JP3750117B2 - Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3750117B2
JP3750117B2 JP2003105797A JP2003105797A JP3750117B2 JP 3750117 B2 JP3750117 B2 JP 3750117B2 JP 2003105797 A JP2003105797 A JP 2003105797A JP 2003105797 A JP2003105797 A JP 2003105797A JP 3750117 B2 JP3750117 B2 JP 3750117B2
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
active material
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003105797A
Other languages
Japanese (ja)
Other versions
JP2004228059A (en
Inventor
善樹 坂口
清隆 安田
和子 谷口
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003105797A priority Critical patent/JP3750117B2/en
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to BRPI0315457-2A priority patent/BR0315457B1/en
Priority to US10/529,487 priority patent/US7811709B2/en
Priority to AU2003302519A priority patent/AU2003302519A1/en
Priority to EP03812300A priority patent/EP1566855A4/en
Priority to KR1020057009763A priority patent/KR100680650B1/en
Priority to PCT/JP2003/015044 priority patent/WO2004051768A1/en
Publication of JP2004228059A publication Critical patent/JP2004228059A/en
Priority to US11/028,735 priority patent/US20050208379A1/en
Application granted granted Critical
Publication of JP3750117B2 publication Critical patent/JP3750117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池用負極に関し、更に詳しくはエネルギー密度が高く、リチウムを多量に吸蔵、脱蔵することができ、またサイクル寿命の向上した非水電解液二次電池を得ることができる負極に関する。また本発明は、該負極の製造方法及び該負極を用いた非水電解液二次電池に関する。
【0002】
現在、携帯電話やパーソナルコンピュータの二次電池には、リチウムイオン二次電池が主に使用されている。この理由は、同電池が他の二次電池と比較して高いエネルギー密度を有しているからである。近年の携帯電話やパーソナルコンピュータの多機能化に伴いこれらの消費電力が著しく増加しており、大容量の二次電池がますます必要となっている。しかし、現状の電極活物質を用いている限り、近い将来そのニーズに応えるのは困難となると予想される。
【0003】
リチウムイオン二次電池の負極活物質には、一般にグラファイトが使用されている。現在では、グラファイトの5〜10倍の容量ポテンシャルを有しているSn系合金やSi系合金の開発が活発になされている。例えば、Sn−Cu系合金のフレークをメカニカルアロイング法、ロール鋳造法及びガスアトマイズ法を用いて製造することが提案されている(非特許文献1参照)。またNi−Si系合金、Co−Si系合金をガスアトマイズ法などで製造することも提案されている(特許文献1参照)。しかしながら、これらの合金は、容量は大きいものの不可逆容量が大きく、またサイクル寿命が短いという問題があり、未だ実用化には至っていない。
【0004】
集電体として用いられている銅箔にスズを電解めっきして、負極用の電極に用いる試みもなされている(特許文献2参照)。しかしながら、スズよりも容量ポテンシャルの大きいシリコンについては、シリコンが電解めっきできない元素であることから、これを含有したリチウムイオン二次電池用のめっき銅箔の開発は報告されていない。
【0005】
先に述べたSi系合金やSn系合金、更にはAl系合金は、高い充放電容量を有する負極活物質であるが、充放電の繰り返しによってその体積が大きく変化し、それに起因して微粉化し集電体から剥離するという問題がある。そこで、SiやSi合金を含む負極活物質と導電性金属粉末との混合物を導電性金属箔に塗布し、非酸化性雰囲気下で焼結することで、負極活物質の剥離を防止することが提案されている(特許文献3〜6参照)。またプラズマCVD法やスパッタリング法によって集電体上にSiの薄膜を密着性良く形成することで、該薄膜の剥離を防止することも提案されている(特許文献7参照)。しかしながら、これらの方法を用いても、充放電に伴う負極活物質の微粉化に起因する該負極活物質の集電体からの剥離を完全に防止することはできない。
【0006】
【特許文献1】
特開2001−297757号公報
【特許文献2】
特開2001−68094号公報
【特許文献3】
特開平11−339777号公報
【特許文献4】
特開2000−12089号公報
【特許文献5】
特開2001−254261号公報
【特許文献6】
特開2002−260637号公報
【特許文献7】
特開2000−18499号公報
【非特許文献1】
J.Electrochem.Soc.,148(5),A471-A481(2001)
【0007】
従って、本発明は、活物質の集電体からの剥離が防止され、充放電を繰り返しても活物質の集電性が確保され、充放電効率が高く、またサイクル寿命が向上した非水電解液二次電池用負極及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、シリコン系材料を含む活物質の層を、リチウム化合物の形成能の低い導電性材料からなる層で被覆することによって、前記目的が達成されることを知見した。
【0009】
本発明は前記知見に基づきなされたもので、集電体の片面又は両面上に、シリコン又はシリコン化合物からなるシリコン系材料を含む活物質の層、及び該層上に位置し且つ該層を完全に被覆する表面被覆層を含む活物質構造体が形成されており、前記表面被覆層がリチウム化合物の形成能の低い導電性材料からなり、前記表面被覆層にその厚み方向に延びる破断部が形成されており、前記シリコン系材料が前記活物質構造体中に5〜80重量%含まれていることを特徴とする非水電解液二次電池用負極を提供することにより前記目的を達成したものである。
また本発明は、集電体の片面又は両面上に、シリコン又はシリコン化合物からなるシリコン系材料を含む活物質の層、及び該層上に位置し且つ厚みが0.3〜10μmの表面被覆層を含む活物質構造体が形成されており、前記表面被覆層がリチウム化合物の形成能の低い導電性材料からなり、前記表面被覆層にその厚み方向に延びる破断部が形成されており、前記シリコン系材料が前記活物質構造体中に5〜80重量%含まれていることを特徴とする非水電解液二次電池用負極を提供するものである。
【0010】
また本発明は前記負極の好ましい製造方法として、
シリコン又はシリコン化合物からなるシリコン系材料の粒子が懸濁されており且つリチウム化合物の形成能の低い導電性材料を含むめっき浴中に、集電体を浸漬した状態下に電解めっきを行うことを特徴とする非水電解液二次電池用負極の製造方法を提供するものである。
【0011】
また本発明は前記負極の別の好ましい製造方法として、
シリコン又はシリコン化合物からなるシリコン系材料の粒子、導電性炭素材料の粒子、結着剤及び希釈溶媒を含むスラリーを、集電体表面に塗工し塗膜を乾燥させて前記活物質の層を形成し、次いで該活物質の層上に、リチウム化合物の形成能の低い導電性材料による電解めっきを行い前記表面被覆層を形成し、然る後、該活物質の層をプレス加工して圧密化することを特徴とする非水電解液二次電池用負極の製造方法を提供するものである。
【0012】
更に本発明は、前記負極を備えてなることを特徴とする非水電解液二次電池を提供するものである。
【0013】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に基づき説明する。本発明の負極は集電体の片面又は両面上に、シリコン又はシリコン化合物からなるシリコン系材料を含む活物質の層、及び該層上に位置する表面被覆層を含む活物質構造体が形成されてなるものである。集電体は非水電解液二次電池の集電体となり得る金属から構成されている。特にリチウム二次電池の集電体となり得る金属から構成されていることが好ましい。そのような金属としては例えば銅、鉄、コバルト、ニッケル、亜鉛若しくは銀又はこれらの金属の合金などが挙げられる。これらの金属のうち銅又は銅合金を用いることが特に好適である。銅を用いる場合、集電体は銅箔の状態で用いられる。この銅箔は例えば銅含有溶液を用いた電解析出により得られ、その厚みは2〜100μm、特に10〜30μmが望ましい。特に特開2000−90937号公報に記載の方法より得られた銅箔は、厚みが12μm以下と極めて薄いことから好ましく用いられる。
【0014】
表面被覆層は、該被覆層の酸化及び脱落の防止の点から、リチウム化合物の形成能の低い導電性材料からなる。そのような導電性材料としては例えば銅、銀、ニッケル、コバルト、クロム、インジウム及びこれらの金属の合金(例えば銅とスズとの合金)などが挙げられる。これらの金属のうち、リチウム化合物の形成能が特に低い金属である銅、銀、ニッケル、クロム、コバルト及びこれらの金属を含む合金を用いることが好ましい。また前記導電性材料として、導電性プラスチックや導電性ペーストなどを用いることもできる。「リチウム化合物の形成能が低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるか若しくは非常に不安定であることを意味する。
【0015】
シリコン系材料を含む活物質の層(以下、活物質層ともいう)は、表面被覆層によって覆われている。活物質層は、例えばシリコン系材料の粒子や薄膜などから構成されている。シリコン系材料が粒子である場合、その粒径は最大粒径が好ましくは50μm以下であり、更に好ましくは20μm以下である。また粒子の粒径をD50値で表すと0.1〜8μm、特に1〜5μmであることが好ましい。最大粒径が50μm超であると、粒子の脱落が起こりやすくなり、電極の寿命が短くなる場合がある。粒径の下限値に特に制限はなく小さいほど好ましい。粒子の製造方法(その製造例については後述する)に鑑みると、下限値は0.01μm程度である。シリコン系粒子の粒径は、マイクロトラック、電子顕微鏡観察(SEM観察)によって測定される。
【0016】
シリコン系材料を含む活物質層が表面被覆層によって被覆されていることにより、本発明の負極を用いた二次電池はその単位体積当たり及び単位重量当たりのエネルギー密度が従来のものに比べて非常に大きくなる。またシリコン系材料が表面被覆層によって閉じこめられているので、リチウムの吸脱蔵に起因するシリコン系材料の脱落が効果的に防止される。また電気的に孤立したシリコン系材料が生成することが効果的に防止され、集電機能が保たれる。その結果、負極としての機能低下が抑えられる。更に負極の長寿命化も図られる。特に、表面被覆層の一部が活物質層に入り込んでいると、集電機能が一層効果的に保たれる。シリコンやシリコン合金をそのままの状態で集電体上に形成すると、リチウムの吸脱蔵に起因してこれらが微粉化して集電体から電気的に孤立化してしまう。その結果、負極としての機能が低下し、不可逆容量の増大、充放電効率の低下、短寿命化などの問題が生じてしまう。
【0017】
活物質層及び表面被覆層を含む活物質構造体中におけるシリコン系材料の量は5〜80重量%であり、好ましくは10〜50重量%、更に好ましくは20〜50重量%である。シリコン系材料の量が5重量%未満では、電池のエネルギー密度を十分に向上させることが困難である。一方、80重量%超ではシリコン系材料の脱落が起こりやすくなり、不可逆容量の増大、充放電効率の低下、短寿命化などの問題が生じてしまう。
【0018】
リチウムの吸脱蔵に起因するシリコン系材料の微粉化によって該シリコン系材料が脱落することを防止する観点から、シリコン系材料を含む活物質層は表面被覆層によって完全に被覆されている。シリコン系材料を含む活物質層が表面被覆層に完全に被覆されていたとしても、後述する負極の製造方法によれば、プレス加工時に表面被覆層に微細な破断部が発生し、そこから電解液及びリチウムが表面被覆層内部にまで浸透してシリコン系材料と反応することができる。シリコン系材料が表面被覆層によって完全に被覆されている状態の負極の一例を図1及び図2に示す。図1及び図2においては、銅からなる集電体1上に、シリコン−銅合金粒子からなる活物質層3が形成されており、活物質層3上には銅からなる表面被覆層2が位置している。活物質層3は表面被覆層2によって完全に被覆されている。表面被覆層2には、その厚み方向に延びる微細な破断部が観察される。更に、活物質層3中の合金粒子間には空隙が観察される。図1においては、表面被覆層2の一部が活物質層3に入り込んでおり、合金粒子の表面が銅で被覆されていることが判る。一方、図2においては、表面被覆層2は活物質層3中にそれほど入り込んでおらず、両層2,3は比較的明瞭に分かれている。図1及び図2におけるこのような形態の相違は、負極の製造方法に起因している(これについては後述する)。
【0019】
表面被覆層の厚みは0.3〜10μm、とりわけ1〜10μmであることが、シリコン系材料の脱落防止及び集電機能の維持の点から好ましい。具体的には、厚みが0.3μm以上であれば活物質の膨張収縮に起因する脱落を効果的に防止でき、また10μm以下であれば充放電が阻害されない。活物質層の厚みは1〜40μmであることが、負極容量の十分な確保の点から好ましい。表面被覆層及び活物質層を含む活物質構造体の厚みは2〜50μm程度であることが好ましい。
【0020】
先に述べた通り、活物質層において、シリコン系材料は例えば粒子や薄膜の形態で存在し得る。シリコン系材料が粒子である場合、該粒子としては、例えばイ)シリコン単体の粒子、ロ)少なくともシリコンと炭素との混合粒子、ハ)シリコンと金属との混合粒子、ニ)シリコンと金属との化合物粒子、ホ)シリコン単体の粒子の表面に金属が被覆されてなる粒子などが挙げられる。ロ)、ハ)、ニ)及びホ)の粒子を用いると、イ)のシリコン単体の粒子を用いる場合に比べて、リチウムの吸脱蔵に起因するシリコン系材料の微粉化が一層抑制されるという利点、及び半導体であり電気導電性の乏しいシリコンに電子導電性を付与できるという利点がある。
【0021】
特に、シリコン系粒子がロ)の少なくともシリコンと炭素との混合粒子からなる場合には、サイクル寿命が向上すると共に負極容量が増加する。この理由は次の通りである。炭素、特に非水電解液二次電池用負極に用いられているグラファイトは、リチウムの吸脱蔵に寄与し、300mAh/g程度の負極容量を有し、しかもリチウム吸蔵時の体積膨張が非常に小さいという特徴を持つ。一方、シリコンは、グラファイトの10倍以上である4200mAh/g程度の負極容量を有するという特徴を持つ。反面シリコンは、リチウム吸蔵時の体積膨張がグラファイトの約4倍に達する。そこで、シリコンとグラファイトのような炭素とを所定の比率でメカニカルミリング法などを用い混合・粉砕して、粒径が約0.1〜1μmの均質に混合された粉末とすると、リチウム吸蔵時のシリコンの体積膨張がグラファイトによって緩和されて、サイクル寿命が向上し、また1000〜3000mAh/g程度の負極容量が得られる。シリコンと炭素との混合比率は、シリコンの量が10〜90重量%、特に30〜70重量%、とりわけ30〜50重量%であることが好ましい。一方、炭素の量は90〜10重量%、特に70〜30重量%、とりわけ70〜50重量%であることが好ましい。組成がこの範囲内であれば、電池の高容量化及び負極の長寿命化を図ることができる。なお、この混合粒子においては、シリコンカーバイドなどの化合物は形成されていない。
【0022】
シリコン系粒子がロ)の粒子からなる場合、該粒子は、シリコン及び炭素に加えて他の金属元素を含む、3種以上の元素の混合粒子であってもよい。金属元素としてはCu、Ag、Li、Ni、Co、Fe、Cr、Zn、B、Al、Ge、Sn、In、V、Ti、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd及びNdからなる群から選択される1種類以上の元素が挙げられる。
【0023】
シリコン系粒子がハ)のシリコンと金属との混合粒子である場合、該混合粒子に含まれる金属としては、Cu、Ag、Li、Ni、Co、Fe、Cr、Zn、B、Al、Ge、Sn、In、V、Ti、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd及びNdからなる群から選択される1種類以上の元素が挙げられる。これらの金属のうち、Cu、Ag、Ni、Co、Ceが好ましく、特に電子伝導性に優れ且つリチウム化合物の形成能の低さの点から、Cu、Ag、Niを用いることが望ましい。また前記金属としてLiを用いると、負極活物質に予め金属リチウムが含まれることになり、不可逆容量の低減、充放電効率の向上、及び体積変化率の低減によるサイクル寿命向上等の利点が生ずるので好ましい。ハ)のシリコンと金属との混合粒子においては、シリコンの量が30〜99.9重量%、特に50〜95重量%、とりわけ85〜95重量%であることが好ましい。一方、銅を始めとする金属の量は0.1〜70重量%、特に5〜50重量%、とりわけ5〜15重量%であることが好ましい。組成がこの範囲内であれば、電池の高容量化及び負極の長寿命化を図ることができる。
【0024】
ハ)のシリコンと金属との混合粒子は例えば次に述べる方法で製造することができる。先ず、シリコン粒子及び銅を始めとする金属の金属粒子を混合し、粉砕機によってこれらの粒子の混合及び粉砕を同時に行う。粉砕機としてはアトライター、ジェットミル、サイクロンミル、ペイントシェイカ、ファインミルなどを用いることができる。粉砕前のこれらの粒子の粒径は20〜500μm程度であることが好ましい。粉砕機による混合及び粉砕によってシリコンと前記金属とが均一に混ざり合った粒子が得られる。粉砕機の運転条件を適切にコントロールすることで得られる粒子の粒径を例えば40μm以下となす。これによってハ)の混合粒子が得られる。
【0025】
シリコン系粒子が、ニ)のシリコンと金属との化合物粒子である場合、該化合物は、シリコンと金属との合金を含み、1)シリコンと金属との固溶体、2)シリコンと金属との金属間化合物、或いは3)シリコン単相、金属単相、シリコンと金属との固溶体、シリコンと金属との金属間化合物のうちの二相以上の相からなる複合体の何れかである。前記金属としては、ハ)のシリコンと金属との混合粒子に含まれる金属と同様のものを用いることができる。ニ)の化合物粒子におけるシリコンと金属との組成は、ハ)の混合粒子と同様にシリコンの量が30〜99.9重量%で、金属の量が0.1〜70重量%であることが好ましい。更に好ましい組成は、化合物粒子の製造方法に応じて適切な範囲が選択される。例えば該化合物が、シリコンと金属との二元系合金であり、該合金を後述する急冷法を用いて製造する場合、シリコンの量は40〜90重量%であることが望ましい。一方、銅を始めとする金属の量は10〜60重量%であることが好ましい。
【0026】
前記化合物がシリコンと金属との三元系以上の合金である場合には、先に述べた二元系合金に更にB、Al、Ni、Co、Sn、Fe、Cr、Zn、In、V、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd及びNdからなる群から選択される元素が少量含まれていてもよい。これによって、微粉化が抑制されるという付加的な効果が奏される。この効果を一層高めるため、これらの元素はシリコンと金属との合金中に0.01〜10重量%、特に0.05〜1.0重量%含まれていることが好ましい。
【0027】
ニ)のシリコンと金属との化合物粒子が合金粒子である場合、該合金粒子は、例えば以下に説明する急冷法によって製造されることが、合金の結晶子が微細なサイズとなり且つ均質分散されることにより、微粉化が抑制され、電子伝導性が保持される点から好ましい。この急冷法においては、先ずシリコンと、銅を始めとする金属とを含む原料の溶湯を準備する。原料は高周波溶解によって溶湯となす。溶湯におけるシリコンと他の金属との割合は前述した範囲とする。溶湯の温度は1200〜1500℃、特に1300〜1450℃とすることが急冷条件との関係で好ましい。鋳型鋳造法を用いてこの溶湯から合金を得る。即ち、該溶湯を銅製又は鉄製の鋳型に流し込んで、急冷されたシリコン系合金のインゴットを得る。このインゴットを粉砕し篩い分けして、例えば粒径40μm以下のものを本発明に供する。この鋳型鋳造法に代えてロール鋳造法を用いることもできる。即ち、溶湯を高速回転する銅製のロールにおける周面に対して射出する。ロールの回転速度は、溶湯を急冷させる観点から回転数500〜4000rpm、特に1000〜 2000rpmとすることが好ましい。ロールの回転速度を周速で表す場合には、8〜70m/sec、特に15〜30m/secであることが好ましい。前述の範囲の温度の溶湯を、前述範囲の速度で回転するロールを用いて急冷することで、冷却速度は102K/sec以上、特に103K/sec以上という高速になる。射出された溶湯はロールにおいて急冷されて薄体となる。この薄体を粉砕、篩い分けして例えば粒径40μm以下のものを本発明に供する。この急冷法に代えて、ガスアトマイズ法を用い、1200〜1500℃の溶湯に、アルゴンなどの不活性ガスを5〜100atmの圧力で吹き付けて微粒化及び急冷して所望の粒子を得ることもできる。更に別法として、アーク溶解法やメカニカルミリングを用いることもできる。
【0028】
シリコン系粒子が、ホ)のシリコン単体の粒子の表面に金属が被覆されてなる粒子(この粒子を金属被覆シリコン粒子という)である場合、被覆金属としては、先に述べたハ)やニ)の粒子に含まれる金属、例えば銅などと同様のものが用いられる(但しLiを除く)。金属被覆シリコン粒子におけるシリコンの量は70〜99.9重量%、特に80〜99重量%、とりわけ85〜95であることが好ましい。一方、銅を始めとする被覆金属の量は0.1〜30重量%、特に1〜20重量%、とりわけ5〜15重量%であることが好ましい。金属被覆シリコン粒子は例えば無電解めっき法を用いて製造される。この無電解めっき法においては、先ずシリコン粒子が懸濁されており且つ銅を始めとする被覆金属とを含むめっき浴を用意する。このめっき浴中において、シリコン粒子を無電解めっきして該シリコン粒子の表面に前記被覆金属を被覆させる。めっき浴中におけるシリコン粒子の濃度は400〜600g/l程度とすることが好ましい。前記被覆金属として銅を無電解めっきする場合には、めっき浴中に硫酸銅、ロシェル塩等を含有させておくことが好ましい。この場合硫酸銅の濃度は6〜9g/l、ロシェル塩の濃度は70〜90g/lであることが、めっき速度のコントロールの点から好ましい。同様の理由からめっき浴のpHは12〜13、浴温は20〜30℃であることが好ましい。めっき浴中に含まれる還元剤としては、例えばホルムアルデヒド等が用いられ、その濃度は15〜30cc/l程度とすることができる。
【0029】
活物質層中には前述したシリコン系材料に加えて導電性炭素材料が含まれていることが好ましい。これによって活物質構造体に電子伝導性が一層付与される。この観点から活物質層中に含まれる導電性炭素材料の量は0.1〜20重量%、特に1〜10重量%であることが好ましい。導電性炭素材料の形態はシリコン系材料の形態に応じて適宜選択される。例えばシリコン系材料が粒子の形態である場合、導電性炭素材料も粒子の形態であることが好ましい。この場合、導電性炭素材料の粒子の粒径は40μm以下、特に20μm以下であることが、電子伝導性の一層付与の点から好ましい。該粒子の粒径の下限値に特に制限はなく小さいほど好ましい。該粒子の製造方法に鑑みると、その下限値は0.01μm程度となる。導電性炭素材料としては、例えばアセチレンブラック、グラファイトなどが挙げられる。
【0030】
次に、本発明の負極の好ましい製造方法について説明する。本製造方法においては分散めっき法を用いる。分散めっき法においては、シリコン系材料の粒子が懸濁されており且つリチウム化合物の形成能の低い導電性材料を含むめっき浴を準備する。このめっき浴におけるシリコン系粒子の量は200〜600g/l、特に400〜600g/lであることが、十分な量のシリコン系粒子を活物質構造体中に取り込み得る点から好ましい。まためっき浴におけるリチウム化合物の形成能の低い導電性材料の濃度は、例えば導電性材料として金属である銅を用い、銅源として硫酸銅を用いる場合、銅の濃度を30〜100g/l、硫酸の濃度を50〜200g/l、塩素の濃度を300ppm以下、クレゾールスルホン酸の濃度を40〜100g/l、ゼラチンの濃度を1〜3g/l、βナフトールの濃度を0.5〜2g/lとすることが、めっき速度のコントロールの点や、シリコン系粒子からなる活物質層を十分に保持し得る厚みの表面被覆層を形成し得る点から好ましい。
【0031】
次に、めっき浴中に集電体を浸漬し、その状態下に電解めっきを開始する。電解における電流密度は1〜15A/dm2程度であることが、めっき速度のコントロールの点から好ましい。めっき浴の温度は20℃前後の室温でよい。このめっきによってめっき浴中の金属が還元され表面被覆層が形成されると共に表面被覆層に被覆された活物質層が集電体表面に形成される。活物質層の形成を均一に行うために、めっき浴を撹拌しながら電解を行ってもよい。
【0032】
次に、本発明の負極の別の好ましい製造方法について説明する。本製造方法においては、先ず集電体の表面に塗工するスラリーを準備する。スラリーは、シリコン系材料の粒子、導電性炭素材料の粒子、結着剤及び希釈溶媒を含んでいる。これらの成分のうち、シリコン系材料の粒子及び導電性炭素材料の粒子については先に説明した通りである。結着剤としてはポリビニリデンフルオライド(PVDF)、ポリエチレン(PE)、エチレンプロピレンジエンモノマー(EPDM)などが用いられる。希釈溶媒としてはN−メチルピロリドン、シクロヘキサンなどが用いられる。
【0033】
スラリー中におけるシリコン系粒子の量は14〜40重量%程度とすることが好ましい。導電性炭素材料の粒子の量は0.4〜4重量%程度とすることが好ましい。結着剤の量は0.4〜4重量%程度とすることが好ましい。また希釈溶媒の量は60〜85重量%程度とすることが好ましい。
【0034】
このスラリーを集電体の表面に塗工して活物質層を形成する。集電体は予め製造しておいてもよく、或いは本発明の負極の製造工程における一工程としてインラインで製造されてもよい。集電体がインラインで製造される場合、電解析出によって製造されることが好ましい。集電体へのスラリーの塗工量は、乾燥後の活物質層の膜厚が、最終的に得られる活物質構造体の厚みの1〜3倍程度となるような量とすることが好ましい。スラリーの塗膜が乾燥して活物質層が形成された後、該活物質層が形成された集電体を、リチウム化合物の形成能の低い導電性材料を含むめっき浴中に浸漬し、その状態下に活物質層上に該導電性材料による電解めっきを行い表面被覆層を形成する。電解めっきの条件としては、例えば導電性材料として金属である銅を用いる場合、硫酸銅系溶液を用いるときには、銅の濃度を30〜100g/l、硫酸の濃度を50〜200g/l、塩素の濃度を30ppm以下とし、液温を30〜80℃、電流密度を1〜100A/dm2とすればよい。この場合には先に説明した図1に示す形態の負極が得られる。ピロ燐酸銅系溶液を用いる場合には、銅の濃度2〜50g/l、ピロ燐酸カリウムの濃度100〜700g/lとし、液温を30〜60℃、pHを8〜12、電流密度を1〜10A/dm2とすればよい。この場合には先に説明した図2に示す形態の負極が得られる。
【0035】
このようにして活物質層上に表面被覆層が形成された後、活物質層を表面被覆層ごとプレス加工する。これによって活物質層を圧密化する。圧密化によって、シリコン系材料の粒子及び導電性炭素材料の粒子の間の空隙を、表面被覆層を構成する導電性材料が埋め、シリコン系材料の粒子及び導電性炭素材料の粒子が分散された状態となる。またこれらの粒子と表面被覆層とが密着して、電子伝導性が付与される。十分な電子伝導性を得る観点から、プレス加工による圧密化は、プレス加工後の活物質層と表面被覆層との厚みの総和が、プレス加工前の90%以下、好ましくは80%以下となるように行うことが好ましい。プレス加工には、例えばロールプレス機を用いることができる。プレス加工後の活物質層には、5〜30体積%の空隙が存在していることが好ましい。この空隙の存在によって、充電時にリチウムを吸蔵して体積が膨張する場合に、その体積膨張に起因する応力が緩和される。このような空隙はプレス加工の条件を前述のようにコントロールすればよい。この空隙の値は、電子顕微鏡マッピングによって求めることができる。
【0036】
本製造方法においては、活物質層上に電解めっきを行うに先立ち、該活物質層をプレス加工することが好ましい(このプレス加工を、先に述べたプレス加工と区別する意味で前プレス加工と呼ぶ)。前プレス加工を行うことで、活物質層と集電体との剥離が防止され、またシリコン系材料の粒子が表面被覆層の表面に露出することが防止される。その結果、シリコン系材料の粒子の脱落に起因する電池のサイクル寿命の劣化を防ぐことができる。前プレス加工の条件としては、前プレス加工後の活物質層の厚みが、前プレス加工前の活物質層の厚みの95%以下、特に90%以下となるような条件であることが好ましい。
【0037】
なお本製造方法においては、表面被覆層の形成に電解めっきを用いたが、これに代えてスパッター法、化学気相蒸着法、又は物理気相蒸着法を用いることもできる。また表面被覆層が金属箔の圧延やメッシュ金属箔の圧延、或いは導電性プラスチックの圧延によって形成されていてもよい。
【0038】
このようにして得られた本発明の負極は、公知の正極、セパレータ、非水系電解液と共に用いられて非水電解液二次電池となされる。正極は、正極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる。正極活物質としては、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物等の従来公知の正極活物質が用いられる。セパレーターとしては、合成樹脂製不織布、ポリエチレン又はポリプロピレン多孔質フイルム等が好ましく用いられる。非水電解液は、リチウム二次電池の場合、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、例えば、LiC1O4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiSCN、LiC1、LiBr、LiI、LiCF3SO3、LiC49SO3等が例示される。
【0039】
本発明は前記実施形態に制限されない。例えば前記実施形態においては、活物質層がシリコン系材料の粒子である場合を中心に説明したが、先に述べた通り該活物質層はシリコン系材料の薄膜、例えばスパッター法によって形成された薄膜であってもよい。その場合には、該薄膜として、例えばシリコン単体の薄膜やシリコン化合物の薄膜を用いることができる。
【0040】
本発明においては、負極活物質としてシリコン系材料を用いたが、これに代えてリチウムの吸蔵が可能な元素、例えばスズ、アルミニウム若しくはゲルマニウム又はそれらの元素の合金や化合物を用いることもできる。
【0041】
【実施例】
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。以下の例中、特に断らない限り「%」は「重量%」を意味する。
【0042】
〔実施例1〕
(1)めっき浴の調製
以下の組成を有するめっき浴を調製した。
・シリコン粒子(粒径D50値5μm) 600g/l
・硫酸銅 50g/l
・硫酸 70g/l
・クレゾールスルホン酸 70g/l
・ゼラチン 2g/l
・β−ナフトール 1.5g/l
【0043】
(2)分散めっき
シリコン粒子をめっき浴中にて懸濁させた状態下に、厚さ30μmの銅箔を20℃のめっき浴中に浸漬し電解を行った。電流密度は10A/dm2であった。これによって、シリコン粒子が均一分散した活物質層上を被覆する銅からなる表面被覆層が形成された。電子顕微鏡観察の結果、活物質層及び表面被覆層を含む活物質構造体の厚みは35μmであった。化学分析の結果、活物質構造体におけるシリコン粒子の量は30%であった。
【0044】
〔実施例2〕
(1)スラリーの調製
以下の組成のスラリーを調製した。
・シリコン粒子(粒径D50値5μm) 16%
・アセチレンブラック(粒径0.1μm) 2%
・結着剤(ポリビニリデンフルオライド) 2%
・希釈溶媒(N−メチルピロリドン) 80%
【0045】
(2)活物質層の形成
調製されたスラリーを、厚さ30μmの銅箔上に塗工し乾燥させた。乾燥後の活物質層の厚みは60μmであった。
【0046】
(3)表面被覆層の形成
活物質層が形成された銅箔を、以下の組成を有するめっき浴中に浸漬し、活物質層上に電解めっきを行った。
・銅 50g/l
・硫酸 60g/l
・浴温 40℃
表面被覆層の形成後、銅箔をめっき浴から引き上げ、次いで活物質層を表面被覆層ごとロールプレス加工し圧密化した。このようにして得られた活物質構造体の厚みは、電子顕微鏡観察の結果30μmであった。また化学分析の結果、活物質構造体におけるシリコン粒子の量は35%、アセチレンブラックの量は5%であった。
【0047】
〔実施例3及び4〕
被覆層をニッケル(実施例3)、コバルト(実施例4)から形成する以外は実施例2と同様にして負極を得た。
【0048】
〔実施例5〕
シリコン50%銅50%を含む1400℃の溶湯を、銅製の鋳型に流し込んで、急冷されたシリコン−銅合金のインゴットを得た。このインゴットを粉砕し篩い分けして、粒径0.1〜10μmのものを用いた。この合金粒子を用いる以外は実施例2と同様にして負極を得た。
【0049】
〔実施例6〜8〕
表1に示す組成のシリコン−銅合金粒子を用いる以外は実施例5と同様にして負極を得た。
【0050】
〔実施例9〜11〕
表1に示す組成のシリコン−ニッケル合金粒子を用いる以外は実施例5と同様にして負極を得た。
【0051】
〔実施例12及び13〕
表1に示す組成のシリコン−銅−ニッケル合金粒子を用いる以外は実施例5と同様にして負極を得た。
【0052】
〔実施例14〕
シリコン粒子(粒径100μm)80%及び銅粒子(粒径30μm)20%を混合し、アトライターによってこれらの粒子の混合及び粉砕を同時に行った。これによってシリコンと銅とが均一に混ざり合った粒径2〜10μm(D50値5μm)の混合粒子を得た。この混合粒子を用いる以外は実施例2と同様にして負極を得た。
【0053】
〔実施例15〜26〕
表2に示す組成及び粒径のシリコン−銅混合粒子を用い且つ活物質構造体の厚みを同表に示す値とする以外は実施例14と同様にして負極を得た。
【0054】
〔実施例27〕
粒径0.2〜8μmのシリコン粒子が懸濁されており且つ硫酸銅及びロシェル塩を含むめっき浴中において、該シリコン粒子を無電解めっきして該シリコン粒子の表面に銅を被覆させて銅被覆シリコン粒子を得た。めっき浴中におけるシリコン粒子の濃度は500g/l、硫酸銅の濃度は7.5g/l、ロシェル塩の濃度は85g/lであった。めっき浴のpHは12.5、浴温は25℃であった。還元剤としてはホルムアルデヒドを用い、その濃度は22cc/lであった。これ以外は実施例2と同様にして負極を得た。
【0055】
〔実施例28〜31〕
無電解めっきによって得られた表2に示す組成の銅被覆シリコン粒子(実施例28及び29)並びにニッケル被覆シリコン粒子(実施例30及び31)を用いる以外は実施例18と同様にして負極を得た。
【0056】
〔実施例32〜37〕
急冷法で得られた表3に示す組成のシリコン系三元合金粒子を用いる以外は実施例5と同様にして負極を得た。
【0057】
〔実施例38〕
シリコン粒子(粒径100μm)20%及びグラファイト粒子(D50値20μm)80%を混合し、メカニカルミリングによってこれらの粒子の混合及び粉砕を同時に行った。これによってシリコンとグラファイトとが均一に混ざり合った粒径0.5μm(D50値)の混合粒子を得た。この混合粒子を用い且つ表面被覆層をニッケルから形成する以外は実施例2と同様にして負極を得た。
【0058】
〔実施例39〜42〕
混合粒子の組成を表3に示す値とする以外は実施例38と同様にして負極を得た。
【0059】
〔実施例43〕
シリコン80%、銅19%、リチウム1%からなる合金粒子を用い且つ表面被覆層をNiから構成する以外は実施例5と同様にして負極を得た。
【0060】
〔比較例1〕
粒径10μmのグラファイト粉末、結着剤(PVDF)及び希釈溶媒(N−メチルピロリドン)を混練してスラリーとなし、厚さ30μmの銅箔上に塗工し乾燥させた後プレス加工し負極を得た。プレス加工後のグラファイト塗膜の厚みは20μmであった。
【0061】
〔比較例2〕
グラファイト粉末に代えて粒径5μmのシリコン粒子を用いる以外は比較例1と同様にして負極を得た。
【0062】
〔性能評価〕
実施例及び比較例で得られた負極を用いて以下の通り非水電解液二次電池を作製した。以下の方法で不可逆容量、充電時体積容量密度、10サイクル時の充放電効率及び50サイクル容量維持率を測定した。これらの結果を以下の表1〜表3に示す。
【0063】
〔非水電解液二次電池の作製〕
対極として金属リチウムを用い、また作用極として前記で得られた負極を用い、両極をセパレーターを介して対向させた。更に非水電解液としてLiPF6/エチレンカーボネートとジエチルカーボネートの混合溶液(1:1容量比)を用いて通常の方法によって非水電解液二次電池を作製した。
【0064】
〔不可逆容量〕
不可逆容量(%)=(1−初回放電容量/初回充電容量)×100
すなわち、充電したが放電できず、活物質に残存した容量を示す。
【0065】
〔容量密度〕
初回の放電容量を示す。単位はmAh/gである。
【0066】
〔10サイクル時の充放電効率〕
10サイクル時の充放電効率(%)=10サイクル目の放電容量/10サイクル目の充電容量×100
【0067】
〔50サイクル容量維持率〕
50サイクル容量維持率(%)=20サイクル目の放電容量/最大放電容量×100
【0068】
【表1】

Figure 0003750117
【0069】
【表2】
Figure 0003750117
【0070】
【表3】
Figure 0003750117
【0071】
表1〜表3に示す結果から明らかなように、各実施例で得られた負極を用いた二次電池は、比較例の負極を用いた二次電池と同程度の不可逆容量、充放電効率及び容量維持率を示し、更に容量密度が比較例の二次電池よりも極めて高いことが判る。
【0072】
【発明の効果】
以上詳述した通り、本発明の非水電解液二次電池用負極によれば、従来の負極よりもエネルギー密度の高い二次電池を得ることができる。また本発明の非水電解液二次電池用負極によれば、活物質の集電体からの剥離が防止され、充放電を繰り返しても活物質の集電性が確保される。またこの負極を用いた二次電池は充放電を繰り返しても劣化率が低く寿命が大幅に長くなり、充放電効率も高くなる。
【図面の簡単な説明】
【図1】本発明の負極の一例を示す走査型電子顕微鏡像である。
【図2】本発明の負極の他の例を示す走査型電子顕微鏡像である。
【符号の説明】
1 集電体
2 被覆層
3 活物質層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery that has a high energy density, can absorb and desorb a large amount of lithium, and has an improved cycle life. The present invention relates to a negative electrode that can be obtained. Moreover, this invention relates to the manufacturing method of this negative electrode, and the nonaqueous electrolyte secondary battery using this negative electrode.
[0002]
Currently, lithium ion secondary batteries are mainly used as secondary batteries for mobile phones and personal computers. This is because the battery has a higher energy density than other secondary batteries. With the recent increase in functionality of mobile phones and personal computers, their power consumption has increased remarkably, and large capacity secondary batteries are increasingly required. However, as long as the current electrode active material is used, it will be difficult to meet the needs in the near future.
[0003]
In general, graphite is used as a negative electrode active material of a lithium ion secondary battery. Currently, Sn-based alloys and Si-based alloys having a capacity potential 5 to 10 times that of graphite are being actively developed. For example, it has been proposed to produce Sn-Cu alloy flakes using a mechanical alloying method, a roll casting method, and a gas atomizing method (see Non-Patent Document 1). In addition, it has also been proposed to manufacture a Ni—Si based alloy or a Co—Si based alloy by a gas atomizing method or the like (see Patent Document 1). However, these alloys have a problem that they have a large capacity but a large irreversible capacity and a short cycle life, and have not yet been put into practical use.
[0004]
Attempts have also been made to electroplate tin on a copper foil used as a current collector and use it as an electrode for a negative electrode (see Patent Document 2). However, for silicon having a larger capacity potential than tin, since silicon is an element that cannot be electrolytically plated, development of a plated copper foil for a lithium ion secondary battery containing this has not been reported.
[0005]
The Si-based alloy, Sn-based alloy, and Al-based alloy described above are negative electrode active materials having a high charge / discharge capacity, but their volume changes greatly due to repeated charge / discharge, resulting in pulverization. There is a problem of peeling from the current collector. Therefore, it is possible to prevent peeling of the negative electrode active material by applying a mixture of the negative electrode active material containing Si or Si alloy and the conductive metal powder to the conductive metal foil and sintering in a non-oxidizing atmosphere. It has been proposed (see Patent Documents 3 to 6). It has also been proposed to prevent peeling of the thin film by forming a Si thin film with good adhesion on the current collector by plasma CVD or sputtering (see Patent Document 7). However, even if these methods are used, peeling of the negative electrode active material from the current collector due to pulverization of the negative electrode active material accompanying charge / discharge cannot be completely prevented.
[0006]
[Patent Document 1]
JP 2001-297757 A
[Patent Document 2]
JP 2001-68094 A
[Patent Document 3]
JP 11-339777 A
[Patent Document 4]
JP 2000-12089 A
[Patent Document 5]
JP 2001-254261 A
[Patent Document 6]
Japanese Patent Laid-Open No. 2002-260637
[Patent Document 7]
JP 2000-18499 A
[Non-Patent Document 1]
J. Electrochem. Soc., 148 (5), A471-A481 (2001)
[0007]
Therefore, the present invention prevents non-aqueous electrolysis in which the active material is prevented from peeling from the current collector, the current collector is secured even after repeated charge / discharge, the charge / discharge efficiency is high, and the cycle life is improved. It aims at providing the negative electrode for liquid secondary batteries, and its manufacturing method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that silicon-based materials including It has been found that the above object can be achieved by coating the active material layer with a layer made of a conductive material having a low ability to form a lithium compound.
[0009]
The present invention has been made based on the above knowledge, and a silicon-based material made of silicon or a silicon compound on one or both sides of a current collector including An active material structure including a layer of an active material and a surface coating layer located on the layer and completely covering the layer is formed, and the surface coating layer has a low lithium compound forming ability. The non-aqueous electrolysis is characterized in that the surface covering layer is formed with a rupture portion extending in the thickness direction, and the silicon-based material is contained in the active material structure in an amount of 5 to 80% by weight. The object is achieved by providing a negative electrode for a liquid secondary battery.
The present invention also provides a silicon-based material comprising silicon or a silicon compound on one side or both sides of a current collector. including An active material structure including an active material layer and a surface coating layer located on the layer and having a thickness of 0.3 to 10 μm is formed, and the surface coating layer has low conductivity for forming a lithium compound. A non-aqueous material characterized in that the surface covering layer is formed with a fracture portion extending in the thickness direction, and the silicon-based material is included in the active material structure in an amount of 5 to 80% by weight. An anode for an electrolyte secondary battery is provided.
[0010]
Further, the present invention provides a preferred method for producing the negative electrode as follows:
Made of silicon or silicon compound Non-aqueous electrolysis characterized in that electroplating is performed in a state where a current collector is immersed in a plating bath in which particles of a silicon-based material are suspended and a conductive material having a low lithium compound forming ability A method for producing a negative electrode for a liquid secondary battery is provided.
[0011]
Further, the present invention provides another preferred method for producing the negative electrode as described below.
Made of silicon or silicon compound A slurry containing silicon-based material particles, conductive carbon material particles, a binder and a diluent solvent is applied to the surface of the current collector, and the coating film is dried to form the active material layer. The surface coating layer is formed on the material layer by electroplating with a conductive material having a low ability to form a lithium compound, and then the active material layer is pressed and consolidated. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery is provided.
[0012]
Furthermore, the present invention provides a nonaqueous electrolyte secondary battery comprising the negative electrode.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments thereof. The negative electrode of the present invention is a silicon-based material made of silicon or a silicon compound on one side or both sides of a current collector. including An active material structure including an active material layer and a surface coating layer located on the layer is formed. The current collector is made of a metal that can be a current collector of a non-aqueous electrolyte secondary battery. In particular, it is preferably made of a metal that can be a current collector of a lithium secondary battery. Examples of such a metal include copper, iron, cobalt, nickel, zinc, silver, and alloys of these metals. Of these metals, it is particularly preferable to use copper or a copper alloy. When copper is used, the current collector is used in the form of a copper foil. This copper foil is obtained, for example, by electrolytic deposition using a copper-containing solution, and the thickness is preferably 2 to 100 μm, particularly 10 to 30 μm. In particular, the copper foil obtained by the method described in Japanese Patent Application Laid-Open No. 2000-90937 is preferably used because it has an extremely thin thickness of 12 μm or less.
[0014]
The surface coating layer is made of a conductive material having a low ability to form a lithium compound from the viewpoint of preventing the coating layer from being oxidized and falling off. Examples of such conductive materials include copper, silver, nickel, cobalt, chromium, indium, and alloys of these metals (for example, alloys of copper and tin). Among these metals, it is preferable to use copper, silver, nickel, chromium, cobalt, and alloys containing these metals, which are metals with particularly low ability to form lithium compounds. In addition, as the conductive material, a conductive plastic, a conductive paste, or the like can be used. “Lithium compound forming ability is low” means that lithium does not form an intermetallic compound or solid solution, or even if formed, lithium is in a very small amount or very unstable.
[0015]
Silicon-based material including An active material layer (hereinafter also referred to as an active material layer) is covered with a surface coating layer. The active material layer is composed of, for example, silicon-based material particles or a thin film. When the silicon-based material is particles, the maximum particle size is preferably 50 μm or less, and more preferably 20 μm or less. The particle size of the particles is D 50 In terms of value, it is preferably 0.1 to 8 μm, particularly preferably 1 to 5 μm. If the maximum particle size is more than 50 μm, the particles are likely to fall off, and the life of the electrode may be shortened. There is no particular limitation on the lower limit of the particle size, and the smaller the better. In view of the particle production method (the production example will be described later), the lower limit is about 0.01 μm. The particle size of the silicon-based particles is measured by microtrack and electron microscope observation (SEM observation).
[0016]
Silicon-based material including Since the active material layer is covered with the surface coating layer, the secondary battery using the negative electrode of the present invention has a very large energy density per unit volume and per unit weight compared to the conventional one. In addition, since the silicon-based material is confined by the surface coating layer, the silicon-based material is effectively prevented from falling off due to the absorption and desorption of lithium. Further, the generation of an electrically isolated silicon-based material is effectively prevented, and the current collecting function is maintained. As a result, functional degradation as a negative electrode is suppressed. In addition, the life of the negative electrode can be extended. In particular, when a part of the surface coating layer enters the active material layer, the current collecting function is more effectively maintained. If silicon or a silicon alloy is formed on the current collector as it is, they are pulverized due to the absorption and desorption of lithium and are electrically isolated from the current collector. As a result, the function as the negative electrode is lowered, and problems such as an increase in irreversible capacity, a decrease in charge / discharge efficiency, and a shortened life are caused.
[0017]
The amount of the silicon-based material in the active material structure including the active material layer and the surface coating layer is 5 to 80% by weight, preferably 10 to 50% by weight, and more preferably 20 to 50% by weight. If the amount of the silicon-based material is less than 5% by weight, it is difficult to sufficiently improve the energy density of the battery. On the other hand, if it exceeds 80% by weight, the silicon-based material is likely to fall off, which causes problems such as an increase in irreversible capacity, a decrease in charge / discharge efficiency, and a shortened life.
[0018]
From the viewpoint of preventing the silicon-based material from falling off due to the pulverization of the silicon-based material resulting from the absorption and desorption of lithium, the silicon-based material including The active material layer is completely covered with the surface coating layer. Silicon-based material including Even if the active material layer is completely covered with the surface coating layer, according to the negative electrode manufacturing method described later, a fine fracture portion is generated in the surface coating layer during the press working, and the electrolyte and lithium are surfaced from there. It can penetrate into the coating layer and react with the silicon-based material. An example of the negative electrode in a state where the silicon-based material is completely covered with the surface coating layer is shown in FIGS. In FIG. 1 and FIG. 2, an active material layer 3 made of silicon-copper alloy particles is formed on a current collector 1 made of copper, and a surface coating layer 2 made of copper is formed on the active material layer 3. positioned. The active material layer 3 is completely covered with the surface coating layer 2. In the surface coating layer 2, a fine fracture portion extending in the thickness direction is observed. Furthermore, voids are observed between the alloy particles in the active material layer 3. In FIG. 1, it can be seen that a part of the surface coating layer 2 penetrates into the active material layer 3 and the surface of the alloy particles is coated with copper. On the other hand, in FIG. 2, the surface coating layer 2 does not penetrate so much into the active material layer 3, and the two layers 2 and 3 are relatively clearly separated. 1 and 2 is caused by the method of manufacturing the negative electrode (this will be described later).
[0019]
Surface coating layer thickness Is 0 . A thickness of 3 to 10 μm, particularly 1 to 10 μm, is preferable from the viewpoint of preventing the silicon-based material from falling off and maintaining the current collecting function. Specifically, if the thickness is 0.3 μm or more, it is possible to effectively prevent falling off due to expansion and contraction of the active material, 10 If it is μm or less, charging / discharging is not inhibited. The thickness of the active material layer is 1-40 It is preferable that it is micrometer from the point of sufficient ensuring of negative electrode capacity. The thickness of the active material structure including the surface coating layer and the active material layer Is 2 It is preferably about ˜50 μm.
[0020]
As described above, in the active material layer, the silicon-based material may exist in the form of particles or a thin film, for example. When the silicon-based material is a particle, examples of the particle include a) particles of silicon alone, b) mixed particles of at least silicon and carbon, c) mixed particles of silicon and metal, and d) silicon and metal. Compound particles, e) particles obtained by coating metal on the surface of particles of silicon alone. When particles b), c), d) and e) are used, pulverization of the silicon-based material due to lithium absorption / desorption is further suppressed as compared with the case where the particles of silicon alone are used. And the advantage of being able to impart electronic conductivity to silicon which is a semiconductor and has poor electrical conductivity.
[0021]
In particular, when the silicon-based particles are composed of at least mixed particles of silicon and carbon (b), the cycle life is improved and the negative electrode capacity is increased. The reason is as follows. Carbon, particularly graphite used in negative electrodes for non-aqueous electrolyte secondary batteries, contributes to the absorption and desorption of lithium, has a negative electrode capacity of about 300 mAh / g, and has a very large volume expansion during occlusion of lithium. It has the characteristic of being small. On the other hand, silicon is characterized by having a negative electrode capacity of about 4200 mAh / g, which is 10 times or more that of graphite. On the other hand, the volume expansion of silicon during lithium occlusion reaches about 4 times that of graphite. Therefore, silicon and carbon such as graphite are mixed and pulverized at a predetermined ratio using a mechanical milling method or the like to obtain a homogeneously mixed powder having a particle size of about 0.1 to 1 μm. The volume expansion of silicon is relaxed by graphite, the cycle life is improved, and a negative electrode capacity of about 1000 to 3000 mAh / g is obtained. The mixing ratio of silicon and carbon is preferably such that the amount of silicon is 10 to 90% by weight, particularly 30 to 70% by weight, particularly 30 to 50% by weight. On the other hand, the amount of carbon is preferably 90 to 10% by weight, particularly 70 to 30% by weight, and particularly preferably 70 to 50% by weight. If the composition is within this range, the capacity of the battery and the life of the negative electrode can be increased. In this mixed particle, a compound such as silicon carbide is not formed.
[0022]
In the case where the silicon-based particles are composed of particles b), the particles may be mixed particles of three or more elements including other metal elements in addition to silicon and carbon. As metal elements, Cu, Ag, Li, Ni, Co, Fe, Cr, Zn, B, Al, Ge, Sn, In, V, Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, One or more kinds of elements selected from the group consisting of Pd and Nd can be mentioned.
[0023]
When the silicon-based particles are mixed particles of silicon and metal of c), the metals contained in the mixed particles include Cu, Ag, Li, Ni, Co, Fe, Cr, Zn, B, Al, Ge, Examples thereof include one or more elements selected from the group consisting of Sn, In, V, Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd, and Nd. Among these metals, Cu, Ag, Ni, Co, and Ce are preferable, and Cu, Ag, and Ni are preferably used from the viewpoint of excellent electronic conductivity and low ability to form a lithium compound. Further, when Li is used as the metal, metallic lithium is included in the negative electrode active material in advance, and there are advantages such as reduction in irreversible capacity, improvement in charge / discharge efficiency, and improvement in cycle life due to reduction in volume change rate. preferable. In the mixed particles of silicon and metal of c), the amount of silicon is preferably 30 to 99.9% by weight, more preferably 50 to 95% by weight, and particularly preferably 85 to 95% by weight. On the other hand, the amount of metal such as copper is preferably 0.1 to 70% by weight, particularly 5 to 50% by weight, particularly 5 to 15% by weight. If the composition is within this range, the capacity of the battery and the life of the negative electrode can be increased.
[0024]
The mixed particles of silicon and metal of c) can be produced, for example, by the method described below. First, metal particles such as silicon particles and copper are mixed, and these particles are mixed and pulverized simultaneously by a pulverizer. As a pulverizer, an attritor, a jet mill, a cyclone mill, a paint shaker, a fine mill, or the like can be used. The particle size of these particles before pulverization is preferably about 20 to 500 μm. By mixing and pulverizing with a pulverizer, particles in which silicon and the metal are uniformly mixed are obtained. The particle size of the particles obtained by appropriately controlling the operating conditions of the pulverizer is, for example, 40 μm or less. As a result, mixed particles of c) are obtained.
[0025]
In the case where the silicon-based particles are compound particles of silicon and metal of d), the compound includes an alloy of silicon and metal, and 1) a solid solution of silicon and metal, and 2) between the metal of silicon and metal Compound, or 3) either a single phase of silicon, a single phase of metal, a solid solution of silicon and metal, or a composite composed of two or more phases of an intermetallic compound of silicon and metal. As the metal, the same metals as those contained in the mixed particles of silicon and metal of c) can be used. The composition of silicon and metal in compound particle (d) is such that the amount of silicon is 30 to 99.9% by weight and the amount of metal is 0.1 to 70% by weight, as in the case of mixed particles (c). preferable. A more preferable composition is selected in an appropriate range depending on the method for producing compound particles. For example, when the compound is a binary alloy of silicon and metal and the alloy is manufactured using a rapid cooling method described later, the amount of silicon is preferably 40 to 90% by weight. On the other hand, the amount of metal including copper is preferably 10 to 60% by weight.
[0026]
In the case where the compound is a ternary or higher alloy of silicon and metal, B, Al, Ni, Co, Sn, Fe, Cr, Zn, In, V, A small amount of an element selected from the group consisting of Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd and Nd may be contained. Thereby, the additional effect that pulverization is suppressed is produced. In order to further enhance this effect, these elements are preferably contained in an alloy of silicon and metal in an amount of 0.01 to 10% by weight, particularly 0.05 to 1.0% by weight.
[0027]
(D) When the compound particles of silicon and metal are alloy particles, the alloy particles are produced, for example, by a rapid cooling method described below, so that the crystallites of the alloy have a fine size and are uniformly dispersed. By this, it is preferable from the point by which pulverization is suppressed and electronic conductivity is maintained. In this rapid cooling method, first, a raw material melt containing silicon and a metal such as copper is prepared. The raw material is made into molten metal by high frequency melting. The ratio of silicon to other metals in the molten metal is in the range described above. The temperature of the molten metal is preferably 1200 to 1500 ° C., particularly 1300 to 1450 ° C., in relation to the rapid cooling conditions. An alloy is obtained from this molten metal using a mold casting method. That is, the molten metal is poured into a copper or iron mold to obtain a rapidly cooled silicon alloy ingot. The ingot is pulverized and sieved, and for example, those having a particle size of 40 μm or less are provided for the present invention. Instead of this mold casting method, a roll casting method can also be used. That is, the molten metal is injected onto the peripheral surface of a copper roll that rotates at high speed. The rotational speed of the roll is preferably 500 to 4000 rpm, particularly 1000 to 2000 rpm from the viewpoint of quenching the molten metal. When the rotational speed of the roll is expressed as a peripheral speed, it is preferably 8 to 70 m / sec, particularly 15 to 30 m / sec. By rapidly cooling the molten metal having a temperature in the above-described range using a roll rotating at a speed in the above-described range, the cooling rate is 10%. 2 K / sec or more, especially 10 Three K / sec or higher. The injected molten metal is rapidly cooled in a roll to become a thin body. The thin body is pulverized and sieved and, for example, one having a particle size of 40 μm or less is provided for the present invention. Instead of this rapid cooling method, a desired atomization method can be obtained by spraying an inert gas such as argon at a pressure of 5 to 100 atm on a molten metal at 1200 to 1500 ° C. and atomizing and rapidly cooling the gas. Further, as another method, an arc melting method or mechanical milling can be used.
[0028]
In the case where the silicon-based particles are particles in which metal is coated on the surface of the single silicon particles of (e) (this particle is referred to as metal-coated silicon particles), the coated metal is the above-mentioned c) or d). The same metals as those contained in the particles, such as copper, are used (except for Li). The amount of silicon in the metal-coated silicon particles is preferably 70 to 99.9% by weight, in particular 80 to 99% by weight, in particular 85 to 95. On the other hand, the amount of the coating metal including copper is preferably 0.1 to 30% by weight, particularly 1 to 20% by weight, particularly 5 to 15% by weight. The metal-coated silicon particles are produced using, for example, an electroless plating method. In this electroless plating method, first, a plating bath in which silicon particles are suspended and containing a coating metal such as copper is prepared. In this plating bath, silicon particles are electrolessly plated to coat the surface of the silicon particles with the coating metal. The concentration of silicon particles in the plating bath is preferably about 400 to 600 g / l. When electrolessly plating copper as the coating metal, it is preferable to contain copper sulfate, Rochelle salt or the like in the plating bath. In this case, the concentration of copper sulfate is preferably 6 to 9 g / l, and the concentration of Rochelle salt is preferably 70 to 90 g / l from the viewpoint of controlling the plating rate. For the same reason, the pH of the plating bath is preferably 12 to 13, and the bath temperature is preferably 20 to 30 ° C. As the reducing agent contained in the plating bath, for example, formaldehyde or the like is used, and the concentration thereof can be about 15 to 30 cc / l.
[0029]
The active material layer preferably contains a conductive carbon material in addition to the silicon-based material described above. This further imparts electronic conductivity to the active material structure. From this viewpoint, the amount of the conductive carbon material contained in the active material layer is preferably 0.1 to 20% by weight, particularly 1 to 10% by weight. The form of the conductive carbon material is appropriately selected according to the form of the silicon-based material. For example, when the silicon-based material is in the form of particles, the conductive carbon material is also preferably in the form of particles. In this case, the particle diameter of the conductive carbon material particles is preferably 40 μm or less, particularly preferably 20 μm or less from the viewpoint of further imparting electronic conductivity. The lower limit of the particle size of the particles is not particularly limited and is preferably as small as possible. In view of the method for producing the particles, the lower limit is about 0.01 μm. Examples of the conductive carbon material include acetylene black and graphite.
[0030]
Next, the preferable manufacturing method of the negative electrode of this invention is demonstrated. In this manufacturing method, a dispersion plating method is used. In the dispersion plating method, a plating bath containing a conductive material in which particles of a silicon-based material are suspended and a lithium compound forming ability is low is prepared. The amount of silicon-based particles in this plating bath is preferably 200 to 600 g / l, particularly 400 to 600 g / l, from the viewpoint that a sufficient amount of silicon-based particles can be taken into the active material structure. The concentration of the conductive material having a low lithium compound forming ability in the plating bath is, for example, when copper, which is a metal, is used as the conductive material and copper sulfate is used as the copper source, the concentration of copper is 30 to 100 g / l, sulfuric acid Concentration of 50-200 g / l, chlorine concentration of 300 ppm or less, cresolsulfonic acid concentration of 40-100 g / l, gelatin concentration of 1-3 g / l, β-naphthol concentration of 0.5-2 g / l It is preferable from the viewpoint of controlling the plating rate and forming a surface coating layer having a thickness capable of sufficiently holding the active material layer made of silicon-based particles.
[0031]
Next, the current collector is immersed in the plating bath, and electroplating is started under this condition. Current density in electrolysis is 1-15 A / dm 2 It is preferable from the viewpoint of controlling the plating rate. The temperature of the plating bath may be room temperature around 20 ° C. By this plating, the metal in the plating bath is reduced to form a surface coating layer and an active material layer coated on the surface coating layer is formed on the current collector surface. In order to uniformly form the active material layer, electrolysis may be performed while stirring the plating bath.
[0032]
Next, another preferred method for producing the negative electrode of the present invention will be described. In this production method, first, a slurry to be applied to the surface of the current collector is prepared. The slurry contains silicon-based material particles, conductive carbon material particles, a binder, and a diluent solvent. Among these components, the silicon-based material particles and the conductive carbon material particles are as described above. As the binder, polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM) or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used.
[0033]
The amount of silicon-based particles in the slurry is preferably about 14 to 40% by weight. The amount of the conductive carbon material particles is preferably about 0.4 to 4% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. Moreover, it is preferable that the quantity of a dilution solvent shall be about 60 to 85 weight%.
[0034]
This slurry is applied to the surface of the current collector to form an active material layer. The current collector may be manufactured in advance, or may be manufactured in-line as one step in the manufacturing process of the negative electrode of the present invention. When the current collector is manufactured in-line, it is preferably manufactured by electrolytic deposition. The amount of slurry applied to the current collector is preferably such that the thickness of the active material layer after drying is about 1 to 3 times the thickness of the finally obtained active material structure. . After the slurry coating is dried and an active material layer is formed, the current collector on which the active material layer is formed is immersed in a plating bath containing a conductive material having a low ability to form a lithium compound. Under the state, electrolytic plating with the conductive material is performed on the active material layer to form a surface coating layer. As the conditions for electrolytic plating, for example, when copper, which is a metal, is used as a conductive material, when using a copper sulfate solution, the concentration of copper is 30 to 100 g / l, the concentration of sulfuric acid is 50 to 200 g / l, The concentration is 30 ppm or less, the liquid temperature is 30 to 80 ° C., and the current density is 1 to 100 A / dm. 2 And it is sufficient. In this case, the negative electrode having the form shown in FIG. 1 described above is obtained. When using a copper pyrophosphate solution, the concentration of copper is 2 to 50 g / l, the concentration of potassium pyrophosphate is 100 to 700 g / l, the liquid temperature is 30 to 60 ° C., the pH is 8 to 12, and the current density is 1. -10 A / dm 2 And it is sufficient. In this case, the negative electrode having the form shown in FIG. 2 described above is obtained.
[0035]
After the surface coating layer is formed on the active material layer in this way, the active material layer is pressed together with the surface coating layer. As a result, the active material layer is consolidated. By the consolidation, the space between the silicon-based material particles and the conductive carbon material particles was filled with the conductive material constituting the surface coating layer, and the silicon-based material particles and the conductive carbon material particles were dispersed. It becomes a state. In addition, these particles and the surface coating layer are in close contact with each other to impart electron conductivity. From the viewpoint of obtaining sufficient electron conductivity, the consolidation by press working is such that the total thickness of the active material layer and the surface coating layer after the press work is 90% or less, preferably 80% or less before the press work. It is preferable to do so. For the press working, for example, a roll press machine can be used. The active material layer after press working preferably has 5 to 30% by volume of voids. Due to the presence of the voids, when the volume expands due to occlusion of lithium during charging, the stress due to the volume expansion is relaxed. Such a gap may be controlled by controlling the press working conditions as described above. The value of this void can be obtained by electron microscope mapping.
[0036]
In this production method, it is preferable to press the active material layer prior to electrolytic plating on the active material layer (this press processing is different from the pre-press processing in the sense of distinguishing from the press processing described above). Call). By performing the pre-pressing process, peeling between the active material layer and the current collector is prevented, and the particles of the silicon-based material are prevented from being exposed on the surface of the surface coating layer. As a result, it is possible to prevent the deterioration of the cycle life of the battery due to the dropping of the particles of the silicon-based material. The conditions for the pre-pressing are preferably such that the thickness of the active material layer after the pre-pressing is 95% or less, particularly 90% or less of the thickness of the active material layer before the pre-pressing.
[0037]
In this manufacturing method, electrolytic plating is used to form the surface coating layer, but instead, sputtering, chemical vapor deposition, or physical vapor deposition may be used. The surface coating layer may be formed by rolling metal foil, rolling metal mesh foil, or rolling conductive plastic.
[0038]
The negative electrode of the present invention thus obtained is used with a known positive electrode, separator, and non-aqueous electrolyte solution to form a non-aqueous electrolyte secondary battery. The positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying this to a current collector, drying it, then rolling and pressing, and further cutting. It is obtained by punching. As the positive electrode active material, conventionally known positive electrode active materials such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used. As the separator, a synthetic resin nonwoven fabric, polyethylene, polypropylene porous film, or the like is preferably used. In the case of a lithium secondary battery, the nonaqueous electrolytic solution is a solution in which a lithium salt that is a supporting electrolyte is dissolved in an organic solvent. Examples of the lithium salt include LiC1O. Four LiA1Cl Four , LiPF 6 , LiAsF 6 , LiSbF 6 , LiSCN, LiC1, LiBr, LiI, LiCF Three SO Three , LiC Four F 9 SO Three Etc. are exemplified.
[0039]
The present invention is not limited to the embodiment. For example, in the above embodiment, the case where the active material layer is a particle of a silicon-based material has been mainly described. However, as described above, the active material layer is a thin film of a silicon-based material, for example, a thin film formed by a sputtering method. It may be. In that case, for example, a thin film of silicon alone or a thin film of silicon compound can be used as the thin film.
[0040]
In the present invention, a silicon-based material is used as the negative electrode active material, but instead of this, an element capable of occluding lithium, for example, tin, aluminum, germanium, or an alloy or compound of these elements may be used.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. In the following examples, “%” means “% by weight” unless otherwise specified.
[0042]
[Example 1]
(1) Preparation of plating bath
A plating bath having the following composition was prepared.
・ Silicon particles (particle size D 50 Value 5μm) 600g / l
・ Copper sulfate 50g / l
・ Sulfuric acid 70g / l
・ Cresol sulfonic acid 70g / l
・ Gelatin 2g / l
・ Β-Naphthol 1.5g / l
[0043]
(2) Dispersion plating
Electrolysis was performed by immersing a copper foil having a thickness of 30 μm in a plating bath at 20 ° C. in a state where silicon particles were suspended in the plating bath. Current density is 10 A / dm 2 Met. As a result, a surface coating layer made of copper covering the active material layer in which the silicon particles were uniformly dispersed was formed. As a result of electron microscope observation, the thickness of the active material structure including the active material layer and the surface coating layer was 35 μm. As a result of chemical analysis, the amount of silicon particles in the active material structure was 30%.
[0044]
[Example 2]
(1) Preparation of slurry
A slurry having the following composition was prepared.
・ Silicon particles (particle size D 50 (Value 5μm) 16%
-Acetylene black (particle size 0.1 μm) 2%
・ Binder (polyvinylidene fluoride) 2%
・ Dilution solvent (N-methylpyrrolidone) 80%
[0045]
(2) Formation of active material layer
The prepared slurry was applied onto a copper foil having a thickness of 30 μm and dried. The thickness of the active material layer after drying was 60 μm.
[0046]
(3) Formation of surface coating layer
The copper foil on which the active material layer was formed was immersed in a plating bath having the following composition, and electrolytic plating was performed on the active material layer.
・ Copper 50g / l
・ Sulfuric acid 60g / l
・ Bath temperature 40 ℃
After forming the surface coating layer, the copper foil was pulled up from the plating bath, and then the active material layer was roll-pressed together with the surface coating layer to be consolidated. The thickness of the active material structure thus obtained was 30 μm as a result of observation with an electron microscope. As a result of chemical analysis, the amount of silicon particles in the active material structure was 35%, and the amount of acetylene black was 5%.
[0047]
[Examples 3 and 4]
A negative electrode was obtained in the same manner as in Example 2 except that the coating layer was formed from nickel (Example 3) and cobalt (Example 4).
[0048]
Example 5
A molten metal at 1400 ° C. containing 50% silicon and 50% copper was poured into a copper mold to obtain a rapidly cooled silicon-copper alloy ingot. This ingot was pulverized and sieved, and a particle size of 0.1 to 10 μm was used. A negative electrode was obtained in the same manner as in Example 2 except that this alloy particle was used.
[0049]
[Examples 6 to 8]
A negative electrode was obtained in the same manner as in Example 5 except that silicon-copper alloy particles having the composition shown in Table 1 were used.
[0050]
[Examples 9 to 11]
A negative electrode was obtained in the same manner as in Example 5 except that silicon-nickel alloy particles having the composition shown in Table 1 were used.
[0051]
Examples 12 and 13
A negative electrode was obtained in the same manner as in Example 5 except that silicon-copper-nickel alloy particles having the composition shown in Table 1 were used.
[0052]
Example 14
Silicon particles (particle size 100 μm) 80% and copper particles (particle size 30 μm) 20% were mixed, and these particles were mixed and pulverized simultaneously by an attritor. As a result, a particle size of 2 to 10 μm (D 50 A mixed particle having a value of 5 μm) was obtained. A negative electrode was obtained in the same manner as in Example 2 except that this mixed particle was used.
[0053]
[Examples 15 to 26]
A negative electrode was obtained in the same manner as in Example 14 except that silicon-copper mixed particles having the composition and particle diameter shown in Table 2 were used and the thickness of the active material structure was changed to the value shown in the same table.
[0054]
Example 27
In a plating bath in which silicon particles having a particle diameter of 0.2 to 8 μm are suspended and containing copper sulfate and Rochelle salt, the silicon particles are electrolessly plated to cover the surfaces of the silicon particles with copper. Coated silicon particles were obtained. The concentration of silicon particles in the plating bath was 500 g / l, the concentration of copper sulfate was 7.5 g / l, and the concentration of Rochelle salt was 85 g / l. The pH of the plating bath was 12.5, and the bath temperature was 25 ° C. Formaldehyde was used as the reducing agent, and its concentration was 22 cc / l. A negative electrode was obtained in the same manner as Example 2 except for the above.
[0055]
[Examples 28 to 31]
A negative electrode was obtained in the same manner as in Example 18 except that copper-coated silicon particles (Examples 28 and 29) and nickel-coated silicon particles (Examples 30 and 31) having the composition shown in Table 2 obtained by electroless plating were used. It was.
[0056]
[Examples 32-37]
A negative electrode was obtained in the same manner as in Example 5 except that silicon ternary alloy particles having the composition shown in Table 3 obtained by the rapid cooling method were used.
[0057]
Example 38
Silicon particles (particle size 100 μm) 20% and graphite particles (D 50 (Value 20 μm) 80% was mixed, and these particles were mixed and pulverized simultaneously by mechanical milling. As a result, a particle size of 0.5 μm (D 50 Value) of mixed particles. A negative electrode was obtained in the same manner as in Example 2 except that this mixed particle was used and the surface coating layer was formed from nickel.
[0058]
[Examples 39 to 42]
A negative electrode was obtained in the same manner as in Example 38 except that the composition of the mixed particles was changed to the value shown in Table 3.
[0059]
Example 43
A negative electrode was obtained in the same manner as in Example 5 except that alloy particles composed of 80% silicon, 19% copper and 1% lithium were used and the surface coating layer was composed of Ni.
[0060]
[Comparative Example 1]
A graphite powder having a particle size of 10 μm, a binder (PVDF) and a diluting solvent (N-methylpyrrolidone) are kneaded to form a slurry, which is coated on a 30 μm thick copper foil, dried and then pressed to form a negative electrode. Obtained. The thickness of the graphite coating after pressing was 20 μm.
[0061]
[Comparative Example 2]
A negative electrode was obtained in the same manner as in Comparative Example 1 except that silicon particles having a particle size of 5 μm were used in place of the graphite powder.
[0062]
[Performance evaluation]
Using the negative electrodes obtained in Examples and Comparative Examples, non-aqueous electrolyte secondary batteries were produced as follows. The following methods were used to measure irreversible capacity, volumetric capacity density during charging, charge / discharge efficiency during 10 cycles, and 50 cycle capacity retention. These results are shown in Tables 1 to 3 below.
[0063]
[Production of non-aqueous electrolyte secondary battery]
Metal lithium was used as the counter electrode, and the negative electrode obtained above was used as the working electrode, and both electrodes were opposed to each other through a separator. Furthermore, LiPF as a non-aqueous electrolyte 6 / A non-aqueous electrolyte secondary battery was produced by a usual method using a mixed solution of ethylene carbonate and diethyl carbonate (1: 1 volume ratio).
[0064]
[Irreversible capacity]
Irreversible capacity (%) = (1−initial discharge capacity / initial charge capacity) × 100
That is, it indicates the capacity remaining in the active material after being charged but not discharged.
[0065]
[Capacity density]
Indicates the initial discharge capacity. The unit is mAh / g.
[0066]
[Charging / discharging efficiency during 10 cycles]
Charging / discharging efficiency at 10th cycle (%) = 10th cycle discharge capacity / 10th cycle charge capacity × 100
[0067]
[50 cycle capacity maintenance rate]
50 cycle capacity retention rate (%) = 20th cycle discharge capacity / maximum discharge capacity × 100
[0068]
[Table 1]
Figure 0003750117
[0069]
[Table 2]
Figure 0003750117
[0070]
[Table 3]
Figure 0003750117
[0071]
As is clear from the results shown in Tables 1 to 3, the secondary batteries using the negative electrodes obtained in the respective examples have the same irreversible capacity and charge / discharge efficiency as the secondary batteries using the negative electrodes of the comparative examples. Further, it can be seen that the capacity retention rate is shown and the capacity density is much higher than that of the secondary battery of the comparative example.
[0072]
【The invention's effect】
As described in detail above, according to the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, a secondary battery having a higher energy density than a conventional negative electrode can be obtained. In addition, according to the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, the active material is prevented from being peeled off from the current collector, and the current collector is secured even after repeated charge and discharge. Moreover, the secondary battery using this negative electrode has a low deterioration rate and a long life even when charging and discharging are repeated, and the charging and discharging efficiency is also increased.
[Brief description of the drawings]
FIG. 1 is a scanning electron microscope image showing an example of a negative electrode of the present invention.
FIG. 2 is a scanning electron microscope image showing another example of the negative electrode of the present invention.
[Explanation of symbols]
1 Current collector
2 Coating layer
3 Active material layer

Claims (21)

集電体の片面又は両面上に、シリコン又はシリコン化合物からなるシリコン系材料を含む活物質の層、及び該層上に位置し且つ該層を完全に被覆する表面被覆層を含む活物質構造体が形成されており、前記表面被覆層がリチウム化合物の形成能の低い導電性材料からなり、前記表面被覆層にその厚み方向に延びる破断部が形成されており、前記シリコン系材料が前記活物質構造体中に5〜80重量%含まれていることを特徴とする非水電解液二次電池用負極。An active material structure including a layer of an active material containing a silicon-based material made of silicon or a silicon compound on one side or both sides of a current collector, and a surface coating layer located on the layer and completely covering the layer The surface coating layer is made of a conductive material having a low ability to form a lithium compound, the fracture portion extending in the thickness direction is formed in the surface coating layer, and the silicon-based material is the active material. A negative electrode for a non-aqueous electrolyte secondary battery, characterized in that the structure contains 5 to 80% by weight. 集電体の片面又は両面上に、シリコン又はシリコン化合物からなるシリコン系材料を含む活物質の層、及び該層上に位置し且つ厚みが0.3〜10μmの表面被覆層を含む活物質構造体が形成されており、前記表面被覆層がリチウム化合物の形成能の低い導電性材料からなり、前記表面被覆層にその厚み方向に延びる破断部が形成されており、前記シリコン系材料が前記活物質構造体中に5〜80重量%含まれていることを特徴とする非水電解液二次電池用負極。An active material structure including a layer of an active material containing a silicon-based material made of silicon or a silicon compound on one or both sides of a current collector, and a surface coating layer located on the layer and having a thickness of 0.3 to 10 μm A body is formed, the surface coating layer is made of a conductive material having a low ability to form a lithium compound, a fracture portion extending in the thickness direction is formed in the surface coating layer, and the silicon-based material is the active material. A negative electrode for a non-aqueous electrolyte secondary battery, characterized in that the material structure contains 5 to 80% by weight. 前記活物質構造体中に導電性炭素材料が0.1〜20重量%含まれている請求項1又は2記載の非水電解液二次電池用負極。  The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the active material structure contains 0.1 to 20% by weight of a conductive carbon material. 前記表面被覆層は、その一部が前記活物質の層に入り込んでいる請求項1〜3の何れかに記載の非水電解液二次電池用負極。  4. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein a part of the surface coating layer enters the active material layer. 5. 前記表面被覆層はその厚みが0.3〜10μmであり、前記活物質層はその厚みが1〜40μmであり、前記活物質構造体はその厚みが2〜50μmである請求項1、3又は4記載の非水電解液二次電池用負極。  The surface coating layer has a thickness of 0.3 to 10 µm, the active material layer has a thickness of 1 to 40 µm, and the active material structure has a thickness of 2 to 50 µm. 4. The negative electrode for a non-aqueous electrolyte secondary battery according to 4. 前記活物質の層が、シリコン単体の粒子を含む請求項1〜5の何れかに記載の非水電解液二次電池用負極。The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the active material layer contains particles of silicon alone. 前記活物質の層が、少なくともシリコンと炭素との混合粒子を含み、該混合粒子が、10〜90重量%のシリコン及び90〜10重量%の炭素を含む請求項1〜5の何れかに記載の非水電解液二次電池用負極。The layer of the active material includes at least mixed particles of silicon and carbon, and the mixed particles include 10 to 90% by weight of silicon and 90 to 10% by weight of carbon. Negative electrode for non-aqueous electrolyte secondary battery. 前記活物質の層が、シリコンと金属との混合粒子を含み、該混合粒子が、30〜99.9重量%のシリコン及び0.1〜70重量%のCu、Ag、Li、Ni、Co、Fe、Cr、Zn、B、Al、Ge、Sn、In、V、Ti、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd及びNdからなる群から選択される1種類以上の元素を含む請求項1〜5の何れかに記載の非水電解液二次電池用負極。The active material layer includes mixed particles of silicon and metal, and the mixed particles include 30 to 99.9% by weight of silicon and 0.1 to 70% by weight of Cu, Ag, Li, Ni, Co, One or more selected from the group consisting of Fe, Cr, Zn, B, Al, Ge, Sn, In, V, Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd and Nd The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, comprising an element. 前記活物質の層が、シリコン化合物粒子を含み、該シリコン化合物粒子が、30〜99.9重量%のシリコン及び0.1〜70重量%のCu、Ag、Li、Ni、Co、Fe、Cr、Zn、B、Al、Ge、Sn、In、V、Ti、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd及びNdからなる群から選択される1種類以上の元素を含む請求項1〜5の何れかに記載の非水電解液二次電池用負極。 The layer of the active material comprises a silicon compound particles, the silicon compound particles, 30 to 99.9 wt% of silicon and 0.1 to 70% by weight of Cu, Ag, Li, Ni, Co, Fe, Cr Including one or more elements selected from the group consisting of Zn, B, Al, Ge, Sn, In, V, Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd and Nd The negative electrode for nonaqueous electrolyte secondary batteries in any one of Claims 1-5. 前記活物質の層が、シリコン単体の粒子の表面に金属が被覆されてなる粒子を含み、該金属がCu、Ag、Ni、Co、Fe、Cr、Zn、B、Al、Ge、Sn、In、V、Ti、Y、Zr、Nb、Ta、W、La、Ce、Pr、Pd及びNdからなる群から選択される1種類以上の元素であり、該粒子が30〜99.9重量%のシリコン及び0.1〜70重量%の該金属を含む請求項1〜5の何れかに記載の非水電解液二次電池用負極。The active material layer includes particles in which metal is coated on the surface of particles of silicon alone, and the metal is Cu, Ag, Ni, Co, Fe, Cr, Zn, B, Al, Ge, Sn, In , V, Ti, Y, Zr, Nb, Ta, W, La, Ce, Pr, Pd and Nd are one or more elements selected from the group consisting of 30 to 99.9% by weight. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, comprising silicon and 0.1 to 70% by weight of the metal. 前記表面被覆層が、Cu、Ag、Ni、Co、Cr及びInからなる群から選択される1種類以上の元素を含む請求項1〜10の何れかに記載の非水電解液二次電池用負極。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the surface coating layer contains one or more elements selected from the group consisting of Cu, Ag, Ni, Co, Cr, and In. Negative electrode. 前記表面被覆層が電解めっきによって形成されている請求項1〜11の何れかに記載の非水電解液二次電池用負極。  The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the surface coating layer is formed by electrolytic plating. 前記表面被覆層がスパッター法、化学気相蒸着法、又は物理気相蒸着法によって形成されている請求項1〜11の何れかに記載の非水電解液二次電池用負極。  The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the surface coating layer is formed by a sputtering method, a chemical vapor deposition method, or a physical vapor deposition method. 前記表面被覆層が金属箔の圧延によって形成されている請求項1〜11の何れかに記載の非水電解液二次電池用負極。  The negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 11, wherein the surface coating layer is formed by rolling metal foil. 前記表面被覆層がメッシュ金属箔の圧延によって形成されている請求項1〜11の何れかに記載の非水電解液二次電池用負極。  The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the surface coating layer is formed by rolling a mesh metal foil. 前記表面被覆層が導電性プラスチックの圧延によって形成されている請求項1〜11の何れかに記載の非水電解液二次電池用負極。  The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the surface coating layer is formed by rolling conductive plastic. 請求項1記載の非水電解液二次電池用負極の製造方法であって、
シリコン又はシリコン化合物からなるシリコン系材料の粒子が懸濁されており且つリチウム化合物の形成能の低い導電性材料を含むめっき浴中に、集電体を浸漬した状態下に電解めっきを行うことを特徴とする非水電解液二次電池用負極の製造方法。
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1,
Electrolytic plating is performed in a state where a current collector is immersed in a plating bath in which particles of silicon-based material composed of silicon or a silicon compound are suspended and which includes a conductive material having a low lithium compound forming ability. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
請求項1記載の非水電解液二次電池用負極の製造方法であって、
シリコン又はシリコン化合物からなるシリコン系材料の粒子、導電性炭素材料の粒子、結着剤及び希釈溶媒を含むスラリーを、集電体表面に塗工し塗膜を乾燥させて前記活物質の層を形成し、次いで該活物質の層上に、リチウム化合物の形成能の低い導電性材料による電解めっきを行い前記表面被覆層を形成し、然る後、該活物質の層をプレス加工して圧密化することを特徴とする非水電解液二次電池用負極の製造方法。
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1,
Applying a slurry containing silicon-based material particles made of silicon or a silicon compound, conductive carbon material particles, a binder and a diluting solvent to the surface of the current collector and drying the coating film, the active material layer is formed. Then, the surface coating layer is formed on the active material layer by electroplating with a conductive material having a low ability to form a lithium compound, and then the active material layer is pressed and consolidated. The manufacturing method of the negative electrode for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
前記活物質の層上に電解めっきを行うに先立ち、該活物質の層をプレス加工する請求項18記載の非水電解液二次電池用負極の製造方法。  The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 18, wherein the active material layer is pressed before the electroplating on the active material layer. 非水電解液二次電池の集電体となり得る金属を電解析出させて金属箔からなる前記集電体形成し、その後に該集電体表面に前記スラリーを塗工する請求項18又は19記載の非水電解液二次電池用負極の製造方法。  20. A metal that can be a current collector of a non-aqueous electrolyte secondary battery is electrolytically deposited to form the current collector made of a metal foil, and then the slurry is applied to the surface of the current collector. The manufacturing method of the negative electrode for nonaqueous electrolyte secondary batteries of description. 請求項1又は2記載の負極を備えてなることを特徴とする非水電解液二次電池。  A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 1.
JP2003105797A 2002-11-29 2003-04-09 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Fee Related JP3750117B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003105797A JP3750117B2 (en) 2002-11-29 2003-04-09 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US10/529,487 US7811709B2 (en) 2002-11-29 2003-11-25 Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery
AU2003302519A AU2003302519A1 (en) 2002-11-29 2003-11-25 Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
EP03812300A EP1566855A4 (en) 2002-11-29 2003-11-25 Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
BRPI0315457-2A BR0315457B1 (en) 2002-11-29 2003-11-25 negative electrode for non-aqueous secondary battery, negative electrode production process, and non-aqueous secondary battery.
KR1020057009763A KR100680650B1 (en) 2002-11-29 2003-11-25 Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
PCT/JP2003/015044 WO2004051768A1 (en) 2002-11-29 2003-11-25 Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
US11/028,735 US20050208379A1 (en) 2002-11-29 2005-01-05 Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002348990 2002-11-29
JP2003105797A JP3750117B2 (en) 2002-11-29 2003-04-09 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004228059A JP2004228059A (en) 2004-08-12
JP3750117B2 true JP3750117B2 (en) 2006-03-01

Family

ID=32910966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105797A Expired - Fee Related JP3750117B2 (en) 2002-11-29 2003-04-09 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3750117B2 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747514B2 (en) * 2004-05-31 2011-08-17 パナソニック株式会社 Method for producing negative electrode for lithium ion secondary battery
JP2006134891A (en) * 2004-09-09 2006-05-25 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
KR100566592B1 (en) 2004-09-16 2006-03-31 주식회사 디지털텍 Anode foil for lithium ion polymer battery and method thereof
JP4796294B2 (en) * 2004-11-11 2011-10-19 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
JP2006147316A (en) * 2004-11-18 2006-06-08 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
JP4739781B2 (en) * 2005-03-11 2011-08-03 三洋電機株式会社 Lithium secondary battery
JP4911909B2 (en) * 2005-03-29 2012-04-04 三洋電機株式会社 Method for producing electrode for lithium secondary battery
US20070099084A1 (en) * 2005-10-31 2007-05-03 T/J Technologies, Inc. High capacity electrode and methods for its fabrication and use
JP2007128767A (en) * 2005-11-04 2007-05-24 Sony Corp Method for manufacturing active material and battery
US20100062340A1 (en) * 2005-11-08 2010-03-11 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery
JP5555978B2 (en) * 2008-02-28 2014-07-23 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5711565B2 (en) 2010-02-26 2015-05-07 株式会社半導体エネルギー研究所 Power storage device
WO2011112042A2 (en) 2010-03-11 2011-09-15 주식회사 엘지화학 Organic polymer-silicon composite particle, preparation method for same, and cathode and lithium secondary battery including same
JP5510084B2 (en) 2010-06-03 2014-06-04 ソニー株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP2010245050A (en) * 2010-06-30 2010-10-28 Panasonic Corp Negative electrode for lithium ion secondary battery, and method of manufacturing the same, and lithium ion secondary battery using the same
JP4739462B1 (en) * 2010-07-16 2011-08-03 山陽特殊製鋼株式会社 Si-based alloy negative electrode material with excellent conductivity
JP4865105B1 (en) * 2011-04-20 2012-02-01 山陽特殊製鋼株式会社 Si alloy negative electrode material
JP5751448B2 (en) 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
US20130045419A1 (en) * 2011-08-15 2013-02-21 Hee-Joon Chun Negative active material for rechargeable lithium battery, negative electrode including the same and method of preparing the same, and rechargeable lithium battery including the same
KR101385602B1 (en) * 2011-12-14 2014-04-21 엠케이전자 주식회사 Anode active material for secondary battery and method of manufacturing the same
KR101403498B1 (en) * 2012-01-31 2014-06-11 엠케이전자 주식회사 Anode active material for secondary battery and secondary battery including the same
JP6322362B2 (en) 2012-02-01 2018-05-09 山陽特殊製鋼株式会社 Si alloy negative electrode material
JP2013211264A (en) * 2012-03-02 2013-10-10 Shinshu Univ Negative electrode material for lithium ion battery
KR20150036208A (en) * 2012-08-31 2015-04-07 쥬오 덴끼 고교 가부시키가이샤 Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP2016027527A (en) * 2012-11-22 2016-02-18 日産自動車株式会社 Negative electrode for electric device and electric device using the same
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
JP2016027528A (en) * 2012-11-22 2016-02-18 日産自動車株式会社 Negative electrode for electric device and electric device using the same
CN104854735B (en) * 2012-11-22 2018-05-08 日产自动车株式会社 Electrical equipment is with anode and uses its electrical equipment
KR20150065815A (en) 2012-11-22 2015-06-15 닛산 지도우샤 가부시키가이샤 Negative electrode for electrical device, and electrical device using same
US20140203207A1 (en) * 2013-01-22 2014-07-24 Mk Electron Co., Ltd. Anode active material for secondary battery and method of manufacturing the same
JP6371504B2 (en) 2013-02-19 2018-08-08 山陽特殊製鋼株式会社 Si-based alloy negative electrode material for power storage device and electrode using the same
JP5821893B2 (en) * 2013-05-09 2015-11-24 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6370885B2 (en) * 2013-07-30 2018-08-08 エルジー・ケム・リミテッド Electrode including a coating layer for preventing reaction with electrolyte
JP6102727B2 (en) * 2013-12-25 2017-03-29 株式会社豊田自動織機 Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
JP6355231B2 (en) * 2014-02-12 2018-07-11 国立大学法人信州大学 Negative electrode material for silicon-based storage battery and method for producing the same
JP6374678B2 (en) 2014-03-13 2018-08-15 山陽特殊製鋼株式会社 Negative electrode materials for electricity storage devices
JP7098872B2 (en) * 2016-11-09 2022-07-12 日産自動車株式会社 Manufacturing method of electrodes for secondary batteries
TWI690112B (en) * 2017-08-29 2020-04-01 國立成功大學 Composite electrode material and method for manufacturing the same, composite electrode containing the said composite electrode material, and li-based battery comprising the said composite electrode
KR102243610B1 (en) 2018-12-17 2021-04-27 주식회사 티씨케이 Negative active material, method for preparing the same and lithium secondary battery comprising the same
CN113991059A (en) * 2021-11-09 2022-01-28 河南电池研究院有限公司 Lithium ion battery negative pole piece and preparation method thereof

Also Published As

Publication number Publication date
JP2004228059A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP3750117B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP3643108B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR100680650B1 (en) Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
KR100659814B1 (en) Negative Electrode for Nonaqueous Electrolyte Secondary Battery, Method for Manufacturing Same and Nonaqueous Electrolyte Secondary Battery
JP2004296412A (en) Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP5809897B2 (en) Porous silicon particles, production method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20060147802A1 (en) Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery
JP4422417B2 (en) Anode for non-aqueous electrolyte secondary battery
EP1947714B1 (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4019025B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP2012084522A (en) Lithium ion secondary battery anode, lithium ion secondary battery, and lithium ion secondary battery anode manufacturing method
WO2009087791A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte
JP3799049B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP5192664B2 (en) Anode for non-aqueous electrolyte secondary battery
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
JP3612669B1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2008066279A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2008016191A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016192A (en) Anode for nonaqueous electrolyte secondary battery
RU2303318C2 (en) Negative plate for nonaqueous secondary battery, negative plate manufacturing process, and nonaqueous secondary battery
JP2005093331A (en) Negative electrode for nonaqueous electrolytic solution secondary battery, method of manufacturing same, and nonaqueous electrolytic solution secondary battery
JP2009277509A (en) Anode for non-aqueous electrolyte secondary battery
JP2008066272A (en) Anode for nonaqueous electrolyte secondary battery
WO2005117168A1 (en) Active material particle for nonaqueous electrolyte secondary battery
JP2008034346A (en) Negative electrode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees