JP3789702B2 - Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery - Google Patents
Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery Download PDFInfo
- Publication number
- JP3789702B2 JP3789702B2 JP35497299A JP35497299A JP3789702B2 JP 3789702 B2 JP3789702 B2 JP 3789702B2 JP 35497299 A JP35497299 A JP 35497299A JP 35497299 A JP35497299 A JP 35497299A JP 3789702 B2 JP3789702 B2 JP 3789702B2
- Authority
- JP
- Japan
- Prior art keywords
- alkaline storage
- positive electrode
- storage battery
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池の正極に使用されるアルカリ蓄電池用正極活物質及びその製造方法、並びにこのようなアルカリ蓄電池用正極活物質を用いたアルカリ蓄電池用正極及びアルカリ蓄電池に係り、特に、アルカリ蓄電池用正極活物質を改良して、アルカリ蓄電池において高い放電容量が得られるようにした点に特徴を有するものである。
【0002】
【従来の技術】
従来より、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池においては、その正極として、焼結式のニッケル極と非焼結式のニッケル極とが使用されている。
【0003】
ここで、上記の焼結式のニッケル極においては、焼結によって得られた多孔性のニッケル焼結基板を用い、この多孔性のニッケル焼結基板に活物質の塩を化学的に含浸させて活物質を充填させるようにしていた。
【0004】
そして、このような焼結式のニッケル極を用いたアルカリ蓄電池において、充分な電池容量が得られるようにするためには、多孔度の大きいニッケル焼結基板を用いて活物質を多く充填させることが必要であった。
【0005】
しかし、このように多孔度の大きい焼結基板を用いると、焼結によるニッケル粒子間の結合が弱いため、ニッケル粒子が焼結基板から脱落してしまうという問題があり、またニッケル焼結基板における孔径は一般に10μm以下と小さいため、活物質がこのニッケル焼結基板に充填されにくく、活物質を充分に充填させるためには、ニッケル焼結基板中に活物質を含浸させる面倒な作業を何度も繰り返して行う必要があり、生産性が悪くなる等の問題があった。
【0006】
そこで、最近では、水酸化ニッケルを主体とする活物質にメチルセルロース等の結着剤を加えてペーストにしたものを用い、このペーストを発泡ニッケル等の多孔度の大きい導電性の基材に充填させるようにした非焼結式のニッケル極が用いられるようになった。
【0007】
ここで、このような非焼結式のニッケル極の場合、上記のように発泡ニッケル等の多孔度の大きい導電性の基材を用いて多くの活物質を充填させることができると共に、活物質を充填させる作業も容易に行えるようになった。
【0008】
しかし、このような非焼結式のニッケル極において、上記のように多孔度の大きい基材を用いると、この基材における集電性が悪くなって、活物質の利用率が低下し、このような非焼結式のニッケル極をアルカリ蓄電池の正極に用いた場合に、充分な電池容量が得られなくなるという問題があった。
【0009】
そこで、近年においては、非焼結式のニッケル極における活物質の利用率を高めるため、アルカリ蓄電池の正極活物質として、特開平7−335214号公報に示されるように、3価のマンガンを固溶させた水酸化ニッケルを用いることが提案されている。
【0010】
しかし、このようにアルカリ蓄電池の正極活物質として、3価のマンガンを固溶させた水酸化ニッケルを用いた場合においても、この正極活物質の利用率が十分に向上されず、依然として高い放電容量が得られないという問題があった。
【0011】
【発明が解決しようとする課題】
この発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、アルカリ蓄電池の正極に用いる正極活物質を改良し、正極活物質の利用率を十分に向上させて、アルカリ蓄電池において高い放電容量が得られるようにすることを課題とするものである。
【0012】
【課題を解決するための手段】
この発明におけるアルカリ蓄電池用正極活物質においては、上記のような課題を解決するため、炭素材料の層間に水酸化ニッケルを挿入させるようにしたのである。
【0013】
ここで、この発明におけるアルカリ蓄電池用正極活物質のように、炭素材料の層間に水酸化ニッケルを挿入させると、上記の炭素材料によって正極活物質の導電性が向上されると共に、水酸化ニッケルに対するプロトンの挿入・脱離も容易に行われるようになり、水酸化ニッケルの反応電子数が高くなる。
【0014】
そして、このようなアルカリ蓄電池用正極活物質をアルカリ蓄電池の正極に使用すると、このアルカリ蓄電池用正極活物質の利用率が十分に向上され、アルカリ蓄電池において高い放電容量が得られるようになる。
【0015】
ここで、この発明におけるアルカリ蓄電池用正極活物質において、上記の炭素材料としては、例えば、グラファイト、天然黒鉛、コークス及び人造黒鉛等を用いることができ、またこの炭素材料の層間に水酸化ニッケルが適切に挿入されるようにするためには、平均粒径が300μm以下の炭素材料を用いることが望ましい。これは、炭素材料の平均粒径が大きくなりすぎると、水酸化ニッケルを炭素材料内部の層間に十分に挿入させることが困難となると共に、水酸化ニッケルの比率が低くなって、高い放電容量が得られなくなるためである。
【0016】
また、この発明におけるアルカリ蓄電池用正極活物質において、炭素材料の層間の挿入された水酸化ニッケルに、亜鉛Zn、コバルトCo、マグネシウムMg、マンガンMn、アルミニウムAl、イットリウムY、イッテルビウムYb、エルビウムEr、ガドリニウムGdから選択される少なくとも1種の元素を含有させると、水酸化ニッケルに対するプロトンの挿入・脱離が阻害されることなく、このアルカリ蓄電池用正極活物質の結晶構造が維持されるようになり、充放電を繰り返して行った場合においても、高い放電容量が得られるようになる。
【0017】
ここで、この発明におけるアルカリ蓄電池用正極活物質を製造するにあたっては、例えば、少なくとも塩化ニッケルを炭素材料の層間に挿入した後、これをアルカリ電解液中で電解させて製造することができる。
【0018】
【実施例】
以下、この発明を実施例に基づいて具体的に説明すると共に、比較例を挙げ、この発明の実施例に係るアルカリ蓄電池の場合、高い放電容量が得られることを明らかにする。なお、この発明は以下の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができるものである。
【0019】
(実施例1)
この実施例1において、正極を作製するにあたり、先ず、炭素材料として平均粒径が20μmのグラファイトを用い、このグラファイトと塩化ニッケルNiCl2 ・6H2 Oとを、炭素とニッケルとのモル比が3:1の割合になるように混合し、これを160℃で10時間加熱し、さらに塩素ガス雰囲気下において900℃で10時間加熱し、NiCl2 がグラファイトの層間に挿入された粉末を得た。
【0020】
そして、このようにして得た粉末とポリテトラフルオロエチレン溶液とを97:3の重量比で混合してペーストを作製し、このペーストを発泡ニッケルに充填させた。
【0021】
次に、このようにペーストを充填させた発泡ニッケルを正極に使用する一方、負極にペースト式のカドミウム電極を使用し、これらをアクリル製の容器内に収容された30wt%の水酸化カリウム水溶液からなる電解液中に浸漬させ、40℃の温度下において0.1C相当の電流で12時間充電した後、0.1C相当の電流で0.8Vになるまで放電し、これを1サイクルとして3サイクルの充放電を行って、グラファイトの層間に挿入された上記のNiCl2 を酸化させた後、これを純水で洗浄して塩素イオンを除去し、グラファイトの層間に水酸化ニッケルNi(OH)2 が挿入されてなる正極活物質が発泡ニッケルに充填された正極を得た。
【0022】
そして、このようにして得た正極を用い、図1に示すような円筒型で電池容量が約1000mAhになったAAサイズのアルカリ蓄電池を作製した。
【0023】
ここで、このアルカリ蓄電池においては、その負極として、酸化カドミウム粉末と金属カドミウム粉末と結着剤とを混練したペーストを芯材のパンチングメタルに塗着させ、これを乾燥させ、電気化学的容量が上記の正極より大きいペースト式のカドミウム電極を使用し、またセパレータにはポリアミド不織布を、アルカリ電解液には30wt%の水酸化カリウム水溶液を用いた。
【0024】
そして、アルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間に上記のセパレータ3を介在させてスパイラル状に巻き取り、これを負極缶4内に収容させた後、この負極缶4内に上記の電解液を注液して封口し、正極1を正極リード5を介して封口蓋6に接続させると共に、負極2を負極リード7を介して負極缶4に接続させ、負極缶4と封口蓋6とを絶縁パッキン8により電気的に絶縁させると共に、封口蓋6と正極外部端子9との間にコイルスプリング10を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて電池内部のガスが大気に放出されるようにした。
【0025】
(実施例2)
この実施例2においては、正極を作製するにあたり、上記の実施例1で使用した塩化ニッケルNiCl2 ・6H2 Oに代えて、塩化ニッケルNiCl2 ・6H2 Oと塩化亜鉛ZnCl2 とを、NiとZnとのモル比が95:5の割合になるように混合させたものを用い、それ以外は上記の実施例1の場合と同様にして処理し、グラファイトの層間に挿入された水酸化ニッケルに亜鉛Znが含有された正極活物質が発泡ニッケルに充填されてなる正極を得た。
【0026】
そして、このようにして得た正極を用い、上記の実施例1の場合と同様にしてアルカリ蓄電池を作製した。
【0027】
(比較例1)
この比較例1においては、3価のMnを20wt%固溶させた水酸化ニッケルと、導電剤の水酸化コバルトCo(OH)2 粉末と、ポリテトラフルオロエチレン溶液とを、87:10:3の重量比で混合させたペーストを発泡ニッケルに充填させて正極を作製した。
【0028】
そして、このようにして得た正極を用いる以外は、上記の実施例1の場合と同様にしてアルカリ蓄電池を作製した。
【0029】
次に、上記の実施例1,2及び比較例1の各アルカリ蓄電池を、それぞれ25℃の雰囲気下において0.1C相当の電流で12時間充電した後、1C相当の電流で1.0Vまで放電させ、これを1サイクルとして、3サイクルの充放電を行い、各アルカリ蓄電池における3サイクル目の放電容量を求めて、各アルカリ蓄電池の正極における水酸化ニッケル1g当たりの放電容量を算出し、実施例1のアルカリ蓄電池の正極における水酸化ニッケル1g当たりの放電容量を100として、他のアルカリ蓄電池の正極における水酸化ニッケル1g当たりの放電容量を求め、その結果を下記の表1に示した。
【0030】
【表1】
【0031】
この結果から明らかなように、グラファイトの層間に水酸化ニッケルが挿入された正極活物質を用いた実施例1,2の各アルカリ蓄電池は、水酸化ニッケルに3価のMnを20wt%固溶された正極活物質を用いた比較例1のアルカリ蓄電池に比べて、水酸化ニッケル1g当たりの放電容量が高くなっていた。
【0032】
また、実施例1,2の各アルカリ蓄電池を比較した場合、グラファイトの層間に挿入された水酸化ニッケルにZnが含有された正極活物質を用いた実施例2のアルカリ蓄電池の方が、グラファイトの層間に水酸化ニッケルが挿入されただけの正極活物質を用いた実施例1のアルカリ蓄電池に比べて、水酸化ニッケル1g当たりの放電容量が高くなっていた。なお、実施例2のアルカリ蓄電池においては、グラファイトの層間に挿入された水酸化ニッケルにZnを含有させるようにしたが、Znに代えて、Co、Mg、Mn、Al、Y、Yb、Gd、Erから選択される少なくとも1種の元素を含有させた場合にも同様の効果が得られる。
【0033】
(実施例3〜5)
実施例3〜5においては、正極を作製するにあたり、上記の実施例1で使用した平均粒径が20μmのグラファイトに代えて、下記の表2に示すように、実施例3では平均粒径が5μmのグラファイトを、実施例4では平均粒径が300μmのグラファイトを、実施例5では平均粒径が400μmのグラファイトを用いるようにし、それ以外は、上記の実施例1と同様にして正極を作製し、またこのように作製した各正極を用い、上記の実施例1の場合と同様にして各アルカリ蓄電池を作製した。
【0034】
そして、実施例3〜5の各アルカリ蓄電池についても、上記の実施例1,2及び比較例1の場合と同様にして、各アルカリ蓄電池における3サイクル目の放電容量を求めて、各アルカリ蓄電池の正極における水酸化ニッケル1g当たりの放電容量を算出し、実施例1のアルカリ蓄電池の正極における水酸化ニッケル1g当たりの放電容量を100として、これらの各アルカリ蓄電池の正極における水酸化ニッケル1g当たりの放電容量を求め、その結果を実施例1の結果と合わせて下記の表2に示した。
【0035】
【表2】
【0036】
この結果から明らかなように、平均粒径が300μm以下のグラファイトの層間に水酸化ニッケルが挿入された正極活物質を用いた実施例1,3,4の各アルカリ蓄電池は、平均粒径が400μmのグラファイトの層間に水酸化ニッケルが挿入された正極活物質を用いた実施例5のアルカリ蓄電池に比べて、水酸化ニッケル1g当たりの放電容量が高くなっていた。
【0037】
ここで、上記の各実施例においては、水酸化ニッケルを層間に挿入させる炭素材料にグラファイトを用いるようにしたが、天然黒鉛、コークス、人造黒鉛を用いた場合にも同様の効果が得られる。
【0038】
また、上記の各実施例においては、負極にカドミウム電極を用いたアルカリ蓄電池を例示したが、このカドミウム電極に代えて、亜鉛電極、水素吸蔵合金電極を負極に用いたアルカリ蓄電池においても同様の効果が得られる。
【0039】
【発明の効果】
以上詳述したように、この発明のアルカリ蓄電池用正極活物質においては、炭素材料の層間に水酸化ニッケルを挿入させるようにしたため、この炭素材料によって正極活物質における導電性が向上されると共に、水酸化ニッケルに対するプロトンの挿入・脱離も容易に行われるようになって、水酸化ニッケルの反応電子数が高くなった。
【0040】
この結果、このようなアルカリ蓄電池用正極活物質をアルカリ蓄電池の正極に使用すると、このアルカリ蓄電池用正極活物質の利用率が十分に向上され、アルカリ蓄電池において高い放電容量が得られるようになった。
【図面の簡単な説明】
【図1】この発明の実施例及び比較例において作製したアルカリ蓄電池の内部構造を示した概略断面図である。
【符号の説明】
1 正極
2 負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for an alkaline storage battery used for a positive electrode of an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, a method for producing the same, and an alkaline storage battery using such a positive electrode active material for an alkaline storage battery. The present invention relates to a positive electrode and an alkaline storage battery, and particularly has a feature in that a high discharge capacity is obtained in an alkaline storage battery by improving the positive electrode active material for an alkaline storage battery.
[0002]
[Prior art]
Conventionally, in alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries, a sintered nickel electrode and a non-sintered nickel electrode have been used as positive electrodes.
[0003]
Here, in the above sintered nickel electrode, a porous nickel sintered substrate obtained by sintering is used, and the porous nickel sintered substrate is chemically impregnated with a salt of an active material. The active material was filled.
[0004]
In order to obtain a sufficient battery capacity in an alkaline storage battery using such a sintered nickel electrode, a large amount of active material is filled using a nickel porous substrate having a high porosity. Was necessary.
[0005]
However, when a sintered substrate having such a large porosity is used, there is a problem in that the nickel particles fall off from the sintered substrate because the bonding between the nickel particles is weak due to the sintering. Since the pore diameter is generally as small as 10 μm or less, the active material is difficult to fill the nickel sintered substrate, and in order to sufficiently fill the active material, the troublesome work of impregnating the nickel sintered substrate with the active material is repeated several times. However, there is a problem that productivity is deteriorated.
[0006]
Therefore, recently, a paste obtained by adding a binder such as methylcellulose to an active material mainly composed of nickel hydroxide is used, and this paste is filled in a conductive substrate having a large porosity such as foamed nickel. Such non-sintered nickel electrodes have come to be used.
[0007]
Here, in the case of such a non-sintered nickel electrode, the active material can be filled with many active materials using a conductive substrate having a large porosity such as nickel foam as described above. The work of filling can be easily performed.
[0008]
However, in such a non-sintered nickel electrode, if a substrate having a large porosity as described above is used, the current collecting property of the substrate deteriorates, and the utilization factor of the active material decreases. When such a non-sintered nickel electrode is used for the positive electrode of an alkaline storage battery, there is a problem that sufficient battery capacity cannot be obtained.
[0009]
Therefore, in recent years, in order to increase the utilization factor of the active material in the non-sintered nickel electrode, trivalent manganese is fixed as a positive electrode active material of an alkaline storage battery as disclosed in JP-A-7-335214. It has been proposed to use dissolved nickel hydroxide.
[0010]
However, even when nickel hydroxide in which trivalent manganese is solid-solved is used as the positive electrode active material of the alkaline storage battery, the utilization factor of the positive electrode active material is not sufficiently improved, and the discharge capacity is still high. There was a problem that could not be obtained.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems in alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries. The positive electrode active material used for the positive electrode of alkaline storage batteries is improved, An object of the present invention is to sufficiently improve the utilization factor of a substance so as to obtain a high discharge capacity in an alkaline storage battery.
[0012]
[Means for Solving the Problems]
In the positive electrode active material for alkaline storage batteries according to the present invention, nickel hydroxide is inserted between the layers of the carbon material in order to solve the above-described problems.
[0013]
Here, when nickel hydroxide is inserted between the layers of the carbon material as in the positive electrode active material for alkaline storage batteries in the present invention, the conductivity of the positive electrode active material is improved by the above carbon material, and against the nickel hydroxide. Proton insertion / extraction is easily performed, and the number of reaction electrons of nickel hydroxide increases.
[0014]
And when such a positive electrode active material for alkaline storage batteries is used for the positive electrode of an alkaline storage battery, the utilization factor of this positive electrode active material for alkaline storage batteries is sufficiently improved, and a high discharge capacity can be obtained in the alkaline storage battery.
[0015]
Here, in the positive electrode active material for an alkaline storage battery according to the present invention, as the carbon material, for example, graphite, natural graphite, coke, artificial graphite and the like can be used, and nickel hydroxide is provided between the carbon materials. For proper insertion, it is desirable to use a carbon material having an average particle size of 300 μm or less. This is because if the average particle size of the carbon material becomes too large, it will be difficult to sufficiently insert nickel hydroxide between the layers inside the carbon material, and the ratio of nickel hydroxide will be low, resulting in high discharge capacity. This is because it cannot be obtained.
[0016]
Further, in the positive electrode active material for an alkaline storage battery according to the present invention, the nickel hydroxide inserted between the carbon material layers is replaced with zinc Zn, cobalt Co, magnesium Mg, manganese Mn, aluminum Al, yttrium Y, ytterbium Yb, erbium Er, When at least one element selected from gadolinium Gd is contained, the crystal structure of the positive electrode active material for alkaline storage battery can be maintained without inhibiting proton insertion / extraction from nickel hydroxide. Even when charging and discharging are repeated, a high discharge capacity can be obtained.
[0017]
Here, when manufacturing the positive electrode active material for alkaline storage batteries in this invention, for example, at least nickel chloride can be inserted between carbon material layers, and then electrolyzed in an alkaline electrolytic solution.
[0018]
【Example】
Hereinafter, the present invention will be specifically described based on examples, and a comparative example will be given to clarify that a high discharge capacity can be obtained in the case of an alkaline storage battery according to an example of the present invention. In addition, this invention is not limited to what was shown in the following Examples, In the range which does not change the summary, it can change suitably and can implement.
[0019]
Example 1
In producing the positive electrode in Example 1, first, graphite having an average particle diameter of 20 μm was used as the carbon material, and the graphite and nickel chloride NiCl 2 .6H 2 O were mixed at a molar ratio of carbon to nickel of 3. The mixture was heated at 160 ° C. for 10 hours, and further heated at 900 ° C. for 10 hours in a chlorine gas atmosphere to obtain a powder in which NiCl 2 was inserted between graphite layers.
[0020]
And the powder obtained in this way and the polytetrafluoroethylene solution were mixed by the weight ratio of 97: 3, the paste was produced, and this foam was filled with foamed nickel.
[0021]
Next, the foamed nickel thus filled with paste is used for the positive electrode, while a paste type cadmium electrode is used for the negative electrode, and these are extracted from a 30 wt% aqueous potassium hydroxide solution contained in an acrylic container. After being immersed in an electrolytic solution, charged at a temperature corresponding to 0.1 C at a temperature of 40 ° C. for 12 hours, discharged to 0.8 V at a current corresponding to 0.1 C, and this was regarded as one cycle for 3 cycles. Then, the NiCl 2 inserted between the graphite layers was oxidized and washed with pure water to remove chlorine ions, and the nickel hydroxide Ni (OH) 2 was removed between the graphite layers. A positive electrode filled with nickel foam was obtained.
[0022]
Then, using the positive electrode thus obtained, an AA-size alkaline storage battery having a cylindrical shape and a battery capacity of about 1000 mAh as shown in FIG. 1 was produced.
[0023]
Here, in this alkaline storage battery, as the negative electrode, a paste obtained by kneading cadmium oxide powder, metal cadmium powder and a binder is applied to the punching metal of the core material, and this is dried, and the electrochemical capacity is reduced. A paste type cadmium electrode larger than the above positive electrode was used, a polyamide nonwoven fabric was used for the separator, and a 30 wt% aqueous potassium hydroxide solution was used for the alkaline electrolyte.
[0024]
In preparing the alkaline storage battery, as shown in FIG. 1, the
[0025]
(Example 2)
In this Example 2, in producing the positive electrode, instead of the nickel chloride NiCl 2 .6H 2 O used in Example 1 above, nickel chloride NiCl 2 .6H 2 O and zinc chloride ZnCl 2 were replaced with Ni chloride. Nickel hydroxide inserted between graphite layers was processed in the same manner as in Example 1 except that a mixture of Zn and Zn in a molar ratio of 95: 5 was used. A positive electrode obtained by filling a foamed nickel with a positive electrode active material containing zinc Zn therein was obtained.
[0026]
And the alkaline storage battery was produced like the case of said Example 1 using the positive electrode obtained in this way.
[0027]
(Comparative Example 1)
In Comparative Example 1, nickel hydroxide in which 20 wt% of trivalent Mn was dissolved, cobalt hydroxide Co (OH) 2 powder as a conductive agent, and polytetrafluoroethylene solution were added at 87: 10: 3. The paste mixed in the weight ratio was filled in foamed nickel to produce a positive electrode.
[0028]
And the alkaline storage battery was produced like the case of said Example 1 except using the positive electrode obtained in this way.
[0029]
Next, the alkaline storage batteries of Examples 1 and 2 and Comparative Example 1 were charged for 12 hours with a current corresponding to 0.1 C in an atmosphere of 25 ° C., respectively, and then discharged to 1.0 V with a current corresponding to 1 C. This is regarded as one cycle, and charging / discharging for 3 cycles is performed, the discharge capacity of the third cycle in each alkaline storage battery is obtained, and the discharge capacity per 1 g of nickel hydroxide in the positive electrode of each alkaline storage battery is calculated. The discharge capacity per 1 g of nickel hydroxide in the positive electrode of one alkaline storage battery was taken as 100, and the discharge capacity per 1 g of nickel hydroxide in the positive electrode of another alkaline storage battery was determined. The results are shown in Table 1 below.
[0030]
[Table 1]
[0031]
As is clear from this result, each of the alkaline storage batteries of Examples 1 and 2 using the positive electrode active material in which nickel hydroxide was inserted between the graphite layers was formed by dissolving 20 wt% of trivalent Mn in nickel hydroxide. Compared with the alkaline storage battery of Comparative Example 1 using the positive electrode active material, the discharge capacity per 1 g of nickel hydroxide was high.
[0032]
Further, when comparing the alkaline storage batteries of Examples 1 and 2, the alkaline storage battery of Example 2 using a positive electrode active material containing Zn in nickel hydroxide inserted between graphite layers is more graphite. Compared with the alkaline storage battery of Example 1 using a positive electrode active material in which nickel hydroxide was simply inserted between the layers, the discharge capacity per gram of nickel hydroxide was high. In the alkaline storage battery of Example 2, Zn was contained in nickel hydroxide inserted between graphite layers, but instead of Zn, Co, Mg, Mn, Al, Y, Yb, Gd, The same effect can be obtained when at least one element selected from Er is contained.
[0033]
(Examples 3 to 5)
In Examples 3 to 5, in preparing the positive electrode, instead of graphite having an average particle diameter of 20 μm used in Example 1 above, as shown in Table 2 below, in Example 3, the average particle diameter was A positive electrode was prepared in the same manner as in Example 1 except that 5 μm graphite was used, graphite having an average particle diameter of 300 μm was used in Example 4, and graphite having an average particle diameter of 400 μm was used in Example 5. And each alkaline storage battery was produced similarly to the case of said Example 1 using each positive electrode produced in this way.
[0034]
And also about each alkaline storage battery of Examples 3-5, it calculates | requires the discharge capacity of the 3rd cycle in each alkaline storage battery similarly to the case of said Examples 1, 2 and Comparative Example 1, and each alkaline storage battery of The discharge capacity per gram of nickel hydroxide in the positive electrode was calculated, and the discharge capacity per gram of nickel hydroxide in the positive electrode of the alkaline storage battery of Example 1 was defined as 100. The discharge per gram of nickel hydroxide in the positive electrode of each of these alkaline storage batteries The capacity was determined, and the results are shown in Table 2 below together with the results of Example 1.
[0035]
[Table 2]
[0036]
As is apparent from the results, each of the alkaline storage batteries of Examples 1, 3, and 4 using the positive electrode active material in which nickel hydroxide is inserted between graphite layers having an average particle size of 300 μm or less has an average particle size of 400 μm. As compared with the alkaline storage battery of Example 5 using the positive electrode active material in which nickel hydroxide was inserted between the graphite layers, the discharge capacity per 1 g of nickel hydroxide was high.
[0037]
Here, in each of the above embodiments, graphite is used as the carbon material into which nickel hydroxide is inserted between the layers. However, similar effects can be obtained when natural graphite, coke, or artificial graphite is used.
[0038]
In each of the above embodiments, an alkaline storage battery using a cadmium electrode as a negative electrode has been exemplified. However, the same effect can be obtained in an alkaline storage battery using a zinc electrode and a hydrogen storage alloy electrode as a negative electrode instead of the cadmium electrode. Is obtained.
[0039]
【The invention's effect】
As described in detail above, in the positive electrode active material for alkaline storage batteries of the present invention, nickel hydroxide is inserted between the layers of the carbon material, so that the conductivity in the positive electrode active material is improved by this carbon material, Proton insertion / extraction to / from nickel hydroxide can be easily performed, and the number of reaction electrons of nickel hydroxide is increased.
[0040]
As a result, when such a positive electrode active material for an alkaline storage battery is used for the positive electrode of an alkaline storage battery, the utilization rate of the positive electrode active material for the alkaline storage battery is sufficiently improved, and a high discharge capacity can be obtained in the alkaline storage battery. .
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the internal structure of an alkaline storage battery produced in Examples and Comparative Examples of the present invention.
[Explanation of symbols]
1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35497299A JP3789702B2 (en) | 1999-12-14 | 1999-12-14 | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35497299A JP3789702B2 (en) | 1999-12-14 | 1999-12-14 | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001176504A JP2001176504A (en) | 2001-06-29 |
JP3789702B2 true JP3789702B2 (en) | 2006-06-28 |
Family
ID=18441122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35497299A Expired - Fee Related JP3789702B2 (en) | 1999-12-14 | 1999-12-14 | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3789702B2 (en) |
-
1999
- 1999-12-14 JP JP35497299A patent/JP3789702B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001176504A (en) | 2001-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012525688A (en) | Nickel hydroxide electrode for rechargeable batteries | |
JP4578038B2 (en) | Nickel electrode for alkaline storage battery and alkaline storage battery | |
JP4342186B2 (en) | Alkaline storage battery | |
JP2003249222A (en) | Nickel/hydrogen storage battery | |
JP3393944B2 (en) | Hydride rechargeable battery | |
JP4458725B2 (en) | Alkaline storage battery | |
JP4248119B2 (en) | Alkaline storage battery | |
JP3482606B2 (en) | Sealed alkaline storage battery | |
JP4474722B2 (en) | Alkaline storage battery and positive electrode for alkaline storage battery used therefor | |
JP5219338B2 (en) | Method for producing alkaline storage battery | |
JP4458713B2 (en) | Alkaline storage battery | |
JP4342196B2 (en) | Alkaline storage battery | |
JP3789702B2 (en) | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery | |
JP2000340221A (en) | Nickel electrode, nickel hydrogen storage battery using same as positive electrode | |
EP1229598A2 (en) | Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery | |
JP3851022B2 (en) | Nickel electrode for alkaline storage battery and alkaline storage battery | |
JP3895985B2 (en) | Nickel / hydrogen storage battery | |
JP2001313069A (en) | Nickel hydrogen storage battery | |
JP4115367B2 (en) | Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery | |
JP3895984B2 (en) | Nickel / hydrogen storage battery | |
JP2005108816A (en) | Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator | |
JPH1173957A (en) | Alkaline storage battery and manufacture of nickel positive pole plate thereof | |
JP4147748B2 (en) | Nickel positive electrode and nickel-hydrogen storage battery | |
JP4215407B2 (en) | Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery | |
JPH097591A (en) | Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060329 |
|
LAPS | Cancellation because of no payment of annual fees |