JP3770525B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP3770525B2
JP3770525B2 JP36582998A JP36582998A JP3770525B2 JP 3770525 B2 JP3770525 B2 JP 3770525B2 JP 36582998 A JP36582998 A JP 36582998A JP 36582998 A JP36582998 A JP 36582998A JP 3770525 B2 JP3770525 B2 JP 3770525B2
Authority
JP
Japan
Prior art keywords
signal line
liquid crystal
sealing material
insulating film
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36582998A
Other languages
Japanese (ja)
Other versions
JP2000187236A (en
Inventor
和巧 藤岡
尚幸 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP36582998A priority Critical patent/JP3770525B2/en
Publication of JP2000187236A publication Critical patent/JP2000187236A/en
Application granted granted Critical
Publication of JP3770525B2 publication Critical patent/JP3770525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばコンピュータやワードプロセッサなどに用いられる液晶表示素子に関するものである。
【0002】
【従来の技術】
従来の液晶表示素子として、アクティブマトリクス型のものが知られている。このアクティブマトリクス型液晶表示素子は、薄膜トランジスタ(以下TFTと称する)等のスイッチング素子や画素電極がマトリクス状に設けられたアクティブマトリクス基板と、カラーフィルタ(以下CFと称する)や対向電極が設けられた対向基板とを備えており、表示媒体としての液晶層を間に挟んで対向配置された両基板が、その周囲をシール材により所定の間隙で貼り合わせられた構成を有する。
【0003】
従来、このアクティブマトリクス基板として、TFT、TFTを制御する走査信号を与えるゲート信号線および表示信号を与えるためのソース信号線を覆うように層間絶縁膜を設けて、その層間絶縁膜の上に画素電極を設けることにより、画素電極とTFT、画素電極とゲート信号線、および画素電極とソース信号線を重畳させた構成のものが知られている。この構成によれば、TFT、ゲート信号線およびソース信号線を除く部分を全て表示開口部とすることができるので、非常に明るい表示状態を得ることができる。
【0004】
この層間絶縁膜は、膜厚0.3μm程度のゲート信号線、膜厚0.3μm程度のソース信号緑および高さ1μm程度のTFTの表面を平坦化し、かつ、画素電極とゲート信号線との寄生容量および画素電極とソース信号緑との寄生容量を小さくする必要がある。この層間絶縁膜は、通常、誘電率ε=4前後のアクリル系感光樹脂をスピンコート法で基板に塗布することにより形成され、上記条件を満足させるためには、層間絶縁膜の膜厚を3μm以上にする必要がある。
【0005】
一方、スピンコート法による膜厚の制御は通常±5%程度が限界であるので、平均3μmの膜厚に設定したときには最大で0.3μmの膜厚ばらつきが生じる。ここで、シール材に接する部分(以下シール材領域と称する)の層間絶縁膜を除去すると直接0.3μmのセル厚異常につながり、この0.3μmという値は液晶表示素子の製造工程におけるセル厚分布の工程マージン0.5μmに対して6割にも相当するので、工程管理が困難になる。このため、通常はシール材領域にも層間絶縁膜を残しておく。この場合、上記層間絶縁膜の膜厚ばらつきは層間絶縁膜の面内でブロードに発生しているため、アクティブマトリクス基板と対向基板との間にスペーサーを介して均一なセル厚を得ることができる。
【0006】
特開平7−128670号公報では表示領域内の層間絶縁膜をシール材領域にも設けることにより平坦度を改善することが記載されてる。
【0007】
また、特開平6−308510号公報ではシール材領域にダミーパターンを設けてシール材部のセル厚を均一化することが記載されている。
【0008】
【発明が解決しようとする課題】
ところで、上述の液晶表示素子において、アクティブマトリクス基板または対向基板上のTFT、電極、配線、CF等により基板表面に凹凸が生じ、これを覆う平坦化膜を設けない構成ではセル厚分布不良を招くことがある。ここで、これらの凹凸形状を最適化することによりセル厚分布不良を回避できることは従来良く知られており、一般に、規則性のある配線パターンや画素パターン、TFTパターン等による数μm程度の段差ではセル厚分布不良は発生しない。しかし、駆動IC取り付け用配線の引き回しパターンや対向電極端子等のように、規則性のないランダムな形状でピッチが数mm程度の大きなものでは、その凹凸形状に追従変形しようとしてガラス基板が歪むため、セル厚分布不良が発生してしまう。上述の層間絶縁膜を用いて開口部を広くすると共にアクティブマトリクス基板表面を平坦化した液晶表示素子においても、基板表面の凹凸形状を完全に平坦化することはできていない。すなわち、ガラス基板表面を基準とした層間絶縁膜の表面の高さは、その層間絶縁膜の下にある凸部によりほぼ決定されるので、最終的に得られる層間絶縁膜表面の凹凸形状は、その層間絶縁膜の下にある凹部が層間絶縁膜で埋められるか否かによって決定される。特に、シール材領域については、駆動IC取り付け用配線の引き回しパターンや対向電極端子等によりランダムで大きなピッチの凹凸形状が形成されるため、その上の層間絶縁膜表面の凹凸が激しくなって、セル厚分布不良が発生し易い。さらに、シール材領域において、シール材の辺に垂直な方向に数μm程度の段差があっても、シール材領域全体にほぼ同様の凹凸形状があればセル厚分布不良は生じないが、シール材の辺に沿う方向に凹凸形状があると、ほぼ必ずセル厚分布不良が生じてしまう。
【0009】
図4に液晶表示素子の平面図を示す。図4は液晶表示素子のゲート信号線1と、ソース信号線2と、シール材3とを示しており、TFT等の構成は省略している。図5に図4のA部であるソース信号線2とシール材3の交差部の拡大図を示す。図6に図5のB−B断面を示す。図5に示すようにソース信号線2はドライバーICを搭載したTAB等の外部配線と接続するために、ある一定本数ずつ信号線を集約させて液晶表示素子の周辺部に引き出されている。これはドライバーICの取り付け領域をできる限り小さくするためと、ドライバーICのチップサイズの制約によるものである。
【0010】
従って、シール材3が信号線のある領域とない領域を跨いでおり、シール部の下に信号線が配置されていない領域が大きくなるため、図6に示すように層間絶縁膜4によって十分に平坦にできない領域が発生し、セル厚分布の不良となる。
【0011】
本発明は、このような従来技術の課題を解決すべくなされたものであり、セル厚分布不良を防ぐことができる液晶表示素子を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の液晶表示素子は、液晶層を間に挟んで対向配設される一対の基板と、
該一対の基板のうちの一方の基板上に形成され、所定の本数毎に集約されて該一方の基板端部へ引き出された複数の信号線と、該信号線に電気的に接続されたスイッチング素子と、該信号線および該スイッチング素子上に形成されるとともに、画素電極が表面に設けられ、感光性樹脂によって平均3μm膜厚に形成された層間絶縁膜と、該一対の基板の周囲であって、該層間絶縁膜上に形成され該一対の基板を所定の間隙で貼り合わせるシール材と、を備えた液晶表示素子において、前記複数の信号線は、前記シール材下において、所定の本数毎に集約されることによりシール材の延伸方向に対して斜めになっており、前記シール材下における一方の基板上に、前記所定の本数毎に集約された複数の信号線と、該複数の信号線と隣接する前記所定の本数毎に集約された複数の信号線との間に、前記シール材の辺に沿う方向に対して直交する方向に延びる直線状の複数のダミー部材が、前記信号線と同一幅、同一ピッチで、かつ前記信号線と同一工程によって該信号線と同一材料で同じ高さに形成されており、前記信号線とそれに隣接する前記ダミー部材との間隔、および前記ダミー部材とそれに隣接するダミー部材との間隔が100μmより小さくなっていることを特徴とする。
【0014】
以下に本発明の作用について説明する。
本発明の請求項1に記載の液晶表示素子によれば、ダミー部材は信号線と同一工程、同一幅及び同一ピッチで形成されており、シール材領域全体にほぼ同等の凹凸形状があるため、セル厚むらが目立ちにくく、セル厚分布不良が生じない。
【0015】
本発明の液晶表示素子によれば、ダミー部材の延伸方向と隣接する信号線の延伸方向とを同一方向に配置しているため、シール材の凹凸の形状がほぼ均等になるため、さらにセル厚むらが目立ちにくく、セル厚分布不良が生じない。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
液晶表示素子においてセル厚分布不良を防ぐためには、基板上の配線や電極等の部材による凹凸を層間絶縁膜により平坦化して、層間絶縁膜表面の凹凸の段差をセル厚の管理基準である0.5μm以下にする必要がある。ここで、厚み数μm程度の樹脂材料からなる層間絶縁膜を用いて凹部を埋められるかどうかは、凹部の探さと広さとに依存している。
【0017】
層間絶縁膜の下の凹凸の段差と層間絶縁膜下の凹部の幅とを変化させた場合について、層間絶縁膜表面の凹凸の段差を調べた結果を下記表1に示す。なお、ここでは、層間絶縁膜として感光性アクリル樹脂をスピンコート法によリ3μmの膜厚で形成した。また、凹凸の最大段差は例えばTFT部分の高さである約1μmとした。
【0018】
【表1】

Figure 0003770525
【0019】
この表1に示すように、凹部の幅が約100μm以上の場合には凹部を埋めて平坦化することができず、層間絶縁膜表面に凹部の形状が反映されて現れるが、凹凸の段差を0.5μm以下にすることにより層間絶縁膜表面の凹凸の段差を0.5μm以下にすることができる。また、凹部の幅が100μmより小さい場合には凹部を埋めて平坦化することができるので、凹凸の段差が0.5μm以上でも層間絶縁膜表面の段差を平坦化することができる。
【0020】
従って、本発明にあっては、シール材領域の層間絶縁膜の下の凹凸の段差を0.5μm以下にするために、シール材領域において層間絶縁膜の下にある部材の表面に発生する凹凸形状(段差)を0.5μm以下にしてある。また、他の例にあっては、シール材領域の層間絶縁膜の下の凹凸の凹部の幅を100μmより小さくするために、シール材領域において層間絶縁膜の下にある部材のうち、シール材の辺に沿う方向に隣接するもの同士の間隔を100μmより小さくしてある。また、他の例にあっては、シール材領域の層間絶縁膜の下の凹凸の凹部の幅が100μm以上である場合に凹凸の段差を0.5μm以下にするために、シール材領域において層間絶縁膜の下にある部材のうち、シール材の辺に沿う方向に隣接する部材との間隔が100μm以上のものの段差を0.5μm以下にしてある。これにより、層間絶縁膜表面の凹凸の段差をセル厚の管理基準である0.5μm以下にすることができる。
【0021】
なお、シール材領域において層間絶縁膜の下にある部材と、シール材の辺に沿う方向に隣接するものとの間隔が100μm以上である場合には、両者の段差が0.5μm以下であればダミー部材を設けなくても層間絶縁膜表面の凹凸の段差を0.5μm以下にできるが、この部分にダミー部材を設けることにより凹部を埋めてさらに表面を平坦化することができる。
【0022】
このダミー部材は信号入力に関係のない部材であり、層間絶縁膜よりも先に形成されるゲート信号線、ソース信号線、駆動IC取り付け用配線の引き回しパターンや対向電極端子等の各種部材と同時に形成してもよく、別途形成してもよい
以下に本発明の実施の形態について、図面を参照しながら説明する。
この液晶表示素子は、液晶層を間に挟んでアクティブマトリクス基板とCF基板とが対向配設され、両基板の周囲がシール材により貼り合わせられている。
【0023】
図1(a)に液晶表示素子の周辺部の拡大図を示す。図3は、図1のC−C断面を示す断面図である。ダミーパターン5の形状を替えたものを図1(b)に示す。
【0024】
図1の液晶表示素子では、ソース信号線2が形成されていない領域にダミーパターン5を設けるが、ダミーパターン5は、ソース信号線2と同一形状、同一ピッチで設けることにより、層間絶縁膜4として用いるアクリル樹脂のコーティングの平坦度を同一とすることができ、より一層のセル厚の均一化を行うものである。更にダミーパターン5をソース信号線2と同一工程で作成し、ダミーパターン5とソース信号線2との高さを同じにすることにより、層間絶縁膜4の表面が平坦になりセル厚むらが目立ちにくく、セル厚分布不良が生じない。
【0025】
ソース信号線2がシール材3の延伸方向に対して斜めであるため、ダミーパターン5も同様に斜めに設けてある。
【0026】
ダミーパターン5群は左右で延伸方向が異なるため、ダミーパターン5群の中心に近づくほど急激なパターンの変化を抑えるため、徐々に縦方向に傾いているが、ダミーパターン群の中心付近でセル厚分布不良が問題にならない場合は、左及び右のダミーパターンはそれぞれ信号線と同じ延伸方向に配置してもよい。
【0027】
層間絶縁膜4として膜厚3μmの感光性アクリル樹脂をスピンコート法により形成している。
【0028】
これを実際の液晶生産工程にて465mm×360mmのガラス基板に表示サイズが12.1型の液晶表示素子を2面取れるサンプルを用いて、シール部近傍(シール部端面より1mm)でのセル厚分布を評価した。貼合せ工程ではシール樹脂に熱硬化型樹脂(XN−21S:三井東圧化学(株))を、表示部内のスペーサー8には4.5μm径のプラスチックスペーサー(SP−2045:積水ファインケミカル(株))を、シール内スペーサー9には5.5μm径のガラスファイバー(PF−55:日本電気硝子(株))を使用した。ここでシール内と表示部のスペーサー径が異なっているのは、図7に示すようにシール材3はCF基板上の厚さ約3000ÅのCrパターン7上にあり、対して表示部のプラスチックスペーサー8は膜厚は約1.3μmのRGBの色層の上となる構造であるため、膜厚差分の1μmをシール樹脂部に上乗せする必要がある。実際の工程フローとしては、CF基板にシール樹脂と仮止め用の紫外線硬化掛脂を塗布し、TFT基板にはコモン転移用導電樹脂を塗布した上でプラスチックビーズを散布する。次にTFT基板とCF基板をアライメントし、仮止め用紫外線硬化樹脂を硬化させて固定し、加熱とプレスを同時に行いシール樹脂をセル厚までプレスしそのまま硬化させる。最後にパネルを切り出し液晶を真空注入法にて注入し液晶表示素子は完成する。
【0029】
以上の条件で各40パネル(20基板)のサンプルにてセル厚分布を測定したところ、本実施の形態の場合はセル厚の平均が4.50μmで、標準偏差が0.03μmであり、以上によりセル厚分布による透過率むらの小さい表示品位の優れた液晶表示素子が作成できた。
【0030】
更に、図2にダミーパターン5をシール材の辺に沿う方向に対して垂直方向に延伸した配線とし、ソース信号線2と同一材料で同一のライン幅、ピッチで作成した例を示す。この場合パターン設計時の手間をかけることなく簡単にダミーパターン5を設計でき、セル厚分布を測定すると、セル厚の平均が4.50μmで、標準偏差が0.05μmであり、ほとんど図9の実施例と同一の結果を得ることができた。
【0031】
本実施の形態では、ソース信号線2を用いて説明したが、ゲート信号線1や、他の配線でもよい。
【0032】
【発明の効果】
請求項1の発明によれば、ダミーパターンは、信号線と同一工程、同一幅、同一ピッチで形成されており、シール材領域全体にほぼ同等の凹凸形状があるため、セル厚むらが目立ちにくく、セル厚分布不良が生じない液晶表示素子が得られる。
【0033】
また、ダミー部材の延伸方向と隣接する信号線の延伸方向とを同一方向に配置しているため、シール材したの凹凸の形状がほぼ均等になるため、さらにセル厚むらが目立ちにくく、セル厚分布不良が生じない液晶表示素子が得られる。
【図面の簡単な説明】
【図1】本実施の形態の液晶表示素子の周辺部の拡大図を示す。
【図2】他の液晶表示素子の周辺部の拡大図を示す。
【図3】本実施の形態の液晶表示素子の断面図を示す。
【図4】液晶表示素子の平面図を示す。
【図5】従来技術の液晶表示素子の周辺部の拡大図を示す。
【図6】図5の液晶表示素子の断面図を示す。
【図7】液晶表示素子の断面図を示す。
【符号の説明】
1 ゲート信号線
2 ソース信号線
3 シール材
4 層間絶縁膜
5 ダミーパターン
6 ガラス基板
7 ブラックマトリクス(Crパターン)
8 表示部内スペーサー
9 シール内スペーサー
10 カラーフィルタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display element used in, for example, a computer or a word processor.
[0002]
[Prior art]
As a conventional liquid crystal display element, an active matrix type is known. This active matrix liquid crystal display element is provided with an active matrix substrate in which switching elements such as thin film transistors (hereinafter referred to as TFTs) and pixel electrodes are provided in a matrix, a color filter (hereinafter referred to as CF) and a counter electrode. The two substrates, which are provided with a counter substrate and are arranged to face each other with a liquid crystal layer as a display medium interposed therebetween, have a configuration in which the periphery thereof is bonded with a sealant at a predetermined gap.
[0003]
Conventionally, as this active matrix substrate, an interlayer insulating film is provided so as to cover a TFT, a gate signal line for supplying a scanning signal for controlling the TFT, and a source signal line for supplying a display signal, and a pixel is formed on the interlayer insulating film. A structure in which a pixel electrode and a TFT, a pixel electrode and a gate signal line, and a pixel electrode and a source signal line are overlapped by providing electrodes is known. According to this configuration, since all the portions excluding the TFT, the gate signal line, and the source signal line can be used as display openings, a very bright display state can be obtained.
[0004]
This interlayer insulating film flattens the surface of a gate signal line with a film thickness of about 0.3 μm, a source signal green with a film thickness of about 0.3 μm, and a TFT with a height of about 1 μm, and between the pixel electrode and the gate signal line It is necessary to reduce the parasitic capacitance and the parasitic capacitance between the pixel electrode and the source signal green. This interlayer insulating film is usually formed by applying an acrylic photosensitive resin having a dielectric constant around ε = 4 to the substrate by spin coating, and in order to satisfy the above conditions, the interlayer insulating film has a thickness of 3 μm. It is necessary to do more.
[0005]
On the other hand, the control of the film thickness by the spin coating method is normally limited to about ± 5%, and therefore, when the average film thickness is set to 3 μm, the maximum film thickness variation is 0.3 μm. Here, removal of the interlayer insulating film in the portion in contact with the sealing material (hereinafter referred to as the sealing material region) directly leads to a cell thickness abnormality of 0.3 μm, and this value of 0.3 μm is the cell thickness in the manufacturing process of the liquid crystal display element. Since this corresponds to 60% of the distribution process margin of 0.5 μm, process management becomes difficult. For this reason, an interlayer insulating film is usually left also in the sealing material region. In this case, since the film thickness variation of the interlayer insulating film is broadly generated in the plane of the interlayer insulating film, a uniform cell thickness can be obtained through a spacer between the active matrix substrate and the counter substrate. .
[0006]
Japanese Patent Application Laid-Open No. 7-128670 describes that the flatness is improved by providing an interlayer insulating film in the display region also in the sealing material region.
[0007]
Japanese Laid-Open Patent Publication No. 6-308510 discloses that a dummy pattern is provided in the sealing material region to make the cell thickness of the sealing material uniform.
[0008]
[Problems to be solved by the invention]
By the way, in the above-mentioned liquid crystal display element, irregularities occur on the surface of the substrate due to TFTs, electrodes, wirings, CFs, etc. on the active matrix substrate or the counter substrate, and a structure without a planarizing film covering this causes a cell thickness distribution defect. Sometimes. Here, it is well known that cell thickness distribution failure can be avoided by optimizing these uneven shapes. Generally, in steps of about several μm due to a regular wiring pattern, pixel pattern, TFT pattern, etc. Cell thickness distribution failure does not occur. However, if there is a random shape with no regularity, such as a wiring pattern for driving IC attachment wiring or a counter electrode terminal, and a large pitch of about several millimeters, the glass substrate will be distorted in an attempt to follow the uneven shape. As a result, a cell thickness distribution defect occurs. Even in the liquid crystal display device in which the opening is widened using the above-described interlayer insulating film and the surface of the active matrix substrate is flattened, the uneven shape of the substrate surface cannot be completely flattened. That is, the height of the surface of the interlayer insulating film relative to the surface of the glass substrate is almost determined by the convex portion under the interlayer insulating film, so the uneven shape of the surface of the interlayer insulating film finally obtained is It is determined depending on whether or not the recess under the interlayer insulating film is filled with the interlayer insulating film. In particular, in the sealing material region, since the uneven pattern with a large and large pitch is formed by the routing pattern of the wiring for mounting the driving IC, the counter electrode terminal, etc., the unevenness of the surface of the interlayer insulating film thereon becomes intense, and the cell Thickness distribution failure tends to occur. Furthermore, even if there is a step of about several μm in the direction perpendicular to the side of the sealing material in the sealing material region, if the same uneven shape is present in the entire sealing material region, the cell thickness distribution defect does not occur. If there is a concavo-convex shape in the direction along the side, cell thickness distribution defects will almost always occur.
[0009]
FIG. 4 shows a plan view of the liquid crystal display element. FIG. 4 shows a gate signal line 1, a source signal line 2, and a sealing material 3 of the liquid crystal display element, and the configuration of the TFT and the like is omitted. FIG. 5 shows an enlarged view of a crossing portion of the source signal line 2 and the sealing material 3 which is a portion A of FIG. FIG. 6 shows a BB cross section of FIG. As shown in FIG. 5, in order to connect the source signal line 2 to an external wiring such as a TAB equipped with a driver IC, a certain number of signal lines are aggregated and led out to the peripheral portion of the liquid crystal display element. This is because the mounting area of the driver IC is made as small as possible and the chip size of the driver IC is limited.
[0010]
Therefore, since the sealing material 3 straddles the region where the signal line is present and the region where the signal line is not present, and the region where the signal line is not disposed under the seal portion becomes large, the interlayer insulating film 4 is sufficient as shown in FIG. A region that cannot be flattened occurs, resulting in a poor cell thickness distribution.
[0011]
The present invention has been made to solve such problems of the prior art, and an object of the present invention is to provide a liquid crystal display element capable of preventing cell thickness distribution defects.
[0012]
[Means for Solving the Problems]
The liquid crystal display element of the present invention includes a pair of substrates disposed to face each other with a liquid crystal layer interposed therebetween,
A plurality of signal lines formed on one of the pair of substrates, aggregated for each predetermined number, and drawn to the end of the one substrate, and switching electrically connected to the signal lines and elements, Rutotomoni formed on the signal line and the on the switching element, a pixel electrode is provided on the surface, an interlayer insulating film formed on the average 3μm thickness of a photosensitive resin, there around the pair of substrates And a sealing material that is formed on the interlayer insulating film and bonds the pair of substrates to each other with a predetermined gap. The plurality of signal lines are provided for each predetermined number under the sealing material. And the plurality of signal lines aggregated for each of the predetermined number on one substrate under the sealing material, and the plurality of signals. Said adjacent line Between the plurality of signal lines which are aggregated for each number of the constant, linear plurality of dummy members extending in a direction orthogonal to the direction along the sides of the sealing material, the signal line and the same width, the same The signal line and the same material are formed at the same height with the same process as the signal line, and the distance between the signal line and the dummy member adjacent thereto, and the dummy member and the dummy adjacent thereto. The distance from the member is smaller than 100 μm .
[0014]
The operation of the present invention will be described below.
According to the liquid crystal display element of the first aspect of the present invention, the dummy member is formed in the same process, the same width and the same pitch as the signal line, and the entire sealing material region has substantially the same uneven shape, Cell thickness unevenness is not conspicuous and cell thickness distribution failure does not occur.
[0015]
According to the liquid crystal display element of the present invention, since the extending direction of the dummy member and the extending direction of the adjacent signal line are arranged in the same direction, the shape of the unevenness under the sealing material becomes substantially uniform. Unevenness in thickness is not noticeable and cell thickness distribution failure does not occur.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
In order to prevent cell thickness distribution failure in a liquid crystal display element, unevenness caused by members such as wirings and electrodes on the substrate is flattened by an interlayer insulating film, and the unevenness on the surface of the interlayer insulating film is defined as a cell thickness management standard. Must be 5 μm or less. Here, whether or not the recess can be filled with an interlayer insulating film made of a resin material having a thickness of about several μm depends on the search and the width of the recess.
[0017]
Table 1 below shows the results of investigating the uneven step on the surface of the interlayer insulating film when the uneven step under the interlayer insulating film and the width of the recessed portion under the interlayer insulating film were changed. Here, as the interlayer insulating film, a photosensitive acrylic resin was formed to a thickness of 3 μm by spin coating. Further, the maximum unevenness of the unevenness is, for example, about 1 μm which is the height of the TFT portion.
[0018]
[Table 1]
Figure 0003770525
[0019]
As shown in Table 1, when the width of the concave portion is about 100 μm or more, the concave portion cannot be filled and flattened, and the shape of the concave portion is reflected on the surface of the interlayer insulating film. By setting the thickness to 0.5 μm or less, the uneven step on the surface of the interlayer insulating film can be set to 0.5 μm or less. Further, when the width of the concave portion is smaller than 100 μm, the concave portion can be filled and flattened, so that the step on the surface of the interlayer insulating film can be flattened even when the concave and convex step is 0.5 μm or more.
[0020]
Therefore, in the present invention, the unevenness generated on the surface of the member under the interlayer insulating film in the sealing material region in order to make the unevenness step under the interlayer insulating film in the sealing material region 0.5 μm or less. The shape (step) is 0.5 μm or less. In another example, in order to make the width of the concave and convex portions under the interlayer insulating film in the sealing material region smaller than 100 μm, among the members under the interlayer insulating film in the sealing material region, the sealing material The interval between the adjacent ones in the direction along the side of each is smaller than 100 μm. In another example, when the width of the concave and convex portions under the interlayer insulating film in the sealing material region is 100 μm or more, in order to make the uneven step difference 0.5 μm or less, the interlayer in the sealing material region Of the members under the insulating film, the step difference between the members adjacent in the direction along the side of the sealing material is 100 μm or more is set to 0.5 μm or less. Thereby, the uneven | corrugated level | step difference of the surface of an interlayer insulation film can be 0.5 micrometer or less which is a management standard of cell thickness.
[0021]
In addition, when the gap between the member under the interlayer insulating film in the sealing material region and the member adjacent in the direction along the side of the sealing material is 100 μm or more, the difference between the two is 0.5 μm or less. Even if the dummy member is not provided, the uneven step on the surface of the interlayer insulating film can be reduced to 0.5 μm or less. However, by providing the dummy member in this portion, the recess can be filled and the surface can be further planarized.
[0022]
This dummy member is irrelevant to signal input, and is simultaneously with various members such as a gate signal line, a source signal line, a wiring pattern for mounting a driver IC and a counter electrode terminal formed before the interlayer insulating film. In the following, embodiments of the present invention will be described with reference to the drawings.
In this liquid crystal display element, an active matrix substrate and a CF substrate are disposed to face each other with a liquid crystal layer interposed therebetween, and the periphery of both substrates is bonded with a sealant.
[0023]
FIG. 1A shows an enlarged view of the periphery of the liquid crystal display element. FIG. 3 is a cross-sectional view showing a CC cross section of FIG. 1. FIG. 1B shows the dummy pattern 5 whose shape is changed.
[0024]
In the liquid crystal display element of FIG. 1, a dummy pattern 5 is provided in a region where the source signal line 2 is not formed. The dummy pattern 5 is provided with the same shape and the same pitch as the source signal line 2, thereby providing the interlayer insulating film 4. The flatness of the acrylic resin coating used can be made the same, and the cell thickness can be made even more uniform. Further, the dummy pattern 5 is formed in the same process as the source signal line 2, and the height of the dummy pattern 5 and the source signal line 2 is made the same, so that the surface of the interlayer insulating film 4 becomes flat and the cell thickness unevenness is conspicuous. It is difficult to cause a cell thickness distribution defect.
[0025]
Since the source signal line 2 is oblique with respect to the extending direction of the sealing material 3, the dummy pattern 5 is similarly provided obliquely.
[0026]
Since the extending directions of the dummy patterns 5 are different on the left and right, the cell thickness is gradually inclined in the vertical direction in order to suppress a rapid change of the pattern as it approaches the center of the dummy patterns 5. If the distribution failure does not become a problem, the left and right dummy patterns may be arranged in the same extending direction as the signal lines.
[0027]
A photosensitive acrylic resin having a film thickness of 3 μm is formed as the interlayer insulating film 4 by spin coating.
[0028]
Cell thickness in the vicinity of the seal part (1 mm from the end face of the seal part) using a sample in which two liquid crystal display elements with a display size of 12.1 type can be taken on a 465 mm × 360 mm glass substrate in the actual liquid crystal production process Distribution was evaluated. In the laminating process, a thermosetting resin (XN-21S: Mitsui Toatsu Chemical Co., Ltd.) is used as the sealing resin, and a 4.5 μm diameter plastic spacer (SP-2045: Sekisui Fine Chemical Co., Ltd.) is used as the spacer 8 in the display section. ) And 5.5 μm diameter glass fiber (PF-55: Nippon Electric Glass Co., Ltd.) was used for the spacer 9 in the seal. Here, the spacer diameter in the seal is different from the spacer diameter of the display portion as shown in FIG. 7. The seal material 3 is on the Cr pattern 7 having a thickness of about 3000 mm on the CF substrate. Since No. 8 is a structure on the RGB color layer having a film thickness of about 1.3 μm, it is necessary to add 1 μm of the film thickness difference on the seal resin portion. As an actual process flow, a sealing resin and an ultraviolet curing grease for temporary fixing are applied to the CF substrate, and a conductive resin for common transition is applied to the TFT substrate, and then plastic beads are dispersed. Next, the TFT substrate and the CF substrate are aligned, the UV curable resin for temporary fixing is cured and fixed, and heating and pressing are performed simultaneously to press the sealing resin to the cell thickness and cure as it is. Finally, the panel is cut out and liquid crystal is injected by vacuum injection to complete the liquid crystal display element.
[0029]
When the cell thickness distribution was measured for each sample of 40 panels (20 substrates) under the above conditions, in the case of this embodiment, the average cell thickness was 4.50 μm and the standard deviation was 0.03 μm. As a result, a liquid crystal display device having excellent display quality with small transmittance unevenness due to cell thickness distribution could be produced.
[0030]
Further, FIG. 2 shows an example in which the dummy pattern 5 is formed as a wiring extending in a direction perpendicular to the direction along the side of the sealing material, and is made of the same material as the source signal line 2 with the same line width and pitch. In this case, the dummy pattern 5 can be easily designed without taking the trouble of pattern design. When the cell thickness distribution is measured, the average cell thickness is 4.50 μm and the standard deviation is 0.05 μm. The same results as in the example could be obtained.
[0031]
In this embodiment mode, the source signal line 2 is described, but the gate signal line 1 and other wirings may be used.
[0032]
【The invention's effect】
According to the invention of claim 1, since the dummy pattern is formed in the same process, the same width and the same pitch as the signal line, and the entire sealing material region has substantially the same uneven shape, the cell thickness unevenness is hardly noticeable. Thus, a liquid crystal display element free from cell thickness distribution defects can be obtained.
[0033]
In addition, since the extending direction of the dummy member and the extending direction of the adjacent signal line are arranged in the same direction, the uneven shape of the sealing material is almost uniform, so that the cell thickness unevenness is less noticeable and the cell thickness A liquid crystal display element in which distribution failure does not occur is obtained.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a peripheral portion of a liquid crystal display element of an embodiment mode.
FIG. 2 is an enlarged view of a peripheral portion of another liquid crystal display element.
FIG. 3 is a cross-sectional view of a liquid crystal display element of the present embodiment.
FIG. 4 is a plan view of a liquid crystal display element.
FIG. 5 is an enlarged view of a peripheral portion of a conventional liquid crystal display element.
6 shows a cross-sectional view of the liquid crystal display element of FIG.
FIG. 7 is a cross-sectional view of a liquid crystal display element.
[Explanation of symbols]
1 Gate signal line 2 Source signal line 3 Sealing material 4 Interlayer insulating film 5 Dummy pattern 6 Glass substrate 7 Black matrix (Cr pattern)
8 Display spacer 9 Seal spacer 10 Color filter

Claims (1)

液晶層を間に挟んで対向配設される一対の基板と、
該一対の基板のうちの一方の基板上に形成され、所定の本数毎に集約されて該一方の基板端部へ引き出された複数の信号線と、
該信号線に電気的に接続されたスイッチング素子と、
該信号線および該スイッチング素子上に形成されるとともに、画素電極が表面に設けられ、感光性樹脂によって平均3μm膜厚に形成された層間絶縁膜と、
該一対の基板の周囲であって、該層間絶縁膜上に形成され該一対の基板を所定の間隙で貼り合わせるシール材と、を備えた液晶表示素子において、
前記複数の信号線は、前記シール材下において、所定の本数毎に集約されることによりシール材の延伸方向に対して斜めになっており、
前記シール材下における一方の基板上に、前記所定の本数毎に集約された複数の信号線と、該複数の信号線と隣接する前記所定の本数毎に集約された複数の信号線との間に、前記シール材の辺に沿う方向に対して直交する方向に延びる直線状の複数のダミー部材が、前記信号線と同一幅、同一ピッチで、かつ前記信号線と同一工程によって該信号線と同一材料で同じ高さに形成されており、
前記信号線とそれに隣接する前記ダミー部材との間隔、および前記ダミー部材とそれに隣接するダミー部材との間隔が100μmより小さくなっていることを特徴とする液晶表示素子。
A pair of substrates disposed opposite to each other with a liquid crystal layer interposed therebetween;
A plurality of signal lines formed on one of the pair of substrates, aggregated for each predetermined number, and drawn to the end of the one substrate;
A switching element electrically connected to the signal line;
Rutotomoni formed on the signal line and the on the switching element, a pixel electrode is provided on the surface, an interlayer insulating film by the photosensitive resin are formed on the average 3μm thickness,
In a liquid crystal display element comprising a sealant formed around the pair of substrates and formed on the interlayer insulating film to bond the pair of substrates with a predetermined gap,
The plurality of signal lines are inclined with respect to the extending direction of the sealing material by being aggregated for each predetermined number under the sealing material,
Between the plurality of signal lines aggregated for each of the predetermined number on one substrate under the sealing material and the plurality of signal lines aggregated for each of the predetermined number of lines adjacent to the plurality of signal lines. a plurality of dummy members linear extending in a direction perpendicular to the direction along the sides of the sealing material, the signal line and the same width, at the same pitch, and the signal lines by the signal line and the same process Are made of the same material and at the same height,
A liquid crystal display element , wherein an interval between the signal line and the dummy member adjacent to the signal line and an interval between the dummy member and the dummy member adjacent thereto are smaller than 100 μm .
JP36582998A 1998-12-24 1998-12-24 Liquid crystal display element Expired - Fee Related JP3770525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36582998A JP3770525B2 (en) 1998-12-24 1998-12-24 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36582998A JP3770525B2 (en) 1998-12-24 1998-12-24 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2000187236A JP2000187236A (en) 2000-07-04
JP3770525B2 true JP3770525B2 (en) 2006-04-26

Family

ID=18485221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36582998A Expired - Fee Related JP3770525B2 (en) 1998-12-24 1998-12-24 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP3770525B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531633B2 (en) 2000-09-14 2004-05-31 セイコーエプソン株式会社 Liquid crystal devices and electronic equipment
KR100652046B1 (en) * 2001-12-22 2006-11-30 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
JP4411898B2 (en) * 2003-07-31 2010-02-10 セイコーエプソン株式会社 LCD panel
JP4512976B2 (en) * 2003-12-10 2010-07-28 日本電気株式会社 Liquid crystal display
JP4448834B2 (en) 2006-04-25 2010-04-14 セイコーエプソン株式会社 Electro-optical device and electronic apparatus including the same
JP5429775B2 (en) * 2008-10-16 2014-02-26 株式会社ジャパンディスプレイ LCD panel
JP5392646B2 (en) * 2009-01-27 2014-01-22 株式会社ジャパンディスプレイ Substrate device for display element
CN101963714B (en) 2009-07-22 2012-07-04 群康科技(深圳)有限公司 Liquid crystal panel and manufacturing method thereof
WO2020261315A1 (en) * 2019-06-24 2020-12-30 三菱電機株式会社 Curved liquid crystal display device

Also Published As

Publication number Publication date
JP2000187236A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
KR100261643B1 (en) Lcd device and its manufacturing method
US6667790B2 (en) Liquid crystal display having particular spacer
US6208394B1 (en) LCD device and method for fabricating the same having color filters and a resinous insulating black matrix on opposite sides of a counter electrode on the same substrate
KR100731938B1 (en) Liquid crystal display device having an injection hole for liquid crystal
US20100314045A1 (en) Liquid crystal display panel and method of manufacturing the same
KR100403645B1 (en) Liquid crystal display panel and method of fabricating the same
KR100795854B1 (en) Liquid crystal display element
US20010022640A1 (en) Liquid crystal device and manufacturing method therefor
KR100248497B1 (en) Color lcd panel
KR20090041337A (en) Liquid crystal display panel
JP3770525B2 (en) Liquid crystal display element
US20050275328A1 (en) Flat display panel with a spacer unit to prevent displacement between upper and lower glass substrates
US20060152663A1 (en) Display device
JP3830115B2 (en) Liquid crystal display element
JP4011924B2 (en) LCD panel
JP3716964B2 (en) Liquid crystal display device
US20070076160A1 (en) Liquid crystal display device
KR19990072894A (en) A array substrate of liquid crystal display element, liquid crystal display element using the array substrate and method for manufac turing array substrate
US20030001999A1 (en) Sealing structure and sealing method of liquid crystal display
US6288765B1 (en) Liquid crystal display device having improved thickness uniformity
JP3562786B2 (en) Liquid crystal display device and method of manufacturing the same
JP3844774B2 (en) Liquid crystal display
CN111830753B (en) Liquid crystal display device having a light shielding layer
KR100864410B1 (en) Array substrate for LCD and Method for fabricating of the same
KR20050113906A (en) Liquid crystal panel for liquid crystal display device and method for fabricating the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees