JP3850002B2 - Liquid crystal electro-optical device - Google Patents

Liquid crystal electro-optical device Download PDF

Info

Publication number
JP3850002B2
JP3850002B2 JP15975798A JP15975798A JP3850002B2 JP 3850002 B2 JP3850002 B2 JP 3850002B2 JP 15975798 A JP15975798 A JP 15975798A JP 15975798 A JP15975798 A JP 15975798A JP 3850002 B2 JP3850002 B2 JP 3850002B2
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
substrate
substrates
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15975798A
Other languages
Japanese (ja)
Other versions
JPH11352486A (en
Inventor
伸二 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15975798A priority Critical patent/JP3850002B2/en
Publication of JPH11352486A publication Critical patent/JPH11352486A/en
Application granted granted Critical
Publication of JP3850002B2 publication Critical patent/JP3850002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a liquid crystal electrooptical device which can enlarge viewing angle, improve display quality and improve contrast with an easy manufacturing process and a high yield. SOLUTION: A pair of substrates is provided with an interposed liquid crystal layer comprising a liquid crystal material exhibiting nematic phase at least within a specified temp. range and having negative dielectric anisotropy. A homeotropic alignment layer is located on the surface adjacent to the liquid crystal layer of each of the substrates 1, 2. Each of the alignment layers on the substrates 1, 2 is divided into two alignment regions with directions of pretilt different from each other by about 180 deg.. The two substrates 1, 2 are stuck with each other so as to make a boundary of the alignment regions on one substrate 1 and a boundary of the alignment regions on the other substrate 2 are at right angle with each other to form four alignment regions.

Description

【0001】
【発明の属する技術分野】
本発明は、主として表示装置等として用いられ、例えば、パーソナルコンピュータ、ワードプロセッサ、アミューズメント機器、テレビジョン装置などの平面表示装置やシャッタ効果を利用した表示板、窓、扉、壁などに好適に用いることができる液晶電気光学装置に関する。
【0002】
【従来の技術】
従来、液晶電気光学装置、特に、液晶表示装置においては、ある領域内で液晶分子の配向方向が異なる領域を形成する、いわゆる配向分割によって視角を広げる試みがなされてきた。この配向分割を行う場合には、通常、表示モードとして捩れネマティックモード(TN)が用いられており、配向膜のマスクラビングを行ったり、光照射を行うこと等によって液晶分子の配向方向が異なる領域を設けていた。
【0003】
一方、近年では、視野角拡大、表示品位の向上及びコントラストの向上という観点から、液晶層に電界を印加しない状態で液晶分子を基板に対して垂直に配向させる技術の開発が進んでいる。
【0004】
さらに、この垂直配向技術と上述の配向分割技術を組み合わせた例も、例えば特開平8−43285号に記載されている。ここでは、液晶分子の配向方向もしくはプレティルトの制御とカイラルドーパントの添加とによって垂直捩れネマティックモードを実現している。
【0005】
【発明が解決しようとする課題】
上述したように、垂直配向捩れネマティックモードの液晶表示装置においては、水平配向捩れネマティックモードに比べて視野角拡大、表示品位の向上及びコントラストの向上を図ることができるという利点を有する。
【0006】
しかしながら、垂直配向技術と配向分割技術を組み合わせた液晶表示装置、特に、特開平8−43285号に記載されている液晶表示装置には、以下のような問題点がある。
【0007】
即ち、この液晶表示装置においては、アレイ側基板と対向基板とで配向分割ラインの位置を合わせる必要があるが、パターン精度、基板の収縮、位置合わせ装置の精度等の要因から、実際の製造工程では数μmのずれが生じる。そして、このずれによって液晶分子が良好に配向できない領域が発生するため、表示品位を著しく低下させることがあり、良品率の低下やコストアップが懸念される。
【0008】
さらに、従来の配向分割方法では、一般に、4分割の配向状態を実現するためには、上下両基板共に4種類の異なる配向状態を形成する必要があり、製造プロセスが複雑化するという問題があった。
【0009】
本発明は、このような従来技術の課題を解決するためになされたものであり、製造プロセスが容易で良品率を向上することができ、視野角拡大、表示品位の向上及びコントラストの向上を図ることができる液晶電気光学装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の液晶電気光学装置は、少なくとも所定の温度範囲でネマティック相を示し、かつ、誘電異方性が負である液晶材料からなる液晶層を挟んで一対の基板が設けられ、各基板の該液晶層側の面に、電圧無印加時に液晶分子を該基板の表面に対して略垂直に配向させる配向膜を有する液晶電気光学装置において、各基板上の配向膜は、液晶分子を基板表面に対して垂直な方向から若干傾かせるプレティルト方向が異なる2種類以上の配向領域に各々分割され、一方の基板上の配向領域の境界と他方の基板上の配向領域の境界とが交差するように両基板が貼り合わせられており、そのことにより上記目的が達成される。
【0011】
前記各基板上の配向膜は、前記液晶分子のプレティルト方向がほぼ180゜異なる2種類の配向領域を各々有し、一方の基板上の配向領域の境界と他方の基板上の配向領域の境界とが略直交するように両基板が貼り合わせられていてもよい。
【0012】
前記一方の基板上の配向膜と他方の基板上の配向膜とは、前記液晶分子のプレティルト方向が略直交していてもよい。
【0013】
前記配向膜は、ポリイミド、ポリアミド及びポリシロキサンのうちの少なくとも1種類の構造を少なくとも一部に含む材料からなり、又は酸化シリコンからなっていてもよい。
【0014】
前記配向膜は、ラビング法、イオンビーム照射法、光照射法、形状制御法又は斜方蒸着法により配向処理がなされていてもよい。
【0015】
前記液晶層は、カイラルドーパントを含有しない液晶材料からなっていてもよい。
【0016】
以下に、本発明の作用について説明する。
【0017】
本発明にあっては、各基板上の垂直配向膜を液晶分子のプレティルト方向が異なる2以上の配向領域に分割し、両基板上の配向領域の境界が交差するように両基板を貼り合わせてあるので、一方の基板上で配向分割された各領域が、さらに他方の基板上の配向領域の境界で配向分割されることになる。これにより、配向分割のために各基板上の配向膜に対して行われる配向処理を少なくすることができ、例えば、各基板上で配向方向を2分割することにより、4分割の配向状態が得られる。
【0018】
さらに、特開平8−43825号のように、両基板の配向領域の境界を厳密に位置合わせする必要が無いので、液晶が良好に配向できない領域が生じず、良好な表示状態が得られる。
【0019】
液晶層は、少なくとも所定の温度範囲でネマティック相を示し、かつ、誘電異方性が負である液晶材料からなり、電圧無印加時に液晶分子が基板に対して略垂直な方向に配向し、電圧印加時に液晶分子がプレティルト方向に従って電界の方向に対して垂直な方向に傾く。
【0020】
このように垂直配向と配向分割とを組み合わせることにより、表示装置として用いる場合に、視野角拡大、表示品位の向上及びコントラストの向上を図ることができる。
【0021】
ところで、配向分割によって視角を広げる場合には、通常、90゜捩れ垂直配向モードを用いられるが、その理由は、高コントラストの表示を低駆動電圧下で得ることができるからである。
【0022】
そこで、本発明では、例えば、後述する図1(a)及び図1(b)に示すように、各基板上の配向膜を液晶分子のプレティルト方向がほぼ180゜異なる2種類の配向領域に配向分割し、後述する図2に示すように、両基板上の配向領域の境界が略直交するように両基板を貼り合わせることにより、両基板上の配向膜における液晶分子のプレティルト方向を略直交させてもよい。このようにすると、カイラルドーパントの助けを借りずに90゜捩れ垂直配向を実現することが可能であり、各基板上で配向方向を2分割するだけで後述する図2に示すような4分割の90゜捩れ垂直配向状態が得られる。
【0023】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0024】
ここでは、一方の基板上に多数の画素電極を設けて、各画素電極に対して低温ポリシリコン薄膜トランジスタからなるスイッチング素子を介して選択的に電位を与える構成のアクティブマトリクス透過型カラー液晶表示装置について、本発明を適用した例について説明する。
【0025】
この液晶表示装置は、ガラス基板上に600℃以下の低温で形成したポリシリコンを半導体層として有する薄膜トランジスタと画素電極、バスライン及び信号入力端子部等を形成したアレイ側基板と、カラーフィルタ及び遮光膜等を形成した対向側基板の両方に、垂直配向膜が形成されている。
【0026】
一方の基板(下側基板)1に設けられた垂直配向膜は、図1(a)に示すように、その垂直配向膜に接する液晶分子を初期において基板に垂直な方向から若干傾かせる(プレティルト)させる配向処理がほぼ180゜異なる2方向になされて2つの配向領域に分割されている。他方の基板(上側基板)2に設けられた垂直配向膜は、図1(b)に示すように、その垂直配向膜に接する液晶分子をプレティルトさせる配向処理がほぼ180゜異なる2方向になされて2つの配向領域に分割されている。
【0027】
両基板1、2は、図2に示すように、各基板上の配向方向が異なる領域の境界が互いに交差(ここでは略直交)するように対向させて貼り合わせられており、各基板上の配向膜のプレティルト方向が略直交している。液晶を封入した状態では、液晶分子の捩れ方向が異なる4つの領域が形成され、4方向の視角方向が得られる。
【0028】
上記垂直配向膜としては、ポリイミド、ポリアミド及びポリシロキサンのうちの少なくとも1種類の構造を少なくとも一部に含む材料、例えば、ポリイミド、ポリアミック酸、ポリアミド、ポリアミドイミド、ポリシロキサン等の高分子化合物を用いることが可能であり、例えばRN−783(日産化学工業株式会社製)を用いることができる。又は、酸化シリコン等の無機物を用いてもよい。
高分子化合物からなる垂直配向膜は、例えば印刷法、スピンコート法、ディッピング法等を用いて形成することが可能である。一方、無機物からなる配向膜は、斜方蒸着法により形成するのが一般的であり、これにより配向処理も兼ねることができる。
【0029】
配向処理については、主として高分子化合物からなる配向膜に対しては、ラビング法、イオンビーム照射法、光照射法等を用いて行うことができる。
【0030】
ここでは、各基板に対して2方向の配向処理を行う必要があるため、特殊な配向処理方向が必要となる。
【0031】
例えば、ラビング法で行う場合には、まず、所定の領域に開口部を設けたマスクを用いて1方向にラビング処理を行い、次に、相補的に開口部を有するマスクを用いて逆方向にラビング処理を行う方法がある。しかし、この方法ではマスクの位置合わせ精度から、必然的に配向処理を良好に行えない領域が発生する。よって、一旦全面を一定方向にラビング処理してから、必要な領域をマスク又はフォトレジスト等で覆って逆方向にラビング処理を行うようにするのが望ましい。このときのラビング条件は、1度目よりも2度目のラビング処理を強く行うのが望ましい。
【0032】
光照射法を用いる場合には、斜め方向から紫外光を照射する方法や偏光紫外光を照射する方法が一般的に用いられている。しかし、ラビング法と同様の問題があるので、フォトマスク等で必要な領域を覆って各基板に対して光照射方向を変えて2方向から照射することにより配向分割を行うのが望ましい。この場合にも、一旦全面を一定方向に配向処理してから必要な領域だけ逆方向に配向処理することが可能であるが、2度配向処理を行った領域ではやや配向規制力が低下することがある。
【0033】
イオンビーム照射法についても、メタルマスク等で必要な領域を覆って各基板に対して照射方向を変えて2方向から照射することにより配向分割を行うことができる。この場合にも、一旦全面を一定方向に配向処理してから必要な領域だけ逆方向に配向処理することが可能である。
【0034】
形状制御法による場合には、図3に示すように、基板7上に、液晶分子のプレティルト方向を制御するための形状をフォトレジスト8等を用いて予め形成しておき、その上に垂直配向膜を形成することで配向分割を行うことができる。
【0035】
斜方蒸着法による場合には、メタルマスク等で必要な領域を覆って各基板に対して蒸着方向を変えて蒸着を2回行い、さらに垂直配向のために蒸着を1回行うことにより配向分割を行うことができる。
【0036】
このように、各基板上で180゜異なった配向方向の領域が所定の部分に形成された両基板を、図2に示すように、各基板上の配向方向が異なる領域の境界が互いに交差(ここでは略直交)するように対向させて貼り合わせる。そして、その周囲をシールし、両基板の間隙に負の誘電異方性を有する液晶材料を注入して注入口を封止することにより液晶パネルが得られる。このときの液晶材料としては、例えばMLC−2012(メルクジャパン株式会社製)等を用いることができる。
【0037】
この液晶パネルに対して所定の方向に偏光板を貼り付け、駆動回路と接続して適切な信号を印加することによって液晶表示装置を作製することができる。
【0038】
このようにして作製された液晶表示装置は、上下左右の視角がコントラスト5以上で各々70゜以上と非常に広い視角特性を得ることができる。
【0039】
さらに、各基板に対して2方向の配向処理を行うだけで4分割の配向状態が得られるので、各基板に対して4方向に配向処理を行う必要がある従来技術と比べて製造プロセスを非常に簡略化することができ、コスト、良品率の両面から非常に有利である。
【0040】
なお、ここでは、低温ポリシリコン薄膜トランジスタを用いたアクティブマトリクス型液晶表示装置について説明したが、必要に応じてアモルファスシリコンやポリシリコン、単結晶シリコン等を用いた薄膜トランジスタや各種ダイオード等の非線形素子アレイを設けることができる。又は、これらを設けない構成の液晶電気光学装置についても本発明は適用可能である。
【0041】
非線形素子アレイが設けられている基板の場合には、各画素電極に対して配向方向を4分割するのが一般的であるが、複数の画素電極で1つのドットを表示する場合などには、必要な数だけ配向分割を行えば良い。
【0042】
図1(a)及び図1(b)では、プレティルト方向を配向領域の境界に対してほぼ垂直にしたが、両基板で配向領域の境界を交差させて両基板上の液晶分子のプレティルト方向を90゜捩れさせることができれば他のプレティルト方向であってもよい。例えば、プレティルト方向を配向領域の境界に対してほぼ平行にしたり、斜め方向にしても90゜捩れ垂直配向を形成することができる。
【0043】
一方の基板上又は各基板上で3種類以上の方向に配向処理を行って液晶層を5以上の配向状態を有する領域に分割することも可能である。但し、各配向領域での光透過特性が異なったものになるため、液晶表示装置の場合には、各基板上でプレティルト方向を180゜異ならせた2つの領域を形成して4つの配向状態の液晶領域を作製するのが好ましい。このとき、異なる視角方向を有する領域が同じ割合で表れるように、各配向処理を行う部分の面積を等しくしておくのが好ましい。
【0044】
捩れ角度は90゜以外の角度であってもよく、必要な特性に応じて配向処理方向や配向領域の境界の交差角度を設定することにより配向分割を行うことができる。
【0045】
さらに、各配向分割領域の面積を広くするために、図4に示すように隣接画素において隣接する部分を同一の配向方向とすることも可能であり、このような配向分割をどちらか一方の基板上のみで行うことも可能である。なお、この図4において、5は画素電極を示す。
【0046】
本実施形態では透過型の液晶表示装置について説明したが、透過型と同様の構造で後方に反射板を配置した反射型液晶表示装置や、一方の基板上の電極を反射電極とした反射型液晶表示装置についても本発明は適用可能である。透過型の表示を行う場合には両基板とも透光性の基板を用いればよく、反射型の表示を行う場合には少なくとも一方の基板が透光性であればよい。或いは、透過型と反射型とを組み合わせた両用の液晶表示装置等、様々な構成が可能であり、直視型のみならず、投射型表示装置についても本発明は適用可能である。
【0047】
本発明は液晶表示装置に限られず、シャッタ効果を利用した表示板、窓、扉、壁や情報処理装置等、表示装置以外の電気光学装置についても適用することが可能である。
【0048】
【発明の効果】
以上詳述したように、本発明による場合には、視野角が広く、表示品位及びコントラストが良好な優れた特性の液晶表示装置を簡便な方法で安価に製造することができる。
【0049】
このように優れた特性を有する本発明の液晶表示装置は、パーソナルコンピュータ、ワードプロセッサ、アミューズメント機器、テレビジョン装置などの平面ディスプレイやシャッタ効果を利用した表示板、窓、扉、壁などに好適に用いることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である液晶表示装置について示す図であり、(a)は下側基板に設けられた配向膜の配向方向を示し、(b)は上側基板に設けられた配向膜の配向方向を示す。
【図2】本発明の一実施形態である液晶表示装置について、液晶の捩れ方向と視野角方向とを示す図である。
【図3】配向膜の配向処理方法の一例を説明するための図である。
【図4】本発明の他の実施形態である液晶表示装置について、配向分割の仕方を説明するための図である。
【符号の説明】
1 下側基板
2 上側基板
5 画素電極
7 基板
8 フォトレジスト
9 配向膜
[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly used as a display device and the like, and is preferably used for a flat display device such as a personal computer, a word processor, an amusement device, a television device, a display plate using a shutter effect, a window, a door, a wall, etc. The present invention relates to a liquid crystal electro-optical device that can perform the above.
[0002]
[Prior art]
Conventionally, in a liquid crystal electro-optical device, in particular, a liquid crystal display device, an attempt has been made to widen the viewing angle by so-called alignment division in which regions having different alignment directions of liquid crystal molecules are formed in a certain region. When this alignment division is performed, a twisted nematic mode (TN) is usually used as a display mode, and the alignment direction of liquid crystal molecules is different by performing mask rubbing of the alignment film, light irradiation, or the like. Was established.
[0003]
On the other hand, in recent years, development of a technique for aligning liquid crystal molecules perpendicularly to a substrate without applying an electric field to the liquid crystal layer has progressed from the viewpoint of widening the viewing angle, improving display quality, and improving contrast.
[0004]
Furthermore, an example in which this vertical alignment technique and the above-described alignment division technique are combined is also described in, for example, Japanese Patent Application Laid-Open No. 8-43285. Here, a vertical twisted nematic mode is realized by controlling the orientation direction or pretilt of liquid crystal molecules and adding a chiral dopant.
[0005]
[Problems to be solved by the invention]
As described above, the vertical alignment twisted nematic mode liquid crystal display device has advantages in that the viewing angle can be increased, the display quality can be improved, and the contrast can be improved as compared with the horizontal alignment twisted nematic mode.
[0006]
However, a liquid crystal display device combining a vertical alignment technique and an alignment division technique, particularly the liquid crystal display apparatus described in JP-A-8-43285 has the following problems.
[0007]
That is, in this liquid crystal display device, it is necessary to align the alignment division line between the array side substrate and the counter substrate. However, due to factors such as pattern accuracy, substrate shrinkage, and alignment device accuracy, the actual manufacturing process Then, a deviation of several μm occurs. This shift causes a region where the liquid crystal molecules cannot be well aligned, and the display quality may be remarkably lowered, and there is a concern that the yield rate and cost increase.
[0008]
Furthermore, in the conventional alignment dividing method, in order to realize a four-divided alignment state, it is necessary to form four different alignment states on both the upper and lower substrates, which complicates the manufacturing process. It was.
[0009]
The present invention has been made to solve the above-described problems of the prior art, and can facilitate the manufacturing process, improve the yield rate, and improve the viewing angle, display quality, and contrast. An object of the present invention is to provide a liquid crystal electro-optical device that can be used.
[0010]
[Means for Solving the Problems]
The liquid crystal electro-optical device of the present invention is provided with a pair of substrates sandwiching a liquid crystal layer made of a liquid crystal material exhibiting a nematic phase at least in a predetermined temperature range and having a negative dielectric anisotropy. In a liquid crystal electro-optical device having an alignment film for aligning liquid crystal molecules substantially perpendicularly to the surface of the substrate when no voltage is applied to the surface on the liquid crystal layer side, the alignment film on each substrate has the liquid crystal molecules on the substrate surface. Each of them is divided into two or more types of alignment regions having different pretilt directions that are slightly tilted from the perpendicular direction, and the boundary of the alignment region on one substrate intersects the boundary of the alignment region on the other substrate. The substrates are bonded together, thereby achieving the above object.
[0011]
Each of the alignment films on each substrate has two types of alignment regions whose pretilt directions of the liquid crystal molecules are different by about 180 °, and the boundary between the alignment regions on one substrate and the alignment region on the other substrate Both substrates may be bonded together so that is substantially orthogonal.
[0012]
In the alignment film on the one substrate and the alignment film on the other substrate, the pretilt directions of the liquid crystal molecules may be substantially orthogonal.
[0013]
The alignment film may be made of a material containing at least a part of at least one of polyimide, polyamide, and polysiloxane, or may be made of silicon oxide.
[0014]
The alignment film may be subjected to alignment treatment by a rubbing method, an ion beam irradiation method, a light irradiation method, a shape control method, or an oblique deposition method.
[0015]
The liquid crystal layer may be made of a liquid crystal material containing no chiral dopant.
[0016]
The operation of the present invention will be described below.
[0017]
In the present invention, the vertical alignment film on each substrate is divided into two or more alignment regions having different pretilt directions of liquid crystal molecules, and the two substrates are bonded so that the boundaries of the alignment regions on both substrates intersect. As a result, each region divided on one substrate is further divided on the boundary of the alignment region on the other substrate. Thereby, the alignment process performed on the alignment film on each substrate for alignment division can be reduced. For example, by dividing the alignment direction into two on each substrate, a four-division alignment state is obtained. It is done.
[0018]
Further, as disclosed in JP-A-8-43825, since it is not necessary to strictly align the boundary between the alignment regions of both substrates, a region where the liquid crystal cannot be well aligned does not occur, and a good display state can be obtained.
[0019]
The liquid crystal layer is made of a liquid crystal material that exhibits a nematic phase at least in a predetermined temperature range and has negative dielectric anisotropy. When no voltage is applied, liquid crystal molecules are aligned in a direction substantially perpendicular to the substrate, and voltage is applied. When applied, the liquid crystal molecules tilt in a direction perpendicular to the direction of the electric field according to the pretilt direction.
[0020]
Thus, by combining the vertical alignment and the alignment division, when used as a display device, it is possible to increase the viewing angle, improve the display quality, and improve the contrast.
[0021]
By the way, when the viewing angle is widened by the orientation division, the 90 ° twisted vertical orientation mode is usually used because a high contrast display can be obtained under a low driving voltage.
[0022]
Therefore, in the present invention, for example, as shown in FIGS. 1A and 1B, which will be described later, the alignment film on each substrate is aligned in two types of alignment regions in which the pretilt direction of the liquid crystal molecules differs by approximately 180 °. As shown in FIG. 2 to be described later, the two substrates are bonded so that the boundaries of the alignment regions on both substrates are substantially orthogonal, so that the pretilt directions of the liquid crystal molecules in the alignment films on both substrates are approximately orthogonal. May be. In this way, it is possible to realize a 90 ° twisted vertical alignment without the aid of a chiral dopant, and by dividing the alignment direction into two on each substrate, a quadrant as shown in FIG. A 90 ° twisted vertical alignment state is obtained.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0024]
Here, an active matrix transmission type color liquid crystal display device having a structure in which a large number of pixel electrodes are provided on one substrate and a potential is selectively applied to each pixel electrode via a switching element composed of a low-temperature polysilicon thin film transistor. An example to which the present invention is applied will be described.
[0025]
This liquid crystal display device includes a thin film transistor having polysilicon formed as a semiconductor layer on a glass substrate at a low temperature of 600 ° C. or lower, an array side substrate on which pixel electrodes, bus lines, signal input terminals, and the like are formed, a color filter, and a light shielding A vertical alignment film is formed on both the opposite substrate on which the film and the like are formed.
[0026]
As shown in FIG. 1A, the vertical alignment film provided on one substrate (lower substrate) 1 initially slightly tilts liquid crystal molecules in contact with the vertical alignment film from a direction perpendicular to the substrate (pretilt). ) Is performed in two directions that are approximately 180 ° apart and is divided into two alignment regions. As shown in FIG. 1B, the vertical alignment film provided on the other substrate (upper substrate) 2 is subjected to alignment processes for pretilting the liquid crystal molecules in contact with the vertical alignment film in two directions that differ by approximately 180 °. It is divided into two alignment regions.
[0027]
As shown in FIG. 2, the two substrates 1 and 2 are bonded to each other so that the boundaries of the regions with different orientation directions on each substrate intersect (substantially orthogonal here). The pretilt direction of the alignment film is substantially orthogonal. In a state where the liquid crystal is sealed, four regions having different twist directions of liquid crystal molecules are formed, and four viewing angle directions are obtained.
[0028]
As the vertical alignment film, a material containing at least a part of at least one of polyimide, polyamide, and polysiloxane, for example, a polymer compound such as polyimide, polyamic acid, polyamide, polyamideimide, polysiloxane, or the like is used. For example, RN-783 (manufactured by Nissan Chemical Industries, Ltd.) can be used. Alternatively, an inorganic material such as silicon oxide may be used.
The vertical alignment film made of a polymer compound can be formed using, for example, a printing method, a spin coating method, a dipping method, or the like. On the other hand, the alignment film made of an inorganic material is generally formed by oblique deposition, and can also serve as an alignment treatment.
[0029]
The alignment treatment can be performed on an alignment film mainly composed of a polymer compound by using a rubbing method, an ion beam irradiation method, a light irradiation method, or the like.
[0030]
Here, since it is necessary to perform alignment processing in two directions on each substrate, a special alignment processing direction is required.
[0031]
For example, in the case of performing the rubbing method, first, rubbing is performed in one direction using a mask having an opening in a predetermined region, and then in the reverse direction using a mask having a complementary opening. There is a method of performing a rubbing process. However, in this method, due to the alignment accuracy of the mask, an area where alignment processing cannot be performed inevitably occurs. Therefore, it is desirable that the entire surface is once rubbed in a certain direction and then a necessary region is covered with a mask or a photoresist so that the rubbing treatment is performed in the reverse direction. As for the rubbing condition at this time, it is desirable to perform the second rubbing process stronger than the first.
[0032]
When the light irradiation method is used, a method of irradiating ultraviolet light from an oblique direction or a method of irradiating polarized ultraviolet light is generally used. However, since there is a problem similar to the rubbing method, it is desirable to perform alignment division by covering the necessary area with a photomask or the like and changing the light irradiation direction to each substrate and irradiating from two directions. Even in this case, it is possible to align the entire surface once in a certain direction and then perform the alignment processing in the reverse direction only in the necessary region. However, in the region subjected to the alignment processing twice, the alignment regulating force is slightly reduced. There is.
[0033]
Also in the ion beam irradiation method, alignment division can be performed by covering a necessary region with a metal mask or the like and irradiating each substrate from two directions while changing the irradiation direction. Also in this case, once the entire surface is aligned in a certain direction, it is possible to align only the necessary region in the reverse direction.
[0034]
In the case of the shape control method, as shown in FIG. 3, a shape for controlling the pretilt direction of the liquid crystal molecules is previously formed on the substrate 7 using a photoresist 8 or the like, and the vertical alignment is formed thereon. By forming a film, alignment division can be performed.
[0035]
In the case of the oblique deposition method, the necessary area is covered with a metal mask or the like, the deposition direction is changed with respect to each substrate, the deposition is performed twice, and further, the deposition is performed once for the vertical orientation, thereby dividing the orientation. It can be performed.
[0036]
In this way, the two substrates in which the regions of the orientation directions different from each other by 180 ° on the respective substrates are formed in a predetermined portion, as shown in FIG. Here, they are bonded together so as to face each other. Then, the periphery is sealed, and a liquid crystal panel having a negative dielectric anisotropy is injected into the gap between the two substrates to seal the injection port, thereby obtaining a liquid crystal panel. As the liquid crystal material at this time, for example, MLC-2012 (manufactured by Merck Japan Ltd.) can be used.
[0037]
A liquid crystal display device can be manufactured by attaching a polarizing plate to the liquid crystal panel in a predetermined direction, connecting to a driving circuit, and applying an appropriate signal.
[0038]
The liquid crystal display device thus manufactured can obtain a very wide viewing angle characteristic with a contrast angle of 5 or more and 70 ° or more each.
[0039]
Furthermore, since a four-division alignment state can be obtained simply by performing an alignment process in two directions on each substrate, the manufacturing process is much higher than in the prior art that requires an alignment process in four directions for each substrate. This is very advantageous in terms of both cost and yield rate.
[0040]
Although an active matrix type liquid crystal display device using a low-temperature polysilicon thin film transistor has been described here, a non-linear element array such as a thin film transistor or various diodes using amorphous silicon, polysilicon, single crystal silicon or the like is used as necessary. Can be provided. Alternatively, the present invention can also be applied to a liquid crystal electro-optical device having no configuration.
[0041]
In the case of a substrate provided with a nonlinear element array, it is common to divide the orientation direction into four for each pixel electrode. However, when displaying one dot with a plurality of pixel electrodes, The necessary number of orientation divisions may be performed.
[0042]
In FIGS. 1A and 1B, the pretilt direction is set substantially perpendicular to the boundary of the alignment region. However, the pretilt direction of the liquid crystal molecules on both the substrates is determined by crossing the boundary of the alignment region on both substrates. Other pretilt directions may be used as long as they can be twisted by 90 °. For example, a 90 ° twisted vertical alignment can be formed even if the pretilt direction is substantially parallel to the boundary of the alignment region, or even if it is oblique.
[0043]
It is also possible to divide the liquid crystal layer into regions having five or more alignment states by performing alignment treatment in one or more directions on one substrate or each substrate. However, since the light transmission characteristics in each alignment region are different, in the case of a liquid crystal display device, two regions having a pretilt direction different by 180 ° are formed on each substrate to form four alignment states. It is preferable to prepare a liquid crystal region. At this time, it is preferable that the areas of the portions to be subjected to the alignment treatment are made equal so that regions having different viewing angle directions appear at the same rate.
[0044]
The twist angle may be an angle other than 90 °, and the alignment division can be performed by setting the alignment processing direction and the crossing angle of the boundary of the alignment region according to the required characteristics.
[0045]
Furthermore, in order to increase the area of each alignment division region, as shown in FIG. 4, it is possible to make adjacent portions in the adjacent pixels have the same alignment direction, and such alignment division is performed on either one of the substrates. It is also possible to do only above. In FIG. 4, 5 indicates a pixel electrode.
[0046]
In this embodiment, the transmissive liquid crystal display device has been described. However, a reflective liquid crystal display device having a structure similar to that of the transmissive type and having a reflective plate disposed behind, or a reflective liquid crystal having an electrode on one substrate as a reflective electrode. The present invention can also be applied to a display device. In the case of performing transmissive display, a light-transmitting substrate may be used for both substrates, and in the case of performing reflective display, at least one of the substrates may be translucent. Alternatively, various configurations such as a combined liquid crystal display device combining a transmission type and a reflection type are possible, and the present invention can be applied not only to a direct view type but also to a projection type display device.
[0047]
The present invention is not limited to a liquid crystal display device, and can be applied to electro-optical devices other than display devices such as a display plate, a window, a door, a wall, and an information processing device using a shutter effect.
[0048]
【The invention's effect】
As described above in detail, according to the present invention, an excellent liquid crystal display device having a wide viewing angle, good display quality and contrast can be manufactured at a low cost by a simple method.
[0049]
The liquid crystal display device of the present invention having such excellent characteristics is suitably used for a flat display such as a personal computer, a word processor, an amusement device, a television device, a display plate using a shutter effect, a window, a door, a wall, etc. be able to.
[Brief description of the drawings]
1A and 1B are diagrams showing a liquid crystal display device according to an embodiment of the present invention, in which FIG. 1A shows the alignment direction of an alignment film provided on a lower substrate, and FIG. 1B is provided on an upper substrate; The alignment direction of the alignment film is shown.
FIG. 2 is a diagram showing a twist direction and a viewing angle direction of liquid crystal in a liquid crystal display device according to an embodiment of the present invention.
FIG. 3 is a diagram for explaining an example of an alignment treatment method for an alignment film;
FIG. 4 is a diagram for explaining how to perform alignment division in a liquid crystal display device according to another embodiment of the present invention.
[Explanation of symbols]
1 Lower substrate 2 Upper substrate 5 Pixel electrode 7 Substrate 8 Photoresist 9 Alignment film

Claims (5)

少なくとも所定の温度範囲でネマティック相を示し、かつ、誘電異方性が負であってカイラルドーパントを含有しない液晶材料からなる液晶層を挟んで一対の基板が設けられ、前記各基板の該液晶層側の面に、電圧無印加時に液晶分子を前記各基板の表面に対して略垂直に配向させる配向膜をそれぞれ有する液晶電気光学装置において、
前記各基板上の配向膜は、前記液晶分子を前記各基板表面に対して垂直な方向から若干傾かせるプレティルト方向が異なる2種類以上の配向領域に各々分割され、一方の基板上の配向領域の境界と他方の基板上の配向領域の境界とが交差するように前記各基板同士が貼り合わせられており、
前記一方の基板上の配向膜および前記他方の基板上の配向膜は、2方向からの斜め方向光照射によって、前記配向領域の境界と前記液晶分子のプレティルト方向とが略平行になるように前記各配向領域が形成されていることを特徴とする液晶電気光学装置。
A pair of substrates is provided sandwiching a liquid crystal layer made of a liquid crystal material that exhibits a nematic phase at least in a predetermined temperature range and has negative dielectric anisotropy and does not contain a chiral dopant, and the liquid crystal layer of each of the substrates In the liquid crystal electro-optical device having an alignment film for aligning liquid crystal molecules substantially perpendicularly to the surface of each substrate when no voltage is applied to the side surface,
The alignment film on each substrate is divided into two or more alignment regions having different pretilt directions that slightly tilt the liquid crystal molecules from a direction perpendicular to the surface of each substrate. Each of the substrates is bonded so that the boundary and the boundary of the alignment region on the other substrate intersect,
The alignment film on the one substrate and the alignment film on the other substrate are arranged so that the boundary of the alignment region and the pretilt direction of the liquid crystal molecules are substantially parallel by oblique light irradiation from two directions. A liquid crystal electro-optical device in which each alignment region is formed .
前記各基板上の配向膜は、前記液晶分子のプレティルト方向がほぼ180゜異なる2種類の配向領域を各々有し、一方の基板上の配向領域の境界と他方の基板上の配向領域の境界とが略直交するように前記各基板同士が貼り合わせられている請求項1に記載の液晶電気光学装置。  Each of the alignment films on each substrate has two types of alignment regions in which the pretilt direction of the liquid crystal molecules differs by approximately 180 °, and a boundary between alignment regions on one substrate and a boundary between alignment regions on the other substrate The liquid crystal electro-optical device according to claim 1, wherein the substrates are bonded to each other so as to be substantially orthogonal to each other. 前記一方の基板上の配向膜と前記他方の基板上の配向膜とは、前記液晶分子のプレティルト方向が略直交している請求項2に記載の液晶電気光学装置。  3. The liquid crystal electro-optical device according to claim 2, wherein the alignment film on the one substrate and the alignment film on the other substrate are substantially perpendicular to the pretilt direction of the liquid crystal molecules. 前記配向膜は、ポリイミド、ポリアミド及びポリシロキサンのうちの少なくとも1種類の構造を少なくとも一部に含む材料からなり、又は酸化シリコンからなる請求項1乃至請求項3のいずれかに記載の液晶電気光学装置。  The liquid crystal electro-optic according to any one of claims 1 to 3, wherein the alignment film is made of a material containing at least a part of at least one of polyimide, polyamide, and polysiloxane, or made of silicon oxide. apparatus. 前記配向膜は、ラビング法、イオンビーム照射法、光照射法、形状制御法又は斜方蒸着法により配向処理がなされている請求項1乃至請求項4のいずれかに記載の液晶電気光学装置。  5. The liquid crystal electro-optical device according to claim 1, wherein the alignment film is subjected to alignment treatment by a rubbing method, an ion beam irradiation method, a light irradiation method, a shape control method, or an oblique deposition method.
JP15975798A 1998-06-08 1998-06-08 Liquid crystal electro-optical device Expired - Lifetime JP3850002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15975798A JP3850002B2 (en) 1998-06-08 1998-06-08 Liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15975798A JP3850002B2 (en) 1998-06-08 1998-06-08 Liquid crystal electro-optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006211877A Division JP4656526B2 (en) 2006-08-03 2006-08-03 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPH11352486A JPH11352486A (en) 1999-12-24
JP3850002B2 true JP3850002B2 (en) 2006-11-29

Family

ID=15700607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15975798A Expired - Lifetime JP3850002B2 (en) 1998-06-08 1998-06-08 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP3850002B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI292846B (en) * 2000-07-13 2008-01-21 Japan Science & Tech Agency
JP3771137B2 (en) 2001-03-21 2006-04-26 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP3925813B2 (en) 2003-11-17 2007-06-06 シャープ株式会社 Liquid crystal display device, manufacturing method thereof, and hard mask
WO2006121220A1 (en) 2005-05-13 2006-11-16 Sharp Kabushiki Kaisha Liquid crystal display device
WO2006132369A1 (en) 2005-06-09 2006-12-14 Sharp Kabushiki Kaisha Liquid crystal display device
WO2007037203A1 (en) * 2005-09-28 2007-04-05 Sharp Kabushiki Kaisha Liquid crystal display device
JP4651677B2 (en) 2005-09-30 2011-03-16 シャープ株式会社 Liquid crystal display device
WO2007063727A1 (en) 2005-12-02 2007-06-07 Sharp Kabushiki Kaisha Production method of liquid crystal display and exposure device for alignment treatment
CN102116965B (en) 2006-04-04 2014-12-17 夏普株式会社 Liquid crystal display device
US8064018B2 (en) 2006-04-24 2011-11-22 Sharp Kabushiki Kaisha Liquid crystal display device
US20090244462A1 (en) 2006-07-14 2009-10-01 Toshihide Tsubata Liquid crystal display device
JP4656526B2 (en) * 2006-08-03 2011-03-23 シャープ株式会社 Liquid crystal electro-optical device
CN101568875B (en) 2006-12-05 2014-10-08 夏普株式会社 Liquid crystal display device
US8189154B2 (en) 2007-12-13 2012-05-29 Sharp Kabushiki Kaisha Liquid crystal display device wherein each pixel has first, second, third, and, fourth alignment azimuths that are different from each other
KR101469035B1 (en) 2008-05-28 2014-12-11 삼성디스플레이 주식회사 Method of manufacturing liquid crystal display
EP2306238A4 (en) 2008-06-27 2012-09-12 Sharp Kk Liquid crystal display device and manufacturing method therefor
WO2010026721A1 (en) 2008-09-03 2010-03-11 シャープ株式会社 Alignment film, alignment film material, liquid crystal display device comprising alignment film, and method for manufacturing same
WO2010047011A1 (en) 2008-10-21 2010-04-29 シャープ株式会社 Orientation film, orientation film material, liquid crystal display having orientation film, and method for forming the same
RU2011126148A (en) 2008-11-27 2013-01-10 Шарп Кабусики Кайся LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR ITS MANUFACTURE
BRPI0921937A2 (en) 2008-11-27 2016-01-05 Sharp Kk orientation film, liquid crystal display having orientation film, and method for forming the orientation film
WO2011142144A1 (en) 2010-05-11 2011-11-17 シャープ株式会社 Liquid crystal display device
WO2012090823A1 (en) 2010-12-28 2012-07-05 シャープ株式会社 Liquid crystal display device
JP2012141504A (en) * 2011-01-05 2012-07-26 Hitachi High-Technologies Corp Exposure device and exposure method
WO2012093534A1 (en) * 2011-01-05 2012-07-12 株式会社日立ハイテクノロジーズ Exposure device and exposure method
JP2012145786A (en) * 2011-01-13 2012-08-02 Hitachi High-Technologies Corp Exposure device and exposure method
JP5430589B2 (en) * 2011-01-14 2014-03-05 株式会社日立ハイテクノロジーズ Exposure apparatus and exposure method
KR102160130B1 (en) 2014-03-11 2020-09-28 삼성디스플레이 주식회사 Liquid crystal display panel
CN112965299B (en) 2015-09-17 2023-11-07 夏普株式会社 Liquid crystal display panel having a light shielding layer

Also Published As

Publication number Publication date
JPH11352486A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
JP3850002B2 (en) Liquid crystal electro-optical device
JP3492582B2 (en) Liquid crystal display device and method of manufacturing the same
JP4248835B2 (en) Substrate for liquid crystal display device and liquid crystal display device including the same
KR100259474B1 (en) Lcd device with hybrid array
JP3164702B2 (en) Liquid crystal display
KR100228604B1 (en) Liquid crystal display device
JP3234357B2 (en) Liquid crystal display
JPH06294959A (en) Liquid crystal display device and its production
JP2002182230A (en) Fringe field switching mode liquid crystal display
KR20050058156A (en) In-plane switching mode liquid crystal display device
US5757454A (en) Liquid crystal display device with homeotropic alignment in which two liquid crystal regions on the same subtrate have different pretilt directions because of rubbing
US20100259469A1 (en) Liquid crystal display panel and liquid crystal display device
JP2000193977A (en) Liquid crystal display device
JP2004151525A (en) Liquid crystal display
JP2002214613A (en) Liquid crystal display
JP3500547B2 (en) Method of manufacturing liquid crystal display panel and liquid crystal display panel
US7463322B2 (en) Multi-domain liquid crystal display device and method for fabricating the same
JP4656526B2 (en) Liquid crystal electro-optical device
JPH0643462A (en) Electric field control double refraction effect type liquid crystal display device
JP4019906B2 (en) Liquid crystal display
JP2002244145A (en) Liquid crystal display device of fringe field drive mode
JPH0829790A (en) Liquid crystal display device
JPH07333634A (en) Liquid crystal display panel
KR100294686B1 (en) Complex field type liquid crystal display device
US6856367B2 (en) Liquid crystal display device and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

EXPY Cancellation because of completion of term