JP3781398B2 - I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film - Google Patents
I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film Download PDFInfo
- Publication number
- JP3781398B2 JP3781398B2 JP31729898A JP31729898A JP3781398B2 JP 3781398 B2 JP3781398 B2 JP 3781398B2 JP 31729898 A JP31729898 A JP 31729898A JP 31729898 A JP31729898 A JP 31729898A JP 3781398 B2 JP3781398 B2 JP 3781398B2
- Authority
- JP
- Japan
- Prior art keywords
- sno
- thin film
- oxide
- sintered body
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は透明導電膜形成のための真空成膜用のI.T.O焼結体とその製造方法及びI.T.O薄膜に関するものである。
【0002】
【従来の技術】
酸化インジウム(In2 O3 )及び酸化錫(SnO2 )からなるI.T.O焼結体は、真空成膜法の真空蒸着用ペレットまたはスパッタリング用ターゲットとして使用する事で、透明電極、帯電防止、電磁波遮断、面発熱体、熱線遮断、光電変換素子等の透明導電膜として幅広く用いられている。
【0003】
その中でも、LCD(液晶ディスプレイ)の大型化、高精細、高画質化により、透明電極として用いられるI.T.O膜への特性要求も厳しくなつている。特に低抵抗化は大きな課題である。
【0004】
真空成膜法にてI.T.O焼結体から良質の透明導電膜を得る方法として次の様な報告がなされている。
まず、特開平3−126655号公報には、凝集性のない平均粒径0.lμm以下の酸化インジウム−酸化錫粉末にバインダーを添加して混合成形した後、1500℃以上の酸素雰囲気中で焼結する方法が開示されている。
特開平3−150253号公報には、1200℃〜1300℃の酸素雰囲気中で一旦焼結し、次いで500〜1300℃の減圧または不活性ガス雰囲気中で熱処理する方法が開示されている。
【0005】
特開平6−316760号公報においては、酸化錫−酸化インジウム粉末を大気中にて仮焼きし、仮焼き後の粉末を混合・造粒・成形し900℃〜1100℃の焼結温度で焼結とする方法が開示されている。
また、「機能材料」Vol.11,No.3(1991)の中で密度63%のI.T.OターゲットのI.T.O膜の比抵抗は、スパッタ・パワーにより膜中のSnO2 量の差が大きく起因し、使用するスパッタ装置や条件に最適のSnO2 量を考慮したターゲットを使用することは、非常に重要であることが記載されている。
【0006】
さらに、「ニューガラス」Vol.7,No.2(1992)でも、装置によって多少の違いがあるものの真空蒸着でのI.T.OペレットのSnO2 添加の最適量は5wt%前後の添加量に比抵抗は最も近い値を示すことが記載されている。
【0007】
【発明が解決しようとする課題】
前述したように、従来の真空成膜法にてI.T.O焼結体から良質の透明導電膜を得るには、真空成膜法の真空蒸着用I.T.Oペレットまたはスパッタリング用I.T.Oターゲットの密度及び厳密なSnO2 含有量の最適化や真空蒸着装置条件の精密な管理を行わなければならず、再現よく安定した比抵抗を持つ透明導電I.T.O薄膜を得るのは困難である。
【0008】
本発明は、この様な従来技術の問題点を解決するためになされたものであり、焼結体中のSnO2 のばらつき(I.T.O薄膜中のSnO2 量の差)に影響されにくく、高透過率を持ち再現よく安定した比抵抗を持つI.T.O焼結体および透明導電I.T.O薄膜を提供することを目的とするものである。
【0009】
さらに、本発明は、高透過率を持つ透明導電I.T.O薄膜を提供出来る為、透明導電膜としての透過率(80%以上)を失しない範囲で膜厚を増やす事ができ、膜全体の抵抗を低くできるI.T.O薄膜を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
即ち、本発明は、主成分として酸化インジウム(In2O3)、酸化錫(SnO2)及び酸化スカンジウム(Sc2O3)を含有してなり、前記酸化インジウム及び酸化スカンジウムと酸化錫の割合が重量比で(In 2 O 3 +Sc 2 O 3 ):SnO 2 =99〜93:1〜7であり、かつ酸化スカンジウムの含有量が酸化インジウムとの重量比でIn 2 O 3 :Sc 2 O 3 =99.8〜60:0.2〜40である事を特徴とするI.T.O焼結体に係るものである。
【0011】
また、本発明は、主成分として酸化インジウム(In2O3)及び酸化錫(SnO2)及び酸化スカンジウム(Sc2O3)を含有し、前記酸化インジウム及び酸化スカンジウムと酸化錫の割合が重量比で(In 2 O 3 +Sc 2 O 3 ):SnO 2 =99〜93:1〜7であり、かつ酸化スカンジウムの含有量が酸化インジウムとの重量比でIn 2 O 3 :Sc 2 O 3 =99.8〜60:0.2〜40である粉末を混合、成形し、加熱して焼結する事を特徴とするI.T.O焼結体の製造方法である。
【0013】
さらに、本発明は、上記のI.T.O焼結体を蒸着源として成膜してなることを特徴とするI.T.O薄膜である。
薄膜中の錫(Sn)の含有量の相違にかかわらず同じ体積抵抗率が得られるのが好ましい。
【0014】
【発明の実施の形態】
上記目的を達成する為、本発明は、主成分としてIn2 O3 及びSnO2 からなるI.T.O粉末にSc2 O3 を添加する事を特徴とする。
【0015】
上記のIn2 O3 及びSc2 O3 とSnO2 の割合が重量比で(In2 O3 +Sc2 O3 ):SnO2 =99〜94:1〜7、さらに好ましくは98〜94:2〜6であるのが望ましい。上記のIn2 O3 、Sc2 O3 およびSnO2 の割合とすることにより、真空成膜により、スプラッシュが全く発生せず透過率91%以上、体積抵抗率3.3×l0-4Ω・cm以下を示す様に動作する。
【0016】
また、Sc2 O3 の含有量がIn2 O3 との重量比でIn2 O3 :Sc2 O3 =99.8〜60:0.2〜40、好ましくは99.7〜62:0.3〜38であるのが望ましい。上記のIn2 O3 およびSc2 O3 の割合とすることにより、真空成膜によりスプラッシュが全く発生せず透過率91%以上、体積抵抗率7×l0-4Ω・cm以下を示す様に動作する。
【0017】
本発明のI.T.O焼結体の製造方法は、主成分としてIn2 O3 、SnO2 及びSc2 O3 の粉末を混合、成形し、加熱して焼結することにより行なう。
成形および加熱焼結の方法は、特に制限することなく、通常の方法で行なうことができ、例えば成形方法としては一軸加圧成形法が、加熱焼結方法としては大気中にて加熱、焼成する事が挙げられる。
【0018】
本発明のI.T.O薄膜は、上記のI.T.O焼結体を蒸着して成膜することにより得られる。成膜方法は、特に制限することなく、通常の方法で行なうことができる。
I.T.O焼結体を蒸着してなる薄膜は、薄膜の表面から基板との間にScが均一に分散し、同量含有する。
また、I.T.O焼結体を蒸着してなる薄膜は、薄膜中のSn含有量の相違にかかわらず、同じ体積抵抗率が得られる。LCD用I.T.O薄膜の体積抵抗率は1.0×10-4〜3.5×10-4Ω・cmの範囲で同じ値が好ましい。
【0019】
【実施例】
以下に、実施例を用いて本発明を説明する。
【0020】
実施例1
In2 O3 及びSc2 O3 とSnO2 の割合が重量比で(In2 O3 +Sc2 O3 ):SnO2 =99〜94:l〜7(SnO2 1〜7%)となるようにする。好ましくはSnO2 を2〜6%加える。本実施例においては、SnO2 を2%加えた。
【0021】
次いで、In2 O3 とSc2 O3 (純度99.9%、ICP発光分析による不純物分析結果(ppm):Ca 25、Y 180、Dy 52、Ho 30、Er 30、Tm 15、Yb 90、Lu 25)の割合が重量比でIn2 O3 :Sc2 O3 =99.5:0.5となるようにそれぞれ加える。この混合物をボールミルを使って十分に細かい粒状形状にしながら混ぜ合わせる。
【0022】
その後、プレス圧力1300kgf/cm2 で大きさが17角mm×20t mmのペレット形状に成形する。プレス後大気中にて温度1350℃で加熱し、I.T.O焼結体を得る。
【0023】
通常の真空蒸着装置の電子ビーム蒸発源部に、このI.T.O焼結体を設置し酸素ガス圧5×l0-4torr、基板温度300℃の雰囲気で成膜速度3.0Å/secで合成石英基板上に膜厚1200ÅのI.T.O膜を作製した。得られたI.T.O膜の透過率は波長550nmで95%、四端子法により測定した体積抵抗率は3.2×l0-4Ω・cmであった。
【0024】
また、2次イオン質量分析(以下、SIMS分析と略す)にてI.T.O膜中のSn、Scの分散状態を測定したところ、120 Sn+ の強度は2×103 (counts)、45Sc+ の強度は2×l04 (counts)であり、膜中で均一に分散している事を確認した。
【0025】
実施例2
SnO2 の成分が6%である事以外は、実施例1と同様にI.T.O焼結体を作製し、蒸着を行った。
得られた薄膜の波長550nmでの透過率は96%、体積抵抗率は3.0×l0-4Ω・cmであった。SIMS分析によるI.T.O膜中のSn、Scの分散状態を測定したところ、120 Sn+ の強度は4.5×103 (counts)、45Sc+ の強度は2×l04 (counts)であり、膜中で均一に分散している事を確認した。
【0026】
さらにSIMS分析によるI.T.O膜中の113 In+ の測定を行ったところ、実施例1及び2とも強度は1.2×105 (counts)であった。
実施例1及び2からのSIMS分析によれば、I.T.O膜中にScが同量含有していればSnの含有量が3倍程度の差があっても、高透過率で同じ体積抵抗率を持つI.T.O薄膜が得られる事が解る。
【0027】
尚、SnO2 の成分が1〜7%の範囲であり、かつSc2 O3 の含有量がIn2 O3 との重量比で0.2〜1.5%である場合、波長550nmでの透過率は91%以上、体積抵抗率で2.7〜3.3×l0-4Ω・cmの範囲にあり、SIMS分析においては本実施例と同じ結果を得た。
【0028】
比較例1
SnO2 の成分が1%未満である0.5%である事以外は、実施例1と同様にI.T.O焼結体を作製し、蒸着を行った。
得られた薄膜の波長550nmでの透過率は82%、体積抵抗率は3.5×l0-4Ω・cmであった。
【0029】
比較例2
SnO2 の成分が7%を越える10%である事以外は、実施例1と同様にI.T.O焼結体を作製し、蒸着を行った。
得られた薄膜の波長550nmでの透過率は54%であった。
【0030】
実施例3
In2 O3 及びSc2 O3 とSnO2 の割合が重量比で(In2 O3 +Sc2 O3 ):SnO2 =95:5となるようにする。ついでIn2 O3 とSc2 O3 の割合が重量比でIn2 O3 :Sc2 O3 =99.8〜60.0:0.2〜40(Sc2 O3 0.2〜40%)となるようにそれぞれ加える。好ましくはSc2 O3 を0.3〜38%加える。本実施例においては、Sc2 O3 を5%加えた。この混合物をボールミルを使って十分に細かい粒状形状にしながら混ぜ合わせる。
【0031】
その後プレス圧力1300kgf/cm2 で大きさが17角mm×20t mmのペレット形状に成形する。プレス後大気中にて侃度1350℃で加熱し、I.T.O焼結体を得る。
【0032】
次に、実施例1と同様に蒸着を行った。
得られた薄膜の波長550nmでの透過率は94%、体積抵抗率は3.8×l0-4Ω・cmであった。
【0033】
実施例4
Sc2O3の成分が35.0%である事以外は、実施例3と同様にI.T.O焼結体を作製し、蒸着を行った。
得られた薄膜の波長550nmでの透過率は92%、体積抵抗率は6.2×l0−4Ω・cmであった。
【0034】
尚、Sc2 O3 の成分が0.2〜40%の範囲である場合、得られた薄膜の波長550nmでの透過率は91%以上、体積抵抗率で2.7〜7.0×l0-4Ω・cmの範囲にある事を確認した。
【0035】
比較例3
Sc2O3が0.2%未満である0.1%である事以外は、実施例3と同様にI.T.O焼結体を作製し、蒸着を行った。
得られた薄膜の波長550nmでの透過率は84%、体積抵抗率は9.7×l0−4Ω・cmであった。
【0036】
比較例4
Sc2O3の成分が40%を越える50%である事以外は、実施例3と同様にI.T.O焼結体を作製し、蒸着を行った。
得られた薄膜の波長550nmでの透過率は94%、体積抵抗率は7.8×l0−3Ω・mであった。
【0037】
【発明の効果】
以上説明した様に、本発明によれば、I.T.O焼結体中のSnO2 のばらつき(I.T.O薄膜中のSnO2 量の差)に影響されにくく、高透過率を持ち再現よく安定した比抵抗を持つ透明導電I.T.O薄膜が作製でき、LCD等の大型化、高精細、高画質化に大いに役立つものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to I.D. for vacuum film formation for forming a transparent conductive film. T. T. et al. O sintered body and production method thereof, and I.I. T. T. et al. This relates to an O thin film.
[0002]
[Prior art]
I. Indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) T. T. et al. O sintered compact is used as a transparent conductive film such as a transparent electrode, antistatic, electromagnetic wave blocking, surface heating element, heat ray blocking, photoelectric conversion element, etc. Widely used.
[0003]
Among them, I.I., which is used as a transparent electrode, by increasing the size of LCD (liquid crystal display), high definition, and high image quality. T. T. et al. The characteristic requirements for O films are becoming stricter. In particular, lowering resistance is a major issue.
[0004]
In the vacuum film formation method, T. T. et al. The following reports have been made as a method for obtaining a high-quality transparent conductive film from an O sintered body.
First, JP-A-3-126655 discloses an average particle size of 0. A method is disclosed in which a binder is added to indium oxide-tin oxide powder of 1 μm or less and mixed and then sintered in an oxygen atmosphere at 1500 ° C. or higher.
Japanese Patent Application Laid-Open No. 3-150253 discloses a method of once sintering in an oxygen atmosphere of 1200 ° C. to 1300 ° C. and then heat-treating in a reduced pressure of 500 to 1300 ° C. or an inert gas atmosphere.
[0005]
In JP-A-6-316760, tin oxide-indium oxide powder is calcined in the air, and the calcined powder is mixed, granulated, and molded, and sintered at a sintering temperature of 900 ° C. to 1100 ° C. A method is disclosed.
“Functional Materials” Vol. 11, no. 3 (1991) having a density of 63%. T. T. et al. O target I.I. T. T. et al. The specific resistance of the O film is due to the large difference in the amount of SnO 2 in the film due to the sputtering power. It is very important to use a target that takes into account the optimum amount of SnO 2 for the sputtering equipment and conditions used. It is described that there is.
[0006]
Furthermore, “New Glass” Vol. 7, no. 2 (1992), I.V. T. T. et al. It is described that the optimum amount of SnO 2 added to the O pellet shows the closest specific resistance to the added amount of around 5 wt%.
[0007]
[Problems to be solved by the invention]
As described above, I.I. T. T. et al. In order to obtain a high-quality transparent conductive film from the O sintered body, the vacuum deposition I.V. T. T. et al. O pellet or sputtering I. T. T. et al. It is necessary to optimize the density of the O target and the precise SnO 2 content and to precisely control the conditions of the vacuum deposition apparatus, and to produce a transparent conductive I.D. T. T. et al. It is difficult to obtain an O thin film.
[0008]
The present invention has been made to solve such problems of the prior art, and is affected by variations in SnO 2 in the sintered body (difference in the amount of SnO 2 in the ITO thin film). I. It is difficult to achieve, I.I. T. T. et al. O sintered body and transparent conductive material T. T. et al. The object is to provide an O thin film.
[0009]
Furthermore, the present invention provides a transparent conductive I.D. T. T. et al. Since an O thin film can be provided, the film thickness can be increased within a range not losing the transmittance (80% or more) as a transparent conductive film, and the resistance of the entire film can be reduced. T. T. et al. The object is to provide an O thin film.
[0010]
[Means for Solving the Problems]
That is, the present invention contains indium oxide (In 2 O 3 ), tin oxide (SnO 2 ) and scandium oxide (Sc 2 O 3 ) as main components, and the ratio of the indium oxide, scandium oxide and tin oxide. Is in weight ratio (In 2 O 3 + Sc 2 O 3 ): SnO 2 = 99 to 93: 1 to 7, and the content of scandium oxide is in weight ratio with indium oxide, In 2 O 3 : Sc 2 O 3 = 99.8-60: 0.2-40. T. T. et al. This relates to the O sintered body.
[0011]
Further, the present invention contains indium oxide (In 2 O 3 ), tin oxide (SnO 2 ) and scandium oxide (Sc 2 O 3 ) as main components, and the ratio of the indium oxide, scandium oxide and tin oxide is weight. (In 2 O 3 + Sc 2 O 3 ): SnO 2 = 99 to 93: 1 to 7 and the content of scandium oxide by weight ratio to indium oxide is In 2 O 3 : Sc 2 O 3 = 99.8-60: 0.2-40 powder is mixed, molded, heated and sintered. T. T. et al. It is a manufacturing method of O sintered compact.
[0013]
Furthermore, the present invention provides the above-mentioned I.I. T. T. et al. It is formed by forming a film using an O sintered body as a vapor deposition source. T. T. et al. O thin film.
It is preferable that the same volume resistivity is obtained regardless of the difference in the content of tin (Sn) in the thin film.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In order to achieve the above object, the present invention provides an I.V. comprising In 2 O 3 and SnO 2 as main components. T. T. et al. It is characterized by adding Sc 2 O 3 to O powder.
[0015]
The ratio of In 2 O 3 and Sc 2 O 3 to SnO 2 is (In 2 O 3 + Sc 2 O 3 ): SnO 2 = 99 to 94: 1 to 7, more preferably 98 to 94: 2 It is desirable to be ~ 6. By making the ratio of the above In 2 O 3 , Sc 2 O 3 and SnO 2 , no splash is generated by vacuum film formation, and the transmittance is 91% or more, and the volume resistivity is 3.3 × 10 −4 Ω · Operates to indicate cm or less.
[0016]
Also, Sc 2 O 3 content is In 2 O 3 and the weight ratio In 2 O 3: Sc 2 O 3 = 99.8~60: 0.2~40, preferably 99.7 to 62: 0 .3 to 38 is desirable. By setting the ratio of In 2 O 3 and Sc 2 O 3 as described above, no splash is generated by vacuum film formation, and the transmittance is 91% or more and the volume resistivity is 7 × 10 −4 Ω · cm or less. Operate.
[0017]
I. of the present invention. T. T. et al. The method for producing the O sintered body is performed by mixing, forming, heating and sintering powders of In 2 O 3 , SnO 2 and Sc 2 O 3 as main components.
The method of molding and heat sintering is not particularly limited, and can be performed by a normal method. For example, a uniaxial pressure molding method is used as a molding method, and heating and firing is performed in the atmosphere as a heat sintering method. Things can be mentioned.
[0018]
I. of the present invention. T. T. et al. The O thin film has the above-mentioned I.V. T. T. et al. It is obtained by depositing an O sintered body to form a film. The film forming method is not particularly limited and can be performed by a normal method.
I. T. T. et al. In the thin film formed by vapor-depositing the O sintered body, Sc is uniformly dispersed between the surface of the thin film and the substrate, and the same amount is contained.
In addition, I.I. T. T. et al. A thin film formed by vapor-depositing an O sintered body has the same volume resistivity regardless of the difference in Sn content in the thin film. I. for LCD T. T. et al. The volume resistivity of the O thin film is preferably the same value in the range of 1.0 × 10 −4 to 3.5 × 10 −4 Ω · cm.
[0019]
【Example】
Hereinafter, the present invention will be described using examples.
[0020]
Example 1
The ratio of In 2 O 3 and Sc 2 O 3 to SnO 2 is (In 2 O 3 + Sc 2 O 3 ): SnO 2 = 99 to 94: l to 7 (SnO 2 1 to 7%) in weight ratio. To. Preferably 2-6% of SnO 2 is added. In this example, 2% of SnO 2 was added.
[0021]
Next, In 2 O 3 and Sc 2 O 3 (purity 99.9%, impurity analysis result (ppm) by ICP emission analysis: Ca 25, Y 180, Dy 52, Ho 30, Er 30, Tm 15, Yb 90, Lu 25) is added so that the weight ratio is In 2 O 3 : Sc 2 O 3 = 99.5: 0.5. This mixture is mixed using a ball mill while forming a sufficiently fine granular shape.
[0022]
Thereafter, it is formed into a pellet shape having a size of 17 square mm × 20 t mm at a press pressure of 1300 kgf / cm 2 . After pressing, heat in the atmosphere at 1350 ° C. T. T. et al. An O sintered body is obtained.
[0023]
In the electron beam evaporation source part of a normal vacuum deposition apparatus, this I.D. T. T. et al. O sintered a sintered body was placed the oxygen gas pressure 5 × l0 -4 torr, I. a thickness 1200Å in deposition rate 3.0 Å / sec in the synthetic quartz substrate in an atmosphere of a substrate temperature of 300 ° C. T. T. et al. An O film was produced. The obtained I.V. T. T. et al. The transmittance of the O film was 95% at a wavelength of 550 nm, and the volume resistivity measured by the four probe method was 3.2 × 10 −4 Ω · cm.
[0024]
Further, in secondary ion mass spectrometry (hereinafter abbreviated as SIMS analysis), I.V. T. T. et al. When the dispersion state of Sn and Sc in the O film was measured, the intensity of 120 Sn + was 2 × 10 3 (counts) and the intensity of 45 Sc + was 2 × 10 4 (counts). It was confirmed that they were dispersed.
[0025]
Example 2
As in Example 1, except that the SnO 2 content is 6%, I.V. T. T. et al. An O sintered body was produced and evaporated.
The transmittance of the obtained thin film at a wavelength of 550 nm was 96%, and the volume resistivity was 3.0 × 10 −4 Ω · cm. I.S by SIMS analysis. T. T. et al. When the dispersion state of Sn and Sc in the O film was measured, the intensity of 120 Sn + was 4.5 × 10 3 (counts), and the intensity of 45 Sc + was 2 × 10 4 (counts). It was confirmed that they were uniformly dispersed.
[0026]
Furthermore, I.S. T. T. et al. When 113 In + in the O film was measured, the strength of both Examples 1 and 2 was 1.2 × 10 5 (counts).
According to SIMS analysis from Examples 1 and 2, I.V. T. T. et al. If the same amount of Sc is contained in the O film, even if there is a difference of about three times as much as the Sn content, I.V. T. T. et al. It can be seen that an O thin film can be obtained.
[0027]
In addition, when the component of SnO 2 is in the range of 1 to 7% and the content of Sc 2 O 3 is 0.2 to 1.5% by weight ratio to In 2 O 3 , the wavelength is 550 nm. The transmittance was 91% or more, and the volume resistivity was in the range of 2.7 to 3.3 × 10 −4 Ω · cm. In SIMS analysis, the same results as in this example were obtained.
[0028]
Comparative Example 1
As in Example 1, except that the SnO 2 content is 0.5%, which is less than 1%, I.I. T. T. et al. An O sintered body was produced and evaporated.
The transmittance of the obtained thin film at a wavelength of 550 nm was 82%, and the volume resistivity was 3.5 × 10 −4 Ω · cm.
[0029]
Comparative Example 2
As in Example 1, except that the SnO 2 content is more than 7% and 10%, I.V. T. T. et al. An O sintered body was produced and evaporated.
The transmittance of the obtained thin film at a wavelength of 550 nm was 54%.
[0030]
Example 3
The ratio of In 2 O 3 and Sc 2 O 3 to SnO 2 is set to (In 2 O 3 + Sc 2 O 3 ): SnO 2 = 95: 5 by weight. Then In 2 O 3 and Sc 2 an In at a ratio of O 3 weight ratio 2 O 3: Sc 2 O 3 = 99.8~60.0: 0.2~40 (Sc 2 O 3 0.2~40% ) To add each. Preferably, Sc 2 O 3 is added in an amount of 0.3 to 38%. In this example, 5% of Sc 2 O 3 was added. This mixture is mixed using a ball mill while forming a sufficiently fine granular shape.
[0031]
Thereafter, it is molded into a pellet shape having a size of 17 square mm × 20 t mm at a press pressure of 1300 kgf / cm 2 . After pressing, it is heated at a temperature of 1350 ° C. in the atmosphere. T. T. et al. An O sintered body is obtained.
[0032]
Next, vapor deposition was performed in the same manner as in Example 1.
The transmittance of the obtained thin film at a wavelength of 550 nm was 94%, and the volume resistivity was 3.8 × 10 −4 Ω · cm.
[0033]
Example 4
As in Example 3 , except that the component of Sc 2 O 3 is 35.0%. T. T. et al. An O sintered body was produced and evaporated.
The transmittance of the obtained thin film at a wavelength of 550 nm was 92%, and the volume resistivity was 6.2 × 10 −4 Ω · cm.
[0034]
When the Sc 2 O 3 component is in the range of 0.2 to 40%, the transmittance of the obtained thin film at a wavelength of 550 nm is 91% or more, and the volume resistivity is 2.7 to 7.0 × 10. It was confirmed that it was in the range of −4 Ω · cm.
[0035]
Comparative Example 3
As in Example 3 , except that the Sc 2 O 3 content is 0.1%, which is less than 0.2%. T. T. et al. An O sintered body was produced and evaporated.
The transmittance of the obtained thin film at a wavelength of 550 nm was 84%, and the volume resistivity was 9.7 × 10 −4 Ω · cm.
[0036]
Comparative Example 4
Except that components of sc 2 O 3 is 50% in excess of 40%, as in Example 3 I. T. T. et al. An O sintered body was produced and evaporated.
The transmittance of the obtained thin film at a wavelength of 550 nm was 94%, and the volume resistivity was 7.8 × 10 −3 Ω · m.
[0037]
【The invention's effect】
As described above, according to the present invention, I.I. T. T. et al. Transparent conductive I.O. is less affected by variations in SnO 2 in the O sintered body (difference in the amount of SnO 2 in the ITO thin film), has high transmittance, and has a reproducible and stable specific resistance. T. T. et al. An O thin film can be produced, which is very useful for enlargement of LCDs, high definition, and high image quality.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31729898A JP3781398B2 (en) | 1998-11-09 | 1998-11-09 | I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31729898A JP3781398B2 (en) | 1998-11-09 | 1998-11-09 | I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000143334A JP2000143334A (en) | 2000-05-23 |
JP3781398B2 true JP3781398B2 (en) | 2006-05-31 |
Family
ID=18086672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31729898A Expired - Lifetime JP3781398B2 (en) | 1998-11-09 | 1998-11-09 | I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3781398B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4087620B2 (en) * | 2002-03-01 | 2008-05-21 | 株式会社半導体エネルギー研究所 | Method for manufacturing liquid crystal display device |
WO2010070944A1 (en) | 2008-12-15 | 2010-06-24 | 出光興産株式会社 | Indium oxide sintered compact and sputtering target |
-
1998
- 1998-11-09 JP JP31729898A patent/JP3781398B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000143334A (en) | 2000-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5109418B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming ZnO film | |
JPH06158308A (en) | Target for sputtering for indium-tin oxide film and its production | |
JP2008088544A5 (en) | ||
JP3780932B2 (en) | Sintered target for producing transparent conductive thin film and method for producing the same | |
US9416439B2 (en) | Sputtering target, method of fabricating the same, and method of fabricating an organic light emitting display apparatus | |
JP3331584B2 (en) | Polycrystalline MgO deposited material | |
US5480531A (en) | Target for cathode sputtering and method of its production | |
JPH0570943A (en) | High density sintered target material for forming electric conductive transparent thin film by sputtering | |
TWI431135B (en) | Zno deposition material, method for producing the same, and zno film | |
JP3781398B2 (en) | I. T.A. O sintered body, production method thereof, and I.I. T.A. O thin film | |
JP4962355B2 (en) | ZnO vapor deposition material and ZnO film formed thereby | |
JPH0344465A (en) | Production of sputtering target for electrically conductive transparent ito film | |
JP5018553B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JPH0121109B2 (en) | ||
JP5169313B2 (en) | Method for producing ZnO vapor deposition material | |
JPH11302017A (en) | Transparent electrically conductive film | |
JP2904358B2 (en) | Manufacturing method of ITO sintered body | |
JP5018552B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JPH01283369A (en) | Sputtering target for forming electrically conductive transparent ito film | |
JPH04293769A (en) | Ito sputtering target for forming film at low temperature | |
JPH0765167B2 (en) | Sputtering target for ITO transparent conductive film | |
JPH06247765A (en) | Ito sintered compact, ito target and ito film | |
JP3004518B2 (en) | Sputtering target and method for manufacturing the same | |
JP3591610B2 (en) | ITO sintered body for forming transparent conductive film | |
JPH08277112A (en) | Transparent conductive oxide material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051012 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060306 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 3 |
|
S633 | Written request for registration of reclamation of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313633 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140317 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |