性を求める上では、防虫薬剤を繊維中に練り込んだ練込法繊維が前提となるが、この方式の繊維はその初期性能が低く、その原因を調査した結果、繊維内部に練り込まれた防虫薬剤の繊維表面へのブリ−ドに問題があることが判明した。よって本発明は、防虫薬剤を繊維表面に良好にブリ−ドさせる手法について鋭意検討し、本発明に至ったものである。
【0006】
ところで、繊維への処理の狙いは異なるが、従来より繊維製品の染色の一手法として白色抜染法がある。これは被染色物の色素(染料分子)を薬剤を用いて繊維表面へブリ−ドさせ、酸化または還元により脱色する手法であるが、その薬剤としては、通常界面活性剤が使用され、抜染剤と称されている。
また、帯電防止剤の中には摩擦堅牢度を低下させるものがあり、これも上記の抜染剤と同様の作用を及ぼし、繊維表面に染料をブリ−ドさせるためと推定される。
以上の如く界面活性剤や帯電防止剤を被染色物に付着させた場合、染料分子を繊維表面近くにブリ−ドさせる能力があることが知られている。
【0007】
本発明は、合成繊維中に防虫薬剤を練り込み、該繊維中の防虫薬剤を繊維表面に良好にブリ−ドさせることにより、防虫薬剤の初期性能を高めると共にその能力が長期に亘って発揮できる繊維を実現させようとするものである。
【0008】
すなわち、本請求項1の発明は、フタル酸を主成分とする防虫または/および忌避効果を有する物質を0.1〜5.0重量%練込み含有させた熱可塑性合成繊維の表面上に、帯電防止剤、界面活性剤、または平滑剤のいずれかを0.2〜10.0重量%付与してなる防虫繊維であって、帯電防止剤または界面活性剤がポリオキシエチレンアルキルエーテルであり、平滑剤がアミノ変性シリコーン系化合物または/およびジメチルポリシロキサンであることを特徴とする防虫繊維である。
【0009】
本発明の熱可塑性合成繊維とは、例えば、ポリエチレンテレフタレ−ト、ポリプロピレンテレフタレ−ト、ポリブチレンテレフタレ−ト等のポリエステル;ナイロン6、ナイロン66、ナイロン12等のポリアミド;ポリエチレン、ポリプロピレン等のポリオレフィン;エチレン−ビニルアルコ−ル共重合体などが代表例として挙げられるが、必ずしもこれらに限定されるものではない。またこれらは単独でも2種以上の混合物、共重合体であってもよい。
【0010】
本発明の対象の繊維は、防虫薬剤を練り込んだ成分単一からなる単一繊維であっても、また防虫薬剤を練り込んだ成分を芯成分、防虫薬剤を練り込んでいない成分を鞘成分とした芯鞘型複合繊維であってもよい。
【0011】
前者繊維の場合、練り込んだ防虫薬剤をブリードさせる帯電防止剤、界面活性剤、または平滑剤(以下においては、これらを総称して単にブリード促進剤と略記することがある)は、該繊維の表面に塗布すればよいし、後者繊維の場合、ブリード促進剤は、鞘成分中に練り込む方式を採ればよい。なお本発明は、複合繊維の場合、ブリード促進剤は鞘成分に練込み含有させる場合ばかりでなく、鞘成分中には含有させず、該繊維表面上に塗布して該ブリード促進剤を複合繊維表面上に存在させる場合をも包含するものである。
【0012】
繊維表面上への塗布付着は、該帯電防止剤等の通常の塗布手段、条件を採用して付着させればよく、鞘成分中への練込みは、防虫薬剤の練込みと同様、通常の練込手段を採用すればよい。
【0013】
繊維中に練込み含有させる防虫薬剤としては、フタル酸エステル類等のフタル酸を主成分とする物質を用いる。
【0014】
防虫薬剤の練込含有量については、0.1重量%を下回るとその防虫効果が発揮できず、5重量%を上回ると繊維化上で支障が生じ好ましくない。よって、その含有量としては0.1重量%以上、5.0重量%以下である。より好ましくは0.2〜1.0重量%である。
【0015】
繊維の表面上あるいは表面部位に塗布あるいは練り込み含有させるブリード促進剤としては、ポリオキシエチレンアルキルエーテルからなる帯電防止剤または界面活性剤、またはアミノ変性シリコーン系化合物または/およびジメチルポリシロキサンからなる平滑剤を用いる。
【0016】
ブリード促進剤の、繊維上表面への付着量は、0.2〜10.0重量%が必要である。繊維上への付着量が0.2重量%を下回ると、練り込んだ防虫薬剤の繊維表面へのブリ−ド量が低く、防虫薬剤の性能が不十分である。一方、同付着量が10.0重量%を上回ると、繊維表面のベトツキが増し、経済的にも好ましくない。好ましい付着量は0.5〜3.0重量%である。
【0017】
またはブリード促進剤を繊維内表面部位に含有させる場合の含有量は、0.1〜5.0重量%が必要である。繊維中への含有量が0.1重量%を下回ると、練り込んだ防虫薬剤の繊維表面へのブリ−ド量が低く、防虫薬剤の性能が不十分である。一方、同含有量が5.0重量%を上回ってくると、繊維製造上好ましくなくなる。この場合、より好ましくは0.5〜3.0重量%である。
【0018】
例えば、ポリエステルからなる芯鞘型複合繊維の芯部に防虫薬剤を練り込んだ場合、防虫薬剤は紡糸段階の熱により幾分量かが鞘成分へブリ−ドし、場合によっては発煙することさえある。しかし、紡糸過程で上述したような熱を受けても、繊維表面に存在する薬剤量は極めて僅かであり、積極的なブリ−ド性向上のための方策がなされない場合、使用防虫薬剤の繊維表面近くに存在する薬剤量は芯部に練り込んだ同薬剤量に対して0.4%程度しかなく、防虫効果を発揮するには不十分である。
これに対して、上記芯鞘型複合繊維の表面にブリード促進剤としてのポリオキシエチレンアルキルエ−テルの2%水溶液を塗布した後、130℃で5分間熱処理した場合には、薬剤の繊維表面近くに存在する薬剤量は、芯部に練り込んだ同薬剤量に対して5.0%に上昇し、消費性能面において初期および洗濯等においても良好な性能が得られる。
【0019】
ブリード促進剤を繊維表面上ばかりでなく、繊維内部表面部位へ存在させても、防虫薬剤の繊維表面へのブリード促進がなされることは、興味のある現象であり、また実際上、繊維の活性性能の耐久性の点からも有効なことである。
すなわち、例えば、前記防虫薬剤を練り込んだ芯部に、ブリード促進剤としてのジメチルポリシロキサンを鞘部に練り込んだ芯鞘型ポリエステル複合繊維についての、該繊維表面にブリ−ドしてきた薬剤量は、芯部に練り込んだ同薬剤量に対して、3.7%にも達し、侵入阻止法による忌避率も90%台に上昇し、良好な忌避性能が発揮されていることが確認出来る。また、この繊維の耐久性を調査するために、繊維を81℃/52時間の加速試験処理しても忌避率には殆ど変化が無く、長時間性能を維持することが示された。
【0020】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。本発明に於いて、性能評価は以下の侵入阻止法により実施した。
【0021】
<侵入阻止法>
粘着シ−ト上に外径約90mm、高さ15mmのシャ−レを固定し、その中にダニ培地をおき、その上に、良く繁殖したダニを生存ダニ数として約10000固体投入し、均一に広げ、次いで該シャ−レの中央に外径が35mm、高さ10mmの小さなシャ−レを置く。この小さなシャ−レに予め直径約35mmに切り抜いた試験試料を敷き込み、その中心にダニの入っていない粉末飼料0.05gを置く。このセットを粘着シ−トごと飽和食塩水で湿度を75±5%Rhに保った食品保存用プラスチック製容器に格納し、25±1℃の全暗条件の恒温器内で24時間(+2時間以内)飼育後、全生存ダニ数を計数する。同様に対照飼料についても行う。
試験はバラツキを考慮し、5回の繰り返しを行い、各試料上の生存ダニ数の合計値から忌避率を算出する。忌避率は下記式にて算出した。
【0022】
忌避率=
(対照区の侵入ダニ数−試験区の侵入ダニ数)/試験区の侵入ダニ数 ×100
【0023】
また、薬剤濃度の分析は、次の方法によった。
<薬剤濃度の分析>
(1)薬剤の総重量:原綿2gをクロロホルムにより抽出した後ガスクロマトグラフィ−により定量した。数値は原綿200mg中の薬剤量を示す。
(2)表面濃度の分析:原綿2gをメチルアルコ−ルにより繊維表面を洗浄した後、液体クロマトグラフィ−により定量した。数値は原綿200mg中の薬剤量を示す。
【0024】
また、耐久性評価は、次の処理での評価である。
(1)耐熱性評価:試料綿を81℃×52時間処理後の性能評価。
(2)洗濯耐久性:L−0217 103法 3回洗濯後の性能評価。
【0025】
実施例1:ポリエチレンテレフタレ−トのペレットにフタル酸を主成分とする防虫剤を12重量%の配合量でブレンドした後、一軸押出機にて280℃の温度で練込み、マスタ−チップを得た。
このマスタ−チップを薬剤非含有のポリエチレンテレフタレ−トに混合希釈して芯成分ポリマーとした(防虫剤濃度1重量%)。鞘成分ポリマーとしては、薬剤非含有のポリエチレンテレフタレ−トを用いた。
上記両成分ポリマーを、芯鞘複合紡糸装置のそれぞれ芯部および鞘部へ供給し、芯部の吐出量390g/分、鞘部の吐出量390g/分、紡糸温度295℃で紡糸して、巻取速度900m/分で芯鞘型複合繊維を得た。該繊維を公知の方法で延伸、捲縮、熱処理した後、デニ−ル6d、カット長51mmの短繊維原綿を得た。
この原綿に、ポリオキシエチレンアルキルエ−テルを用い、それが繊維表面に2.0重量%となるよう塗布した後、130℃×5分間の熱処理を行い、本発明の防虫繊維を得た。
【0026】
実施例2:実施例1の原綿を用い、該原綿に、同実施例で用いたポリオキシエチレンアルキルエーテルに代えて反応性アミノ変性シリコ−ンとジアミノシリコ−ンとを1対1で混合した溶液を0.3重量%塗布した後、130℃×5分間での熱処理をして防虫繊維を得た。
【0027】
実施例3:芯成分ポリマーとしては、実施例1と同じ防虫剤濃度1重量%のポリマーを使用した。鞘成分ポリマーとしては、ジメチルシロキサン11重量%をブレンドしたマスターチップを得た後、薬剤非含有のポリエチレンテレフタレートを混合し希釈してジメチルシロキサン1重量%含有のポリエチレンテレフタレートを用いた。
該芯成分ポリマーおよび鞘成分ポリマーをそれぞれ芯鞘型複合繊維紡糸装置に供給し、吐出量390g/分で紡糸して、実施例1と同様の方法・条件で芯部に防虫剤、鞘部に界面活性剤を含む短繊維原綿を得た。
【0028】
比較例1:芯成分用ポリマーとしては、ポリエチレンテレフタレ−トのペレットに実施例1と同じ防虫剤を12重量%の配合量でブレンドした後、一軸押出機にて280℃の温度で練込み、マスタ−チップを得、このマスタ−チップを薬剤非含有のポリエチレンテレフタレ−トに混合して希釈し、該防虫剤濃度1重量%含有のポリマーとした。鞘成分用ポリマーとしては、薬剤非含有のポリエチレンテレフタレ−トを用いた。
上記芯成分用ポリマーおよび鞘成分用ポリマーを芯鞘型複合紡糸装置へ供給し、吐出量390g/分、紡糸温度295℃で紡糸し、巻取速度900m/分で芯鞘型複合繊維を得た。該繊維を公知の方法で延伸、捲縮、熱処理した後、デニ−ル6d、カット長51mmの短繊維原綿を得た。
【0029】
比較例2:実施例1の原綿を用い、該原綿の繊維表面にポリオキシエチレンアルキルエ−テルを0.1重量%塗布した後、130℃×5分間の熱処理を行って防虫繊維を得た。
【0030】
比較例3:実施例1の原綿を用い、この原綿の繊維表面にポリオキシエチレンアルキルエ−テルを12.0重量%塗布した後、130℃×5分間の熱処理を行って防虫繊維を得た。
【0031】
上記実施例および比較例で得られた防虫繊維の特性を表1に示す。
【0032】
【表1】
【0033】
表1で示されるように、本発明の防虫繊維は、初期および耐久性試験においてダニの忌避性能が低下することなく安定して効果を持続発現することができる。繊維表面にポリオキシエチレンアルキルエ−テルを処理しなかった比較例1および処理量の少なかった比較例2はダニの忌避率が低く、効果が不十分であった。また、比較例3では繊維表面のベトツキが激しく、商品価値のないものであった。
【0034】
【発明の効果】
本発明の技術は、熱可塑性合成繊維に練り込まれた有機系薬剤を繊維表面にブリ−ドさせて薬剤自身が有する機能または性能を初期から耐久性よく発現させる有効なものである。すなわち、本発明の防虫繊維は初期からダニ等の害虫に対してその防虫、忌避性能が発揮され、かつその忌避性能が低下することなく長期に安定した効果を持続発現する耐久性を有するものであり、敷物、布団中綿、側地および毛布等に有効に使用することができる。なお、本発明繊維の繊維形状は、フィラメント等の長繊維;ステ−プル等の短繊維のいずれでもよいことは無論である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insect-repellent fiber used for a textile product in which mite inhabiting is pointed out, such as a rug, a batting, a side cloth, and a blanket, and provides an insect-repellent fiber excellent in initial performance and durability of the insect-repellent function. Is.
[0002]
[Prior art]
Conventionally, insect repellent fibers called tick repellent fibers are kneaded into a fiber having a repellent or / and repellent effect (hereinafter sometimes abbreviated as an insect repellent) attached to the fiber surface by post-processing or into the fibers. The rare one has been commercialized.
[0003]
[Problems to be solved by the invention]
However, a product obtained by attaching an insect repellent to the fiber surface by post-processing can provide a temporary effect on the initial consumption performance, but the effect may be significantly reduced by home laundry or industrial laundry. On the other hand, when an insect repellent is kneaded into the fiber, the effect tends to decrease during the washing process, but it does not decrease significantly, but the initial effect is low. .
[0004]
The present invention has been made to solve the above-mentioned problems, and the post-processing of the insect-repellent agent kneaded fiber and the insect-repellent agent, whose initial high-consumption performance is extremely low in the process of washing and the like An object of the present invention is to provide an insect-repellent fiber having both the performance of the fiber obtained by the above method.
[0005]
[Means for Solving the Problems]
In order to seek durability of insect repellent performance, it is premised on a kneaded fiber in which an insect repellent is kneaded into the fiber, but this type of fiber has low initial performance, and as a result of investigating its cause, It has been found that there is a problem with the spread of the kneaded insect repellent to the fiber surface. Therefore, the present invention has been intensively studied on a technique for satisfactorily bleeding an insect repellent on the fiber surface, and has arrived at the present invention.
[0006]
By the way, although the aim of processing to fibers is different, there has been a white discharge method as a technique for dyeing textile products. This is a technique in which the dye (dye molecule) of the object to be dyed is blended onto the fiber surface using a chemical and decolorized by oxidation or reduction. As the chemical, a surfactant is usually used, and a discharging agent. It is called.
Some antistatic agents reduce friction fastness, and this is presumed to have the same effect as the above-mentioned discharge agent and to cause the dye to blade on the fiber surface.
As described above, it is known that when a surfactant or an antistatic agent is attached to an object to be dyed, it has the ability to cause the dye molecules to be spread near the fiber surface.
[0007]
In the present invention, an insect repellent agent is kneaded into a synthetic fiber, and the insect repellent agent in the fiber is well-blended on the fiber surface, thereby improving the initial performance of the insect repellent agent and exhibiting its ability over a long period of time. It is intended to realize the fiber.
[0008]
That is, the present invention of claim 1 is provided on the surface of a thermoplastic synthetic fiber containing 0.1 to 5.0% by weight of an insect repellent or / and repellent substance mainly composed of phthalic acid. An insect repellent fiber formed by applying 0.2 to 10.0% by weight of any one of an antistatic agent, a surfactant, and a smoothing agent, wherein the antistatic agent or the surfactant is a polyoxyethylene alkyl ether, An insect repellent fiber characterized in that the smoothing agent is an amino-modified silicone compound or / and dimethylpolysiloxane.
[0009]
Examples of the thermoplastic synthetic fiber of the present invention include polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate; polyamides such as nylon 6, nylon 66, and nylon 12; polyethylene, polypropylene and the like Examples of such polyolefins include ethylene-vinyl alcohol copolymers, but are not necessarily limited thereto. These may be used alone or as a mixture or copolymer of two or more.
[0010]
The target fiber of the present invention is a single fiber composed of a single component kneaded with an insect repellent, or a component kneaded with a repellent agent as a core component and a component not kneaded with a repellent agent as a sheath component The core-sheath type composite fiber may be used.
[0011]
In the case of the former fiber, an antistatic agent, a surfactant, or a smoothing agent that bleeds the kneaded insect repellent (hereinafter, these may be abbreviated simply as a bleed accelerator) is used for the fiber. What is necessary is just to apply | coat to the surface, and in the case of the latter fiber, the bleed promoter should just take the system knead | mixed in a sheath component. In the present invention, in the case of a composite fiber, the bleed accelerator is not only contained in the sheath component but also contained in the sheath component, and is not contained in the sheath component, but is applied onto the fiber surface to apply the bleed promoter to the composite fiber. The case where it exists on the surface is also included.
[0012]
Application and adhesion on the fiber surface may be carried out by employing the usual application means and conditions such as the antistatic agent, and kneading into the sheath component is the same as kneading the insect repellent. A kneading means may be employed.
[0013]
As the insect repellent that is kneaded and contained in the fiber, a substance mainly composed of phthalic acid such as phthalic acid esters is used.
[0014]
If the content of the insect repellent is less than 0.1% by weight, the insect repellent effect cannot be exerted, and if it exceeds 5% by weight, the fiberization is hindered. Therefore, the content is 0.1 wt% or more and 5.0 wt% or less. More preferably, it is 0.2 to 1.0% by weight.
[0015]
As a bleed accelerator to be coated or kneaded on the surface of a fiber or a surface part, an antistatic agent or surfactant made of polyoxyethylene alkyl ether, or a smoothing made of amino-modified silicone compound and / or dimethylpolysiloxane. Use the agent.
[0016]
The amount of the bleed accelerator adhering to the fiber upper surface needs to be 0.2 to 10.0% by weight. When the adhesion amount on the fiber is less than 0.2% by weight, the amount of the blade of the kneaded insect repellent to the fiber surface is low, and the performance of the repellent is insufficient. On the other hand, if the adhesion amount exceeds 10.0% by weight, the stickiness on the fiber surface increases, which is not preferable economically. A preferable adhesion amount is 0.5 to 3.0% by weight.
[0017]
Alternatively, the content in the case where the bleed accelerator is contained in the inner surface portion of the fiber needs to be 0.1 to 5.0% by weight. When the content in the fiber is less than 0.1% by weight, the amount of the blade of the kneaded insect repellent to the fiber surface is low, and the performance of the repellent is insufficient. On the other hand, if the content exceeds 5.0% by weight, it is not preferable for fiber production. In this case, it is more preferably 0.5 to 3.0% by weight.
[0018]
For example, when an insect repellent is kneaded into the core of a core-sheath composite fiber made of polyester, some amount of the insect repellent is blended into the sheath component due to the heat of the spinning stage, and in some cases even smoke is generated. is there. However, if the amount of the drug present on the fiber surface is very small even when subjected to the heat as described above in the spinning process, and no measures are taken to positively improve the bleeding property, the fiber of the insect repellent drug used The amount of the drug present near the surface is only about 0.4% with respect to the amount of the drug kneaded in the core, which is insufficient for exhibiting the insect repellent effect.
On the other hand, when a 2% aqueous solution of polyoxyethylene alkyl ether as a bleed accelerator is applied to the surface of the core-sheath composite fiber, and then heat treated at 130 ° C. for 5 minutes, the fiber surface of the drug The amount of the drug present in the vicinity increases to 5.0% with respect to the amount of the drug kneaded in the core portion, and good performance can be obtained in the initial stage and in washing in terms of consumption performance.
[0019]
It is an interesting phenomenon that even if a bleed promoter is present not only on the fiber surface but also on the inner surface of the fiber, the bleed is promoted to the fiber surface by the insect repellent, and in fact, the activity of the fiber This is also effective from the viewpoint of durability of performance.
That is, for example, about the core-sheath type polyester composite fiber in which dimethylpolysiloxane as a bleed promoter is kneaded into the core part into which the insect repellent agent is kneaded, the amount of the drug that has been bled on the fiber surface Can reach 3.7% with respect to the same amount of drug kneaded in the core, and the repellent rate by the intrusion prevention method has increased to the 90% range, confirming that good repellent performance is exhibited. . Further, in order to investigate the durability of this fiber, it was shown that even when the fiber was subjected to an accelerated test at 81 ° C./52 hours, the repelling rate hardly changed and the performance was maintained for a long time.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples at all. In the present invention, the performance evaluation was performed by the following intrusion prevention method.
[0021]
<Intrusion prevention method>
A dish having an outer diameter of about 90 mm and a height of 15 mm is fixed on an adhesive sheet, and a mite culture medium is placed on it. Then, a small chalet having an outer diameter of 35 mm and a height of 10 mm is placed in the center of the chalet. A test sample previously cut to a diameter of about 35 mm is laid on this small dish, and 0.05 g of powdered feed containing no mites is placed in the center. This set is stored in a plastic container for preserving food with saturated saline and 75 ± 5% Rh with adhesive sheet, and 24 hours (+2 hours) in an incubator under all dark conditions of 25 ± 1 ° C. Within) After breeding, count the total number of live mites. The same is done for the control feed.
The test is repeated 5 times in consideration of variation, and the repelling rate is calculated from the total number of live mites on each sample. The repelling rate was calculated by the following formula.
[0022]
Repellent rate =
(Number of invading ticks in the control group−number of invading ticks in the test area) / number of invading ticks in the test area × 100
[0023]
The analysis of the drug concentration was performed by the following method.
<Analysis of drug concentration>
(1) Total weight of the drug: 2 g of raw cotton was extracted with chloroform and then quantified by gas chromatography. The numerical value indicates the amount of drug in 200 mg of raw cotton.
(2) Surface concentration analysis: 2 g of raw cotton was quantified by liquid chromatography after the fiber surface was washed with methyl alcohol. The numerical value indicates the amount of drug in 200 mg of raw cotton.
[0024]
Moreover, durability evaluation is evaluation in the following process.
(1) Heat resistance evaluation: Performance evaluation after treating sample cotton at 81 ° C. for 52 hours.
(2) Washing durability: L-0217 Method 103 Performance evaluation after 3 washes.
[0025]
Example 1: Polyethylene terephthalate pellets were blended with a phthalic acid-based insect repellent at a blending amount of 12% by weight, and then kneaded at a temperature of 280 ° C. with a single screw extruder to prepare a master chip. Obtained.
This master chip was mixed and diluted with a polyethylene terephthalate containing no drug to obtain a core component polymer (insect repellent concentration 1% by weight). As the sheath component polymer, polyethylene terephthalate containing no drug was used.
Both the above-mentioned component polymers are supplied to the core and sheath of the core-sheath composite spinning device, respectively, and spun at a core discharge rate of 390 g / min, sheath discharge rate of 390 g / min, and a spinning temperature of 295 ° C. A core-sheath composite fiber was obtained at a take-off speed of 900 m / min. The fiber was drawn, crimped, and heat-treated by a known method to obtain a short fiber raw cotton having a denier 6d and a cut length of 51 mm.
Polyoxyethylene alkyl ether was applied to the raw cotton so that it was 2.0% by weight on the fiber surface, and then heat treated at 130 ° C. for 5 minutes to obtain the insect-proof fiber of the present invention.
[0026]
Example 2: The raw cotton of Example 1 was used, and in place of the polyoxyethylene alkyl ether used in the same Example, a reactive amino-modified silicone and a diaminosilicone were mixed on a one-to-one basis. After applying 0.3% by weight of the solution, heat treatment was performed at 130 ° C. for 5 minutes to obtain insect-proof fibers.
[0027]
Example 3 As the core component polymer, the same insecticide concentration 1% by weight polymer as in Example 1 was used. As the sheath component polymer, after obtaining a master chip blended with 11% by weight of dimethylsiloxane, polyethylene terephthalate containing no drug was mixed and diluted to use polyethylene terephthalate containing 1% by weight of dimethylsiloxane.
The core component polymer and the sheath component polymer are respectively supplied to a core-sheath type composite fiber spinning device, and spun at a discharge rate of 390 g / min. A short fiber raw cotton containing a surfactant was obtained.
[0028]
Comparative Example 1: As a core component polymer, the same insect repellent as in Example 1 was blended with polyethylene terephthalate pellets in a blending amount of 12% by weight, and then kneaded at a temperature of 280 ° C. in a single screw extruder. A master chip was obtained, and this master chip was mixed with a drug-free polyethylene terephthalate and diluted to obtain a polymer containing 1% by weight of the insect repellent. As the sheath component polymer, polyethylene terephthalate containing no drug was used.
The core component polymer and the sheath component polymer were supplied to a core-sheath type composite spinning apparatus, spun at a discharge rate of 390 g / min, at a spinning temperature of 295 ° C., and a core-sheath type composite fiber was obtained at a winding speed of 900 m / min. . The fiber was drawn, crimped, and heat-treated by a known method to obtain a short fiber raw cotton having a denier 6d and a cut length of 51 mm.
[0029]
Comparative Example 2: Using the raw cotton of Example 1, 0.1% by weight of polyoxyethylene alkyl ether was applied to the fiber surface of the raw cotton, followed by heat treatment at 130 ° C. for 5 minutes to obtain insect-proof fibers. .
[0030]
Comparative Example 3: Using the raw cotton of Example 1, 12.0% by weight of polyoxyethylene alkyl ether was applied to the fiber surface of this raw cotton, followed by heat treatment at 130 ° C. for 5 minutes to obtain insect-proof fibers. .
[0031]
Table 1 shows the characteristics of the insect repellent fibers obtained in the above Examples and Comparative Examples.
[0032]
[Table 1]
[0033]
As shown in Table 1, the insect repellent fiber of the present invention can stably and continuously exhibit the effect without lowering the mite repellent performance in the initial and durability tests. In Comparative Example 1 where the polyoxyethylene alkyl ether was not treated on the fiber surface and Comparative Example 2 where the treatment amount was small, the mite repellent rate was low and the effect was insufficient. In Comparative Example 3, the fiber surface was very sticky and had no commercial value.
[0034]
【The invention's effect】
The technology of the present invention is effective in causing the function or performance of the drug itself to be expressed with good durability from the beginning by causing an organic drug kneaded into a thermoplastic synthetic fiber to be bladed on the fiber surface. That is, the insect-repellent fiber of the present invention has the durability to exert its insect repellent and repellent performance against pests such as ticks from the beginning, and to continuously express a stable effect for a long time without lowering the repellent performance. Yes, it can be used effectively for rugs, futon batting, side fabrics and blankets. Of course, the fiber shape of the fiber of the present invention may be a long fiber such as a filament or a short fiber such as a staple.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05383499A JP3864011B2 (en) | 1999-03-02 | 1999-03-02 | Insect repellent and textile products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05383499A JP3864011B2 (en) | 1999-03-02 | 1999-03-02 | Insect repellent and textile products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000248466A JP2000248466A (en) | 2000-09-12 |
JP3864011B2 true JP3864011B2 (en) | 2006-12-27 |
Family
ID=12953831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05383499A Expired - Lifetime JP3864011B2 (en) | 1999-03-02 | 1999-03-02 | Insect repellent and textile products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3864011B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010013761A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Chemical Co Ltd | Insecticidal filament |
KR20150091335A (en) * | 2012-12-04 | 2015-08-10 | 바이엘 크롭사이언스 아게 | Method to produce an insecticide-containing fabric |
WO2016140942A1 (en) * | 2015-03-04 | 2016-09-09 | The Procter & Gamble Company | Fibrous elements, fibrous structures, and products comprising a deterrent agent and methods for making same |
AU2016230118B2 (en) * | 2015-03-09 | 2020-02-06 | Nbc Meshtec Inc. | Insect repellent fiber and insect repellent screen using same |
US11697905B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH086253B2 (en) * | 1988-07-11 | 1996-01-24 | 東レ株式会社 | Synthetic fiber spinning / drawing oil agent and method for producing the same |
JPH06272110A (en) * | 1993-03-19 | 1994-09-27 | Mitsubishi Rayon Co Ltd | Fiber having miteproofing performance and its production |
JPH06272112A (en) * | 1993-03-19 | 1994-09-27 | Mitsubishi Rayon Co Ltd | Miteproofing core-sheath type conjugate fiber and its production |
JPH08134720A (en) * | 1994-11-09 | 1996-05-28 | Teijin Ltd | Functional conjugate fiber and insectproof rug |
JPH1025617A (en) * | 1996-07-12 | 1998-01-27 | Ishizuka Glass Co Ltd | Acaricidal fiber |
JP2000017573A (en) * | 1998-06-30 | 2000-01-18 | Toray Ind Inc | Treatment agent for synthetic fiber and synthetic fiber |
-
1999
- 1999-03-02 JP JP05383499A patent/JP3864011B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000248466A (en) | 2000-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1891869B (en) | Fiber containing an antimicrobial composition | |
CN103649409B (en) | Composition for impregnation of textiles such as nettings | |
JP2004531650A (en) | Non-sticky spandex yarn containing antimicrobial agent and fabric made therefrom | |
JP2003500554A (en) | Antimicrobial articles | |
TW201202497A (en) | A biocidal polyolefin yarn with 3-12 filaments | |
JP3864011B2 (en) | Insect repellent and textile products | |
KR100769852B1 (en) | Mothproof and antifungal treatment composition for textile and textile treatment method using said composition | |
JPH08134720A (en) | Functional conjugate fiber and insectproof rug | |
JP3635581B2 (en) | Sustained release core-sheath composite short fiber | |
CN1281072A (en) | Worm-expelling fabric and its preparing process | |
JP4101974B2 (en) | Textile rug for pet having both deodorant function and insect repellent function, and method for producing the same | |
US5028471A (en) | Antiflea fibers | |
US5079063A (en) | Solution-spun antiflea fibers | |
JP3750878B2 (en) | Insect repellent fibers and insect repellent fiber products | |
JPH02200602A (en) | Insectproof fiber and production thereof | |
JPH0625971A (en) | Method for imparting textile product with house dust mite killing property resistant to light and cleaning | |
JPH04126819A (en) | Polyvinyl alcohol-based fiber having antimicrobial effect and fiber sheetlike material using the same | |
JPH10168686A (en) | Acaricidal polyolefin crimped yarn, its production and acaricidal carpet using the polyolefin crimped yarn | |
JP3204046B2 (en) | Tick-resistant resin composition and tick-resistant fiber structure | |
JPH02264073A (en) | Insect-proof fiber and preparation thereof | |
KR20170091223A (en) | Mothproof fiber and preparation method thereof | |
JPH04194079A (en) | Antibacterial, mildew-proofing and deodorizing nonwoven fabric having hydrophilicity | |
JP3406971B2 (en) | Pest repellent processing method for polyester fiber products | |
JPH08154882A (en) | Mop | |
JP2003227035A (en) | Insecticidal fiber and woven fabric and knitted fabric comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061002 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101006 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111006 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131006 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |