JP3790029B2 - SiC dummy wafer - Google Patents
SiC dummy wafer Download PDFInfo
- Publication number
- JP3790029B2 JP3790029B2 JP28300497A JP28300497A JP3790029B2 JP 3790029 B2 JP3790029 B2 JP 3790029B2 JP 28300497 A JP28300497 A JP 28300497A JP 28300497 A JP28300497 A JP 28300497A JP 3790029 B2 JP3790029 B2 JP 3790029B2
- Authority
- JP
- Japan
- Prior art keywords
- sic
- sic film
- plane
- film
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ICやLSI等の半導体製造工程において、プラズマエッチングチャンバー内を清浄化する工程に用いるダミーウエハ、あるいは拡散炉や縦型炉において製品ウエハが並ぶ端側の位置に配置して製品ウエハの処理性状を安定化するために用いるダミーウエハに関する。
【0002】
【従来の技術】
プラズマエッチング処理は、一対の並行平面電極を設置したエッチング装置内に反応性ガス(C,H,F,O等の原子含有ガス)を導入しながら電極間に高周波電力を印加して放電させ、生じたガスプラズマを用いてフォトレジストされていない部分をエッチングすることにより高精度で微細な回路パターンを形成する処理工程である。
【0003】
このプラズマエッチング処理は均一なプラズマ条件で行う必要があるが、均一な反応条件に維持することは難しく、例えば縦型炉を用いて減圧CVD法によりエッチング処理を行う場合には、炉の上部と下部において反応性ガスの流れや温度分布等が不均一化し易い。そこで、ウエハをセットした炉の上部及び下部にダミーウエハをセットして、ウエハのエッチング条件を安定化させる方法が採られている。
【0004】
また、プラズマエッチング処理を繰り返し行うと、チャンバー内の電極やウエハホルダー等にエッチングされたシリコンが付着したり、付着シリコンの脱落によりパーティクルが発生する等の問題が生じる。そのため、定期的にウエハの代わりにダミーウエハをセットしてプラズマエッチング処理を行って、系内を洗浄する必要がある。
【0005】
したがって、ダミーウエハにはエッチングされ難い材質特性が要求され、また高純度であることが必要である。このダミーウエハの材質としては石英、炭化珪素、グラファイト等が検討されているが、石英は導電性がないため使用できず、焼結炭化珪素は加工性が悪く高純度化も難しいという欠点がある。グラファイトは材質的に組織からパーティクルが脱落する難点がある。シリコンウエハをダミーウエハとして用いる方法もあるが、ウエハの大型化にともないコスト高となり実用的でない。そのためウエハの洗浄時に使用される塩酸ガスにエッチングされにくいSiCが一般的に使用される。
【0006】
SiCは耐熱性、高温強度、耐熱衝撃性、耐摩耗性、耐蝕性等の材質特性に優れており半導体製造用の部材をはじめ各種工業用の部材として有用されている。SiC成形体の製造方法としては古くからSiC粉末を焼結する方法があるが、SiCは難焼結性材料であり緻密で表面平滑な成形体を得るには焼結助剤を必要とし、高純度な製品を得ることが困難である。そのため、焼結法で製造されるSiC成形体は、特に高純度が要求される半導体分野での使用には適さない欠点がある。
【0007】
一方、CVD法(化学的気相蒸着法)を利用するSiC成形体の製造方法は、原料ガスを気相反応させて基材面上にSiC生成物を析出させて被膜を生成したのち基材を除去するもので、緻密で高純度のSiC成形体を得ることができる。また、基材は切削や研磨等により除去されるが、基材に炭素材を用いると空気中で熱処理することにより容易に燃焼除去できるのでプロセスを簡易化できる利点がある。
【0008】
しかしながら、基材に炭素材、例えば表面平滑で平板状の黒鉛材を用いてCVD法によりSiCを気相析出させると、黒鉛基材とSiC膜との熱膨張率の相違やSiC膜の気相析出速度の相違による結晶組織の変化に起因して、黒鉛基材を除去して得られるSiC膜成形体には反りが発生する難点がある。すなわち、黒鉛基材の熱膨張係数がSiCの熱膨張係数よりも大きい場合にはSiC膜に圧縮応力がかかりSiC膜の表面が凸形状に反る。逆に、黒鉛基材の熱膨張係数が小さい場合にはSiC膜に引張り応力が働くためSiC膜の表面が凹形状に反ることとなる。
【0009】
また、CVD法により析出するSiC膜の形成過程は、基材上でまずSiCの核が生成してアモルファス質あるいは微粒多結晶に成長し、更に柱状組織の結晶組織に成長を続けてSiC膜が析出被着する。この基材と接するアモルファス質あるいは微粒多結晶のSiC膜の熱膨張係数は柱状組織の結晶組織の熱膨張係数に比べて小さいために、基材である黒鉛材を空気中で加熱して燃焼除去する場合にはアモルファス質あるいは微粒多結晶部では圧縮応力が、柱状組織の結晶組織部では引っ張り応力がそれぞれ作用するので、SiC膜形成時とは逆に全体として凹形状に反りが発生することとなる。
【0010】
そこで、CVD法によるSiC成形体の製造方法として、基体の表面にCVD法によりSiC膜を形成し、前記基体を除去して得られたSiC基板の両面に、更にSiC膜を形成することを特徴とするCVD法によるSiC成形体の製造方法(特開平8−188408号公報)や、基体の表面にCVD法によりSiC膜を形成し、前記基体を除去することにより、SiC成形体を製造する方法において、CVD法によりSiC層を形成し、次いで該SiC層の表面を平坦化する工程を複数回繰り返すことにより、各層の厚みが100μm 以下のSiC層を所望厚み以上に積層した後、基体を除去することを特徴とするCVD法によるSiC成形体の製造方法(特開平8−188468号公報)等が提案されている。
【0011】
上記の特開平8−188408号公報および特開平8−188468号公報の発明は、SiC成形体に発生する亀裂や反りの抑制を目的として、SiC膜を所望厚みまで一気に形成せずに途中で止め、SiC膜に蓄積される内部応力を最小限に抑えることにより結晶粒の大きさがそろい、膜表面の凹凸度合いを減少させたSiC膜を基板として、その上面と下面の両面にSiC膜を形成する、あるいはSiC層形成を初期段階で止めて、層表面を平坦化する工程を複数回繰り返すものである。すなわち、特開平8−188408号公報、同8−188468号公報の製造方法によれば、CVD法で形成するSiC膜を所望の膜厚にまで一気に形成することなく途中で止め、また平坦化処理が必要となるなど工程が煩雑化し、製造効率が低下する問題点がある。
【0012】
更に、ウエハは搬送用ロボットで支持ボートに装着されるが、ウエハの認識はレーザー光を照射することにより行われている。したがって、ウエハの光透過性が高いとロボットがウエハの位置を的確に認識することができず、反応装置内の所定の位置にウエハを装着することが困難となる。
【0013】
【発明が解決しようとする課題】
本発明者らは、上記の問題点を解消するためにSiC膜の結晶性状について研究を進めた結果、SiC膜の結晶配向が等方的であると反りが少なく、また光透過性も低くなることを見出した。
【0014】
本発明は上記の知見に基づいて完成したものであり、その目的はプラズマエッチング用等のチャンバー内を清浄化する工程、あるいは拡散炉や縦型炉等で製品ウエハを処理する工程に用いられる、反りが少なく平坦性に優れ、また光透過性の低いSiCダミーウエハを提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するための本発明によるSiCダミーウエハは、CVDにより成膜後基材を除去したSiC膜成形体において、X線回折により得られる結晶面の存在割合が、SiC膜の成膜面側で(111)面に対する(200)面の回折ピーク値の比I(200)/(111)が0.5〜1.30、(111)面に対する(311)面の回折ピーク値の比I(311)/(111)が0.35〜0.60であり、SiC膜の基材面側の回折ピーク値の比I(200)/(111)が0.1〜0.4の結晶性状を備えたSiC膜成形体からなり、該SiC膜成形体の反りが−0.5〜+0.5mmの範囲にあることを構成上の特徴とする。
【0016】
【発明の実施の形態】
CVD法によりSiCを気相析出させてSiC膜を成膜する基材には、空気中で熱処理することにより容易に除去可能な炭素系、特に黒鉛材が好適に用いられる。黒鉛材は表面平滑で平坦性の高いものが好ましい。黒鉛基材の表面にCVD法により気相析出させて形成したSiC被膜は黒鉛基材を除去することにより、SiC膜成形体が得られる。黒鉛基材の除去は黒鉛材を切削除去、ショットブラスト等による研磨除去、あるいは空気中で加熱して燃焼除去する方法等適宜な手段により行うことができるが、燃焼除去の操作が簡便であり好ましい。
【0017】
本発明のSiCダミーウエハは、このようにして得られるSiC膜成形体の結晶性状を特定の結晶形状とした、すなわちX線回折により得られる結晶面の存在割合を、SiC膜の成膜面側(すなわち膜の表面側)で(111)面に対する(200)面の回折ピーク値の比I(200)/(111)が0.5〜1.30、(111)面に対する(311)面の回折ピーク値の比I(311)/(111)が0.35〜0.60であり、SiC膜の基材面側(すなわち膜の裏面側)の回折ピーク値の比I(200)/(111)が0.1〜0.4の範囲に設定した点に特徴がある。なお、X線回折により求める回折ピーク値はCuのKαで測定した値である。
【0018】
結晶面の存在割合として、SiC膜の成膜面側のX線回折の回折ピーク値の比I(200)/(111)の値が0.5未満の場合は、結晶の粒界が基材に対し平行に配列する度合いが多くなりSiC膜成形体の反りが大きくなる。また回折ピーク値の比I(311)/(111)が0.35〜0.60の範囲を外れる場合にも同様に結晶の粒界が基材に対し平行に配列する度合いが多くなるためSiC膜成形体の反りが大きくなる。また、SiC膜の基材面側の回折ピーク値の比I(200)/(111)の値が0.1〜0.4の範囲を外れると反りが大きくなるばかりでなく、成長過程で徐々にI(200)/(111)の比率が大きくなり光透過性が低下する。
【0019】
このように本発明は、SiC膜の結晶面の存在割合を特定の範囲に設定した結晶性状とすることにより、SiCの結晶配向が比較的に等方性となり、SiC膜成形体の反りを抑制することができ、平坦なダミーウエハとすることが可能となる。そして、SiC膜の成膜面側で(111)面に対する(200)面の回折ピーク値の比I(200) /(111) が0.5以上、(111)面に対する(311)面の回折ピーク値の比I(311) /(111) が0.35〜0.60であり、SiC膜の基材面側の回折ピーク値の比I(200) /(111) が0.1〜0.4の範囲に設定することによりSiC膜成形体の反りを−0.5〜+0.5mmの範囲に抑制することが可能となる。更に、SiC結晶の配向性が低いので、(111)面と交差する結晶面の存在割合が多くなり、光透過性を低くすることができる。なお、本発明のダミーウエハはSiC膜成形体の厚さには特に制約されない。
【0020】
SiC膜成形体は、黒鉛等の基材面にCVD法によりSiCを気相析出させてSiC膜を被着した後基材を除去することにより得られ、CVD法によるSiC膜の被着はCVD反応装置内に黒鉛基材をセットし、水素ガスをキャリアガスとし、トリクロロメチルシラン、トリクロロフェニルシラン、ジクロロメチルシラン、ジクロロジメチルシラン、クロロトリメチルシランなどの原料ガスを送入して熱分解反応させることにより行われる。この場合に、熱分解温度、原料ガス濃度〔(原料ガス)/(原料ガス)+(キャリアガス)〕、原料ガス送入流量等を適宜設定制御することにより本発明の結晶性状を備えたSiC膜成形体が得られる。
【0021】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0022】
実施例1〜6、比較例1〜2
嵩密度1.8 g/cm3、熱膨張係数3.9×10-6、灰分10 ppmの等方性黒鉛材を直径202mm、厚さ5mmに加工して基材を作製した。この黒鉛基材をCVD反応装置にセットして、原料ガスにトリクロロメチルシランを用い、水素ガスをキャリアガスとして、熱分解温度を1400℃に、原料ガス濃度〔(トリクロロメチルシラン)流量/(トリクロロメチルシラン)+(水素ガス)流量〕を5〜10 Vol%に、またトリクロロメチルシランの流量を100〜500リットル/分の範囲で設定制御し、CVD反応時間を変えて黒鉛基材面にSiCを析出させた。このようにして黒鉛基材面に厚さ0.9〜1.5mmのSiC膜を成膜した。次いで空気中で加熱して黒鉛基材を燃焼除去した後、ショットブラストにより基材面に接していた側を研磨して平滑化し、SiC膜成形体を得た。
【0023】
これらのSiC膜成形体について、印加電圧;40KV、印加電流;20mA、走査速度;4°/min.、発散スリット;1°、入射スリット;1°、散乱スリット;0.3mm、フィルター;Niの条件でX線回折を行って、回折ピーク値を求めた。なお回折ピーク値はCuのKαで測定した。また、3次元形状測定機により静置したSiC膜成形体表面の高さを測定して、高低差の最大値をもって反り量(mm)とした。更に、SiC膜成形体を厚さ0.5mm、面粗さRaを1μm 以下に平面研削した後、分光光度計により波長2000nmにおける透過率を測定した。また、ダミーウエハに加工後、片面から白色光源で照射して透過光の色調を目視により観察した。得られた結果を表1に示した。
【0024】
【表1】
【0025】
表1の結果から、本発明で特定した結晶性状を備えた実施例のSiC膜成形体は、いずれも反りが少なく、平坦性に優れ、また光透過性も低位にあることが判る。これに対してSiC膜が成長する側の(200)結晶面の発達が小さく、全体として結晶面の配向性が高い比較例1では反りが大きく、光透過率も高いことが認められる。また(311)結晶面の発達が小さい比較例2でも反りが大きくなっている。
【0026】
【発明の効果】
以上のとおり、本発明によれば、CVDにより成膜した後基材を除去したSiC膜成形体の結晶性状として、SiC膜の成膜面側のX線回折による回折ピーク値の比I(200) /(111) 及びI(311) /(111) の値、ならびにSiC膜の基材面側の回折ピーク値の比I(200) /(111) の値をそれぞれ特定して、各結晶面の存在割合、すなわち結晶面の配向性が相対的に等方性のSiC膜成形体によりダミーウエハを構成したものであるから結晶面の配向性による反りの発生が効果的に抑制され、反り量を±0.5mmの範囲内に抑えることが可能となる。更に結晶面の交差面により光の透過も低く、光透過率を低位に保持することができる。したがって、プラズマエッチング用等のチャンバー内を清浄化する工程、あるいは拡散炉や縦型炉等で製品ウエハを処理する工程に用いられる、反りが少なく平坦性に優れ、また光透過性の低いSiCダミーウエハとして極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a dummy wafer used in a process for cleaning the inside of a plasma etching chamber in a semiconductor manufacturing process such as an IC or LSI, or a product wafer arranged at an end position where product wafers are lined up in a diffusion furnace or a vertical furnace. The present invention relates to a dummy wafer used for stabilizing processing properties.
[0002]
[Prior art]
The plasma etching process is performed by applying a high frequency power between the electrodes while introducing a reactive gas (atom-containing gas such as C, H, F, O) into an etching apparatus having a pair of parallel plane electrodes, This is a processing step of forming a fine circuit pattern with high accuracy by etching a portion that is not photoresisted using the generated gas plasma.
[0003]
This plasma etching process needs to be performed under uniform plasma conditions, but it is difficult to maintain uniform reaction conditions. For example, when etching is performed by a low pressure CVD method using a vertical furnace, In the lower part, the flow of reactive gas, temperature distribution, etc. are likely to be uneven. Therefore, a method is adopted in which dummy wafers are set on the upper and lower portions of the furnace in which the wafers are set to stabilize the wafer etching conditions.
[0004]
In addition, when the plasma etching process is repeatedly performed, there arises a problem that the etched silicon adheres to the electrode in the chamber, the wafer holder, or the like, or particles are generated due to dropping of the adhered silicon. For this reason, it is necessary to periodically set a dummy wafer instead of the wafer and perform plasma etching to clean the inside of the system.
[0005]
Therefore, the dummy wafer is required to have a material characteristic that is difficult to be etched, and needs to be highly pure. Quartz, silicon carbide, graphite, and the like have been studied as the material of this dummy wafer, but quartz cannot be used because it has no electrical conductivity, and sintered silicon carbide has a drawback that it is difficult to process and highly purified. Graphite has the difficulty that particles fall out of the structure in terms of material. Although there is a method of using a silicon wafer as a dummy wafer, the cost increases with the increase in size of the wafer, which is not practical. Therefore, SiC that is difficult to be etched by the hydrochloric acid gas used when cleaning the wafer is generally used.
[0006]
SiC is excellent in material properties such as heat resistance, high temperature strength, thermal shock resistance, wear resistance, and corrosion resistance, and is useful as a member for various industries including a member for manufacturing semiconductors. As a manufacturing method of a SiC molded body, there is a method of sintering SiC powder for a long time, but SiC is a hardly sinterable material and requires a sintering aid to obtain a compact and smooth surface molded body. It is difficult to obtain a pure product. Therefore, the SiC molded body manufactured by the sintering method has a drawback that it is not suitable for use in the semiconductor field where high purity is particularly required.
[0007]
On the other hand, a method for producing a SiC molded body using a CVD method (chemical vapor deposition method) is a method in which a raw material gas is vapor-phase reacted to deposit a SiC product on the surface of the substrate to form a coating. A dense and high-purity SiC molded body can be obtained. Further, the base material is removed by cutting, polishing, or the like. However, if a carbon material is used for the base material, there is an advantage that the process can be simplified because it can be easily removed by burning by heat treatment in air.
[0008]
However, if SiC is vapor deposited by CVD using a carbon material, for example, a smooth and flat graphite material, the difference in thermal expansion coefficient between the graphite substrate and the SiC film or the vapor phase of the SiC film. Due to the change in the crystal structure due to the difference in the deposition rate, the SiC film molded body obtained by removing the graphite base material has a difficulty in warping. That is, when the thermal expansion coefficient of the graphite substrate is larger than the thermal expansion coefficient of SiC, compressive stress is applied to the SiC film, and the surface of the SiC film warps in a convex shape. Conversely, when the thermal expansion coefficient of the graphite base material is small, tensile stress acts on the SiC film, so that the surface of the SiC film warps into a concave shape.
[0009]
Also, the formation process of the SiC film deposited by the CVD method is as follows. First, SiC nuclei are formed on the base material to grow into an amorphous or fine-grained polycrystal, and further grow into a columnar structure of the SiC film. Deposit deposition. Since the thermal expansion coefficient of the amorphous or fine polycrystalline SiC film in contact with the base material is smaller than the thermal expansion coefficient of the columnar structure, the graphite material as the base material is heated and removed in the air. In this case, compressive stress acts in the amorphous or fine-grained polycrystalline portion, and tensile stress acts in the crystal structure portion of the columnar structure. Therefore, contrary to the formation of the SiC film, the entire concave shape warps. Become.
[0010]
Therefore, as a method for producing an SiC molded body by the CVD method, an SiC film is formed on the surface of the substrate by the CVD method, and an SiC film is further formed on both surfaces of the SiC substrate obtained by removing the substrate. Or a method for producing a SiC molded body by forming a SiC film on the surface of the substrate by the CVD method and removing the substrate. In step 3, the SiC layer is formed by CVD, and the process of flattening the surface of the SiC layer is repeated a plurality of times, thereby stacking SiC layers having a thickness of 100 μm or less to a desired thickness or more and then removing the substrate. There has been proposed a method for producing a SiC molded body by the CVD method (JP-A-8-188468).
[0011]
The inventions of the above-mentioned JP-A-8-188408 and JP-A-8-188468 are for the purpose of suppressing cracks and warpage occurring in the SiC molded body and stopping the SiC film halfway without forming it to the desired thickness at once. By using the SiC film with the same size of crystal grains and reducing the degree of irregularities on the film surface as a substrate, by minimizing the internal stress accumulated in the SiC film, the SiC film is formed on both the upper and lower surfaces. Alternatively, the process of flattening the surface of the layer by stopping the SiC layer formation at the initial stage is repeated a plurality of times. That is, according to the manufacturing methods of Japanese Patent Application Laid-Open Nos. 8-188408 and 8-188468, the SiC film formed by the CVD method is stopped halfway without forming the desired film thickness at once, and the planarization treatment is performed. However, there is a problem that the process becomes complicated and the production efficiency is lowered.
[0012]
Further, the wafer is mounted on a support boat by a transfer robot, and the wafer is recognized by irradiating a laser beam. Therefore, if the wafer has high optical transparency, the robot cannot accurately recognize the position of the wafer, and it becomes difficult to mount the wafer at a predetermined position in the reaction apparatus.
[0013]
[Problems to be solved by the invention]
As a result of studying the crystal properties of the SiC film in order to solve the above-mentioned problems, the inventors of the present invention have less warpage and lower light transmittance when the crystal orientation of the SiC film is isotropic. I found out.
[0014]
The present invention has been completed based on the above findings, and its purpose is used in a process of cleaning the inside of a chamber for plasma etching or the like, or a process of processing a product wafer in a diffusion furnace or a vertical furnace, An object of the present invention is to provide a SiC dummy wafer with little warpage, excellent flatness and low light transmittance.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the SiC dummy wafer according to the present invention is a SiC film molded body in which the base material is removed after film formation by CVD, and the existence ratio of crystal planes obtained by X-ray diffraction is the film formation surface of the SiC film. The ratio I (200) / (111) of the diffraction peak value of the (200) plane to the (111) plane is 0.5 to 1.30 , and the ratio I of the diffraction peak value of the (311) plane to the (111) plane is I. Crystalline properties in which (311) / (111) is 0.35 to 0.60, and the ratio I (200) / (111) of the diffraction peak value on the substrate surface side of the SiC film is 0.1 to 0.4 consists SiC film formed body having a warp of the SiC film formed body is characterized in the configuration to be in the range of -0.5 to + 0.5 mm.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As a base material on which a SiC film is formed by vapor deposition of SiC by a CVD method, a carbon-based material, particularly a graphite material, that can be easily removed by heat treatment in air is preferably used. The graphite material preferably has a smooth surface and high flatness. The SiC film formed by vapor-phase deposition on the surface of the graphite base material by the CVD method is obtained by removing the graphite base material to obtain a SiC film molded body. The removal of the graphite base material can be performed by an appropriate means such as cutting and removal of the graphite material, polishing removal by shot blasting, etc., or heating and removing in the air, but the operation of the combustion removal is simple and preferable. .
[0017]
In the SiC dummy wafer of the present invention, the crystal property of the SiC film molded body thus obtained is made to have a specific crystal shape, that is, the existence ratio of crystal planes obtained by X-ray diffraction is determined on the SiC film deposition surface side ( In other words, the diffraction peak value ratio I (200) / (111) of the (200) plane to the (111) plane is 0.5 to 1.30 on the surface side of the film), and the (311) plane diffraction to the (111) plane. The peak value ratio I (311) / (111) is 0.35 to 0.60, and the diffraction peak value ratio I (200) / (111) on the substrate surface side of the SiC film (that is, the back surface side of the film). ) Is set in the range of 0.1 to 0.4. In addition, the diffraction peak value calculated | required by X-ray diffraction is the value measured by K (alpha) of Cu.
[0018]
As the existing ratio of the crystal plane, the ratio I (200) diffraction peak of X-ray diffraction of the film-forming surface side of the SiC film / (111) if the value is less than 0.5, the grain boundary of the crystal substrate However, the degree of warpage of the SiC film molded body increases. Similarly, when the ratio I (311) / (111) of the diffraction peak values is outside the range of 0.35 to 0.60, the degree to which the crystal grain boundaries are arranged in parallel to the base material is increased. The warpage of the film molding increases. Further, if the value of the diffraction peak value ratio I (200) / (111) on the substrate surface side of the SiC film is out of the range of 0.1 to 0.4, not only the warpage increases, but also gradually in the growth process. In addition, the ratio of I (200) / (111) is increased and the light transmittance is lowered.
[0019]
Thus, the present invention makes the crystal orientation of the SiC film relatively isotropic, and suppresses the warp of the SiC film molded body, by making the crystal property in which the existence ratio of the crystal plane of the SiC film is set in a specific range. Therefore, a flat dummy wafer can be obtained. Then, on the SiC film deposition surface side, the diffraction peak value ratio I (200) / (111) of the (200) plane to the (111) plane is 0.5 or more, and the diffraction of the (311) plane with respect to the (111) plane. The peak value ratio I (311) / (111) is 0.35 to 0.60, and the diffraction peak value ratio I (200) / (111) is 0.1 to 0 on the substrate surface side of the SiC film. By setting it in the range of .4, it becomes possible to suppress the warp of the SiC film molded body in the range of -0.5 to +0.5 mm. Furthermore, since the orientation of the SiC crystal is low, the ratio of the crystal plane intersecting with the (111) plane increases, and the light transmittance can be lowered. The dummy wafer of the present invention is not particularly limited by the thickness of the SiC film molded body.
[0020]
The SiC film molded body is obtained by vapor-depositing SiC on the surface of a base material such as graphite by CVD to deposit the SiC film, and then removing the base material. The deposition of the SiC film by the CVD method is CVD. A graphite substrate is set in the reactor, hydrogen gas is used as a carrier gas, and raw material gases such as trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, dichlorodimethylsilane, and chlorotrimethylsilane are introduced to cause a thermal decomposition reaction. Is done. In this case, the SiC having the crystalline properties of the present invention is appropriately controlled by setting the pyrolysis temperature, source gas concentration [(source gas) / (source gas) + (carrier gas)], source gas feed flow rate, etc. A film molded body is obtained.
[0021]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0022]
Examples 1-6, Comparative Examples 1-2
An isotropic graphite material having a bulk density of 1.8 g / cm 3 , a thermal expansion coefficient of 3.9 × 10 −6 , and an ash content of 10 ppm was processed into a diameter of 202 mm and a thickness of 5 mm to prepare a substrate. This graphite substrate is set in a CVD reactor, trichloromethylsilane is used as the source gas, hydrogen gas is used as the carrier gas, the thermal decomposition temperature is 1400 ° C., the source gas concentration [(trichloromethylsilane) flow rate / (trichloro (Methylsilane) + (hydrogen gas) flow rate] is set to 5-10 Vol%, and the flow rate of trichloromethylsilane is set within the range of 100-500 liters / minute, and the CVD reaction time is changed to change the SiC substrate surface to SiC. Was precipitated. In this way, an SiC film having a thickness of 0.9 to 1.5 mm was formed on the surface of the graphite substrate. Subsequently, the graphite base material was burned and removed by heating in air, and then the side in contact with the base material surface was polished and smoothed by shot blasting to obtain a SiC film molded body.
[0023]
About these SiC film moldings, applied voltage: 40 KV, applied current: 20 mA, scanning speed: 4 ° / min, diverging slit: 1 °, incident slit: 1 °, scattering slit: 0.3 mm, filter: Ni X-ray diffraction was performed under the conditions to obtain a diffraction peak value. The diffraction peak value was measured by Kα of Cu. Further, the height of the surface of the SiC film molded body that was allowed to stand by a three-dimensional shape measuring machine was measured, and the maximum value of the height difference was taken as the amount of warpage (mm). Further, the SiC film molded body was surface-ground to a thickness of 0.5 mm and a surface roughness Ra of 1 μm or less, and the transmittance at a wavelength of 2000 nm was measured with a spectrophotometer. Moreover, after processing into a dummy wafer, the color tone of the transmitted light was visually observed by irradiating with a white light source from one side. The obtained results are shown in Table 1.
[0024]
[Table 1]
[0025]
From the results shown in Table 1, it can be seen that the SiC film molded bodies of the examples having the crystalline properties specified in the present invention have little warpage, excellent flatness, and low light transmittance. On the other hand, it is recognized that in Comparative Example 1 in which the development of the (200) crystal plane on the side on which the SiC film grows is small and the orientation of the crystal plane as a whole is high, the warp is large and the light transmittance is also high. Further, (311) Warpage is large in Comparative Example 2 in which the development of the crystal plane is small.
[0026]
【The invention's effect】
As described above, according to the present invention, the ratio I (200) of the diffraction peak value by X-ray diffraction on the film-forming surface side of the SiC film is used as the crystalline property of the SiC film molded body after the film formation by CVD and the substrate is removed. ) / (111) and I (311) / (111) values, and the ratio of the diffraction peak values on the substrate surface side of the SiC film, I (200) / (111) Therefore, the occurrence of warpage due to the orientation of the crystal plane is effectively suppressed, and the amount of warpage is reduced. It becomes possible to keep within a range of ± 0.5 mm. Furthermore, light transmission is low due to the intersecting surface of the crystal planes, and the light transmittance can be kept low. Therefore, a SiC dummy wafer with low warpage, excellent flatness, and low light transmission used in a process for cleaning the inside of a chamber for plasma etching or the like, or a process for processing a product wafer in a diffusion furnace or a vertical furnace, etc. As extremely useful.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28300497A JP3790029B2 (en) | 1997-09-30 | 1997-09-30 | SiC dummy wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28300497A JP3790029B2 (en) | 1997-09-30 | 1997-09-30 | SiC dummy wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11106298A JPH11106298A (en) | 1999-04-20 |
JP3790029B2 true JP3790029B2 (en) | 2006-06-28 |
Family
ID=17659985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28300497A Expired - Fee Related JP3790029B2 (en) | 1997-09-30 | 1997-09-30 | SiC dummy wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3790029B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4404703B2 (en) * | 2004-07-01 | 2010-01-27 | 東海カーボン株式会社 | Light-impermeable SiC molded body and method for producing the same |
JP2010064918A (en) * | 2008-09-10 | 2010-03-25 | Showa Denko Kk | Method for producing silicon carbide single crystal, silicon carbide single crystal wafer, and silicon carbide single crystal semiconductor power device |
KR102183258B1 (en) * | 2019-04-18 | 2020-11-26 | 주식회사 티씨케이 | Silicon carbide materials and method for manufacturing the same |
JP7273267B2 (en) * | 2019-08-29 | 2023-05-15 | 住友金属鉱山株式会社 | Method for manufacturing polycrystalline silicon carbide substrate |
-
1997
- 1997-09-30 JP JP28300497A patent/JP3790029B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11106298A (en) | 1999-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043003B2 (en) | SiC molded body and manufacturing method thereof | |
KR100857751B1 (en) | PRODUCTION METHOD OF SiC MONITOR WAFER | |
JP3938361B2 (en) | Carbon composite material | |
KR100592741B1 (en) | Silicon carbide fabrication | |
JP5026794B2 (en) | Free-standing silicon carbide products formed by chemical vapor deposition and methods for manufacturing them | |
JPH11199323A (en) | Dummy wafer | |
JPH08188468A (en) | Formed silicon carbide produced by chemical vapor deposition and its production | |
WO2020051217A1 (en) | Susceptor and method for manufacturing the same | |
WO2000039371A1 (en) | Method of manufacturing single-crystal silicon carbide | |
JPH08188408A (en) | Silicon carbide molded product by chemical vapor deposition and its production | |
JP3790029B2 (en) | SiC dummy wafer | |
JP3811540B2 (en) | Method for producing silicon carbide molded body | |
JP7255473B2 (en) | Method for manufacturing polycrystalline silicon carbide substrate | |
JP4702712B2 (en) | Tubular SiC molded body and method for producing the same | |
JP3857446B2 (en) | SiC molded body | |
JP3932154B2 (en) | SiC molded body and manufacturing method thereof | |
JP7294021B2 (en) | Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate | |
JP7103182B2 (en) | Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method | |
JP4404703B2 (en) | Light-impermeable SiC molded body and method for producing the same | |
JP2003068594A (en) | SiC DUMMY WAFER AND ITS PRODUCING METHOD | |
JP2022067844A (en) | Deposition method for silicon carbide polycrystalline film, and production method for silicon carbide polycrystalline substrate | |
JP7413768B2 (en) | Method for manufacturing polycrystalline substrate | |
JP2002003275A (en) | SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD | |
JP7371448B2 (en) | Method for removing graphite support substrate and method for manufacturing silicon carbide polycrystalline substrate | |
JP2003049270A (en) | SiC MOLDING AND PRODUCTION METHOD THEREFOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060330 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |