JP3797242B2 - Vehicle power generation control device - Google Patents

Vehicle power generation control device Download PDF

Info

Publication number
JP3797242B2
JP3797242B2 JP2002040489A JP2002040489A JP3797242B2 JP 3797242 B2 JP3797242 B2 JP 3797242B2 JP 2002040489 A JP2002040489 A JP 2002040489A JP 2002040489 A JP2002040489 A JP 2002040489A JP 3797242 B2 JP3797242 B2 JP 3797242B2
Authority
JP
Japan
Prior art keywords
power generation
charge
time
charging
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002040489A
Other languages
Japanese (ja)
Other versions
JP2003244998A (en
Inventor
麻巳 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002040489A priority Critical patent/JP3797242B2/en
Publication of JP2003244998A publication Critical patent/JP2003244998A/en
Application granted granted Critical
Publication of JP3797242B2 publication Critical patent/JP3797242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン(内燃機関)と発電機、バッテリを備えた車両の発電制御装置に関する。
【0002】
【従来の技術】
従来の車両の発電制御として、エンジンの減速燃料カット時に発電機の発電電圧を上げてバッテリに強制的に充電し電力回収によって燃費を改善すると共に、燃料供給再開後、所定時間発電電圧を下げて無発電とすることによりエンジン負荷を軽減してエンジン回転の急激な低下を抑制するようにしたものがある(特開平2−276499号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来技術では無発電とする時間が一定であるため、この間の放電量が大きくなりすぎて、バッテリ充電量が不足し(SOC<100%)、該不足状態で長時間放置されると、バッテリにサルフェーション(放電生成物の結晶化)を生じて充電性能を低下させることがあった。無発電時間を短くするとエンジン回転低下を十分に防止できない。
【0004】
本発明は、このような従来の課題に着目してなされたもので、燃費改善とエンジン回転低下防止を満たしつつバッテリの性能低下も防止できるようにした車両の発電制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1に係る発明は、
エンジンの減速燃料カット時に発電機の発電電圧を高めてバッテリを強制充電すると共に、該強制充電終了後、該強制充電中の充電量に応じた所定時間発電機の発電電圧を下げて無発電とすることを特徴とする。
【0006】
請求項1に係る発明によると、
強制充電で回収した電力量に応じた分無発電時に放電させることができ、燃費改善とエンジン回転低下防止を満たしつつバッテリの充電状態低下に伴う性能低下も防止できる。
また、請求項2に係る発明は、
前記所定時間は、強制充電中の充電量分だけバッテリから放電する時間であることを特徴とする。
【0007】
請求項2に係る発明によると、
無発電中の放電量を強制充電中の充電量分と正確に一致させることができ、高精度な制御を行える。
また、請求項3に係る発明は、
前記強制充電中の充電量を充電電流の積算値として算出することを特徴とする。
【0008】
請求項3に係る発明によると、
強制充電中の充電量を正確に算出できる。
また、請求項4に係る発明は、
前記所定時間は、強制充電時間に応じた時間であることを特徴とする。
無発電とする所定時間を、充電量を算出したり、そのための電流センサを設けたりすることなく設定でき、簡易かつ低コストに制御できる。
【0009】
また、請求項5に係る発明は、
前記発電機の無発電中に、減速燃料カット状態となったときは、強制充電を再開することを特徴とする。
請求項5に係る発明によると、
燃料供給再開時に無発電として放電中に、減速操作を行って再度減速燃料カット状態となった場合には、強制充電を再開することにより、無駄なく電力回収が行える。
【0010】
また、請求項6に係る発明は、
前記再開された強制充電終了後、それ以前の強制充電時の充電量と無発電時の放電量との収支に応じた時間発電機を無発電とすることを特徴とする。
上記無発電中に強制充電が再開された後、再度燃料供給される際の無発電時間をそれまでの充放電の収支に応じて適正に制御できる。
【0011】
また、請求項7に係る発明は、
強制充電終了後のバッテリ充電量が所定レベル以下のときは、発電機の無発電を禁止することを特徴とする。
請求項7に係る発明によると、
強制充電を行ってもバッテリ充電量が不足しているときは、発電機の無発電を禁止して放電を抑制することにより、充電不足を回避することができる。
【0012】
【発明の実施の形態】
以下に、図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に係る車両の発電制御装置のシステム構成を示す。
エンジン1によって駆動されるオルタネータ(発電機)2と、該オルタネータ2で発電された電力を充電するバッテリ3とを備え、これらオルタネータ2およびバッテリ3に車両の電気負荷4が接続されている。前記バッテリ2の充放電電流を検出する電流センサ5が接続されている。
【0013】
前記エンジン1は、吸入空気量を制御するスロットル弁11、燃料噴射弁12を備え、また、エンジン回転速度を検出する回転速度センサ13、前記スロットル弁11の開度を検出するスロットルセンサ14が配設されている。
前記各種センサからの信号がコントロールユニット21に入力され、該コントロールユニット21は、スロットル弁11が略全閉のアイドル状態で、エンジン回転速度が所定以上の減速時に、前記燃料噴射弁12からの燃料噴射を停止する燃料カット制御を行い、その後、エンジン回転速度がリカバー値以下となったときに燃料噴射を再開するリカバー制御を行う。
【0014】
また、バッテリ3の充電量を適正量に維持するように、オルタネータ2の発電電圧を設定電圧(例えば14V)に制御する通常制御を行う一方、前記燃料カット制御時とリカバー制御時に、本発明に係る強制充電および無発電制御を行うようにオルタネータ2の発電電圧を制御する。
前記本発明の第1実施形態に係るオルタネータの発電制御を、図2のフローチャートにしたがって、説明する。
【0015】
ステップ1では、前記燃料カット制御中かを判定し、燃料カット制御中のときはステップ2へ進む。
ステップ2では、オルタネータ2の発電電圧をバッテリ電圧より十分高い電圧(例えば15.5V)に高めて、バッテリ3を強制充電する。
ステップ3では、該強制充電時の充電量を積算する。具体的には、前記電流センサ5で検出される充電電流vCHAI[A/h]をサンプリング時間[10ms]あたりの充電電流値vCHAI/360000に換算して積算することにより、次式のように積算充電量vCHADDを算出する。
【0016】
vCHADD=vCHADDz+vCHAI/360000
ただし、vCHADDzはvCHADDの前回値
ステップ4では、燃料カット制御が終了しているかを判定し、終了前はステップ3に戻って充電量の積算を繰り返す。
ステップ4で、燃料カット制御が終了と判定したときに、ステップ5へ進み、バッテリ充電状態SOC(ステートオブチャージ)が70〜80%程度に設定される所定量以上かを判定する。具体的には、バッテリ充電状態SOCは以下のように算出される。長時間停車時にバッテリ3と電源回路とを接続するリレーがOFFになっているときにバッテリ開放端電圧の初期値に基づいて充電状態SOCの初期値を求め、その後電流センサ5によって検出される充放電電流を充電時は+、放電時は−として積算しつつ現在の充電状態SOCを算出する。
【0017】
ステップ5でバッテリ充電状態SOCが所定値以上あり、無発電制御を行ってもバッテリ充電状態SOCが不足して電気負荷制御に影響を与えることが無いと判定されたときは、ステップ6へ進む。
ステップ6では、オルタネータ2の発電電圧をバッテリ電圧より十分小さい値、例えば11V程度に下げることにより、無発電制御を開始する。
【0018】
ステップ7では、該無発電制御中の放電量を減算して現在のバッテリの充電量vCHADDを算出する。具体的には、前記強制充電時における積算充電量vCHADDからサンプリング時間[10ms]あたりの放電電流値vCHAI/360000を減算していくことにより、次式のようにバッテリの充電量vCHADDを算出する。
【0019】
vCHADD=vCHADDz−vCHAI/360000
ステップ8では、ステップ7で算出されたバッテリの充電量vCHADDが0以下となるかを判定し、0以下となったとき、つまり、強制充電時に充電された分を略放電しつくしたと判定したときに、ステップ9へ進み、無発電制御を終了してオルタネータ2の発電電圧を通常制御時の電圧、例えば14.4V程度に設定する。
【0020】
また、バッテリの充電量vCHADDが0以下となる前の無発電制御中にステップ10で再度減速操作が行われて燃料カット状態となったかを判定し、ならない場合はそのままステップ7へ戻ってバッテリの充電量vCHADDの算出を繰り返すが、燃料カット状態になった場合は、ステップ2へ戻る。これにより、再度強制充電が行われ、ステップ3で現在のバッテリの充電量vCHADDに充電電流値vCHAI/360000を積算して積算充電量vCHADDが算出される。その後燃料カットを終了して無発電制御が行われると、前記積算充電量vCHADDから放電電流値vCHAI/360000が減算されていくので、強制充電時の充電量と無発電時の放電量とを収支した充電量vCHADDが算出される。
【0021】
また、ステップ4で、バッテリ充電状態SOCが所定値未満であり、無発電制御を行うとバッテリ充電状態SOCが不足して電気負荷制御に影響を与える可能性があると判定されたときは、無発電制御を行うことなく、ステップ9へ進んで直ちに通常制御に切り換える。
図3は、本発明の第2実施形態に係るオルタネータの発電制御を示す。第2実施形態は、強制充電時の充電時間に応じて無発電時の放電時間を制御するもので、第1実施形態と相違するのは、ステップ3'で強制充電時の充電時間vTIMEを次式のように積算し、
vTIME=vTIMEz+1
ステップ7’で放電時間(にゲインを乗じた単位時間)ずつ減算して次式のように積算時間vTIMEを算出し、
vTIME=vTIMEz−1(×ゲイン)
ステップ8’で前記積算時間vTIMEが0以下となるかを判定することである。
【0022】
この方式では、充放電電流の検出が不要となり、電流センサを要しないので低コストで実施できる。
図4は、上記オルタネータの発電制御時の様子を示す図である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る車両の発電制御装置のシステム構成を示す図。
【図2】第1実施形態に係るオルタネータの発電制御を示すフローチャート。
【図3】第2実施形態に係るオルタネータの発電制御を示すフローチャート。
【図4】上記発電制御中の様子を示すタイムチャート。
【符号の説明】
1 エンジン
2 オルタネータ
3 バッテリ
5 電流センサ
12 燃料噴射弁
13 回転速度センサ
14 スロットルセンサ
21 コントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation control device for a vehicle including an engine (internal combustion engine), a generator, and a battery.
[0002]
[Prior art]
In conventional vehicle power generation control, when the engine decelerates the fuel cut, the generator's power generation voltage is increased to forcibly charge the battery to improve fuel efficiency by recovering power, and after the fuel supply is resumed, the power generation voltage is decreased for a predetermined time. There is one in which the engine load is reduced by suppressing no power generation to suppress a rapid decrease in engine rotation (see JP-A-2-276499).
[0003]
[Problems to be solved by the invention]
However, in the above prior art, since the time during which no power is generated is constant, the amount of discharge during this period becomes too large, and the battery charge amount is insufficient (SOC <100%). In some cases, sulfation (crystallization of discharge products) occurs in the battery and the charging performance is lowered. If the non-power generation time is shortened, the engine rotation cannot be sufficiently prevented from decreasing.
[0004]
The present invention has been made paying attention to such conventional problems, and it is an object of the present invention to provide a vehicle power generation control device capable of preventing a decrease in battery performance while satisfying an improvement in fuel consumption and prevention of a decrease in engine rotation. And
[0005]
[Means for Solving the Problems]
For this reason, the invention according to claim 1
When the engine decelerates the fuel, the generator voltage is increased and the battery is forcibly charged.After the forcible charging is completed, the generator voltage is reduced for a predetermined time according to the amount of charge during the forcible charging, and no power is generated. It is characterized by doing.
[0006]
According to the invention of claim 1,
The battery can be discharged at the time of no power generation according to the amount of electric power collected by forced charging, and it is possible to prevent deterioration in performance due to a decrease in the state of charge of the battery while satisfying fuel efficiency improvement and prevention of engine rotation reduction.
The invention according to claim 2
The predetermined time is a time for discharging from the battery by the amount of charge during forced charging.
[0007]
According to the invention of claim 2,
The amount of discharge during no power generation can be exactly matched with the amount of charge during forced charging, and high-precision control can be performed.
The invention according to claim 3
The charge amount during the forced charge is calculated as an integrated value of the charge current.
[0008]
According to the invention of claim 3,
The amount of charge during forced charging can be calculated accurately.
The invention according to claim 4
The predetermined time is a time corresponding to a forced charging time.
The predetermined time for no power generation can be set without calculating the charge amount or providing a current sensor therefor, and can be controlled easily and at low cost.
[0009]
The invention according to claim 5
Forcible charging is resumed when a deceleration fuel cut state occurs while the generator is not generating power.
According to the invention of claim 5,
When a deceleration operation is performed during a discharge with no power generation at the time of resuming fuel supply and the fuel is cut again, the power can be recovered without waste by restarting forced charging.
[0010]
The invention according to claim 6
After the restarted forced charge, the time generator according to the balance between the charge amount at the previous forced charge and the discharge amount at the time of no power generation is set to no power generation.
After the forced charging is resumed during the non-power generation, the non-power generation time when the fuel is supplied again can be appropriately controlled according to the charge / discharge balance so far.
[0011]
The invention according to claim 7
When the battery charge amount after the end of forced charging is below a predetermined level, the generator is prohibited from generating no power.
According to the invention of claim 7,
If the amount of battery charge is insufficient even after forcible charging, it is possible to avoid insufficient charging by prohibiting the generator from generating no power and suppressing discharge.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a system configuration of a vehicle power generation control device according to an embodiment of the present invention.
An alternator (generator) 2 driven by the engine 1 and a battery 3 for charging electric power generated by the alternator 2 are provided, and an electric load 4 of the vehicle is connected to the alternator 2 and the battery 3. A current sensor 5 for detecting the charge / discharge current of the battery 2 is connected.
[0013]
The engine 1 includes a throttle valve 11 for controlling the amount of intake air and a fuel injection valve 12, and a rotation speed sensor 13 for detecting the engine rotation speed and a throttle sensor 14 for detecting the opening of the throttle valve 11 are arranged. It is installed.
Signals from the various sensors are input to the control unit 21. The control unit 21 receives fuel from the fuel injection valve 12 when the throttle valve 11 is in a fully closed idle state and the engine speed is decelerated more than a predetermined value. The fuel cut control for stopping the injection is performed, and then the recovery control for restarting the fuel injection when the engine speed becomes the recovery value or less is performed.
[0014]
Further, in order to maintain the charge amount of the battery 3 at an appropriate amount, the normal control for controlling the power generation voltage of the alternator 2 to a set voltage (for example, 14V) is performed, while the fuel cut control and the recovery control are performed in the present invention. The generated voltage of the alternator 2 is controlled so as to perform such forced charging and no power generation control.
The power generation control of the alternator according to the first embodiment of the present invention will be described according to the flowchart of FIG.
[0015]
In step 1, it is determined whether the fuel cut control is being performed. If the fuel cut control is being performed, the process proceeds to step 2.
In step 2, the power generation voltage of the alternator 2 is increased to a voltage sufficiently higher than the battery voltage (for example, 15.5 V), and the battery 3 is forcibly charged.
In step 3, the charge amount at the time of the forced charge is integrated. Specifically, the charging current vCHAI [A / h] detected by the current sensor 5 is converted into a charging current value vCHAI / 360000 per sampling time [10 ms] and integrated to obtain an integration as follows: A charge amount vCHADD is calculated.
[0016]
vCHADD = vCHADDz + vCHAI / 360000
However, vCHADDz determines whether or not the fuel cut control has ended in the previous value step 4 of vCHADD, and returns to step 3 and repeats the integration of the charge amount before the end.
When it is determined in step 4 that the fuel cut control is finished, the process proceeds to step 5 to determine whether or not the battery charge state SOC (state of charge) is equal to or greater than a predetermined amount set to about 70 to 80%. Specifically, the battery charge state SOC is calculated as follows. When the relay that connects the battery 3 and the power supply circuit is OFF when the vehicle is stopped for a long time, the initial value of the state of charge SOC is obtained based on the initial value of the battery open-end voltage, and then the charge detected by the current sensor 5 is detected. The current state of charge SOC is calculated while integrating the discharge current as + during charging and as-during discharging.
[0017]
If it is determined in step 5 that the battery state of charge SOC is greater than or equal to a predetermined value, and it is determined that the battery state of charge SOC is insufficient to affect the electrical load control even if non-power generation control is performed, the process proceeds to step 6.
In step 6, no power generation control is started by lowering the generated voltage of the alternator 2 to a value sufficiently smaller than the battery voltage, for example, about 11V.
[0018]
In step 7, the current charge amount vCHADD of the battery is calculated by subtracting the discharge amount during the non-power generation control. Specifically, by subtracting the discharge current value vCHAI / 360000 per sampling time [10 ms] from the accumulated charge amount vCHADD during the forced charge, the battery charge amount vCHADD is calculated as in the following equation.
[0019]
vCHADD = vCHADDz-vCHAI / 360000
In step 8, it is determined whether or not the battery charge amount vCHADD calculated in step 7 is 0 or less, and when it is 0 or less, that is, it is determined that the charged part at the time of forced charging is almost discharged. Sometimes, the process proceeds to step 9 where the non-power generation control is terminated and the power generation voltage of the alternator 2 is set to a voltage during normal control, for example, about 14.4V.
[0020]
Further, during the no-power generation control before the charge amount vCHADD of the battery becomes 0 or less, it is determined in step 10 whether or not the deceleration operation is performed again to enter the fuel cut state. If not, the process returns to step 7 as it is. The calculation of the charge amount vCHADD is repeated, but if the fuel cut state is entered, the process returns to step 2. As a result, forced charging is performed again, and in step 3, the charging current value vCHAI / 360,000 is added to the current charging amount vCHADD of the battery to calculate the integrated charging amount vCHADD. Thereafter, when the fuel cut is finished and no power generation control is performed, the discharge current value vCHAI / 360,000 is subtracted from the integrated charge amount vCHADD, so that the charge amount during forced charging and the discharge amount during no power generation are balanced. The charged amount vCHADD is calculated.
[0021]
Further, when it is determined in step 4 that the battery state of charge SOC is less than the predetermined value and the non-power generation control is performed, the battery state of charge SOC is insufficient and may affect the electric load control. Without performing power generation control, the process proceeds to step 9 and immediately switches to normal control.
FIG. 3 shows power generation control of the alternator according to the second embodiment of the present invention. The second embodiment controls the discharge time during no power generation according to the charge time during forced charge. The difference from the first embodiment is that the charge time vTIME during forced charge is set in step 3 ′. Accumulate as in the equation,
vTIME = vTIMEz + 1
In step 7 ′, the discharge time (unit time multiplied by gain) is subtracted to calculate the accumulated time vTIME as in the following equation:
vTIME = vTIMEz−1 (× gain)
In step 8 ′, it is determined whether the accumulated time vTIME is 0 or less.
[0022]
This method eliminates the need for detection of the charge / discharge current, and does not require a current sensor, and can be implemented at low cost.
FIG. 4 is a diagram illustrating a state during power generation control of the alternator.
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration of a vehicle power generation control device according to an embodiment of the present invention.
FIG. 2 is a flowchart showing power generation control of the alternator according to the first embodiment.
FIG. 3 is a flowchart showing power generation control of an alternator according to a second embodiment.
FIG. 4 is a time chart showing a state during the power generation control.
[Explanation of symbols]
1 Engine 2 Alternator 3 Battery 5 Current sensor 12 Fuel injection valve 13 Rotational speed sensor 14 Throttle sensor 21 Control unit

Claims (7)

エンジンの減速燃料カット時に発電機の発電電圧を高めてバッテリを強制充電すると共に、該強制充電終了後、該強制充電中の充電量に応じた所定時間発電機の発電電圧を下げて無発電とすることを特徴とする車両の発電制御装置。When the engine decelerates the fuel, the generator voltage is increased and the battery is forcibly charged.After the forcible charging is completed, the generator voltage is reduced for a predetermined time according to the amount of charge during the forcible charging, and no power is generated. A power generation control device for a vehicle. 前記所定時間は、強制充電中の充電量分だけバッテリから放電する時間であることを特徴とする請求項1に記載の車両の発電制御装置。The vehicle power generation control device according to claim 1, wherein the predetermined time is a time for discharging from the battery by a charge amount during forced charging. 前記強制充電中の充電量を充電電流の積算値として算出することを特徴とする請求項2に記載の車両の発電制御装置。The power generation control device for a vehicle according to claim 2, wherein the amount of charge during the forced charging is calculated as an integrated value of charging current. 前記所定時間は、強制充電時間に応じた時間であることを特徴とする請求項1に記載の車両の発電制御装置。The vehicle power generation control device according to claim 1, wherein the predetermined time is a time corresponding to a forced charging time. 前記発電機の無発電中に、減速燃料カット状態となったときは、強制充電を再開することを特徴とする請求項1〜請求項4のいずれか1つに記載の車両の発電制御装置。The power generation control device for a vehicle according to any one of claims 1 to 4, wherein forced charging is restarted when a deceleration fuel cut state is entered while the generator is not generating power. 前記再開された強制充電終了後、それ以前の強制充電時の充電量と無発電時の放電量との収支に応じた時間発電機を無発電とすることを特徴とする請求項1〜請求項5のいずれか1つに記載の車両の発電制御装置。The time generator according to the balance between the charge amount at the time of forced charge and the discharge amount at the time of no power generation after the restarted forced charge is ended, and the generator is set to no power generation. The vehicle power generation control device according to any one of 5. 強制充電終了後のバッテリ充電量が所定レベル以下のときは、発電機の無発電を禁止することを特徴とする請求項1〜請求項6のいずれか1つに記載の車両の発電装置。The vehicle power generation device according to any one of claims 1 to 6, wherein when the amount of battery charge after the end of forced charging is equal to or lower than a predetermined level, no power generation by the generator is prohibited.
JP2002040489A 2002-02-18 2002-02-18 Vehicle power generation control device Expired - Lifetime JP3797242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040489A JP3797242B2 (en) 2002-02-18 2002-02-18 Vehicle power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040489A JP3797242B2 (en) 2002-02-18 2002-02-18 Vehicle power generation control device

Publications (2)

Publication Number Publication Date
JP2003244998A JP2003244998A (en) 2003-08-29
JP3797242B2 true JP3797242B2 (en) 2006-07-12

Family

ID=27781221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040489A Expired - Lifetime JP3797242B2 (en) 2002-02-18 2002-02-18 Vehicle power generation control device

Country Status (1)

Country Link
JP (1) JP3797242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013102A1 (en) 2013-09-10 2015-03-12 Suzuki Motor Corporation Device for controlling the generation of energy during deceleration

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211734A (en) 2005-01-25 2006-08-10 Denso Corp Torque detecter
JP2007064209A (en) 2005-08-05 2007-03-15 Fujitsu Ten Ltd Engine control device, control method, and control system
JP4858277B2 (en) * 2007-04-06 2012-01-18 日産自動車株式会社 Vehicle power generation control device
JP5343953B2 (en) * 2010-10-05 2013-11-13 株式会社デンソー Fault detection device for voltage supply device
KR101744986B1 (en) * 2011-04-13 2017-06-21 현대자동차주식회사 Fuel Ratio Improving Method for Generating Control in Vehicle
JP2015101299A (en) * 2013-11-27 2015-06-04 トヨタ自動車株式会社 Engine control device
JP2015110918A (en) * 2013-12-06 2015-06-18 いすゞ自動車株式会社 Vehicle charging method, vehicle charging system, and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013102A1 (en) 2013-09-10 2015-03-12 Suzuki Motor Corporation Device for controlling the generation of energy during deceleration

Also Published As

Publication number Publication date
JP2003244998A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
US8552688B2 (en) On-vehicle battery condition estimation device
JP6164168B2 (en) Vehicle control device
JP2651030B2 (en) Generator control device and control method, and vehicular generator control device and control method using the same
JP2007064209A (en) Engine control device, control method, and control system
EP2930819A1 (en) Charging control device, charging control method, computer program, and recording medium
WO2014025069A1 (en) Power system for a vehicle
US8862365B2 (en) Vehicular power supply device
JP6548699B2 (en) Power supply system
JP4858277B2 (en) Vehicle power generation control device
JP2005045883A (en) Hybrid vehicle
JP2010247556A (en) Economical running control device
JP3797242B2 (en) Vehicle power generation control device
JP2012070581A (en) Power supply device for vehicle
JP4127078B2 (en) Vehicle power supply control device
JP2001268707A (en) Hybrid vehicle control device
JP2001157306A (en) Control device of hybrid vehicle
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP2010221828A (en) Economy running control device
US11110872B2 (en) Power control device for vehicle
JP4635961B2 (en) Battery charge state control device
JP3000758B2 (en) Power supply for vehicles
JP3257204B2 (en) Control device for vehicle generator
JP2004150354A (en) Operation control device of internal combustion engine
JP2004112917A (en) Alternator controller
JP6851743B2 (en) Jumping start judgment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Ref document number: 3797242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

EXPY Cancellation because of completion of term