JP3797593B2 - Etching control method - Google Patents
Etching control method Download PDFInfo
- Publication number
- JP3797593B2 JP3797593B2 JP33489799A JP33489799A JP3797593B2 JP 3797593 B2 JP3797593 B2 JP 3797593B2 JP 33489799 A JP33489799 A JP 33489799A JP 33489799 A JP33489799 A JP 33489799A JP 3797593 B2 JP3797593 B2 JP 3797593B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- fluorophosphoric
- mixed
- etching
- hydrofluoric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Weting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、エッチング制御方法に関する。
【0002】
【従来の技術】
従来、半導体回路の形成に使用するシリコンウエハーのエッチングには、各種の混酸液が使用されているが、その組成によりエッチング効果も異なる。
【0003】
【発明が解決しようとする課題】
本発明の目的は、半導体ウエハーに要求されるウエハーの平坦化や光沢度向上のために好適に使用される混酸液を使用した工業的に有利なエッチング制御方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記の目的を達成すべく、弗酸と燐酸と硝酸とフルオロ燐酸とを含む混酸液(水濃度が通常10〜50重量%程度の水溶液)について鋭意検討を重ねた結果、次の様な知見を得た。
【0005】
上記のフルオロ燐酸含有混酸液は、弗酸と燐酸と硝酸とを混合することにより得られ、フルオロ燐酸は、以下の反応式(1)に示す様に、弗酸と燐酸との反応生成物として存在する成分である。
【0006】
【化1】
H3PO4 → H2PO3F + H2O・・・(1)
【0007】
そして、シリコンウエハのエッチング(溶解)においては、一般に以下の反応式(2)に示す様に、硝酸と弗酸が消費され、フルオロ燐酸は、シリコンウエハーのエッチングに反応に直接関与する成分ではない。
【0008】
【化2】
3Si+4HNO3+18HF→3H2SiF6+4NO+8H2O・・・(2)
【0009】
上記の反応式(1)におけるフルオロ燐酸の生成量は、混酸液中の、弗酸、燐酸、水の量により規定される。また、フルオロ燐酸は、混酸液中の通常の水の濃度では加水分解されないものの、上記の反応式(2)に示す、シリコンウエハーと弗酸との反応による水の増加、および、反応による弗酸濃度の減少により、弗酸と燐酸とに加水分解される。
【0010】
要するに、上記の混酸液においては、弗酸がエッチングで消費され、かつ、それに伴ってフルオロ燐酸から加水分解により弗酸が供給される。つまり、フルオロ燐酸は、弗酸のバッファー的役割を果たしていることになる。
【0011】
本発明者らは、配合比率を変えた混酸液を調製し、シリコンウエハーと弗酸との反応について、フルオロ燐酸の生成量と反応の様子を観察すべく、繰り返し実験したところ、次の様な新規な知見を得た。
【0012】
すなわち、フルオロ燐酸の生成量が多くなると、シリコンウエハーと弗酸との反応の初期段階における組成の変化に伴い、著しく加水分解反応が起こり、反応が暴走する。また、混酸液中の水の濃度は、前記の反応学式(1)及び(2)に示す結果として、ある程度一定の範囲に保たれる。すなわち、フルオロ燐酸は、副生する水の自己分解作用により水のトラップ効果をも兼ねており、シリコンウエハーエッチングの安定化に寄与する。また、水の蓄積が少ないことは、エッチングを工業的に行う場合の制御において、濃度調整に使用する、硝酸、弗酸、燐酸量の大幅な削減をも可能とする。従って、フルオロ燐酸の濃度は、上記の様な種々の観点から、安定的且つ工業的に有利なエッチングのために重要である。
【0014】
本発明の要旨は、弗酸と燐酸と硝酸とフルオロ燐酸とを含む混酸液であってフルオロ燐酸濃度が3〜15重量%である半導体ウエハーエッチングプロセスにおける混酸液によりシリコンウエハーをエッチング処理し、その後、混酸液中の硝酸、弗酸、燐酸、フルオロ燐酸を定量分析し、当該分析結果に基づき、濃度が低下した各酸成分をエッチング工程に補充することを特徴とするエッチング制御方法に存する。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の混酸液は、強酸成分として弗酸と硝酸と燐酸とフルオロ燐酸とを含み、必要に応じて他の成分を含む水溶液である。そして、本発明の混酸液においてはフルオロ燐酸濃度が3〜15重量%であることが重要である。フルオロ燐酸濃度が5重量%未満の場合は目的とするエッチングが効果的に起こらず、12重量%を超える場合はエッチング反応が激しくてエッチングムラを生じる。好ましいフルオロ燐酸濃度は6〜10重量%である。
【0016】
また、本発明の混酸液において、弗酸濃度は5〜12重量%、燐酸濃度は15〜31重量%で、硝酸濃度は25〜40重量%の範囲が好ましい。斯かる条件を満足することにより、フルオロ燐酸濃度が所定の範囲に維持されて安定したエッチングが行われる。
【0017】
本発明の混酸液によるエッチング、すなわち、前述の反応式(2)は、厳密に言えば、硝酸によるシリコンの酸化反応の後に弗酸による酸化膜分解反応が起こる、2段階の反応である。本発明の混酸液の場合、2段目に起こる酸化膜分解反応において、フルオロ燐酸の弗酸のバッファー的効果および水のトラップ効果により安定したエッチングが行われる。
【0018】
また、本発明の混酸液には、使用前に少量のシリコンを溶解させることにより、エッチング反応を緩和させて一層良好な結果を得ることも出来る。溶解させるシリコンの量は、混酸液に対し4〜10g/Lが適当である。
【0019】
本発明のエッチング制御方法は、上記の混酸液によりシリコンウエハーをエッチング処理し、その後、混酸液中の硝酸、弗酸、燐酸、フルオロ燐酸を定量分析し、当該分析結果に基づき、濃度が低下した各酸成分をエッチング工程に補充することを特徴とする。また、蓄積された水と珪弗化水素酸を希釈し元の組成に戻すため、混酸液の一部を抜き出し、その分を補充する必要がある。
【0020】
本発明の混酸液の場合、副生成された水が略定量的にフルオロ燐酸の加水分解に使用されるため、従来の硝酸/弗酸/酢酸系の混酸と比較し、水の蓄積がみられない。従って、補充する、硝酸、弗酸、燐酸量の削減が可能であり、連続して行う場合は大幅な削減が可能である。
【0021】
本発明において、フルオロリン酸の濃度分析は、例えば、イオンクロマト法または加水分解前後の酸当量の差に基づく計算法によって行うことが出来る。
【0022】
イオンクロマト法としては、例えば、カラムとして、表面がスルホン化されたスチレン・ジビニルベンゼン共重合体に第4級アンモニウム基を含有化合物のラテックスを分散処理して成るイオン交換樹脂(ダイオネックス社製「AS12A」)を使用し、バッファーとしてNa2CO3とNaHCO3の混合水溶液を使用する方法を採用することが出来る。
【0023】
加水分解前後の酸当量の差に基づく計算法(酸強度換算法)は、例えば、標準液として1N苛性ソーダを使用し、加水分解前後の分析試料の中和滴定を行い、その酸当量の差からフルオロリン酸の濃度を定量する方法である。例えば、フッ酸、リン酸、水から調製された混酸の場合、加水分解前においては3成分の酸が(フッ酸、フルオロリン酸、リン酸)存在し、加水分解後においては2成分の酸(フッ酸、リン酸)するが、中和滴定により、何れの混酸においても全酸の酸当量を求めることが出来る。そして、加水分解前後の酸当量の差(加水分前後の酸当量−加水分解前の酸当量)をフルオロリン酸によるものと見做してフルオロリン酸の濃度を求める。加水分解前後の酸当量の差をフルオロリン酸によるものと見做すのは次の考え方に基づく。
【0024】
(1)一般に、リン酸は3段階の解離が起こり、3価の酸として知られているが、中和滴定においては下記の2段階の反応が起こり、2価の酸として扱われている。従って、中和滴定においては、フッ酸は1価、フルオロリン酸は2価、リン酸は2価として、酸当量を計算することが出来る。
【0025】
【化3】
H3PO4+NaOH =NaH2PO4+H2O(pH2.9〜4.0)
NaH2PO4+NaOH =Na2HPO4+H2O(pH2.9〜4.0)
【0026】
(2)3成分の酸(フッ酸、フルオロリン酸、リン酸)の混酸液を加水分解した場合、下記の反応式に示す様に、1モルのフルオロリン酸から1モルのフッ酸と1モルのリン酸が生成する。
【0027】
【化4】
H2PO3F + H2O = HF + H3PO4
【0028】
ここで、中和滴定における、加水分解前後の酸当量数の変化を見ると、2当量の酸であるフルオロリン酸から、1当量であるフッ酸と2当量であるリン酸が生成している(合計3当量)。すなわち、フルオロリン酸の存在モル数(1モル)に相当する酸当量の差異(3−2=1当量)が生じている。従って、加水分解前後の酸当量の差をフルオロリン酸によるものと見做すことが出来る。なお、混酸液中のフルオロリン酸の加水分解は、例えば160℃で1時間処理することにより完全に行うことが出来る。
【0029】
本発明において、フッ酸の定量分析は、例えば、加水分解後の沈殿滴定法によって行うことが出来る。斯かる沈殿滴定法としては、例えば、標準液として0.1N硝酸アルミニウムを使用し、指示電極としてフッ素電極を使用する方法を採用することが出来る。
【0030】
本発明において、リン酸の濃度は、例えば、ドライアップ後の中和滴定法によって求めることが出来る。ドライアップは煮沸水浴上で分析試料を加熱することにより行われ、これにより、不揮発性であるリン酸以外の酸が追い出される。中和滴定法は常法によって行われる。
【0031】
【実施例】
本発明は上記の様にして実施されるが、以下に本発明で使用する混酸液の特徴を示すための実施例を示す。
【0032】
実施例1及び2並びに比較例1及び2
次の表1に示す組成の混酸液(A〜D)を調製した(残余成分は水である)。そして、各混酸液を0.2mlピペットで分取し、6インチウエハー上にスポット滴下後1分間放置し、反応の様子を観察した。その後、直ぐに水洗し、蛍光灯下でウエハー表面のエッチング状態の観察を行った。結果を表1に示す。
【0033】
【表1】
【0034】
【発明の効果】
以上説明した本発明によれば、半導体ウエハーに要求されるウエハーの平坦化や光沢度向上のために好適に使用される混酸液を使用した工業的に有利なエッチング制御方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates et etching control method.
[0002]
[Prior art]
Conventionally, various mixed acid solutions are used for etching a silicon wafer used for forming a semiconductor circuit, but the etching effect varies depending on the composition.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially advantageous etching control method using a mixed acid solution that will be suitable for use for planarization and gloss improvement of wafer required for semiconductor wafers.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted extensive studies on a mixed acid solution (aqueous solution having a water concentration of usually about 10 to 50% by weight) containing hydrofluoric acid, phosphoric acid, nitric acid, and fluorophosphoric acid. The following findings were obtained.
[0005]
The fluorophosphoric acid-containing mixed acid solution is obtained by mixing hydrofluoric acid, phosphoric acid, and nitric acid. As shown in the following reaction formula (1), the fluorophosphoric acid is a reaction product of hydrofluoric acid and phosphoric acid. It is an existing component.
[0006]
[Chemical 1]
H 3 PO 4 → H 2 PO 3 F + H 2 O (1)
[0007]
In etching (dissolution) of a silicon wafer, nitric acid and hydrofluoric acid are generally consumed as shown in the following reaction formula (2), and fluorophosphoric acid is not a component directly involved in the reaction in etching of a silicon wafer. .
[0008]
[Chemical 2]
3Si + 4HNO 3 + 18HF → 3H 2 SiF 6 + 4NO + 8H 2 O (2)
[0009]
The amount of fluorophosphoric acid produced in the above reaction formula (1) is defined by the amount of hydrofluoric acid, phosphoric acid and water in the mixed acid solution. In addition, although fluorophosphoric acid is not hydrolyzed by the normal water concentration in the mixed acid solution, the increase in water due to the reaction between the silicon wafer and hydrofluoric acid and the hydrofluoric acid due to the reaction shown in the above reaction formula (2). As the concentration decreases, it is hydrolyzed to hydrofluoric acid and phosphoric acid.
[0010]
In short, in the above mixed acid solution, hydrofluoric acid is consumed by etching, and hydrofluoric acid is supplied by hydrolysis from fluorophosphoric acid accordingly. That is, fluorophosphoric acid plays a buffering role of hydrofluoric acid.
[0011]
The inventors of the present invention prepared mixed acid solutions with different blending ratios and repeated experiments to observe the amount of fluorophosphoric acid produced and the state of reaction for the reaction between a silicon wafer and hydrofluoric acid. New findings were obtained.
[0012]
That is, when the amount of fluorophosphoric acid increases, a hydrolysis reaction occurs remarkably with a change in composition in the initial stage of the reaction between the silicon wafer and hydrofluoric acid, and the reaction runs away. Further, the concentration of water in the mixed acid solution is kept within a certain range to some extent as a result shown in the above reaction formulas (1) and (2). That is, fluorophosphoric acid also serves as a water trapping effect due to the self-decomposing action of water produced as a by-product, and contributes to the stabilization of silicon wafer etching. In addition, the fact that there is little accumulation of water also enables a significant reduction in the amounts of nitric acid, hydrofluoric acid and phosphoric acid used for concentration adjustment in the control when etching is carried out industrially. Accordingly, the concentration of fluorophosphoric acid is important for stable and industrially advantageous etching from various viewpoints as described above.
[0014]
The gist of the present invention is that a silicon wafer is etched with a mixed acid solution in a semiconductor wafer etching process, which is a mixed acid solution containing hydrofluoric acid, phosphoric acid, nitric acid, and fluorophosphoric acid and having a fluorophosphoric acid concentration of 3 to 15% by weight. Further, the present invention resides in an etching control method characterized by quantitatively analyzing nitric acid, hydrofluoric acid, phosphoric acid, and fluorophosphoric acid in a mixed acid solution, and replenishing the etching step with each acid component having a reduced concentration based on the analysis result.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The mixed acid solution of the present invention is an aqueous solution containing hydrofluoric acid, nitric acid, phosphoric acid and fluorophosphoric acid as a strong acid component, and optionally containing other components. In the mixed acid solution of the present invention, it is important that the fluorophosphoric acid concentration is 3 to 15% by weight. When the fluorophosphoric acid concentration is less than 5% by weight, the intended etching does not occur effectively, and when it exceeds 12% by weight, the etching reaction is intense and etching unevenness occurs. The preferred fluorophosphoric acid concentration is 6 to 10% by weight.
[0016]
In the mixed acid solution of the present invention, the hydrofluoric acid concentration is preferably 5 to 12% by weight, the phosphoric acid concentration is 15 to 31 % by weight, and the nitric acid concentration is preferably 25 to 40% by weight. By satisfying such conditions, the fluorophosphoric acid concentration is maintained within a predetermined range, and stable etching is performed.
[0017]
Strictly speaking, the etching by the mixed acid solution of the present invention, that is, the above-described reaction formula (2) is a two-stage reaction in which an oxide film decomposition reaction by hydrofluoric acid occurs after an oxidation reaction of silicon by nitric acid. In the case of the mixed acid solution of the present invention, in the oxide film decomposition reaction that takes place in the second stage, stable etching is performed by the hydrofluoric acid buffer effect of fluorophosphoric acid and the water trapping effect.
[0018]
In the mixed acid solution of the present invention, a small amount of silicon is dissolved before use, so that the etching reaction can be relaxed and a better result can be obtained. The amount of silicon to be dissolved is suitably 4 to 10 g / L with respect to the mixed acid solution.
[0019]
The etching control method of the present invention etches a silicon wafer with the above mixed acid solution, and then quantitatively analyzes nitric acid, hydrofluoric acid, phosphoric acid, and fluorophosphoric acid in the mixed acid solution, and the concentration decreases based on the analysis result. Each acid component is supplemented to the etching process. In addition, in order to dilute the accumulated water and hydrofluoric acid to return to the original composition, it is necessary to extract a part of the mixed acid solution and replenish it.
[0020]
In the case of the mixed acid solution of the present invention, water produced as a by-product is used almost quantitatively for the hydrolysis of fluorophosphoric acid. Therefore, water accumulation is observed in comparison with the conventional mixed acid of nitric acid / hydrofluoric acid / acetic acid. Absent. Therefore, it is possible to reduce the amount of nitric acid, hydrofluoric acid and phosphoric acid to be replenished.
[0021]
In the present invention, fluorophosphoric acid concentration analysis can be performed, for example, by ion chromatography or a calculation method based on a difference in acid equivalents before and after hydrolysis.
[0022]
As an ion chromatographic method, for example, as a column, an ion exchange resin (“Dionex” manufactured by Dionex, Inc.) obtained by dispersing a latex of a compound containing a quaternary ammonium group in a styrene / divinylbenzene copolymer having a sulfonated surface. AS12A ") and a mixed aqueous solution of Na 2 CO 3 and NaHCO 3 can be used as a buffer.
[0023]
The calculation method based on the difference in acid equivalents before and after hydrolysis (acid strength conversion method) uses, for example, 1N caustic soda as a standard solution, and performs neutralization titration of the analytical sample before and after hydrolysis. This is a method for quantifying the concentration of fluorophosphoric acid. For example, in the case of a mixed acid prepared from hydrofluoric acid, phosphoric acid, and water, there are three component acids (hydrofluoric acid, fluorophosphoric acid, phosphoric acid) before hydrolysis, and two component acids after hydrolysis. (Hydrofluoric acid, phosphoric acid) The acid equivalent of all acids can be determined by neutralization titration for any mixed acid. And the difference of the acid equivalent before and after hydrolysis (acid equivalent before and after hydrolysis-acid equivalent before hydrolysis) is considered to be due to fluorophosphoric acid, and the concentration of fluorophosphoric acid is determined. The difference between the acid equivalents before and after hydrolysis is considered to be due to fluorophosphoric acid based on the following concept.
[0024]
(1) Generally, phosphoric acid undergoes three-stage dissociation and is known as a trivalent acid. In neutralization titration, the following two-stage reaction occurs and is treated as a divalent acid. Therefore, in the neutralization titration, the acid equivalent can be calculated assuming that hydrofluoric acid is monovalent, fluorophosphoric acid is divalent, and phosphoric acid is divalent.
[0025]
[Chemical 3]
H 3 PO 4 + NaOH = NaH 2 PO 4 + H 2 O (pH 2.9 to 4.0)
NaH 2 PO 4 + NaOH = Na 2 HPO 4 + H 2 O (pH 2.9 to 4.0)
[0026]
(2) When a mixed acid solution of three component acids (hydrofluoric acid, fluorophosphoric acid, phosphoric acid) is hydrolyzed, as shown in the following reaction formula, 1 mol of hydrofluoric acid and 1 mol of hydrofluoric acid and 1 Molar phosphoric acid is formed.
[0027]
[Formula 4]
H 2 PO 3 F + H 2 O = HF + H 3 PO 4
[0028]
Here, in the change in the number of acid equivalents before and after hydrolysis in neutralization titration, 1 equivalent of hydrofluoric acid and 2 equivalents of phosphoric acid are produced from 2 equivalents of fluorophosphoric acid. (3 equivalents total). That is, a difference in acid equivalent (3-2 = 1 equivalent) corresponding to the number of moles of fluorophosphoric acid (1 mole) is generated. Therefore, the difference in acid equivalent before and after hydrolysis can be considered to be due to fluorophosphoric acid. In addition, the hydrolysis of the fluorophosphoric acid in the mixed acid solution can be completely performed by treating at 160 ° C. for 1 hour, for example.
[0029]
In the present invention, the quantitative analysis of hydrofluoric acid can be performed, for example, by precipitation titration after hydrolysis. As such a precipitation titration method, for example, a method using 0.1N aluminum nitrate as a standard solution and using a fluorine electrode as an indicator electrode can be employed.
[0030]
In the present invention, the concentration of phosphoric acid can be determined, for example, by neutralization titration after dry-up. Drying up is performed by heating an analytical sample on a boiling water bath, thereby driving out non-volatile acids other than phosphoric acid. The neutralization titration method is performed by a conventional method.
[0031]
【Example】
The present invention is carried out as described above, and examples for showing the characteristics of the mixed acid solution used in the present invention are shown below.
[0032]
Examples 1 and 2 and Comparative Examples 1 and 2
Mixed acid solutions (A to D) having the compositions shown in the following Table 1 were prepared (the remaining component is water). Each mixed acid solution was collected with a 0.2 ml pipette, spot-dropped on a 6-inch wafer and left for 1 minute, and the reaction state was observed. Thereafter, it was immediately washed with water, and the etching state of the wafer surface was observed under a fluorescent lamp. The results are shown in Table 1.
[0033]
[Table 1]
[0034]
【The invention's effect】
According to the present invention described above, there is provided an industrially advantageous etching control method using a mixed acid solution that is suitably used for flattening a wafer and improving glossiness required for a semiconductor wafer.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33489799A JP3797593B2 (en) | 1999-11-25 | 1999-11-25 | Etching control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33489799A JP3797593B2 (en) | 1999-11-25 | 1999-11-25 | Etching control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001156052A JP2001156052A (en) | 2001-06-08 |
JP3797593B2 true JP3797593B2 (en) | 2006-07-19 |
Family
ID=18282468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33489799A Expired - Fee Related JP3797593B2 (en) | 1999-11-25 | 1999-11-25 | Etching control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3797593B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049285A (en) * | 2001-08-08 | 2003-02-21 | Mitsubishi Chemicals Corp | Etching method, quantitative analysis method for etching solution and method for recovering phosphoric acid from etching solution |
JP4835069B2 (en) * | 2005-08-17 | 2011-12-14 | 株式会社Sumco | Silicon wafer manufacturing method |
JP2007305894A (en) * | 2006-05-15 | 2007-11-22 | Sumco Corp | Refilling method of etching solution in single wafer etching |
CN111363551B (en) * | 2020-03-19 | 2021-11-30 | 常州星海电子股份有限公司 | Etching liquid and etching process for etching ultrahigh-power light-resistant glass chip |
-
1999
- 1999-11-25 JP JP33489799A patent/JP3797593B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001156052A (en) | 2001-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69734868T2 (en) | COMPOSITION AND METHOD FOR CHEMICAL-MECHANICAL POLISHING | |
WO2011074601A1 (en) | Composition for etching ruthenium-based metal and method for preparing same | |
EP0133584A1 (en) | Etchant composition | |
KR101749634B1 (en) | Etching liquid for film of multilayer structure containing copper layer and molybdenum layer | |
WO2009081884A1 (en) | Etching agent, etching method and liquid for preparing etching agent | |
CN104145324A (en) | Compositions and methods for selectively etching titanium nitride | |
KR101427418B1 (en) | Polishing composition and polishing process | |
JP5197902B2 (en) | Micro-processed surface treatment liquid for glass substrates with multiple components | |
KR20130076705A (en) | High purity silica sol and its production method | |
KR20120077676A (en) | A composition for wet etching of silicon nitride or silicon oxide | |
JP3797593B2 (en) | Etching control method | |
KR101983351B1 (en) | A wet etching composition for a substrate having a SiN layer and a Si layer and a wet etching method using the wet etching composition | |
WO1999003140A1 (en) | Solutions for cleaning silicon semiconductors or silicon oxides | |
EP1542080A1 (en) | Photoresist residue remover composition | |
KR102611733B1 (en) | Method for producing purified silicic acid aqueous solution | |
Verhaverbeke et al. | A model for the etching of Ti and TiN in SC-1 solutions | |
CN1188904C (en) | Method for cleaning polymer after reaction ion eching on aluminium/copper metal connection wire | |
JP3831557B2 (en) | Quantitative analysis method of mixed acid solution in etching process | |
JP2007005656A (en) | Etchant composition for metal material and method of manufacturing semiconductor device using same | |
JP3459141B2 (en) | Hot phosphoric acid etching method | |
JP4686885B2 (en) | Quantitative analysis method of mixed acid solution used in metal etching process | |
WO2010074878A1 (en) | Aqueous composition containing fluorinated sulfonamide and sulfonamidate compounds | |
JP2808799B2 (en) | Etching method of silicon nitride film | |
JP2569574B2 (en) | Semiconductor processing agent | |
JP5671793B2 (en) | Cleaning method for silicon wafers that have undergone finish polishing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060111 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |