JP3786248B2 - Chemically modified substrate and method for producing the same - Google Patents
Chemically modified substrate and method for producing the same Download PDFInfo
- Publication number
- JP3786248B2 JP3786248B2 JP32094599A JP32094599A JP3786248B2 JP 3786248 B2 JP3786248 B2 JP 3786248B2 JP 32094599 A JP32094599 A JP 32094599A JP 32094599 A JP32094599 A JP 32094599A JP 3786248 B2 JP3786248 B2 JP 3786248B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- solid support
- activated
- dna
- hydroxysuccinimide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/34—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/36—Oxygen or sulfur atoms
- C07D207/40—2,5-Pyrrolidine-diones
- C07D207/404—2,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Surface Treatment Of Glass (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、分子生物学分野、生化学関連分野において有用な、核酸又は蛋白を固定化可能な化学修飾を施した基体に関するものである。例えば、DNAを固体支持体表面に固定化して保存し、必要なときに取り出してポリメラーゼ連鎖反応(Polymerase chain reaction;PCR)によりDNAのセグメントを増幅して、DNAを解析するという全く新しい発想の基で成し遂げられたものである。
【0002】
【従来の技術】
遺伝子解析は分子生物学、生化学の分野で有用であり、近年では病気の発見等医療分野でも利用されている。
【0003】
遺伝子解析において、近年DNAチップが開発され解析速度が著しく速くなった。しかし従来のDNAチップはスライドガラス或いはシリコン基板表面にポリリジン等の高分子を塗布し、その後にDNAを固定する方法である。また、フォトリソグラフ等の半導体技術を用いてガラス基板上にオリゴヌクレオチドを合成する方法が用いられている。
【0004】
しかし、スライドガラス或いはシリコン基板表面にポリリジン等の高分子を塗布してDNAを固定する方法では、DNAの固定化状態が不安定であり、ハイブリッド形成工程や洗浄工程において、DNAが剥離するといった問題が生じる。また、半導体技術を用いたDNAチップは、製造工程の煩雑さから非常に高価であるという問題がある。
このような問題点を解決するためには、固体支持体表面にDNAを高密度で且つ強固に固定化する必要がある。
【0005】
また、従来、固体支持体の表面を化学修飾した基体が知られている。しかし、カルボン酸等にDNAを結合させるには、カルボン酸の活性化が必要となるため、基板の化学修飾だけでは不十分である。
【0006】
本発明は、DNAの解明やDNA保存を効率的に行うことができ、分子生物学分野、生化学分野等において有用な化学修飾を施した基体を提供しようとすることを目的とするものである。また、本発明は、DNA或いは蛋白を安定に固定化するための基体を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討の結果、固体支持体表面を化学修飾してN−ヒドロキシスクシンイミドエステル或いはp−ニトロフェノールエステル等の活性化エステル基を含む炭化水素基を有する基体が、DNA等を安定して固定可能なことを見いだし、本発明に到達した。
すなわち、
請求項1に記載の化学修飾を施した基体の製造方法は、固体支持体表面を塩素化し、次いでアミノ化して該固体支持体表面に第1級アミノ基を形成させ、該第1級アミノ基に、ジカルボン酸にカルボジイミドあるいはジシクロヘキシルカルボジイミド、およびp−ニトロフェノールを反応させて得られるものであるp−ニトロフェノール活性化エステル化したジカルボン酸を反応させることを特徴とする一方の末端にN−ヒドロキシスクシンイミドエステル基あるいはp−ニトロフェノールエステル基からなる活性化エステル基が結合した炭化水素基の他方の末端を、固体支持体表面にアミド結合を介して固定化させたことを特徴とする。
【0008】
【発明の実施の形態】
本発明の基体は、固体支持体の表面に特定の化学修飾を施したことを特徴とするものである。本発明における化学修飾とは、炭化水素基の末端に活性エステル基が結合した基を、固体支持体表面にアミド結合を介して固定化することをいう。このような化学修飾によって、DNA等或いは蛋白を基体の表面に固定しやすくなる。
【0009】
炭化水素基は、炭素数0〜12、中でも0〜6のものが好ましい。
例えば、蟻酸、酢酸、プロピオン酸などのモノカルボン酸;シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸などのジカルボン酸;トリメリット酸等の多価カルボン酸等があげられる。中でもシュウ酸、コハク酸が好ましい。
【0010】
炭化水素基の末端に結合する活性エステル基としては、N−ヒドロキシスクシンイミドエステル或いはp−ニトロフェノールエステルが好ましい。
【0011】
このような化学修飾は、固体支持体にアミド結合を介して炭化水素基の末端に活性エステル基が結合した基を固定化することである。
例えば活性エステル基がN−ヒドロキシスクシンイミドエステル基の場合には、塩素ガス中で固体支持体に紫外線照射して表面を塩素化し、次いでアンモニアガス中で紫外線照射してアミノ化した後、適当な酸クロリドを用いてカルボキシル化し、末端のカルボキシル基をカルボジイミド或いはジシクロヘキシルカルボジイミドおよびN−ヒドロキシスクシンイミドと脱水縮合することにより行うことができる。
この方法を採用する場合の脱水縮合について一例を挙げて説明すると、表面を化学修飾し、カルボキシル基を有する状態の固体支持体をカルボジイミドあるいはジシクロヘキシルカルボジイミド、およびN−ヒドロキシスクシンイミド或いはp−ニトロフェノールを溶解した1,4−ジオキサン溶液中に浸漬させ、洗浄後乾燥する。このようにして、N−スクシンイミドエステル基やp−ニトロフェノールエステル基を末端に有する炭化水素基が結合した基体が得られる。
【0012】
また、上記の方法より好ましい方法として、特に、あらかじめダイヤモンド等の固定支持体(基板)上に形成された第1級アミノ基に、活性化ジエステルの一方のエステル基を脱水縮合させることにより形成されることが望ましい。
【0013】
活性化ジエステルとは、上記した活性エステル基を2つ有しているものをいう。エステル基は活性化ジエステル中の両端に位置していることが好ましく、炭素数0〜12、好ましくは0〜6のものが好ましい。エステル基を除いた骨格部分は直鎖状飽和脂肪酸が好ましい。
【0014】
活性化ジエステルを用いた方法として、同様に塩素化し、次いでアミノ化後、このアミノ基に対し、予めシュウ酸(ジカルボン酸)をN−ヒドロキシスクシンイミド活性化エステル化して得られる活性化エステルを反応させ、所望の基体を得る方法が挙げられる。
【0015】
この方法におけるN−ヒドロキシスクシンイミド活性化エステル化とは、ジカルボン酸をカルボジイミド2.5mg/mlおよびN−ヒドロキシスクシンイミド1.5mg/mlを溶解した1,4−ジオキサン溶液(3mm角ダイヤモンド1枚に対し100μlとなる量)に溶解して15分間反応させ、活性化ジエステルを得るものである。この活性化エステルをアミノ基を付しておいて固体支持体に結合させ、化学修飾を完了する。
この方法は、本発明者らがはじめて開発したものである。固体支持体表面を活性化エステル基で化学修飾した状態の商品とすることにより、ユーザーはそれを用いて容易にDNAを直に固体支持体表面にアミド結合により固定化することができる。
【0016】
シュウ酸ジクロリドは入手困難であるが、シュウ酸をN−ヒドロキシスクシンイミド活性化エステルにすることで容易に固体支持体表面を化学修飾できる。
【0017】
本発明において上記のような化学修飾を行う固体支持体としては、ダイヤモンド、金、銀、銅、アルミニウム、タングステン、モリブデン等の金属;上記金属とセラミックスとの積層体;ポリカーボネート、フッ素樹脂等のプラスチック等が挙げられる。
その他の材料でも、化学的に安定な材料であれば使用でき、例えば、グラファイト、ダイヤモンドライクカーボンが挙げられる。また、プラスチックと上記金属、セラミックス、ダイヤモンド等との混合体でもよい。
【0018】
これらのうち、熱伝導性の点からダイヤモンドが好ましい。ダイヤモンドは熱伝導性に優れており、急速な冷却が可能であるため、PCR等の加熱冷却を繰り返すヒートサイクル時間を効果的に短縮できる。
本発明の基体の熱伝導率は、0.1W/cm・K以上、好ましくは0.5W/cm・K以上、特好ましくは1.0W/cm・K以上であることが好ましい。1.0W/cm・K以上とすることにより、DNAを本発明の基体の化学修飾部分に固定化させてPCR等を行う場合、加熱・冷却の追随性に優れているからである。
【0019】
ダイヤモンド基板の素材として、合成ダイヤモンド、高圧形成ダイヤモンド、或いは天然のダイヤモンド等のいずれも使用できる。また、それらの構造が単結晶体或いは多結晶体のいずれでも差し支えない。生産性の観点よりマイクロ波プラズマCVD法などの気相合成法を用いて製造されたダイヤモンドを用いることが好ましい。
【0020】
本発明の基体の形成方法は公知の方法で行うことができる。例えば、マイクロ波プラズマCVD法、ECRCVD法、IPC法、直流スパッタリング法、ECRスパッタリング法、イオンプレーティング法、アークイオンプレーティング法、EB蒸着法、抵抗加熱蒸着法などが挙げられる。また、金属粉末やセラミック粉末等に樹脂をバインダーとして混合して結合形成したものが挙げられる。また、金属粉末やセラミック粉末等の原料をプレス成形機を用いて圧粉したものを高温で焼結したものもあげられる。
【0021】
本発明の基体の基板表面は意図的に粗面化されていることが望ましい。このような粗面化表面は基体の表面積が増えて多量のDNA等を固定させることに好都合であるからである。基体の形状は平板状、糸状、球状、多角形状、粉末状など特に問わない。
さらに、このダイヤモンド基板は、ダイヤモンドと他の物質との複合体(例えば、2層からなる基板)であってもよい。
【0022】
【実施例】
以下実施例により本発明を説明する。
実施例1
塩素ガス中で3mm角のCVDダイヤモンドに紫外線照射して表面を塩素化し、次いでアンモニアガス中で紫外線照射してアミノ化した後、酸クロリドを用いてクロロホルム中で還流してカルボキシル化した。
この表面が修飾された固体支持体を、カルボジイミド2.5mg/mlおよびN−ヒドロキシスクシンイミド1.5mg/mlを溶解した1,4−ジオキサン溶液(3mm角ダイヤモンド1枚に対し100μlとなる量)中に15分間浸漬させ、末端カルボキシル基を脱水縮合した。反応終了後水洗し、さらに、1,4−ジオキサン溶液で洗浄後乾燥し、化学修飾された基体を得た。
【0023】
実施例2
塩素ガス中で3mm角のシリコン基板に紫外線照射して表面を塩素化し、次いでアンモニアガス中で紫外線照射してアミノ化後、このアミノ基に対し、予めシュウ酸(ジカルボン酸)をN−ヒドロキシスクシンイミド活性化エステル化して得られる活性化ジエステルを反応させた。
N−ヒドロキシスクシンイミド活性化エステル化は、以下のようにして行った。シュウ酸をカルボジイミド2.5mg/mlおよびN−ヒドロキシスクシンイミド1.5mg/mlを溶解した1,4−ジオキサン溶液(3mm角ダイヤモンド1枚に対し100μlとなる量)に溶解して15分間反応させ、活性化ジエステルを得た。この活性化ジエステルを予めアミノ基を付しておいた固体支持体に結合させ、化学修飾を施した基体を得た。
【0024】
上記に示す実施例1と実施例2で作成した基体を用いて、20merのオリゴヌクレオチドを固定した後、相補的な配列を持つ蛍光標識プローブとハイブリッド形成し、蛍光光度計を用いてオリゴヌクレオチド固定化量を見積もった。その結果、実施例1では3mm角の基板1枚あたり38pmol、実施例2では3mm角の基板1枚あたり35pmolであり、いずれもオリゴヌクレオチドが高密度に固定していることが明らかになった。
【0025】
【発明の効果】
本発明の化学修飾を施した基体は、化学修飾がされ活性化エステル基を有しているため、DNA等核酸を安定して固定化できるので、PCRを行うにあたり有利である。また、本発明の製造方法により、DNA等を安定して固定化できる基体を効率よく生産できる。特にカルボジイミドおよびN−ヒドロキシスクシンイミドを用いて、N−ヒドロキシスクシンイミド活性化して得られるジエステルを用いることにより、酸クロリドの存在化クロロホルム中で還流操作をすることなく、固体支持体表面に活性化エステル基を化学修飾することができる。また、この状態で商品とすることで、ユーザーは容易にDNAを固定化することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate having a chemical modification capable of immobilizing a nucleic acid or protein, which is useful in the fields of molecular biology and biochemistry. For example, DNA is immobilized on the surface of a solid support, stored, taken out when necessary, and a DNA segment is amplified by polymerase chain reaction (PCR) to analyze the DNA. It was achieved with
[0002]
[Prior art]
Genetic analysis is useful in the fields of molecular biology and biochemistry, and in recent years it has also been used in medical fields such as disease detection.
[0003]
In gene analysis, DNA chips have recently been developed and the analysis speed has been significantly increased. However, the conventional DNA chip is a method in which a polymer such as polylysine is applied to the surface of a slide glass or silicon substrate, and then DNA is fixed. In addition, a method of synthesizing oligonucleotides on a glass substrate using a semiconductor technique such as photolithography is used.
[0004]
However, in the method of immobilizing DNA by applying a polymer such as polylysine on the surface of a slide glass or silicon substrate, the DNA immobilization state is unstable, and the DNA is peeled off in the hybrid formation process or washing process. Occurs. In addition, a DNA chip using semiconductor technology has a problem that it is very expensive due to the complexity of the manufacturing process.
In order to solve such problems, it is necessary to immobilize DNA on the solid support surface with high density and strength.
[0005]
Conventionally, a substrate obtained by chemically modifying the surface of a solid support is known. However, in order to bind DNA to a carboxylic acid or the like, activation of the carboxylic acid is required, so that chemical modification of the substrate alone is not sufficient.
[0006]
An object of the present invention is to provide a substrate that can efficiently perform elucidation of DNA and DNA storage, and that has been subjected to chemical modification useful in the fields of molecular biology, biochemistry, and the like. . Another object of the present invention is to provide a substrate for stably immobilizing DNA or protein.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have a hydrocarbon group containing an activated ester group such as N-hydroxysuccinimide ester or p-nitrophenol ester by chemically modifying the surface of the solid support. The inventors have found that the substrate can stably fix DNA and the like, and have reached the present invention.
That is,
Method for producing a substrate which has been subjected to chemical modification according to claim 1, the solid support surface chlorination and then amination to form a primary amino group in the solid support surface, said primary amino group And a dicarboxylic acid obtained by reacting dicarboxylic acid with carbodiimide or dicyclohexylcarbodiimide and p-nitrophenol, and reacting with p-nitrophenol activated esterified dicarboxylic acid, N-hydroxyl at one end The other end of the hydrocarbon group to which an activated ester group consisting of a succinimide ester group or a p-nitrophenol ester group is bonded is fixed to the surface of the solid support through an amide bond.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The substrate of the present invention is characterized in that a specific chemical modification is applied to the surface of a solid support. The chemical modification in the present invention means immobilization of a group having an active ester group bonded to the end of a hydrocarbon group on the surface of a solid support through an amide bond. Such chemical modification makes it easier to fix DNA or protein on the surface of the substrate.
[0009]
The hydrocarbon group is preferably those having 0 to 12 carbon atoms, especially 0 to 6 carbon atoms.
Examples thereof include monocarboxylic acids such as formic acid, acetic acid, and propionic acid; dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid; and polyvalent carboxylic acids such as trimellitic acid. Of these, oxalic acid and succinic acid are preferred.
[0010]
As the active ester group bonded to the terminal of the hydrocarbon group, N-hydroxysuccinimide ester or p-nitrophenol ester is preferable.
[0011]
Such chemical modification is to immobilize a group in which an active ester group is bonded to the end of a hydrocarbon group via an amide bond on a solid support.
For example, when the active ester group is an N-hydroxysuccinimide ester group, the solid support is irradiated with ultraviolet light in chlorine gas to chlorinate the surface, then irradiated with ultraviolet light in ammonia gas and then aminated, and then an appropriate acid is used. Carboxylation is performed using chloride, and the terminal carboxyl group can be dehydrated and condensed with carbodiimide or dicyclohexylcarbodiimide and N-hydroxysuccinimide.
An example of the dehydration condensation when this method is adopted will be described. The surface is chemically modified, and the solid support having a carboxyl group is dissolved in carbodiimide or dicyclohexylcarbodiimide, and N-hydroxysuccinimide or p-nitrophenol. It is immersed in the 1,4-dioxane solution, washed and dried. In this way, a substrate to which a hydrocarbon group having a terminal N-succinimide ester group or p-nitrophenol ester group is bonded is obtained.
[0012]
Further, as a more preferable method than the above method, it is particularly formed by dehydrating condensation of one ester group of the activated diester to a primary amino group previously formed on a fixed support (substrate) such as diamond. It is desirable.
[0013]
An activated diester refers to one having two active ester groups as described above. The ester groups are preferably located at both ends in the activated diester, preferably those having 0 to 12 carbon atoms, preferably 0 to 6 carbon atoms. The skeleton portion excluding the ester group is preferably a linear saturated fatty acid.
[0014]
As a method using an activated diester, chlorination is carried out in the same manner, and after the amination, an activated ester obtained by N-hydroxysuccinimide activated esterification of oxalic acid (dicarboxylic acid) in advance is reacted with this amino group. And a method for obtaining a desired substrate.
[0015]
In this method, N-hydroxysuccinimide activated esterification refers to a 1,4-dioxane solution in which 2.5 mg / ml of carbodiimide and 1.5 mg / ml of N-hydroxysuccinimide are dissolved (for one 3 mm square diamond). In an amount of 100 μl) and reacted for 15 minutes to obtain an activated diester. The activated ester is attached with an amino group and bound to a solid support to complete the chemical modification.
This method was first developed by the present inventors. By using a product in which the surface of the solid support is chemically modified with an activated ester group, the user can easily immobilize DNA directly on the surface of the solid support by an amide bond.
[0016]
Although oxalic acid dichloride is difficult to obtain, the solid support surface can be easily chemically modified by converting oxalic acid into an N-hydroxysuccinimide activated ester.
[0017]
In the present invention, the solid support to be chemically modified as described above includes metals such as diamond, gold, silver, copper, aluminum, tungsten and molybdenum; laminates of the above metals and ceramics; plastics such as polycarbonate and fluororesin Etc.
Other materials can be used as long as they are chemically stable, and examples thereof include graphite and diamond-like carbon. Also, a mixture of plastic and the above metals, ceramics, diamond or the like may be used.
[0018]
Of these, diamond is preferred from the viewpoint of thermal conductivity. Since diamond is excellent in thermal conductivity and can be rapidly cooled, the heat cycle time for repeating heating and cooling such as PCR can be effectively shortened.
The thermal conductivity of the substrate of the present invention is 0.1 W / cm · K or more, preferably 0.5 W / cm · K or more, particularly preferably 1.0 W / cm · K or more. This is because, by setting the DNA to 1.0 W / cm · K or more, when performing PCR or the like by immobilizing DNA on the chemically modified portion of the substrate of the present invention, the followability of heating and cooling is excellent.
[0019]
As a material for the diamond substrate, any of synthetic diamond, high pressure formed diamond, natural diamond, and the like can be used. Further, the structure may be either a single crystal or a polycrystal. From the viewpoint of productivity, it is preferable to use diamond manufactured using a vapor phase synthesis method such as a microwave plasma CVD method.
[0020]
The method for forming a substrate of the present invention can be performed by a known method. For example, a microwave plasma CVD method, an ECRCVD method, an IPC method, a direct current sputtering method, an ECR sputtering method, an ion plating method, an arc ion plating method, an EB vapor deposition method, a resistance heating vapor deposition method, and the like can be given. Moreover, what formed resin by mixing resin as a binder with metal powder, ceramic powder, etc. is mentioned. In addition, a material obtained by compacting a raw material such as a metal powder or a ceramic powder using a press molding machine and sintering at a high temperature is also included.
[0021]
The substrate surface of the substrate of the present invention is desirably intentionally roughened. This is because such a roughened surface is convenient for fixing a large amount of DNA or the like by increasing the surface area of the substrate. The shape of the substrate is not particularly limited, such as a flat plate shape, a thread shape, a spherical shape, a polygonal shape, and a powder shape.
Further, the diamond substrate may be a composite of diamond and another substance (for example, a substrate having two layers).
[0022]
【Example】
The following examples illustrate the invention.
Example 1
The surface was chlorinated by irradiating 3 mm square CVD diamond in chlorine gas with ultraviolet rays and then aminated by irradiation with ultraviolet rays in ammonia gas, and then refluxed in chloroform with acid chloride for carboxylation.
This surface-modified solid support was placed in a 1,4-dioxane solution (100 μl per 3 mm square diamond) in which carbodiimide 2.5 mg / ml and N-hydroxysuccinimide 1.5 mg / ml were dissolved. And the terminal carboxyl group was dehydrated and condensed. After the completion of the reaction, the substrate was washed with water, further washed with a 1,4-dioxane solution and dried to obtain a chemically modified substrate.
[0023]
Example 2
The surface of the silicon substrate is chlorinated by irradiating a 3 mm square silicon substrate in chlorine gas and then aminated by irradiating with ultraviolet light in ammonia gas, and oxalic acid (dicarboxylic acid) is previously added to this amino group with N-hydroxysuccinimide. The activated diester obtained by activated esterification was reacted.
N-hydroxysuccinimide activated esterification was performed as follows. Oxalic acid was dissolved in 1,4-dioxane solution (100 μl per 3 mm square diamond) dissolved in carbodiimide 2.5 mg / ml and N-hydroxysuccinimide 1.5 mg / ml, and reacted for 15 minutes. An activated diester was obtained. The activated diester was bonded to a solid support previously provided with an amino group to obtain a chemically modified substrate.
[0024]
After immobilizing a 20-mer oligonucleotide using the substrates prepared in Example 1 and Example 2 as described above, hybridizing with a fluorescently labeled probe having a complementary sequence, and immobilizing the oligonucleotide using a fluorometer The amount of conversion was estimated. As a result, in Example 1, it was 38 pmol per 3 mm square substrate, and in Example 2, it was 35 pmol per 3 mm square substrate. It was revealed that both oligonucleotides were fixed at high density.
[0025]
【The invention's effect】
Since the chemically modified substrate of the present invention is chemically modified and has an activated ester group, nucleic acids such as DNA can be stably immobilized, which is advantageous for PCR. Moreover, the production method of the present invention can efficiently produce a substrate capable of stably immobilizing DNA or the like. In particular, by using a diester obtained by activating N-hydroxysuccinimide using carbodiimide and N-hydroxysuccinimide, an activated ester group is formed on the surface of the solid support without refluxing in chloroform in the presence of acid chloride. Can be chemically modified. In addition, by using the product in this state, the user can easily fix the DNA.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32094599A JP3786248B2 (en) | 1999-11-11 | 1999-11-11 | Chemically modified substrate and method for producing the same |
AU13066/01A AU1306601A (en) | 1999-11-11 | 2000-11-10 | Chemically modified supports and process for producing the same |
PCT/JP2000/007948 WO2001034558A1 (en) | 1999-11-11 | 2000-11-10 | Chemically modified supports and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32094599A JP3786248B2 (en) | 1999-11-11 | 1999-11-11 | Chemically modified substrate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001139532A JP2001139532A (en) | 2001-05-22 |
JP3786248B2 true JP3786248B2 (en) | 2006-06-14 |
Family
ID=18127052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32094599A Expired - Fee Related JP3786248B2 (en) | 1999-11-11 | 1999-11-11 | Chemically modified substrate and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3786248B2 (en) |
AU (1) | AU1306601A (en) |
WO (1) | WO2001034558A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372002B1 (en) * | 2000-03-13 | 2002-04-16 | General Electric Company | Functionalized diamond, methods for producing same, abrasive composites and abrasive tools comprising functionalized diamonds |
AU2001274560A1 (en) * | 2000-08-08 | 2002-02-18 | Toyo Kohan Co. Ltd. | Substrate activation kit and method of detecting dna or the like by using the same |
WO2003027674A1 (en) * | 2001-09-21 | 2003-04-03 | Takara Bio Inc. | Support for ligand immobilization |
JP2003107086A (en) * | 2001-09-28 | 2003-04-09 | Olympus Optical Co Ltd | Nucleic acid probe array using substrate with frosting surface |
US7491554B2 (en) | 2003-04-23 | 2009-02-17 | Tadamasa Fujimura | Carrier of a diamond fine particle for immobilizing virus |
US7498178B2 (en) | 2003-04-23 | 2009-03-03 | Tadamasa Fujimura | Carrier of a diamond fine particle for immobilizing virus |
KR20070116191A (en) | 2004-03-30 | 2007-12-06 | 토요 어드밴스드 테크놀로지스 컴퍼니 리미티드 | Method for treating surface of material, medical material, and medical instrument |
JP2006056741A (en) * | 2004-08-19 | 2006-03-02 | Sumitomo Electric Ind Ltd | Method for modifying hydrogenated carbon film, and hydrogenated carbon film |
JP5456355B2 (en) * | 2009-04-02 | 2014-03-26 | 東洋鋼鈑株式会社 | Biological substance immobilization carrier having ITO layer |
FR2947544B1 (en) * | 2009-07-02 | 2011-12-09 | Centre Nat Rech Scient | FUNCTIONALIZATION OF CARBON, SILICON AND / OR GERMANIUM SURFACES HYBRID SP3 |
JP5735426B2 (en) | 2009-09-10 | 2015-06-17 | 東洋鋼鈑株式会社 | Carrier for holding nucleic acid |
JP5607373B2 (en) | 2010-01-04 | 2014-10-15 | 東洋鋼鈑株式会社 | Microarray detection method |
JPWO2021162028A1 (en) * | 2020-02-14 | 2021-08-19 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000502341A (en) * | 1995-12-22 | 2000-02-29 | ユーニヴァスィティ テクノロヂィズ インタナショナル インク. | Reusable solid support for oligonucleotide synthesis, its preparation and its use |
-
1999
- 1999-11-11 JP JP32094599A patent/JP3786248B2/en not_active Expired - Fee Related
-
2000
- 2000-11-10 AU AU13066/01A patent/AU1306601A/en not_active Abandoned
- 2000-11-10 WO PCT/JP2000/007948 patent/WO2001034558A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2001034558A1 (en) | 2001-05-17 |
JP2001139532A (en) | 2001-05-22 |
AU1306601A (en) | 2001-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3786248B2 (en) | Chemically modified substrate and method for producing the same | |
JP4001710B2 (en) | Particulate carrier for separation, purification and extraction and method for producing the same | |
WO1999040173A1 (en) | Substrates for immobilizing and amplifying dna, dna-immobilized chips having dna immobilized on the substrates, and method for amplifying dna | |
US6607908B1 (en) | Supports for immobilizing DNA or the like | |
JP2008292482A (en) | Solid support having electrostatic layer and use therefor | |
CN1916630A (en) | Method for molecular and nano material based on the electric reading of concrete affair of functionalized electrode, and cmod based device | |
EP2476759B1 (en) | Carrier for holding nucleic acids | |
CN1388797A (en) | Method for obtaining a surface activation of a solid support for building biochips microarrays | |
CN1203169C (en) | Substrates for nucleic acid immobilization onto solid supports | |
CN100590204C (en) | Method for preparing three-dimensional gel micro array chip without excitant | |
JP2004508030A (en) | Modified carbon, silicon, and germanium surfaces | |
JP2003172737A (en) | Solid support body, substrate, biosensor, and analysis method for biological substance using them | |
JP3868901B2 (en) | Chemically modified substrate and method for producing the same | |
CN1215330C (en) | Method of reusing DNA-immobilization substate | |
KR20030029928A (en) | Solid supports having surface-treated layer formed thereon | |
KR100695057B1 (en) | Support for fixing nucleotide and process for producing the same | |
US20060134717A1 (en) | Method for making biochips | |
WO2002039111A1 (en) | Supports for hybridization and method of immobilizing hybrid | |
Tang et al. | Hydrolysis of microporous polyamide-6 membranes as substrate for in situ synthesis of oligonucleotides | |
JP2002202304A (en) | Method for manufacturing dna immobilizing substrate | |
JP2004147597A (en) | Probe for detecting nucleic acid | |
JP2004354137A (en) | Dna label | |
JP2004154121A (en) | Method for detecting and elongating target nucleic acid, and assay kit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040421 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040510 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040604 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060315 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |