JP3772150B2 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP3772150B2 JP3772150B2 JP2003039379A JP2003039379A JP3772150B2 JP 3772150 B2 JP3772150 B2 JP 3772150B2 JP 2003039379 A JP2003039379 A JP 2003039379A JP 2003039379 A JP2003039379 A JP 2003039379A JP 3772150 B2 JP3772150 B2 JP 3772150B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- medium passage
- heat exchanger
- passage unit
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/05316—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05333—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/16—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、カーエアコン用コンデンサやエンジン冷却用ラジエータを始めとする熱交換器に関する。
【0002】
【従来の技術】
従来、カーエアコン用コンデンサとして、小型軽量で且つ高性能であるという利点から、所謂マルチフロータイプの積層型熱交換器が汎用されている。この積層型熱交換器は、例えば図8に示すように、熱媒通路とする多数本の偏平チューブ(21)…が相互間にコルゲートフィン(22)を介在して並列配置して熱交換コア部を構成し、これら偏平チューブ(21)…の両端部が筒状の一対のヘッダー(23)(23)に連通接続され、且つ両ヘッダー(23)(23)の内部が仕切り壁(24)によって複数の室に区画された構造を有しており、入口(25)より流入した熱交換媒体が偏平チューブ(21)…群を蛇行状に流通して出口(26)より流出するようになされている。
【0003】
そして、上記の偏平チューブ(21)としては、熱媒通路の流体直径を小さくして熱伝導性を高めるために、内部を複数の平行流路に分割したもの、とりわけ図9(イ)〜(ニ)に示すように四角形、円形、縦長楕円形、縦長長方形等の幅方向に並列する複数の流路孔(27)を設けたアルミ押出材からなる多孔チューブが多用されている(特許文献1、円形流路孔…特許文献2)。
【0004】
【特許文献1】
特許第3313086号公報
【特許文献2】
特開平5−215482号公報)
【0005】
【発明が解決しようとする課題】
近年においては、熱交換器の更なる高性能化及び小型軽量化が希求されており、これに伴って前記の偏平チューブとしてより熱交換効率の高いものが必要になっている。しかしながら、前記の押出材からなる多孔チューブでは、押出加工技術上から薄型化及び薄肉化に限界があり、厚さ2〜3mm程度、肉厚0.25〜0.3mm程度が下限となるため、内外の熱伝導性を充分に高められない上、構造的に熱交換相手となる外部流体との接触面積が小さく、熱交換効率の向上には限界があった。
【0006】
この発明は、上述の事情に鑑みて、熱交換コア部での高い熱交換効率が得られ、高性能化及び小型軽量化の要望に充分に対処できる熱交換器を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明の熱交換器は、複数本の金属製極細パイプが一方向に密接状態で平行配列して熱媒通路ユニットを形成し、この熱媒通路ユニットの多数が前記パイプ群の配列方向に対して直交する方向に沿って一定間隔置きに平行配置して熱交換コア部を構成してなるものとしている。
【0008】
この発明の熱交換器では、熱媒通路ユニットが複数本の金属製極細パイプが一方向に密接状態で平行配列したものであるから、熱媒通路ユニットとしての外部表面積が偏平チューブ形態に比較して大きくなる上、極細パイプの外径が熱媒通路ユニットの厚みになるが、パイプ径は押出材からなる多孔チューブの厚み限界よりも格段に小さく設定できるから、この厚さの薄い熱媒通路ユニットを狭い間隔で高密度に平行配置することにより、熱交換コア部全体としての外側熱交換面積を極めて大きく設定できる。
【0009】
また、このような熱交換器としては、前記極細パイプが外径0.5〜2mmのアルミ押出材からなるものが好適である。すなわち、パイプ形態のアルミ押出加工においては、金型の中子にピアノ線あるいは超硬金属線を用いることにより、多孔チューブの限界厚みよりも格段に小径のパイプの複数本を同時に高精度で製作できる。しかして、パイプ外径を2mm以下とすることにより、一定寸法の熱交換コア部に多数の熱媒通路ユニットを配列できるが、パイプ外径0.5mm未満のものは製作困難である。
【0010】
更に、各熱媒通路ユニットは、極細パイプ同士が接合一体化した帯板状をなす構成とするのがよく、これによって熱媒通路ユニットとしての強度を確保できると共に、熱交換器の組立製作における取扱い性が良くなる。
【0011】
一方、平行配置した熱媒通路ユニット間には積層型熱交換器として伝熱フィンを介装するの一般的であるが、この発明では、両側縁に各々熱媒通路ユニットの極細パイプに嵌合する複数の凹円弧部を有する板状の伝熱フィンを用いることが推奨される。このような伝熱フィンによれば、該伝熱フィンが両側の熱媒通路ユニットの極細パイプ群に嵌合することから、熱交換コア部が安定して高強度になると共に、凹円弧部が各極細パイプの周面に接するため、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性が良好となる。
【0012】
しかして、上記の伝熱フィンとして、各凹円弧部の周縁に、熱媒通路ユニットの極細パイプ周面に接合する突縁部を有するものが特に好適である。すなわち、この突縁部により、伝熱フィンと両側の熱媒通路ユニットとの嵌合状態の安定性が増し、熱交換コア部の強度がより増大すると共に、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性がより向上することになる。
【0013】
【発明の実施の形態】
図1(A)は、この発明の一実施形態として、カークーラー用の凝縮器として好適に使用しうるマルチフロータイプの熱交換器を示す。この熱交換器は、左右一対の縦筒状をなすアルミ製のヘッダー(1)(1)間に、それぞれ両端を両ヘッダー(1)(1)に連通接続する多数の熱媒通路ユニット(2)が上下方向に一定間隔置きに平行配置して熱交換コア部(10)を構成している。そして、両ヘッダー(1)(1)の内部は仕切り壁(3)によって複数の室に区画されており、入口(4)より流入した熱交換媒体が熱媒通路ユニット(2)…群を通して蛇行状に流通して出口(5)より流出する過程で、熱交換コア部(10)において熱交換媒体と熱媒通路ユニット(2)…群の隙間を流通する空気等の外部流体との間で熱交換が行われるようになされている。
【0014】
各熱媒通路ユニット(2)は、図1(ロ)に示すように、一方向に密接状態で平行配列した多数本(図では17本)のアルミ押出材からなる極細パイプ(6)より構成されており、これら極細パイプ(6)同士が相互に接合一体化帯板状をなし、その板面方向を水平にして両ヘッダー(1)(1)間に架設されている。また、各熱媒通路ユニット(2)の両端に位置する極細パイプ(6a)は、外部からの衝撃に対する強度向上をはかるため、外側の肉厚を増大した偏肉パイプが用いられている。そして、隣接する熱媒通路ユニット(2)(2)の間には、図2でも示すように、板面を垂直にして前後方向に沿う多数枚の板状の伝熱フィン(7)が一定間隔置きに並列配置している。
【0015】
各伝熱フィン(7)は、図3に示すように、両側縁が多数の凹円弧部(7a)を連ねた形状になっており、熱媒通路ユニット(2)の幅に対応する長さを有している。そして、これら凹円弧部(7a)は、熱媒通路ユニット(2)の極細パイプ(6)の外径に対応する曲率半径に設定されており、図1(イ)及び図4に示すように、熱交換器の組立状態において各々極細パイプ(6)の外周に密接嵌合している。
【0016】
一方、両ヘッダー(1)(1)の周面の互いに対向する側には、図5(イ)に示すように、熱媒通路ユニット(2)に対応する幅を有するスリット状の開口部(11)が全長にわたって形成されると共に、この開口部(11)の両側が突縁(12)をなしている。しかして、熱媒通路ユニット(2)…群は、図5(ロ)に示すように、隣接する当該ユニット(2)(2)の各々端部間にアルミ製のスペーサー(8)を介して積層した状態として、図5(イ)の如くヘッダー(1)の開口部(11)に挿嵌することにより、両ヘッダー(1)(1)に対して両端部を連結している。
【0017】
スペーサー(8)は、図5(ハ)に示すように、長辺側が熱媒通路ユニット(2)の幅に対応する長さの矩形板状であり、両側主面にそれぞれ、幅方向(短辺方向)に沿う断面凹円弧状の多数の溝(8a)が密に平行状に設けられ、長辺側の端面形状が伝熱フィン(7)と一致するように設定されており、これら溝(8a)に各々熱媒通路ユニット(2)の極細パイプ(6)が密接嵌合するようになっている。なお、図示を省略したが、最上位と最下位に配置するスペーサー(8)には片側主面が平坦なものを用い、その平坦面をヘッダー(1)の上下端の蓋板(13)の平坦な内面に密接させ、もってヘッダー(1)の開口部(11)の全体が外部に対して封止されるようにしている。
【0018】
ここで、極細パイプ(6)としては、外径が0.5〜2mm程度で、内径が外径の1/2〜1/4程度のものが好適に使用される。すなわち、パイプ外径を2mm以下とすることにより、一定寸法の熱交換コア部(10)に多数の熱媒通路ユニット(2)を配列でき、これによって熱交換器を小型で高性能なものとなし得る。しかるに、パイプ外径が0.5mm未満のものは製作困難である。
【0019】
なお、熱交換器の組立製作においては、各部材相互の接合部にロウ材を介在させて仮組みし、この仮組み状態で炉中ロウ付けを行うことにより、全部の接合部を一括して接合固着する方法が一般的に採用される。このロウ材としては独立したものを用いてもよいが、通常は接合部の片側又は両側に予めロウ材層を塗布形成したものを使用し、また伝熱フィン(7)にはブレージングシートを用いればよい。
【0020】
上記構成の熱交換器にあっては、熱媒通路ユニット(2)が多数本の極細パイプ(6)を平行配列したものであるから、該ユニット(2)としての外部表面積が同じ幅及び厚さの偏平チューブ形態に比較して大きくなる。また、極細パイプ(6)の外径が熱媒通路ユニット(2)の厚みになるが、パイプ外径は従来の押出材からなる多孔チューブの厚み限界よりも格段に小さくできるから、この厚さの薄い熱媒通路ユニット(2)が狭い間隔で高密度に平行配置していることにより、熱交換コア部(10)全体としての外側熱交換面積が極めて大きくなり、もって従来の多孔チューブを用いた熱交換器に比して遙かに高い熱交換効率が得られる。
【0021】
因みに、図8に示すような従来の積層型熱交換器では、図9(イ)〜(ハ)のような幅方向両端が半円形をなす多孔性チューブ(21)として限界に近いサイズのもの、例えば幅16mmで厚み3mmのものを用いる場合は、一般的にチューブ(21)(21)同士の間隔が8mm程度(ピッチ=8+3=11mm)に設定されるが、1本の該チューブ(21)の周長は約35.4mm(13×2+3π)になる。これに対し、この発明の熱交換器では、例えば熱媒通路ユニット(2)として外径1mmの極細パイプ(6)の16本が一体化されたもの(幅16mm)を用い、該ユニット(2)(2)相互間の間隔を1mmに設定した場合、前記従来の熱交換器におけるピッチ11mmの間に5.5枚の該ユニット(2)が配置することになる。
【0022】
すなわち、この発明の熱交換器の上記例示構成では、一枚のユニット(2)の周長がパイプ16本で16πmm、パイプ同士の接合部で2割程度を減じるとしても該周長は14.8πmmになるから、熱交換コア部(10)の上下幅11mm当たりの総周長は約221mm(14.8π×5.5)となり、外側熱交換面積は従来構成に対して約6倍強(221÷35.4)に達する。従って、この発明の熱交換器によれば、ある程度のロスを見込んでも、同サイズの従来構成の熱交換器に比して数倍の熱交換効率が容易に得られる。
【0023】
なお、熱媒通路ユニット(2)の極細パイプ(6)としては、上記実施形態ではアルミ押出材を用いているが、他の金属からなるものも使用可能である。但し、パイプ形態のアルミ押出加工においては、金型の中子にピアノ線あるいは超硬金属線を用いることにより、従来の熱交換器に用いる多孔チューブの限界厚みよりも格段に小径のパイプの複数本を同時に高精度で製作できることから、品質及びコストの両面でアルミ押出材からなるものが推奨される。また、このような極細パイプ(6)は前記実施形態のように相互に接合一体化したの帯板状の熱媒通路ユニット(2)とすることにより、該ユニット(2)としての強度を確保できると共に、熱交換器の組立製作における取扱い性が良くなるという利点がある。
【0024】
更に、熱媒通路ユニット(2)の幅方向両側端の極細パイプ(6)については、熱交換コア部(10)の表面に露呈し、熱交換器の運搬や所要部位への組み付け等の取扱い中ならびに使用中に他の物品と接触し易いことから、その破損を防止するために、断面が熱交換コア部(10)の幅方向に長い楕円形のものとしたり、中空部が同幅方向の内側へ偏在したものとすることにより、中空部と同幅方向の外側との間を厚肉にして耐衝撃強度を向上させてもよい。
【0025】
伝熱フィン(7)は、図6に示すように、各凹円弧部(7a)の周縁に、熱媒通路ユニット(2)の極細パイプ(6)周面に接合する突縁部(7b)を有するものが好適である。すなわち、この突縁部(7b)によって当該伝熱フィン(7)と両側の熱媒通路ユニット(2)との当接面積が大きくなるから、両者(7)(2)の嵌合状態の安定性が増し、熱交換コア部(10)の強度がより増大すると共に、両者(7)(2)間の伝熱性がより向上することになる。
【0026】
しかして、このような突縁部(7b)は、各凹円弧部(7a)の周縁に沿い、図7(イ)の如く一定間隔置きの半径方向の切り込み(71)や、図7(ロ)の如くミシン目状の切れ目(72)を入れておき、当該伝熱フィン(7)を熱媒通路ユニット(2)(2)間に圧入する際、各凹円弧部(7a)の周縁部が曲がって形成されるようにしてもよいし、図7(ハ)の如く予め形成しておいてもよい。なお、図7(ハ)の構成例では、突縁部(7b)を含めて凹円弧部(7a)の周縁に、一定間隔置きに半径方向の切り込み(73)を設けることにより、当該伝熱フィン(7)を熱媒通路ユニット(2)(2)間に容易に圧入できるようにしている。
【0027】
この発明の熱交換器は、ヘッダー(1)(1)と熱媒通路ユニット(2)の両端部との連結構造、各熱媒通路ユニット(2)の極細パイプ(6)の本数、熱媒通路ユニット(2)の配設間隔、伝熱フィン(7)の形状と配設間隔等、細部構成については実施形態以外に種々設計変更可能である。
【0028】
また、上記の図示実施形態においては、この発明を、カークーラーの冷凍サイクルに用いられる凝縮器としての用途に適する熱交換器を示したが、この発明は、自動車用のラジエータ、その他小型で高い熱交換性能が求められる各種の熱交換器に適用可能なものである。
【0029】
【発明の効果】
この発明によれば、熱交換器として、複数本の金属製極細パイプが一方向に密接状態で平行配列して熱媒通路ユニットを形成し、この熱媒通路ユニットの多数が平行配置して熱交換コア部を構成しており、熱媒通路ユニットとしての外部表面積が偏平チューブ形態に比較して大きくなる上、パイプ径を押出材からなる多孔チューブの厚み限界よりも格段に小さく設定できるから、この厚さの薄い熱媒通路ユニットを狭い間隔で高密度に平行配置することにより、熱交換コア部全体としての外側熱交換面積が極めて大きく、もって高い熱交換効率が得られ、高性能化及び小型軽量化に適したものが提供される。
【0030】
この発明によれば、上記の熱交換器における前記極細パイプが特定外径のアルミ押出材からなるため、該パイプを高精度で安価に量産できると共に、定寸法の熱交換コア部に多数の熱媒通路ユニットを配列して熱交換効率を高めることができる。
【0031】
この発明によれば、上記の熱交換器における熱媒通路ユニットが、極細パイプ同士を接合一体化した帯板状をなすことから、強度及び取扱い性に優れるという利点がある。
【0032】
この発明によれば、上記の熱交換器における熱媒通路ユニット間に、両側縁に各々熱媒通路ユニットの極細パイプに嵌合する複数の凹円弧部を有する板状の伝熱フィンが介装されることから、熱交換コア部が安定して高強度になると共に、凹円弧部が各極細パイプの周面に接するため、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性が良好になる。
【0033】
この発明によれば、上記の伝熱フィンが各凹円弧部の周縁に熱媒通路ユニットの極細パイプ周面に接合する突縁部を有することから、伝熱フィンと両側の熱媒通路ユニットとの嵌合状態の安定性が増し、熱交換コア部の強度がより増大すると共に、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性がより向上し、もって熱交換効率がより高くなる。
【図面の簡単な説明】
【図1】この発明に係る熱交換器の一実施形態を示し、(イ)図は熱交換器全体の正面図、(ロ)図は熱交換コア部の要部の縦断側面図である。
【図2】同熱交換器における熱交換コア部の要部の縦断正面図である。
【図3】同熱交換器に用いる伝熱フィンの正面図である。
【図4】同熱交換器における熱交換コア部の要部の斜視図である。
【図5】同熱交換器におけるヘッダーと熱媒通路ユニット群との連結構造を示し、(イ)図は連結部の横断平面図、(ロ)図は熱媒通路ユニット群の端部の縦断正面図、(ハ)図は熱媒通路ユニット間に介装するスペーサーの斜視図である。
【図6】この発明に係る熱交換器の他の実施形態における熱交換コア部の要部の縦断正面図である。
【図7】上記他の実施形態の熱交換器に使用する伝熱フィンを示し、(イ)〜(ハ)図は各々異なる構成例の伝熱フィンの正面図である。
【図8】従来の熱交換器の構成例を示す正面図である。
【図9】従来の熱交換器に使用される多孔チューブを示し、(イ)〜(ハ)図は各々異なる構成例の多孔チューブの断面図である。
【符号の説明】
1・・・・ヘッダー
2・・・・熱媒通路ユニット
6・・・・極細チューブ
7・・・・伝熱フィン
7a・・・凹円弧部
7b・・・突縁部
10・・・熱交換コア部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger including a condenser for a car air conditioner and a radiator for cooling an engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, so-called multiflow type stacked heat exchangers have been widely used as car air conditioner capacitors because of their small size, light weight, and high performance. For example, as shown in FIG. 8, this laminated heat exchanger has a plurality of flat tubes (21) as heat medium passages arranged in parallel with corrugated fins (22) interposed between them. The two ends of the flat tubes (21) are connected to a pair of cylindrical headers (23) and (23), and the insides of both headers (23) and (23) are partition walls (24). The heat exchange medium flowing in from the inlet (25) flows in a meandering manner through the flat tubes (21) ... and flows out from the outlet (26). ing.
[0003]
And as said flat tube (21), in order to make the fluid diameter of a heat-medium channel | path small and to improve thermal conductivity, what divided | segmented the inside into several parallel flow paths, especially FIG. As shown in (d), a porous tube made of an aluminum extruded material provided with a plurality of flow passage holes (27) arranged in parallel in the width direction such as a quadrangle, a circle, a vertically long ellipse, a vertically long rectangle, etc. is widely used (Patent Document 1). , Circular channel hole ... Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent No. 3313086 [Patent Document 2]
JP-A-5-215482)
[0005]
[Problems to be solved by the invention]
In recent years, there has been a demand for further improvement in performance and size and weight of heat exchangers, and accordingly, a flat tube having higher heat exchange efficiency is required. However, in the perforated tube made of the above extruded material, there is a limit to thinning and thinning from the extrusion processing technology, because the thickness is about 2 to 3 mm, the wall thickness is about 0.25 to 0.3 mm, The heat conductivity inside and outside cannot be sufficiently increased, and the contact area with the external fluid which is a heat exchange partner is structurally small, and there is a limit to improving the heat exchange efficiency.
[0006]
In view of the above-described circumstances, an object of the present invention is to provide a heat exchanger that can obtain high heat exchange efficiency in the heat exchange core portion and can sufficiently cope with demands for high performance and reduction in size and weight. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the heat exchanger of the present invention comprises a plurality of metal ultrafine pipes arranged in parallel in close contact in one direction to form a heat medium passage unit. The heat exchange core portion is configured by being arranged in parallel at regular intervals along a direction orthogonal to the arrangement direction of the pipe group.
[0008]
In the heat exchanger according to the present invention, the heat medium passage unit has a plurality of fine metal pipes arranged in parallel in close contact in one direction, so that the external surface area of the heat medium passage unit is smaller than that of a flat tube. In addition, the outer diameter of the ultrafine pipe is the thickness of the heat medium passage unit, but the pipe diameter can be set much smaller than the thickness limit of the porous tube made of extruded material. By arranging the units in parallel at a high density at a narrow interval, the outer heat exchange area of the entire heat exchange core can be set extremely large.
[0009]
Further, as such a heat exchanger, it is preferable that the ultrafine pipe is made of an aluminum extruded material having an outer diameter of 0.5 to 2 mm. In other words, in pipe-shaped aluminum extrusion, a piano wire or super hard metal wire is used as the core of the mold, so that multiple pipes with a diameter much smaller than the limit thickness of the perforated tube can be manufactured simultaneously with high accuracy. it can. Thus, by setting the pipe outer diameter to 2 mm or less, a large number of heat medium passage units can be arranged in the heat exchange core portion having a constant dimension, but it is difficult to manufacture a pipe having an outer diameter of less than 0.5 mm.
[0010]
Furthermore, each heat medium passage unit is preferably configured to have a strip-like shape in which extra-fine pipes are joined and integrated, thereby ensuring the strength as the heat medium passage unit and in the assembly production of the heat exchanger. Handleability is improved.
[0011]
On the other hand, heat transfer fins are generally interposed between the heat medium passage units arranged in parallel as stacked heat exchangers. It is recommended to use a plate-shaped heat transfer fin having a plurality of concave arc portions. According to such a heat transfer fin, since the heat transfer fin fits into the ultrafine pipe group of the heat medium passage unit on both sides, the heat exchange core portion becomes stable and high in strength, and the concave arc portion is Since it contacts the circumferential surface of each ultrafine pipe, the heat transfer between the heat transfer fin and the heat medium passage unit is improved.
[0012]
Thus, as the heat transfer fins, those having a projecting edge portion joined to the peripheral surface of the ultrafine pipe of the heat medium passage unit are particularly suitable at the periphery of each concave arc portion. That is, the protruding portion increases the stability of the fitted state between the heat transfer fins and the heat medium passage units on both sides, increases the strength of the heat exchange core, and increases the heat transfer fin and heat medium passage unit. The heat transfer between the two will be further improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1A shows a multi-flow type heat exchanger that can be suitably used as a condenser for a car cooler as an embodiment of the present invention. This heat exchanger has a large number of heat medium passage units (2) in which both ends are connected to both headers (1) and (1) between aluminum headers (1) and (1) having a pair of left and right vertical cylinders. ) Are arranged in parallel at regular intervals in the vertical direction to constitute the heat exchange core part (10). The interiors of both headers (1) and (1) are partitioned into a plurality of chambers by partition walls (3), and the heat exchange medium flowing from the inlet (4) meanders through the heat medium passage units (2). In the process of flowing in the shape and flowing out from the outlet (5), in the heat exchange core part (10), between the heat exchange medium and the external fluid such as air flowing through the gaps between the heat medium passage units (2). Heat exchange is performed.
[0014]
As shown in FIG. 1 (b), each heat medium passage unit (2) is composed of a very fine pipe (6) made of a large number (17 in the figure) of aluminum extruded material arranged in parallel closely in one direction. These ultra-thin pipes (6) are in the form of a jointed and integrated strip, and are installed between the headers (1) and (1) with their plate surface directions horizontal. In addition, the extra-thin pipes (6a) positioned at both ends of each heat medium passage unit (2) use uneven thickness pipes having an increased outer wall thickness in order to improve the strength against external impacts. And between the adjacent heat medium passage units (2) and (2), as shown in FIG. 2, a large number of plate-like heat transfer fins (7) along the front-rear direction with the plate surface vertical are constant. They are arranged in parallel at intervals.
[0015]
As shown in FIG. 3, each heat transfer fin (7) has a shape in which both side edges are connected to a number of concave arc portions (7 a), and has a length corresponding to the width of the heat medium passage unit (2). have. And these concave circular arc parts (7a) are set to the curvature radius corresponding to the outer diameter of the ultrafine pipe (6) of a heat-medium channel | path unit (2), and as shown to FIG. 1 (A) and FIG. In the assembled state of the heat exchanger, each is closely fitted to the outer periphery of the ultrafine pipe (6).
[0016]
On the other hand, on the opposite sides of the peripheral surfaces of the headers (1) and (1), as shown in FIG. 5 (a), a slit-like opening having a width corresponding to the heat medium passage unit (2) ( 11) is formed over the entire length, and both sides of the opening (11) form ridges (12). Thus, as shown in FIG. 5 (b), the heat medium passage unit (2)... Group has an aluminum spacer (8) between the end portions of the adjacent units (2) and (2). As shown in FIG. 5 (a), both ends are connected to both headers (1) and (1) by being inserted into the opening (11) of the header (1) as a stacked state.
[0017]
As shown in FIG. 5 (c), the spacer (8) has a rectangular plate shape with a long side corresponding to the width of the heat medium passage unit (2), and the main surfaces on both sides are respectively in the width direction (short). A large number of grooves (8a) having a concave arc shape in cross section along the side direction) are provided closely in parallel, and the end face shape on the long side is set to coincide with the heat transfer fin (7). The ultrafine pipe (6) of the heating medium passage unit (2) is closely fitted to (8a). Although not shown in the figure, spacers (8) arranged at the uppermost and lowermost positions have a flat main surface on one side, and the flat surfaces are used for the upper and lower cover plates (13) of the header (1). In close contact with the flat inner surface, the entire opening (11) of the header (1) is sealed from the outside.
[0018]
Here, as the ultrafine pipe (6), one having an outer diameter of about 0.5 to 2 mm and an inner diameter of about 1/2 to 1/4 of the outer diameter is preferably used. That is, by setting the outer diameter of the pipe to 2 mm or less, a large number of heat medium passage units (2) can be arranged in the heat exchange core section (10) of a certain size, thereby making the heat exchanger small and high performance. You can get none. However, it is difficult to manufacture a pipe having an outer diameter of less than 0.5 mm.
[0019]
In assembly and production of the heat exchanger, all the joints are collectively obtained by temporarily assembling a brazing material between the joints of each member and brazing in the furnace in this temporarily assembled state. A method of joining and fixing is generally employed. As the brazing material, an independent material may be used. However, a brazing material layer is usually applied on one side or both sides of the joint portion, and a brazing sheet is used for the heat transfer fin (7). That's fine.
[0020]
In the heat exchanger having the above configuration, since the heat medium passage unit (2) has a large number of ultrafine pipes (6) arranged in parallel, the external surface area of the unit (2) has the same width and thickness. It becomes larger than the flat tube form. Further, the outer diameter of the ultrafine pipe (6) becomes the thickness of the heat medium passage unit (2), but the pipe outer diameter can be much smaller than the thickness limit of the conventional porous tube made of extruded material. The thin heat medium passage units (2) are arranged in parallel at a narrow interval and in a high density, so that the heat exchange core section (10) as a whole has an extremely large outer heat exchange area, and thus a conventional porous tube is used. The heat exchange efficiency is much higher than that of the conventional heat exchanger.
[0021]
Incidentally, the conventional laminated heat exchanger as shown in FIG. 8 has a size close to the limit as a porous tube (21) in which both ends in the width direction are semicircular as shown in FIGS. For example, when a tube having a width of 16 mm and a thickness of 3 mm is used, the interval between the tubes (21) and (21) is generally set to about 8 mm (pitch = 8 + 3 = 11 mm). ) Is about 35.4 mm (13 × 2 + 3π). On the other hand, in the heat exchanger of the present invention, for example, the heat medium passage unit (2) is an integrated unit (16 mm width) of 16 ultrafine pipes (6) having an outer diameter of 1 mm, and the unit (2 (2) When the interval between each other is set to 1 mm, 5.5 units (2) are arranged between the pitches of 11 mm in the conventional heat exchanger.
[0022]
That is, in the above exemplary configuration of the heat exchanger of the present invention, even if the circumference of one unit (2) is 16πmm with 16 pipes and about 20% at the joint between the pipes, the circumference is 14. Since it becomes 8πmm, the total perimeter of the heat exchange core part (10) per 11 mm in the vertical width is about 221 mm (14.8π × 5.5), and the outer heat exchange area is about 6 times that of the conventional configuration ( 221 ÷ 35.4). Therefore, according to the heat exchanger of the present invention, even if a certain amount of loss is anticipated, heat exchange efficiency several times as high as that of a heat exchanger having the same size as the conventional configuration can be easily obtained.
[0023]
In addition, although the aluminum extrusion material is used in the said embodiment as an ultrafine pipe (6) of a heat-medium channel | path unit (2), what consists of other metals can also be used. However, in the aluminum extrusion process in the form of a pipe, by using a piano wire or a cemented carbide wire as the core of the mold, a plurality of pipes having a diameter much smaller than the limit thickness of the porous tube used in the conventional heat exchanger are used. Since books can be manufactured with high accuracy at the same time, it is recommended to use aluminum extrusions in terms of both quality and cost. Further, by adopting such ultrafine pipe (6) is mutually joined integral of the strip-like heating medium passage unit as before Symbol Embodiment (2), the strength as the
[0024]
Furthermore, the width direction both side ends of the heat medium passage unit (2) for the ultrafine pipe (6), exposed on the surface of the heat exchange core (10), to transport and Kaname Tokoro site of a heat exchanger assembly, etc. Since it is easy to come into contact with other articles during handling and use, in order to prevent the breakage, the cross section has an elliptical shape that is long in the width direction of the heat exchange core part (10), or the hollow part has the same width. By making it unevenly distributed inward in the direction, the space between the hollow portion and the outer side in the same width direction may be thickened to improve impact strength.
[0025]
As shown in FIG. 6, the heat transfer fin (7) has a protruding edge (7 b) joined to the peripheral surface of each of the concave arc portions (7 a) and the outer surface of the ultrafine pipe (6) of the heat medium passage unit (2). Those having the following are preferred. That is, since the projecting edge (7b) increases the contact area between the heat transfer fin (7) and the heat medium passage units (2) on both sides, the fitting state of both (7) and (2) is stable. As a result, the strength of the heat exchange core part (10) is further increased, and the heat transfer property between the two (7) and (2) is further improved.
[0026]
Thus, the protruding edge portion (7b) extends along the peripheral edge of each concave arc portion (7a), as shown in FIG. ), And when the heat transfer fin (7) is press-fitted between the heat medium passage units (2) and (2), the peripheral edge of each concave arc portion (7a) May be bent or formed in advance as shown in FIG. In the configuration example of FIG. 7C, the heat transfer is performed by providing
[0027]
The heat exchanger according to the present invention includes a connection structure between the headers (1) and (1) and both ends of the heat medium passage unit (2), the number of extra fine pipes (6) in each heat medium passage unit (2), the heat medium Various design changes other than the embodiment can be made with respect to the detailed configuration such as the arrangement interval of the passage unit (2) and the shape and arrangement interval of the heat transfer fin (7).
[0028]
In the illustrated embodiment, the present invention shows a heat exchanger suitable for use as a condenser used in a refrigeration cycle of a car cooler. However, the present invention is small and expensive for a radiator for an automobile or the like. The present invention can be applied to various heat exchangers that require heat exchange performance.
[0029]
【The invention's effect】
According to this invention, as a heat exchanger, a plurality of metallic ultrafine pipe in parallel arranged in a close contact state in one direction to form a heat medium passage unit, a number of the heat medium passage unit is arranged in parallel The heat exchange core part is configured, and the external surface area as the heat medium passage unit is larger than the flat tube form, and the pipe diameter can be set much smaller than the thickness limit of the porous tube made of extruded material By arranging these thin heat medium passage units in parallel with high density at narrow intervals, the outer heat exchange area of the entire heat exchange core is extremely large, resulting in high heat exchange efficiency and high performance. And what is suitable for size reduction and weight reduction is provided.
[0030]
According to this invention, since the ultrafine pipe in the heat exchanger described above made of aluminum extruded material of a specific outer diameter, the pipe with inexpensively mass-produced with high precision, a large number of the heat exchange core section of constant dimensions The heat exchange efficiency can be improved by arranging the heat medium passage units.
[0031]
According to this invention, the heat medium passage unit in the heat exchanger described above, since the forming the strip plate joined integrally ultrafine pipe together, there is an advantage that excellent strength and handling properties.
[0032]
According to this invention, between the heat medium passage unit in the above-mentioned heat exchanger, plate-shaped heat transfer fins having a plurality of recessed circular section, each fits into ultrafine pipe of the heating medium passage unit on both side edges via Since the heat exchange core part becomes stable and high in strength, and the concave arc part is in contact with the peripheral surface of each ultrafine pipe, the heat transfer performance between the heat transfer fin and the heat medium passage unit is improved. Become good.
[0033]
According to this invention, since it has a projecting edge which the heat transfer fins are joined to the ultrafine pipe peripheral surface of the heat medium passage unit on the periphery of the recessed circular portion, the heat transfer fins and opposite sides of the heat medium passage unit And the strength of the heat exchange core is further increased, the heat transfer between the heat transfer fin and the heat medium passage unit is further improved, and the heat exchange efficiency is higher. Become.
[Brief description of the drawings]
1A and 1B show an embodiment of a heat exchanger according to the present invention, in which FIG. 1A is a front view of the whole heat exchanger, and FIG. 1B is a longitudinal side view of a main part of a heat exchange core portion.
FIG. 2 is a longitudinal front view of a main part of a heat exchange core part in the heat exchanger.
FIG. 3 is a front view of heat transfer fins used in the heat exchanger.
FIG. 4 is a perspective view of a main part of a heat exchange core part in the heat exchanger.
5A and 5B show a connection structure between a header and a heat medium passage unit group in the heat exchanger, wherein FIG. 5A is a cross-sectional plan view of the connection portion, and FIG. 5B is a longitudinal section of an end portion of the heat medium passage unit group. The front view and (c) are perspective views of spacers interposed between the heat medium passage units.
FIG. 6 is a longitudinal front view of a main part of a heat exchange core part in another embodiment of the heat exchanger according to the present invention.
FIGS. 7A and 7B show heat transfer fins used in the heat exchanger of the other embodiment, and FIGS. 7A to 7C are front views of heat transfer fins having different configuration examples. FIGS.
FIG. 8 is a front view showing a configuration example of a conventional heat exchanger.
FIG. 9 shows a porous tube used in a conventional heat exchanger, and FIGS.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003039379A JP3772150B2 (en) | 2003-02-18 | 2003-02-18 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003039379A JP3772150B2 (en) | 2003-02-18 | 2003-02-18 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004251475A JP2004251475A (en) | 2004-09-09 |
JP3772150B2 true JP3772150B2 (en) | 2006-05-10 |
Family
ID=33023577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003039379A Expired - Fee Related JP3772150B2 (en) | 2003-02-18 | 2003-02-18 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3772150B2 (en) |
-
2003
- 2003-02-18 JP JP2003039379A patent/JP3772150B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004251475A (en) | 2004-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3814917B2 (en) | Stacked evaporator | |
JP2004144460A (en) | Heat exchanger | |
US20030178188A1 (en) | Micro-channel heat exchanger | |
JP4830132B2 (en) | Micro heat exchanger | |
US20160054075A1 (en) | Folded tube multiple bank heat exchange unit | |
JP2004225961A (en) | Multi-flow type heat exchanger | |
JPH05312492A (en) | Heat exchanger | |
JPS63271099A (en) | Heat exchanger | |
JP2528121B2 (en) | Heat exchanger | |
KR20150030201A (en) | Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger | |
JP3772150B2 (en) | Heat exchanger | |
JP3403544B2 (en) | Heat exchanger | |
JP2013127341A (en) | Heat exchanger | |
JPH0545474U (en) | Heat exchanger | |
CN212058426U (en) | Heat exchanger | |
JP2005351520A (en) | Heat exchanger | |
JPH03117887A (en) | Heat exchanger | |
JPH10206079A (en) | Heat-exchanger | |
JPH10153393A (en) | Flat heating pipes for heat exchanger | |
JPH0624710Y2 (en) | Heat exchanger | |
JP2634956B2 (en) | Batch brazing of connecting pipes for heat exchange medium inlet and outlet in heat exchanger | |
JPH10227582A (en) | Heat exchanger | |
JP2551703Y2 (en) | Heat exchanger | |
JP4679734B2 (en) | Heat exchanger | |
JP2001263976A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20051028 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20051108 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060207 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20060213 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
LAPS | Cancellation because of no payment of annual fees |