JP3848906B2 - Method for producing rare earth alloy powder for sintered magnet - Google Patents

Method for producing rare earth alloy powder for sintered magnet Download PDF

Info

Publication number
JP3848906B2
JP3848906B2 JP2002260252A JP2002260252A JP3848906B2 JP 3848906 B2 JP3848906 B2 JP 3848906B2 JP 2002260252 A JP2002260252 A JP 2002260252A JP 2002260252 A JP2002260252 A JP 2002260252A JP 3848906 B2 JP3848906 B2 JP 3848906B2
Authority
JP
Japan
Prior art keywords
alloy
powder
rare earth
phase
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002260252A
Other languages
Japanese (ja)
Other versions
JP2004099932A (en
Inventor
健 荒木
浩行 寺本
孝典 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002260252A priority Critical patent/JP3848906B2/en
Publication of JP2004099932A publication Critical patent/JP2004099932A/en
Application granted granted Critical
Publication of JP3848906B2 publication Critical patent/JP3848906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結磁石用希土類合金粉末の製造方法に関するものであり、詳しくは、例えば家電品、OA機器、産業用機械などに使われる電磁型モータ用焼結磁石の原料となり得る焼結磁石用希土類合金粉末の製造方法に関するものである。
【0002】
【従来の技術】
希土類−遷移金属−硼素系の焼結磁石は通常、溶解鋳造された合金を粉砕し、磁場中でプレス成形後、真空あるいは不活性ガス雰囲気中で焼結・熱処理することにより製造される。
図1は、希土類−遷移金属−硼素系鋳造合金の内部組織を示す模式図である。図1において、鋳造合金の内部組織は、その大部分が大きさ数十μmのRT14B相1からなり、相境界部分に非磁性のR-rich相2やB-rich相3が分布している。これら非磁性相の量が多いと磁石の残留磁化を低下させる原因となるため、R-rich相やB-rich相はできる限り除去することが好ましい。その除去方法としては、例えば特開昭64−48406号公報に記載された技術が知られている。それによれば、鋳造合金に水素吸蔵放出処理を施して微粉末化した後、磁気選別を行うことにより、不要なR-rich相やB-rich相を除去している。
【0003】
【発明が解決しようとする課題】
しかしながら、同公報の手法では磁気選別後に回収されたRT14B粒子の表面にはR-rich相が付着しており、その分のR-rich相は残存することになる。この点について同公報では一定量のR-rich相は保磁力を維持するために欠かせないとして容認している。ところが、R-rich相は酸素と結びつきやすいため、その後の磁石製造工程において粉末に不要な酸素が取り込まれてしまう。その結果、取り込まれた酸素が不純物として磁化に悪影響を及ぼす他、酸化による焼結性の低下などが起こり、最終的に残留磁化が低下してしまう問題点がある。同公報では、この問題点を見過ごしている。
【0004】
したがって本発明の目的は、鋳造合金の粉末中に取り込まれる酸素量を低減し、不純物としての影響や焼結性の低下を回避し、残留磁化の低下を防ぐことができる焼結磁石用希土類合金粉末の製造方法の提供にある。
【0005】
【課題を解決するための手段】
請求項1の発明は、
(1)RxT1-x-yBy合金(式中、RはNd、Pr、Dy、TbおよびHoより選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上、0.13≦x≦0.30、かつ0.06≦y≦0.15である)を鋳造する工程と、
(2)前記(1)工程により得られた鋳造合金を1000〜1120℃で熱処理する工程と、
(3)前記(2)工程により得られた熱処理合金を粉末化する工程と、
(4)前記(3)工程により得られた粉末から永久磁石あるいは電磁石により吸着する粒子を選択回収する工程と
を有することを特徴とする焼結磁石用希土類合金粉末の製造方法である。
請求項2の発明は、前記(3)工程には熱処理合金の水素吸蔵放出処理が含まれることを特徴とする請求項1に記載の焼結磁石用希土類合金粉末の製造方法である。
請求項3の発明は、前記(3)工程中、前記(4)工程中、前記(2)および(3)工程間、あるいは前記(4)工程後に、非晶質あるいは100nm以下の結晶粒から構成される微結晶質のRM-T-B合金(式中、RMはDy、Tbのいずれか一方を必須とする希土類元素より選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上である)を前記熱処理合金に対して5〜30重量%の割合で混合することを特徴とする請求項1または2記載の焼結磁石用希土類合金粉末の製造方法である。
【0006】
【作用】
図2は、本発明における(2)熱処理工程後の合金の内部組織を示す模式図である。図2において、前記組成合金を鋳造後1000〜1120℃の熱処理を施すことにより合金内部のRT14B相1が200μm以上の大きさに粗大化する。なお、符号2は、R-rich相であり、3はB-rich相である。
図3は、本発明における(3)粉末化工程によって派生する粒子を示す模式図である。粉末化工程を通じて熱処理合金の内部組織が破壊され、RT14B相1の内部よりRT14B粒子4Aが、RT14B相1の外縁部よりR-rich相が一部付着したRT14B粒子4Bが、R-rich相よりR-rich粒子5が、B-rich相よりB-rich粒子6が派生する。ここで、RT14B相1は粗大化によりその比体積がかなり大きくなっているため、派生する粒子4Aの数量は粒子4Bの10倍以上となる。粉末化後はこれらの粒子が混在した状態であるが、永久磁石あるいは電磁石により吸着する粒子を取り出すと、強磁性であるRT14B粒子のみが選択的に回収される。こうして得られたRT14B粉末はその9割以上がRT14B粒子4Aであり、その表面にはR-rich相がほとんど付着していないため、粉末に占めるR-rich相の体積比率が従来に比べて大幅に低減される。その結果、粉末に取り込まれる酸素量が激減する。なお、(3)粉末化工程では、1〜15μmの平均粒径まで粉末化するのが好ましい。
また、本発明において、熱処理合金を粉末化する工程の中に鋳造合金への水素吸蔵放出処理を加えることにより、合金の脆化が促進されて粉末化に要する時間が短縮化される。なお、水素吸蔵放出処理は、例えば常温常圧の水素気雰囲気中に数時間放置し、次いで10−2Torr以下の圧力下で300〜650℃の温度で数時間加熱することにより行うことができる。
また、前記(3)工程中、前記(4)工程中、前記(2)および(3)工程間、あるいは前記(4)工程後に、非晶質あるいは100nm以下の結晶粒から構成される微結晶質のRM-T-B合金(式中、RMはDy、Tbのいずれか一方を必須とする希土類元素より選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上である)を焼結助剤として熱処理合金に対して5〜30重量%の割合で混合する工程を加えることにより、焼結助剤がその後の磁石製造のための焼結・熱処理工程においてR-rich粒界相を形成するため、焼結性が上がると同時に、焼結助剤に含まれるDyあるいはTbがRT14B結晶表面に拡散することにより保磁力が大きく向上する。さらに焼結助剤は非晶質または微結晶質であり酸化されにくいため、混合しても粉末に不要な酸素が取り込まれない。
【0007】
【発明の実施の形態】
実施の形態1.
高周波真空溶解炉にて種々の組成のNdxFe1-x-yBy合金(0.10≦x≦0.35,0.04≦y≦0.17)を溶解し、1300〜1500℃の温度に加熱後、水冷鋳型に鋳込んで厚み10mmの板状の鋳造合金を作製した。内部組織を光学顕微鏡で観察したところいずれの試料もRT14B相のサイズは30μm程度であった。次に真空加熱炉を用いてこれらの合金を900〜1150℃の種々の温度で8時間加熱した。その結果、1120℃を越える温度では大部分の鋳造合金がアルミナ製の台座と激しく反応して健全な熱処理が行われず、また、1000℃を下回る温度ではRT14B相が50μm程度までにしか成長せず、充分な粗大化が起こらないことがわかった。そのため、熱処理温度としては、1000〜1120℃とすることが好ましい。同温度範囲で熱処理を行った場合の合金の内部組織について調べた結果を図4に示す。図中×印はα-Fe相、あるいはNdFe17相の存在が認められた組成であり、これらの相は磁石の磁気特性を大きく劣化させる要因となるため、原料にするには不適な組成である。また、△印は合金と炉内の台座との反応が激しく健全な熱処理が行えない組成、あるいはRT14B相の充分な粗大化が起こらない組成である。一方、○印は熱処理が健全に行われ200μm以上のサイズのRT14B相が得られた組成で、この結果から合金組成は0.13≦x≦0.30、0.06≦y≦0.15の範囲が適当といえる。次に、Nd0.15Fe0.77B0.08、Nd0.12Pr0.03Fe0.77B0.08 Nd0.14Dy0.01Fe0.77B0.08、Nd0.14Tb0.01Fe0.77B0.08、Nd0.15Fe0.75Co0.02B0.08、Nd0.15Fe0.76Ni0.01B0.08の6種類の合金試料を高周波真空溶解炉により鋳造した。その後真空加熱炉を用いて各合金試料を1100℃の温度で8時間加熱した。内部組織を光学顕微鏡で観察したところいずれの試料もRT14B相が200μm以上に粗大化していた。次にそれぞれの合金試料をジョークラッシャー、ディスクミル、ジェットミルにて順次粉砕し、得られた各粉末試料を永久磁石方式の磁力選別機にかけてRT14B粒子を選択回収した。このときRT14B粒子の平均粒径は4〜5μmの範囲であった。また、粉体中のR-rich相、B-rich相の含有量はいずれも0.2体積%未満であり、RFe14B相の含有量は99.6体積%を超えることが確認された。一方で焼結助剤として液体急冷装置を用いてNd0.38Fe0.56B0.06非晶質合金粉末を別途作製し、これを12重量%の割合で各試料粉末に加えて均一に混合した後、磁場プレス機により圧力600kgf/cm2、磁場15000Gの条件で横磁場成形を行った。次に、管状炉により真空中1090℃で2時間の焼結を行った後急冷し、さらに真空中で600℃で2時間の熱処理を施し、外径10mm×高さ7mmの円柱磁石試料を得た。各試料を30000Gのパルス磁場により着磁し、BHカーブトレーサにより減磁曲線を測定した。また、不活性ガス融解−赤外線吸収法により含有酸素量を測定した。測定結果を表1に示す。同表には比較のため、鋳造後に1100℃の加熱を行わず、焼結助剤も用いない従来の製法による磁石の特性を記載している。表1より本発明により得られた磁石の酸素濃度は1500ppm前後であり、比較例の磁石に比べて半分以下となっていることがわかる。これは本発明では合金粉末に含まれるNd-rich相の量がわずかであり粉末の酸化量が低減されたことを反映している。一方、比較例では鋳造後に1100℃の加熱を行っていないので、鋳造合金の結晶粒の粗大化が十分ではなく、このため、粉砕時には表面にR-rich相が付着したRFe14B粒子が多数派生している。磁気選別後、回収された試料粉末に含まれるR-rich相の含有量を調べたところ、約3.0体積%と本発明よりはるかに多いことが分かった。この多量のR-rich相が製造工程中に多量の酸素を取り込んでしまい、その結果、比較例の含有酸素量は5000ppmに近い高いレベルになってしまったといえる。次に、焼結・熱処理工程後の磁石の内部組織を調べたところ、本発明と比較例いずれもR-rich相の体積含有率は3.1%、B-rich相のそれは0.2%であった。本発明のR-rich相は主に焼結助剤が焼結工程中に相分離を起こして生成されるが、焼結助剤を非晶質もしくは微結晶質としているため、酸化されることがほとんどない。そのため、本発明ではR-rich相の酸化に起因する焼結性の低下がほとんど生じず、より緻密な内部組織を得ることができると同時に保持力の維持に必要な量のR-rich粒界相も良好に形成することができる。よって、含有酸素量の低減は、酸素が不純物として磁化へ悪影響を及ぼすことを回避するのみならず、焼結性の低下を防止する効果も有する。これらの相乗効果により本発明の磁石は表1に示すとおり、同組成を有する比較例の磁石と比べていずれも高い残留磁化が得られている。
【0008】
【表1】

Figure 0003848906
【0009】
実施の形態2.
高周波真空溶解炉にてNd0.15Fe0.77B0.08合金を溶解し1450℃の温度に加熱後、水冷鋳型に鋳込んで厚み10mmの板状の鋳造合金を作製した。内部組織を光学顕微鏡で観察したところNdFe14B相のサイズは30μm程度であった。次に真空加熱炉を用いて同合金を1100℃の温度で8時間加熱した。内部組織を観察したところNdFe14B相は200μm以上に粗大化していた。次に同合金をジョークラッシャー、ディスクミル、ジェットミルにて順次粉砕して微粉末化し、次いで電磁石方式の磁力選別機にかけてNdFe14B粒子を選択回収して粉末試料を得た。同粉末試料の平均粒径は約5μmであった。一方で焼結助剤として液体急冷装置を用いて約50μm厚のNd0.27Dy0.11Fe0.56B0.06合金薄帯を作製した。電子顕微鏡を用いて観察した結果、薄帯表面は非晶質であったが、内部約15μm厚の部分は直径数十nm〜100nmの結晶粒が占めており、微結晶質となっていた。薄帯をディスクミル、ジェットミルにて順次粉砕して助剤粉末を得た。同粉末の平均粒径は約1μmであった。粉末試料に助剤粉末を様々な割合で加えて均一に混合した後、磁場プレス機により圧力600kgf/cm2、磁場15000Gの条件で横磁場成形を行った。次に、各成形体を管状炉により真空中1090℃で2時間の焼結を行った後急冷し、さらに真空中600℃で2時間の熱処理を施し、外径10mm×高さ7mmの円柱磁石試料を得た。各試料を30000Gのパルス磁場により着磁し、BHカーブトレーサにより減磁曲線を測定した。測定結果を表2に示す。助剤粉末の粉末試料に対する重量比率が5%を下回ると保磁力が7kOe未満となり、磁石の動作点によっては大きな減磁が起きる可能性が生じるため、信頼性に欠ける。また該重量比率が30%を越えるとエネルギー積の低下が顕著になる。このため助剤粉末の粉末試料に対する重量比率は5〜30%であることが好ましく、さらには12〜25%であることが好ましい。
【0010】
【表2】
Figure 0003848906
【0011】
実施の形態3.
高周波真空溶解炉にてNd0.15Fe0.78B0.07合金を溶解し1450℃の温度に加熱後、水冷鋳型に鋳込んで厚み10mmの板状の鋳造合金を作製した。内部組織を光学顕微鏡で観察したところNdFe14B相のサイズは30μm程度であった。次に真空加熱炉を用いて同合金を1100℃の温度で8時間加熱した。内部組織を観察したところNdFe14B相は200μm以上に粗大化していた。次に同合金をジョークラッシャーで5mm角程度に粉砕して粗粉末を得た。一方で焼結助剤として液体急冷装置を用いてNd0.27Tb0.11Fe0.56B0.06、Nd0.27Dy0.11Fe0.56B0.06、Pr0.27Dy0.11Fe0.56B0.06、Nd0.38Fe0.56B0.06、Pr0.38Fe0.56B0.06の5種類の合金薄帯を作製した。薄帯の厚みは約40μmであった。電子顕微鏡を用いて観察したところ薄帯内部は非晶質となっていた。粗粉末に対して各薄帯をそれぞれ18重量%の重量比率で混合した後、各混合粉末を常温常圧の水素気雰囲気中に8時間放置し、継いで10−2Torrの圧力下600℃の温度で8時間加熱して水素放出を行った。その後ディスクミル、ジェットミルにて順次粉砕して微粉末を得た。ジェットミル粉砕に費やした時間は従来の1/4程度であったが、水素吸蔵放出処理による脆化効果により粉末は平均結晶粒径が4μm程度に微粒子化されていた。次に各微粉末を電磁石方式の磁力選別機にかけて粒子を回収した。このとき焼結助剤である非晶質合金薄帯から派生した微粒子も強磁性であるため電磁石に吸着し、NdFe14B粒子に混じって回収された。得られた各混合粉末を磁場プレス機により圧力600kgf/cm2、磁場15000Gの条件で横磁場成形した。次に、各成形体を管状炉により真空中1090℃で2時間の焼結を行った後急冷し、さらに真空中600℃で2時間の熱処理を施し、外径10mm×高さ7mmの円柱磁石試料を得た。各試料を30000Gのパルス磁場により着磁し、BHカーブトレーサにより減磁曲線を測定した。測定結果を表3に示す。DyまたはTbを含む焼結助剤により作製した磁石はこれらの元素を含まない磁石に比べて大きな保磁力が得られた。
【0012】
【表3】
Figure 0003848906
【0013】
【発明の効果】
請求項1の発明は、
(1)RxT1-x-yBy合金(式中、RはNd、Pr、Dy、TbおよびHoより選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上、0.13≦x≦0.30、かつ0.06≦y≦0.15である)を鋳造する工程と、
(2)前記(1)工程により得られた鋳造合金を1000〜1120℃で熱処理する工程と、
(3)前記(2)工程により得られた熱処理合金を粉末化する工程と、
(4)前記(3)工程により得られた粉末から永久磁石あるいは電磁石により吸着する粒子を選択回収する工程とを有することを特徴とする焼結磁石用希土類合金粉末の製造方法であるので、鋳造合金の粉末中に取り込まれる酸素量を低減し、不純物としての影響や焼結性の低下を回避し、残留磁化の低下を防ぐことができる。
【0014】
請求項2の発明は、前記(3)工程には熱処理合金の水素吸蔵放出処理が含まれることを特徴とする請求項1に記載の焼結磁石用希土類合金粉末の製造方法であるので、合金の脆化が促進されて粉末化に要する時間が短縮化される。
【0015】
請求項3の発明は、前記(3)工程中、前記(4)工程中、前記(2)および(3)工程間、あるいは前記(4)工程後に、非晶質あるいは100nm以下の結晶粒から構成される微結晶質のRM-T-B合金(式中、RMはDy、Tbのいずれか一方を必須とする希土類元素より選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上である)を前記熱処理合金に対して5〜30重量%の割合で混合することを特徴とする請求項1または2記載の焼結磁石用希土類合金粉末の製造方法であるので、焼結性が上がると同時に保磁力も向上する。
【図面の簡単な説明】
【図1】 希土類−遷移金属−硼素系鋳造合金の内部組織を示す模式図である。
【図2】 本発明における熱処理後の希土類−遷移金属−硼素系鋳造合金の内部組織を示す模式図である。
【図3】 本発明における熱処理後の希土類−遷移金属−硼素系鋳造合金の粉砕よって派生する粒子を示す模式図である。
【図4】 実施の形態1において健全な特性を有する粉末が得られる組成領域を示した図である。
【符号の説明】
1 RT14B相、2 R-rich相、3 B-rich相、4A RT14B相内部より派生したRT14B粒子、4B RT14B相外縁部より派生したRT14B粒子、5 R-rich相より派生したR-rich粒子、6 B-rich相より派生したB-rich粒子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a rare earth alloy powder for a sintered magnet, and more specifically, a sintered magnet that can be a raw material for a sintered magnet for an electromagnetic motor used in, for example, home appliances, OA equipment, and industrial machines. The present invention relates to a method for producing a rare earth alloy powder.
[0002]
[Prior art]
A rare earth-transition metal-boron sintered magnet is usually produced by crushing a melt-cast alloy, press-molding it in a magnetic field, and sintering and heat-treating it in a vacuum or an inert gas atmosphere.
FIG. 1 is a schematic diagram showing the internal structure of a rare earth-transition metal-boron casting alloy. In FIG. 1, the internal structure of the cast alloy is mostly composed of R 2 T 14 B phase 1 with a size of several tens of μm, and non-magnetic R-rich phase 2 and B-rich phase 3 are present at the phase boundary. Distributed. If the amount of these nonmagnetic phases is large, it will cause a decrease in the remanent magnetization of the magnet. Therefore, it is preferable to remove the R-rich phase and the B-rich phase as much as possible. As the removal method, for example, a technique described in JP-A No. 64-48406 is known. According to this, unnecessary R-rich and B-rich phases are removed by subjecting the cast alloy to hydrogen storage / release treatment and making it fine powder, followed by magnetic selection.
[0003]
[Problems to be solved by the invention]
However, according to the method of the same publication, the R-rich phase is attached to the surface of the R 2 T 14 B particles recovered after the magnetic separation, and the R-rich phase corresponding to the R-rich phase remains. In this regard, the publication accepts that a certain amount of R-rich phase is indispensable for maintaining the coercive force. However, since the R-rich phase is easily combined with oxygen, unnecessary oxygen is taken into the powder in the subsequent magnet manufacturing process. As a result, the incorporated oxygen has an adverse effect on the magnetization as an impurity, and there is a problem that the sinterability is lowered due to oxidation and the residual magnetization is finally lowered. The gazette overlooks this problem.
[0004]
Therefore, the object of the present invention is to reduce the amount of oxygen incorporated into the powder of the cast alloy, avoid the influence of impurities and the decrease in sinterability, and prevent the decrease in remanent magnetization, and the rare earth alloy for sintered magnets. It is in the provision of the manufacturing method of powder.
[0005]
[Means for Solving the Problems]
The invention of claim 1
(1) R x T 1- xy B y alloys (wherein, R Nd, Pr, Dy, 1 or more selected from Tb and Ho, T is Fe, 1 or more selected from Co and Ni, 0.13 ≦ x ≦ 0.30 and 0.06 ≦ y ≦ 0.15),
(2) a step of heat-treating the cast alloy obtained in the step (1) at 1000 to 1120 ° C;
(3) pulverizing the heat-treated alloy obtained by the step (2);
(4) A method for producing a rare earth alloy powder for a sintered magnet, comprising a step of selectively collecting particles adsorbed by a permanent magnet or an electromagnet from the powder obtained in the step (3).
The invention of claim 2 is the method for producing a rare earth alloy powder for a sintered magnet according to claim 1, wherein the step (3) includes a hydrogen storage / release treatment of the heat-treated alloy.
The invention according to claim 3 is an amorphous or crystal grain of 100 nm or less during the step (3), during the step (4), between the steps (2) and (3), or after the step (4). Constructed microcrystalline RM-TB alloy (wherein RM is one or more selected from rare earth elements that require either Dy or Tb, T is one or more selected from Fe, Co and Ni) 3) The rare earth alloy powder for sintered magnet according to claim 1 or 2, characterized by mixing 5 to 30% by weight with respect to the heat-treated alloy.
[0006]
[Action]
FIG. 2 is a schematic diagram showing the internal structure of the alloy after the (2) heat treatment step in the present invention. In FIG. 2, the R 2 T 14 B phase 1 inside the alloy is coarsened to a size of 200 μm or more by subjecting the composition alloy to a heat treatment at 1000 to 1120 ° C. after casting. Reference numeral 2 is an R-rich phase, and 3 is a B-rich phase.
FIG. 3 is a schematic view showing particles derived from the (3) powdering step in the present invention. Internal structure of the heat-treated alloy through powdered process is disrupted, R 2 T 14 inside than R 2 T 14 B grains 4A of B phase 1, R 2 T 14 R-rich phase is a part of the outer edge portion of the B-phase 1 In the attached R 2 T 14 B particles 4B, R-rich particles 5 are derived from the R-rich phase, and B-rich particles 6 are derived from the B-rich phase. Here, since the specific volume of the R 2 T 14 B phase 1 is considerably increased due to coarsening, the number of derived particles 4A is 10 times or more that of the particles 4B. Although these particles are mixed after pulverization, when particles adsorbed by a permanent magnet or an electromagnet are taken out, only R 2 T 14 B particles that are ferromagnetic are selectively recovered. More than 90% of the R 2 T 14 B powder obtained in this way is R 2 T 14 B particles 4A, and the R-rich phase hardly adheres to the surface. The volume ratio is greatly reduced compared to the conventional case. As a result, the amount of oxygen taken into the powder is drastically reduced. In the (3) powdering step, it is preferable to powderize to an average particle size of 1 to 15 μm.
Further, in the present invention, by adding a hydrogen storage / release treatment to the cast alloy during the process of pulverizing the heat-treated alloy, embrittlement of the alloy is promoted and the time required for pulverization is shortened. The hydrogen storage / release treatment can be performed, for example, by leaving it in a hydrogen atmosphere at room temperature and pressure for several hours and then heating it at a temperature of 300 to 650 ° C. for several hours under a pressure of 10 −2 Torr or less. .
In addition, during the step (3), during the step (4), between the steps (2) and (3), or after the step (4), a microcrystal composed of amorphous or 100 nm or less crystal grains RM-TB alloy (wherein RM is one or more selected from rare earth elements essential for either Dy or Tb, and T is one or more selected from Fe, Co and Ni) By adding a step of mixing 5 to 30% by weight with respect to the heat-treated alloy as a binder, the sintering aid causes the R-rich grain boundary phase in the subsequent sintering and heat treatment steps for magnet production. Therefore, the coercive force is greatly improved by increasing the sinterability and simultaneously diffusing Dy or Tb contained in the sintering aid to the surface of the R 2 T 14 B crystal. Furthermore, since the sintering aid is amorphous or microcrystalline and is not easily oxidized, unnecessary oxygen is not taken into the powder even when mixed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Dissolving various Nd x Fe 1-xy B y alloys having compositions (0.10 ≦ x ≦ 0.35,0.04 ≦ y ≦ 0.17) in the high-frequency vacuum melting furnace, after heating to a temperature of 1300 to 1500 ° C., cast in a water-cooled casting mold Thus, a plate-like cast alloy having a thickness of 10 mm was produced. When the internal structure was observed with an optical microscope, the size of the R 2 T 14 B phase of each sample was about 30 μm. These alloys were then heated for 8 hours at various temperatures from 900 to 1150 ° C. using a vacuum furnace. As a result, most of the cast alloy reacts violently with the alumina pedestal at temperatures exceeding 1120 ° C, and sound heat treatment is not performed, and at temperatures below 1000 ° C, the R 2 T 14 B phase is about 50 µm. It grew only, and it turned out that sufficient coarsening does not occur. Therefore, the heat treatment temperature is preferably 1000 to 1120 ° C. FIG. 4 shows the results of examining the internal structure of the alloy when heat treatment was performed in the same temperature range. The x mark in the figure is a composition in which the presence of α-Fe phase or Nd 2 Fe 17 phase is recognized. These phases are a factor that greatly deteriorates the magnetic properties of the magnet, and are not suitable as raw materials. Composition. Further, the symbol Δ indicates a composition in which the reaction between the alloy and the pedestal in the furnace is so strong that a sound heat treatment cannot be performed, or the R 2 T 14 B phase is not sufficiently coarsened. On the other hand, a circle indicates a composition in which a heat treatment is performed smoothly and an R 2 T 14 B phase having a size of 200 μm or more is obtained. It can be said. Next, Nd 0.15 Fe 0.77 B 0.08 , Nd 0.12 Pr 0.03 Fe 0.77 B 0.08 , Nd 0.14 Dy 0.01 Fe 0.77 B 0.08 , Nd 0.14 Tb 0.01 Fe 0.77 B 0.08 , Nd 0.15 Fe 0.75 Co 0.02 B 0.08 , Nd 0.15 Fe 0.76 Six alloy samples of Ni 0.01 B 0.08 were cast in a high frequency vacuum melting furnace. Thereafter, each alloy sample was heated at a temperature of 1100 ° C. for 8 hours using a vacuum heating furnace. When the internal structure was observed with an optical microscope, the R 2 T 14 B phase of each sample was coarsened to 200 μm or more. Next, each alloy sample was sequentially pulverized by a jaw crusher, a disk mill, and a jet mill, and each of the obtained powder samples was subjected to a permanent magnet type magnetic separator to selectively collect R 2 T 14 B particles. At this time, the average particle size of the R 2 T 14 B particles was in the range of 4 to 5 μm. In addition, it is confirmed that the contents of the R-rich phase and B-rich phase in the powder are both less than 0.2% by volume, and the content of the R 2 Fe 14 B phase exceeds 99.6% by volume. It was done. On the other hand, a Nd 0.38 Fe 0.56 B 0.06 amorphous alloy powder was separately prepared using a liquid quenching apparatus as a sintering aid, and this was added to each sample powder at a rate of 12% by weight and mixed uniformly. Transverse magnetic field molding was performed with a press machine under conditions of a pressure of 600 kgf / cm 2 and a magnetic field of 15000 G. Next, sintering was performed in a tube furnace at 1090 ° C in vacuum for 2 hours, followed by rapid cooling, followed by heat treatment in vacuum at 600 ° C for 2 hours to obtain a cylindrical magnet sample having an outer diameter of 10 mm × height of 7 mm. It was. Each sample was magnetized with a 30000 G pulse magnetic field, and a demagnetization curve was measured with a BH curve tracer. Further, the oxygen content was measured by an inert gas melting-infrared absorption method. The measurement results are shown in Table 1. For comparison, the table shows the characteristics of a magnet produced by a conventional method in which heating at 1100 ° C. is not performed after casting and no sintering aid is used. Table 1 shows that the oxygen concentration of the magnet obtained by the present invention is around 1500 ppm, which is less than half that of the magnet of the comparative example. This reflects that the amount of the Nd-rich phase contained in the alloy powder is small in the present invention and the amount of oxidation of the powder is reduced. On the other hand, in the comparative example, since heating at 1100 ° C. is not performed after casting, the crystal grains of the cast alloy are not sufficiently coarsened. For this reason, R 2 Fe 14 B particles having an R-rich phase attached to the surface during pulverization. There are many derivatives. After the magnetic sorting, the content of the R-rich phase contained in the collected sample powder was examined. As a result, it was found that the content was about 3.0% by volume, much higher than the present invention. It can be said that this large amount of R-rich phase took in a large amount of oxygen during the production process, and as a result, the oxygen content in the comparative example was at a high level close to 5000 ppm. Next, when the internal structure of the magnet after the sintering / heat treatment process was examined, the volume content of the R-rich phase was 3.1% and that of the B-rich phase was 0.2% in both the present invention and the comparative example. Met. The R-rich phase of the present invention is mainly produced when the sintering aid undergoes phase separation during the sintering process, but is oxidized because the sintering aid is amorphous or microcrystalline. There is almost no. Therefore, in the present invention, there is almost no decrease in sinterability due to oxidation of the R-rich phase, and a denser internal structure can be obtained, and at the same time, an amount of R-rich grain boundary necessary for maintaining the holding force can be obtained. The phase can also be formed well. Therefore, the reduction of the oxygen content not only prevents the oxygen from adversely affecting the magnetization as an impurity, but also has an effect of preventing a decrease in sinterability. Due to these synergistic effects, as shown in Table 1, the magnet of the present invention has a high residual magnetization compared to the comparative magnet having the same composition.
[0008]
[Table 1]
Figure 0003848906
[0009]
Embodiment 2. FIG.
A Nd 0.15 Fe 0.77 B 0.08 alloy was melted in a high-frequency vacuum melting furnace, heated to a temperature of 1450 ° C., and then cast into a water-cooled mold to produce a plate-like cast alloy having a thickness of 10 mm. When the internal structure was observed with an optical microscope, the size of the Nd 2 Fe 14 B phase was about 30 μm. Next, the alloy was heated at a temperature of 1100 ° C. for 8 hours using a vacuum heating furnace. When the internal structure was observed, the Nd 2 Fe 14 B phase was coarsened to 200 μm or more. Next, the alloy was successively pulverized by a jaw crusher, a disk mill, and a jet mill to make a fine powder, and then subjected to an electromagnet magnetic separator to selectively recover Nd 2 Fe 14 B particles to obtain a powder sample. The average particle size of the powder sample was about 5 μm. On the other hand, an Nd 0.27 Dy 0.11 Fe 0.56 B 0.06 alloy ribbon having a thickness of about 50 μm was prepared using a liquid quenching apparatus as a sintering aid. As a result of observation using an electron microscope, the surface of the ribbon was amorphous, but the inner portion having a thickness of about 15 μm was occupied by crystal grains having a diameter of several tens of nm to 100 nm, and was microcrystalline. The ribbon was sequentially pulverized with a disk mill and a jet mill to obtain an auxiliary powder. The average particle size of the powder was about 1 μm. Auxiliary powder was added to the powder sample at various ratios and mixed uniformly, and then a transverse magnetic field molding was performed with a magnetic press under a pressure of 600 kgf / cm 2 and a magnetic field of 15000 G. Next, each compact was sintered in a tube furnace at 1090 ° C in vacuum for 2 hours, then rapidly cooled, and then heat treated in vacuum at 600 ° C for 2 hours, and a cylindrical magnet having an outer diameter of 10 mm × height of 7 mm. A sample was obtained. Each sample was magnetized with a 30000 G pulse magnetic field, and a demagnetization curve was measured with a BH curve tracer. The measurement results are shown in Table 2. When the weight ratio of the auxiliary powder to the powder sample is less than 5%, the coercive force is less than 7 kOe, and depending on the operating point of the magnet, there is a possibility that a large demagnetization occurs, so that the reliability is lacking. On the other hand, when the weight ratio exceeds 30%, the energy product is significantly reduced. For this reason, the weight ratio of the auxiliary powder to the powder sample is preferably 5 to 30%, more preferably 12 to 25%.
[0010]
[Table 2]
Figure 0003848906
[0011]
Embodiment 3 FIG.
A Nd 0.15 Fe 0.78 B 0.07 alloy was melted in a high-frequency vacuum melting furnace, heated to a temperature of 1450 ° C., and then cast into a water-cooled mold to produce a plate-like cast alloy having a thickness of 10 mm. When the internal structure was observed with an optical microscope, the size of the Nd 2 Fe 14 B phase was about 30 μm. Next, the alloy was heated at a temperature of 1100 ° C. for 8 hours using a vacuum heating furnace. When the internal structure was observed, the Nd 2 Fe 14 B phase was coarsened to 200 μm or more. Next, the alloy was pulverized to about 5 mm square with a jaw crusher to obtain a coarse powder. On the other hand, Nd 0.27 Tb 0.11 Fe 0.56 B 0.06 , Nd 0.27 Dy 0.11 Fe 0.56 B 0.06 , Pr 0.27 Dy 0.11 Fe 0.56 B 0.06 , Nd 0.38 Fe 0.56 B 0.06 , Pr 0.38 Fe using a liquid quenching device as a sintering aid Five alloy ribbons of 0.56 B 0.06 were prepared. The thickness of the ribbon was about 40 μm. When observed using an electron microscope, the inside of the ribbon was amorphous. After mixing each ribbon with a weight ratio of 18% by weight with respect to the coarse powder, each mixed powder was left in a hydrogen atmosphere at room temperature and pressure for 8 hours, followed by 600 ° C. under a pressure of 10 −2 Torr. Hydrogen was released by heating at the temperature of 8 hours. Thereafter, the mixture was sequentially pulverized with a disk mill and a jet mill to obtain a fine powder. Although the time spent for jet mill pulverization was about ¼ of the conventional time, the powder was atomized to an average crystal grain size of about 4 μm due to the embrittlement effect by the hydrogen storage and release treatment. Next, each fine powder was subjected to an electromagnet magnetic separator to collect particles. At this time, the fine particles derived from the amorphous alloy ribbon, which is a sintering aid, are also ferromagnetic and thus adsorbed to the electromagnet and recovered by being mixed with Nd 2 Fe 14 B particles. Each of the obtained mixed powders was subjected to a transverse magnetic field molding with a magnetic field press machine under conditions of a pressure of 600 kgf / cm 2 and a magnetic field of 15000 G. Next, each compact was sintered in a tube furnace at 1090 ° C in vacuum for 2 hours, then rapidly cooled, and then heat treated in vacuum at 600 ° C for 2 hours, and a cylindrical magnet having an outer diameter of 10 mm × height of 7 mm. A sample was obtained. Each sample was magnetized with a 30000 G pulse magnetic field, and a demagnetization curve was measured with a BH curve tracer. Table 3 shows the measurement results. Magnets made with a sintering aid containing Dy or Tb gave a larger coercive force than magnets not containing these elements.
[0012]
[Table 3]
Figure 0003848906
[0013]
【The invention's effect】
The invention of claim 1
(1) R x T 1- xy B y alloys (wherein, R Nd, Pr, Dy, 1 or more selected from Tb and Ho, T is Fe, 1 or more selected from Co and Ni, 0.13 ≦ x ≦ 0.30 and 0.06 ≦ y ≦ 0.15),
(2) a step of heat-treating the cast alloy obtained in the step (1) at 1000 to 1120 ° C;
(3) pulverizing the heat-treated alloy obtained by the step (2);
(4) A method for producing a rare earth alloy powder for a sintered magnet, characterized by comprising a step of selectively collecting particles adsorbed by a permanent magnet or an electromagnet from the powder obtained in the step (3). It is possible to reduce the amount of oxygen taken into the alloy powder, avoid the influence of impurities and the decrease in sinterability, and prevent the decrease in residual magnetization.
[0014]
The invention of claim 2 is the method for producing a rare earth alloy powder for a sintered magnet according to claim 1, wherein the step (3) includes a hydrogen storage / release treatment of the heat-treated alloy. Embrittlement is promoted and the time required for pulverization is shortened.
[0015]
The invention according to claim 3 is an amorphous or crystal grain of 100 nm or less during the step (3), during the step (4), between the steps (2) and (3), or after the step (4). Constructed microcrystalline RM-TB alloy (wherein RM is one or more selected from rare earth elements that require either Dy or Tb, T is one or more selected from Fe, Co and Ni) 3) is mixed in a proportion of 5 to 30% by weight with respect to the heat-treated alloy. At the same time, the coercive force improves.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the internal structure of a rare earth-transition metal-boron casting alloy.
FIG. 2 is a schematic view showing an internal structure of a rare earth-transition metal-boron casting alloy after heat treatment in the present invention.
FIG. 3 is a schematic diagram showing particles derived from pulverization of a rare earth-transition metal-boron casting alloy after heat treatment in the present invention.
4 is a diagram showing a composition region in which a powder having sound characteristics is obtained in the first embodiment. FIG.
[Explanation of symbols]
1 R 2 T 14 B phase, 2 R-rich phase, 3 B-rich phase, 4 A R 2 T 14 B particles derived from inside the R 2 T 14 B phase, 4 B R 2 T 14 B phase derived from the outer edge R 2 T 14 B particles, 5 R-rich particles derived from R-rich phase, 6 B-rich particles derived from B-rich phase.

Claims (3)

(1)RxT1-x-yBy合金(式中、RはNd、Pr、Dy、TbおよびHoより選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上、0.13≦x≦0.30、かつ0.06≦y≦0.15である)を鋳造する工程と、
(2)前記(1)工程により得られた鋳造合金を1000〜1120℃で熱処理する工程と、
(3)前記(2)工程により得られた熱処理合金を粉末化する工程と、
(4)前記(3)工程により得られた粉末から永久磁石あるいは電磁石により吸着する粒子を選択回収する工程と
を有することを特徴とする焼結磁石用希土類合金粉末の製造方法。
(1) R x T 1- xy B y alloys (wherein, R Nd, Pr, Dy, 1 or more selected from Tb and Ho, T is Fe, 1 or more selected from Co and Ni, 0.13 ≦ x ≦ 0.30 and 0.06 ≦ y ≦ 0.15),
(2) a step of heat-treating the cast alloy obtained in the step (1) at 1000 to 1120 ° C;
(3) pulverizing the heat-treated alloy obtained by the step (2);
(4) A method for producing a rare earth alloy powder for a sintered magnet, comprising a step of selectively collecting particles adsorbed by a permanent magnet or an electromagnet from the powder obtained in the step (3).
前記(3)工程には熱処理合金の水素吸蔵放出処理が含まれることを特徴とする請求項1に記載の焼結磁石用希土類合金粉末の製造方法。The method for producing a rare earth alloy powder for a sintered magnet according to claim 1, wherein the step (3) includes a hydrogen storage / release treatment of the heat-treated alloy. 前記(3)工程中、前記(4)工程中、前記(2)および(3)工程間、あるいは前記(4)工程後に、非晶質あるいは100nm以下の結晶粒から構成される微結晶質のRM-T-B合金(式中、RMはDy、Tbのいずれか一方を必須とする希土類元素より選ばれる1種以上、TはFe、CoおよびNiより選ばれる1種以上である)を前記熱処理合金に対して5〜30重量%の割合で混合することを特徴とする請求項1または2記載の焼結磁石用希土類合金粉末の製造方法。During the step (3), during the step (4), between the steps (2) and (3), or after the step (4), it is amorphous or microcrystalline composed of crystal grains of 100 nm or less. RM-TB alloy (wherein RM is at least one selected from rare earth elements in which either Dy or Tb is essential, and T is at least one selected from Fe, Co and Ni). The method for producing a rare earth alloy powder for a sintered magnet according to claim 1, wherein the mixture is mixed at a ratio of 5 to 30% by weight.
JP2002260252A 2002-09-05 2002-09-05 Method for producing rare earth alloy powder for sintered magnet Expired - Fee Related JP3848906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260252A JP3848906B2 (en) 2002-09-05 2002-09-05 Method for producing rare earth alloy powder for sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260252A JP3848906B2 (en) 2002-09-05 2002-09-05 Method for producing rare earth alloy powder for sintered magnet

Publications (2)

Publication Number Publication Date
JP2004099932A JP2004099932A (en) 2004-04-02
JP3848906B2 true JP3848906B2 (en) 2006-11-22

Family

ID=32261022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260252A Expired - Fee Related JP3848906B2 (en) 2002-09-05 2002-09-05 Method for producing rare earth alloy powder for sintered magnet

Country Status (1)

Country Link
JP (1) JP3848906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430248A (en) * 2011-03-16 2013-12-04 大发工业株式会社 Magnetic material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715362B2 (en) * 2010-09-17 2015-05-07 ダイハツ工業株式会社 Manufacturing method of magnetic material
JP5859753B2 (en) * 2010-09-06 2016-02-16 ダイハツ工業株式会社 Manufacturing method of magnetic material
CN103081035A (en) * 2010-09-06 2013-05-01 大发工业株式会社 Magnetic material and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430248A (en) * 2011-03-16 2013-12-04 大发工业株式会社 Magnetic material

Also Published As

Publication number Publication date
JP2004099932A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP5206834B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
CN102368439B (en) Optimization process method for preparing high-coercivity permanent magnet by adding heavy rare earth hydroxide into neodymium iron boron
WO2004064085A1 (en) Process for producing anisotropic magnet powder
EP0177371A1 (en) Process for manufacturing a permanent magnet
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP2006210893A (en) Nd-fe-b based rare earth permanent magnet material
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
JP2018060930A (en) Method for producing r-t-b based magnet
JP3848906B2 (en) Method for producing rare earth alloy powder for sintered magnet
JP2024519243A (en) Neodymium iron boron magnet material, its manufacturing method and applications
JPH0768561B2 (en) Method for producing rare earth-Fe-B alloy magnet powder
JP5103428B2 (en) Rare earth sintered magnet manufacturing method
JPH0682575B2 (en) Rare earth-Fe-B alloy magnet powder
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JP2018060931A (en) Method for producing r-t-b based magnet
JP2011210838A (en) Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JPH0718366A (en) Production of r-fe-b permanent magnet material
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
CN113571278B (en) Magnetic powder, method for forming magnetic powder, rare earth sintered permanent magnet and method for producing the same
Trout Permanent Magnets based on the Lanthanides
JPH06112027A (en) Manufacture of high-quality magnet material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees