JP3748866B2 - Tool measuring apparatus and method - Google Patents

Tool measuring apparatus and method Download PDF

Info

Publication number
JP3748866B2
JP3748866B2 JP2003206569A JP2003206569A JP3748866B2 JP 3748866 B2 JP3748866 B2 JP 3748866B2 JP 2003206569 A JP2003206569 A JP 2003206569A JP 2003206569 A JP2003206569 A JP 2003206569A JP 3748866 B2 JP3748866 B2 JP 3748866B2
Authority
JP
Japan
Prior art keywords
phase angle
tool
outer diameter
rotary cutting
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206569A
Other languages
Japanese (ja)
Other versions
JP2005052910A (en
Inventor
藤詞郎 青山
茂 井上
光義 寺尾
信行 岩田
Original Assignee
牧野フライス精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 牧野フライス精機株式会社 filed Critical 牧野フライス精機株式会社
Priority to JP2003206569A priority Critical patent/JP3748866B2/en
Publication of JP2005052910A publication Critical patent/JP2005052910A/en
Application granted granted Critical
Publication of JP3748866B2 publication Critical patent/JP3748866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転切削工具の最大外径を与える位相角度位置を測定するための工具測定装置および工具測定方法に関する。
【0002】
【従来の技術】
エンドミルなどの回転切削工具を自動で再研削する場合、NC工具研削盤上での自動位置決めが必要となる。回転切削工具を位置決めするために、一般的にはタッチプローブを利用したセンサが用いられている。然しながら、測定対象となる回転切削工具が、例えばφ0.1〜φ0.3mmといった直径1mm以下の小径工具の場合、工具自体の剛性がきわめて低いために、センサのタッチプローブが作動する前に、回転切削工具が撓んだり折れたりして測定できないことが多い。
【0003】
一方、光学センサを用いて非接触に測定する場合、回転切削工具の直径が小さくなるほど光の回折現象が顕著になり、ねじれている切刃を有した回転切削工具の研削開始点、つまり、回転切削工具の中心軸線回りの回転角の原点(位相角度位置の原点)を正確に求めることが難しくなる。
【0004】
【特許文献1】
特開平06−109440号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明は、こうした従来技術の問題を解決することを技術課題としており、回転切削工具の最大外径を与える切刃先端の位相角度を正確に測定可能にした工具測定装置および工具測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、回転切削工具の最大外径を与える位相角度位置を測定するための工具測定装置において、回転切削工具をその中心軸線回りに回転自在に支持する工具支持手段と、前記回転切削工具をその中心軸線回りに回転させる回転手段と、前記回転切削工具の前記中心軸線回りの位相角度を検知する位相角検知手段と、前記位相角検知手段からの信号に基づいて、前記回転切削工具を前記中心軸線回りに複数の位相角位置に位置決めする工具回転位置決め手段と、前記複数の位相角度位置に位置決めされた回転切削工具の各々の外径に対応した信号を出力する工具外径測定手段と、前記位相角検知手段からの信号と前記工具外径測定手段からの信号とに基づき、最大外径を与える凡その位相角度基準位置を求めた後、該位相角度基準位置を中心とする所定の位相角度測定範囲を定め、該位相角度測定範囲内の多数の位相角度で前記回転切削工具の外径を前記工具外径測定手段で測定し、前記位相角度と前記外径との関係を最小二乗法により二次曲線で近似して該二次曲線から前記回転切削工具の最大外径を与える新たな位相角度基準位置を演算すると共に、該演算をした後に前記位相角度測定範囲を狭めた条件で前記外径を測定し、より正確な位相角度基準位置を算出するための同様の演算をする最大外径位相角度位置演算手段とを具備する工具測定装置を要旨とする。
【0007】
また、本発明の他の特徴によれば、回転切削工具の最大外径を与える位相角度位置を測定するための工具測定方法において、
(a)回転切削工具をその中心軸線回りに回転自在に支持する段階と、
(b)前記回転切削工具を前記中心軸線回りの位相角度位置に位置決めする段階と、
(c)前記複数の位相角度位置に位置決めされた回転切削工具の外径を測定する段階と、
(d)前記段階(b)及び(c)を所定回数繰り返す段階と、
(e)前記段階(d)により、最大外径を与える凡その位相角度基準位置を求めた後、該位相角度基準位置を中心とする所定の位相角度測定範囲を定め、該位相角度測定範囲内の多数の位相角度位置と前記外径との関係を最小二乗法により二次曲線で近似し、該二次曲線から前記回転切削工具の最大外径を与える新たな位相角度基準位置を演算すると共に、該演算をした後に前記位相角度測定範囲を狭めた条件で前記外径を測定し、より正確な位相角度基準位置を算出するための同様の演算をする段階とを具備する工具測定方法が提供される。
【0008】
前記方法は、段階(a)(b)の間に実行する、(f)前記回転切削工具を前記中心軸線に沿った1点に位置決めする段階と、
(g)前記段階(b)〜(e)を実行する段階と、
(h)前記回転切削工具を前記中心軸線に沿った他の1点に位置決めする段階と、
(i)前記段階(b)〜(e)を実行する段階と、
(j)前記中心軸線に沿った2点において、前記回転切削工具の最大外径を与える位相角度位置を演算し、両者の差分である位相角度差と、前記2点間の距離とに基づいて前記回転切削工具の切刃のねじれ角を演算する段階とを更に具備することができる。
【0010】
【発明の実施の形態】
以下、添付図面を参照して、本発明の好ましい実施形態を説明する。
本実施形態による工具測定装置10は、工具支持手段としての主軸頭12を具備している。主軸頭12は、先端に工具ホルダ16を介してボールエンドミル等の回転切削工具Tを装着する主軸14と、主軸14を水平なA軸回りに回転自在に支持するハウジングとを具備している。主軸14は、該主軸14および回転切削工具Tを、該回転切削工具Tの中心軸線としてのA軸回りに回転する回転手段としてのサーボモータ(図示せず)に連結されている。該サーボモータは主軸頭12のハウジング内に配置したビルトインモータとすることができる。
【0011】
主軸14の後端には、主軸14のA軸回りの回転位置を検知するための位相角検知手段としてロータリーエンコーダ18が取付けられている。ロータリーエンコーダ18は、該工具測定装置10の動作を制御する数値制御装置26に接続されている。数値制御装置26には、また、前記回転手段としてのサーボモータが接続されており、該サーボモータの動作もまた数値制御装置26により制御される。一方、数値制御装置26は、最大外径位相角度位置演算手段およびねじれ角演算手段を形成するパーソナルコンピュータ28にバス結合等の通信手段を介して接続されている。
【0012】
主軸頭12は、鉛直なW軸回りに回転自在に設けられた旋回台20の上面に取付けられている。より詳細には、旋回台20の上面には、A軸に平行に延設されたU軸案内レール22が配設されており、主軸頭12はスライダ23によりU軸案内レール22に沿って水平な直線方向であるU軸方向に往復自在となっている。また、旋回台20には、主軸頭12をU軸方向に直線往復移動させるための、U軸送り装置(図示せず)が配設されている。U軸送り装置は、例えば、U軸方向に延設された送りねじ(図示せず)、主軸頭12に固定され前記送りねじに係合するナット(図示せず)、および、前記送りねじの一端に連結されれ数値制御装置26により制御されるサーボモータ(図示せず)を具備することができる。更に主軸頭12のU軸に沿った位置を検知する軸位置検知手段として数値制御装置26に接続されたU軸スケール(図示せず)が設けられている。
【0013】
旋回台20には、工具外径測定手段として投光部24と受光部25から成る光学センサが配設されている。光学センサ24、25は、好ましくは、A軸に垂直な方向に横断させて光を照射するように配設されている。光学センサ24、25は、投光部24内に配設された発光ダイオード24aから光を照射し、この光を光拡散ユニット24b、コリメータレンズ24cを通して、均一な平行光として受光部25に照射するようになっている。受光部25は、受光した光の平行光のみをCCD(電荷結合素子)25aに結び、その明暗のエッジ位置Edを検出することで、回転切削工具Tの外径を測定するようになっている。測定結果は、受光部25内に配設されているA/D変換器(図示せず)によりデジタル化され、シリアル結合等の通信手段を介してパーソナルコンピュータ28に送信される。なお、工学センサ24、25はレーザー光を用いてもよい。
【0014】
なお、既述した工具測定装置10は、独立した工具測定装置として構成することもできるが、工具測定装置10をNC研削盤の一部として組み込むことにより、工具研削プロセスの一部として後述する工具測定プロセスを実行することが可能となり非常に有利である。
【0015】
以下、本実施形態の作用を説明する。
先ず、回転切削工具Tを主軸14の先端に装着する。上述したように、工具測定装置10がNC研削盤の一部として組み込まれている場合には、回転切削工具Tは、その切刃研削プロセスの一部として既に主軸14の先端に装着されていることとなる。次いで、投光部24から光を照射する。
【0016】
次いで、前記U軸送り装置により、回転切削工具Tを主軸14に装着した状態で主軸頭12をU軸案内レール22に沿って移動させる。移動中の主軸頭12のU軸に沿った軸位置をU軸スケールにより測定し数値制御装置26に読み込む。こうして、回転切削工具Tの中心軸線(A軸)に沿った所望位置が投光部24からの光を横断するように、主軸頭12を回転切削工具TをU軸に沿って位置決めする。このプロセスは、例えば、投光部24から照射される光を回転切削工具Tが横切らない位置から主軸頭12を前進させ、回転切削工具Tの先端が、投光部24からの光を横切った遮断した瞬間に、受光部25から数値制御装置26へスキップ信号を送出するようにして、そのときのU軸スケールの読みU軸の原点として、該原点から所望の距離を以て主軸頭12を更に前進させることにより行うことができる。
【0017】
次いて、投光部24から光を照射して回転切削工具Tの外径を測定しながら、主軸14をA軸回りに所定角度を以て回転させ、最大外径を与える位相角度位置を記憶する。このとき、回転切削工具Tの外径として、回転切削工具Tの回転中心であるA軸の高さ(W軸に沿った座標位置)を参照することにより、回転切削工具Tの半径を求めることが好ましい。これにより、回転切削工具Tが奇数個の切刃を有している場合や、偶数個の切刃を有している場合でも、直径を挟んだ位置にある2つの切刃が、正確に180°の位相差を以て配置されていない場合でも回転切削工具Tの最大外径を与える位相角度位置を測定することが可能となる。
【0018】
次に、この最大外径を与える位相角度位置を中心として、所定の位相角度範囲、例えば±5°の位相角度範囲内で、所定角度、例えば1°毎に回転切削工具Tの外径を測定し、最大外径を与える位相角度位置を求める。次に、この最大外径を与える位相角度位置を中心として所定の位相角度範囲、例えば±1°の位相角度範囲内で、所定角度、例えば0.1°毎に回転切削工具Tの外径を測定する。
【0019】
本発明によれば、測定結果から最小二乗法を用いて位相角度と外径との関係を表し、最大外径を与える位相角度位置が求められる。ここで、図3を参照すると、位相角度位置xに対する外径yの関係を示すグラフが示されている。回転切削工具Tの切刃先端はA軸回りに円軌道を周回するので、理論的にはy=αcosβx(α、βは定数)となる。然しながら、測定する位相角度範囲Δxが十分に小さければ以下の式(1)で示す二次曲線で近似することができる。
【数1】

Figure 0003748866
但し、a、b、cは定数である。
【0020】
このとき、残差の二乗和uは以下の式(2)にて表される。
【数2】
Figure 0003748866
但し、iは複数の位相角度位置の各々における測定を表す整数である。
【0021】
残差の二乗和uが最小になるように各係数a、b、cを求めるために、uをa、b、cで偏微分した式を=0とした連立方程式(3)〜(5)を解く。
【数3】
Figure 0003748866
【0022】
このとき、最大外径を与える位相角度位置xは以下の式(6)で表される。
【数4】
Figure 0003748866
【0023】
また、図4に示すように、U軸方向に所定距離Δuを置いた2点u1、u2において同様に最大外径を与える位相角度位置x1、x2を求めることにより、ねじれ角θは以下の式(7)にて求めることができる。
【数5】
Figure 0003748866
【0024】
本発明は直径1mm以下の小径の回転切削工具を測定するのに特に適しているが、直径1mm以上の回転切削工具を測定するために用いても良い。
【図面の簡単な説明】
【図1】本発明の好ましい実施形態による工具測定装置の略示図である。
【図2】回転切削工具と光学センサの位置関係を示す略示図である。
【図3】最大外径を与える位相角度位置を求めるための方法を説明するためのグラフである。
【図4】回転切削工具のねじれ角を測定する方法を示す略示図である。
【符号の説明】
10…工具測定装置
12…主軸頭12
14…主軸
16…工具ホルダ
18…ロータリーエンコーダ
20…旋回台
22…U軸案内レール
23…スライダ
24…投光部(光学センサ)
25…受光部(光学センサ)
26…数値制御装置
28…パーソナルコンピュータ
T…回転切削工具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tool measuring apparatus and a tool measuring method for measuring a phase angle position that gives a maximum outer diameter of a rotary cutting tool.
[0002]
[Prior art]
When a rotary cutting tool such as an end mill is automatically regrinded, automatic positioning on an NC tool grinder is required. In order to position the rotary cutting tool, a sensor using a touch probe is generally used. However, when the rotary cutting tool to be measured is a small diameter tool having a diameter of 1 mm or less, for example, φ0.1 to φ0.3 mm, the rigidity of the tool itself is so low that the tool rotates before the touch probe of the sensor operates. In many cases, the cutting tool cannot be measured due to bending or breaking.
[0003]
On the other hand, when measuring in a non-contact manner using an optical sensor, the light diffraction phenomenon becomes more prominent as the diameter of the rotary cutting tool becomes smaller, and the grinding start point of the rotary cutting tool having a twisted cutting edge, that is, rotation It becomes difficult to accurately obtain the origin of the rotation angle around the central axis of the cutting tool (the origin of the phase angle position).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-109440
[Problems to be solved by the invention]
Therefore, the present invention has a technical problem to solve such problems of the prior art, and a tool measuring apparatus and a tool measuring method capable of accurately measuring the phase angle of the cutting edge tip that gives the maximum outer diameter of the rotary cutting tool. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The invention described in claim 1 is a tool measuring device for measuring a phase angle position that gives a maximum outer diameter of a rotary cutting tool, a tool support means for supporting the rotary cutting tool so as to be rotatable about its central axis, Based on a signal from a rotating means for rotating the rotary cutting tool about its central axis, a phase angle detecting means for detecting a phase angle of the rotary cutting tool around the central axis, and a signal from the phase angle detecting means, A tool rotation positioning means for positioning the rotary cutting tool at a plurality of phase angle positions around the central axis, and a tool outside that outputs a signal corresponding to the outer diameter of each of the rotary cutting tools positioned at the plurality of phase angle positions. and diameter measuring means, based on the signal from the signal and the tool outer diameter measuring means from the phase angle detecting means, after obtaining the phase angle reference position of approximately giving the maximum outer diameter, the phase angle A predetermined phase angle measurement range centered on a reference position is determined, and the outer diameter of the rotary cutting tool is measured by the tool outer diameter measurement means at a number of phase angles within the phase angle measurement range. A new phase angle reference position that gives the maximum outer diameter of the rotary cutting tool is calculated from the quadratic curve by approximating the relationship with the outer diameter by a quadratic curve by the least square method, and the phase is calculated after the calculation. the outer diameter under conditions narrowed angular measurement range is measured, and the maximum outer径位phase angular position calculation means for a similar operation to calculate a more accurate phase angle reference position, a tool measuring device comprising the gist And
[0007]
According to another feature of the invention, in the tool measurement method for measuring the phase angle position that gives the maximum outer diameter of the rotary cutting tool,
(A) supporting the rotary cutting tool rotatably about its central axis;
(B) positioning the rotary cutting tool at a phase angle position around the central axis;
(C) measuring an outer diameter of the rotary cutting tool positioned at the plurality of phase angle positions;
(D) repeating the steps (b) and (c) a predetermined number of times;
(E) After obtaining the approximate phase angle reference position giving the maximum outer diameter in the step (d), a predetermined phase angle measurement range centered on the phase angle reference position is determined, and the phase angle measurement range numerous approximated by a quadratic curve by the least squares method the relationship between the outer diameter of the phase angle positions, as well as calculating a new phase angle reference position from the secondary curve gives the maximum outer diameter of the rotary cutting tool Providing a tool measuring method comprising: performing the same calculation for measuring the outer diameter under the condition that the phase angle measurement range is narrowed after the calculation and calculating a more accurate phase angle reference position. Is done.
[0008]
The method is performed during steps (a) and (b); (f) positioning the rotary cutting tool at a point along the central axis; and
(G) performing the steps (b) to (e);
(H) positioning the rotary cutting tool at another point along the central axis;
(I) performing the steps (b) to (e);
(J) At two points along the central axis, the phase angle position that gives the maximum outer diameter of the rotary cutting tool is calculated, and based on the phase angle difference that is the difference between the two and the distance between the two points And calculating a twist angle of the cutting edge of the rotary cutting tool.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
The tool measuring apparatus 10 according to the present embodiment includes a spindle head 12 as a tool support means. The spindle head 12 includes a spindle 14 on which a rotary cutting tool T such as a ball end mill is mounted via a tool holder 16 at the tip, and a housing that rotatably supports the spindle 14 around a horizontal A axis. The main shaft 14 is connected to a servo motor (not shown) as rotating means for rotating the main shaft 14 and the rotary cutting tool T about the A axis as the central axis of the rotary cutting tool T. The servo motor may be a built-in motor disposed in the housing of the spindle head 12.
[0011]
A rotary encoder 18 is attached to the rear end of the main shaft 14 as phase angle detection means for detecting the rotational position of the main shaft 14 around the A axis. The rotary encoder 18 is connected to a numerical controller 26 that controls the operation of the tool measuring apparatus 10. The numerical controller 26 is also connected with a servo motor as the rotating means, and the operation of the servo motor is also controlled by the numerical controller 26. On the other hand, the numerical control device 26 is connected to a personal computer 28 forming the maximum outer diameter phase angle position calculating means and the torsion angle calculating means through communication means such as bus connection.
[0012]
The spindle head 12 is attached to the upper surface of a swivel base 20 provided so as to be rotatable around a vertical W axis. More specifically, a U-axis guide rail 22 extending parallel to the A-axis is disposed on the upper surface of the swivel base 20, and the spindle head 12 is horizontal along the U-axis guide rail 22 by a slider 23. It can freely reciprocate in the U-axis direction, which is a straight line direction. The swivel base 20 is provided with a U-axis feeding device (not shown) for linearly reciprocating the spindle head 12 in the U-axis direction. The U-axis feed device includes, for example, a feed screw (not shown) extending in the U-axis direction, a nut (not shown) fixed to the spindle head 12 and engaged with the feed screw, and the feed screw A servo motor (not shown) connected to one end and controlled by the numerical controller 26 can be provided. Further, a U-axis scale (not shown) connected to the numerical controller 26 is provided as an axis position detecting means for detecting the position of the spindle head 12 along the U axis.
[0013]
The swivel base 20 is provided with an optical sensor including a light projecting unit 24 and a light receiving unit 25 as a tool outer diameter measuring unit. The optical sensors 24 and 25 are preferably disposed so as to irradiate light in a direction perpendicular to the A axis. The optical sensors 24 and 25 irradiate light from a light emitting diode 24a disposed in the light projecting unit 24, and irradiate the light receiving unit 25 as uniform parallel light through the light diffusion unit 24b and the collimator lens 24c. It is like that. The light receiving unit 25 is configured to measure the outer diameter of the rotary cutting tool T by connecting only the parallel light of the received light to a CCD (charge coupled device) 25a and detecting the bright and dark edge position Ed. . The measurement result is digitized by an A / D converter (not shown) disposed in the light receiving unit 25 and transmitted to the personal computer 28 via communication means such as serial connection. The engineering sensors 24 and 25 may use laser light.
[0014]
In addition, although the tool measuring apparatus 10 already described can be configured as an independent tool measuring apparatus, by incorporating the tool measuring apparatus 10 as a part of the NC grinder, a tool which will be described later as a part of the tool grinding process. It is possible to carry out the measurement process, which is very advantageous.
[0015]
Hereinafter, the operation of the present embodiment will be described.
First, the rotary cutting tool T is attached to the tip of the main shaft 14. As described above, when the tool measuring device 10 is incorporated as a part of the NC grinder, the rotary cutting tool T is already attached to the tip of the spindle 14 as part of the cutting edge grinding process. It will be. Next, light is emitted from the light projecting unit 24.
[0016]
Next, the spindle head 12 is moved along the U-axis guide rail 22 with the rotary cutting tool T mounted on the spindle 14 by the U-axis feeding device. The axis position along the U axis of the moving spindle head 12 is measured by the U axis scale and read into the numerical controller 26. In this way, the spindle head 12 is positioned along the U axis so that the desired position along the central axis (A axis) of the rotary cutting tool T crosses the light from the light projecting unit 24. In this process, for example, the spindle head 12 is advanced from a position where the rotary cutting tool T does not cross the light irradiated from the light projecting unit 24, and the tip of the rotary cutting tool T crosses the light from the light projecting unit 24. At the moment of shut-off, a skip signal is sent from the light receiving unit 25 to the numerical control device 26, and the spindle head 12 is further advanced by a desired distance from the origin as the U-axis origin of the U-axis scale at that time. Can be performed.
[0017]
Next, while irradiating light from the light projecting unit 24 and measuring the outer diameter of the rotary cutting tool T, the main shaft 14 is rotated around the A axis by a predetermined angle, and the phase angle position that gives the maximum outer diameter is stored. At this time, the radius of the rotary cutting tool T is obtained by referring to the height of the A axis (coordinate position along the W axis) that is the rotation center of the rotary cutting tool T as the outer diameter of the rotary cutting tool T. Is preferred. As a result, even when the rotary cutting tool T has an odd number of cutting blades or an even number of cutting blades, the two cutting blades at the positions sandwiching the diameter are accurately 180. Even when not arranged with a phase difference of °, it is possible to measure the phase angle position that gives the maximum outer diameter of the rotary cutting tool T.
[0018]
Next, the outer diameter of the rotary cutting tool T is measured at a predetermined angle, for example, every 1 °, within a predetermined phase angle range, for example, ± 5 °, around the phase angle position that gives the maximum outer diameter. Then, the phase angle position giving the maximum outer diameter is obtained. Next, the outer diameter of the rotary cutting tool T is set at a predetermined angle, for example, every 0.1 ° within a predetermined phase angle range, for example, ± 1 ° around the phase angle position that gives the maximum outer diameter. taking measurement.
[0019]
According to the present invention, the relationship between the phase angle and the outer diameter is expressed using the least square method from the measurement result, and the phase angle position that gives the maximum outer diameter is obtained. Here, referring to FIG. 3, a graph showing the relationship of the outer diameter y to the phase angle position x is shown. Since the tip of the cutting edge of the rotary cutting tool T circulates in a circular orbit about the A axis, theoretically, y = αcosβx (α and β are constants). However, if the phase angle range Δx to be measured is sufficiently small, it can be approximated by a quadratic curve represented by the following equation (1).
[Expression 1]
Figure 0003748866
However, a, b, and c are constants.
[0020]
At this time, the residual sum of squares u is expressed by the following equation (2).
[Expression 2]
Figure 0003748866
Here, i is an integer representing a measurement at each of a plurality of phase angle positions.
[0021]
In order to obtain the coefficients a, b, and c so that the square sum u of the residuals is minimized, simultaneous equations (3) to (5) where 0 is a partial differential of u with a, b, and c. Solve.
[Equation 3]
Figure 0003748866
[0022]
At this time, the phase angle position x giving the maximum outer diameter is expressed by the following equation (6).
[Expression 4]
Figure 0003748866
[0023]
In addition, as shown in FIG. 4, the twist angle θ is obtained by obtaining the phase angle positions x 1 and x 2 that similarly give the maximum outer diameter at two points u 1 and u 2 that are spaced by a predetermined distance Δu in the U-axis direction. Can be obtained by the following equation (7).
[Equation 5]
Figure 0003748866
[0024]
The present invention is particularly suitable for measuring a rotary cutting tool having a small diameter of 1 mm or less, but may be used for measuring a rotary cutting tool having a diameter of 1 mm or more.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a tool measuring device according to a preferred embodiment of the present invention.
FIG. 2 is a schematic diagram showing a positional relationship between a rotary cutting tool and an optical sensor.
FIG. 3 is a graph for explaining a method for obtaining a phase angle position that gives a maximum outer diameter;
FIG. 4 is a schematic diagram showing a method for measuring a torsion angle of a rotary cutting tool.
[Explanation of symbols]
10 ... Tool measuring device 12 ... Spindle head 12
DESCRIPTION OF SYMBOLS 14 ... Main axis | shaft 16 ... Tool holder 18 ... Rotary encoder 20 ... Turning table 22 ... U-axis guide rail 23 ... Slider 24 ... Light projection part (optical sensor)
25. Light receiving part (optical sensor)
26 ... Numerical control device 28 ... Personal computer T ... Rotary cutting tool

Claims (10)

回転切削工具の最大外径を与える位相角度位置を測定するための工具測定装置において、
回転切削工具をその中心軸線回りに回転自在に支持する工具支持手段と、
前記回転切削工具をその中心軸線回りに回転させる回転手段と、
前記回転切削工具の前記中心軸線回りの位相角度を検知する位相角検知手段と、
前記位相角検知手段からの信号に基づいて、前記回転切削工具を前記中心軸線回りに複数の位相角位置に位置決めする工具回転位置決め手段と、
前記複数の位相角度位置に位置決めされた回転切削工具の各々の外径に対応した信号を出力する工具外径測定手段と、
前記位相角検知手段からの信号と前記工具外径測定手段からの信号とに基づき、最大外径を与える凡その位相角度基準位置を求めた後、該位相角度基準位置を中心とする所定の位相角度測定範囲を定め、該位相角度測定範囲内の多数の位相角度で前記回転切削工具の外径を前記工具外径測定手段で測定し、前記位相角度と前記外径との関係を最小二乗法により二次曲線で近似して該二次曲線から前記回転切削工具の最大外径を与える新たな位相角度基準位置を演算すると共に、該演算をした後に前記位相角度測定範囲を狭めた条件で前記外径を測定し、より正確な位相角度基準位置を算出するための同様の演算をする最大外径位相角度位置演算手段とを具備する工具測定装置。
In a tool measuring device for measuring a phase angle position that gives the maximum outer diameter of a rotary cutting tool,
Tool support means for rotatably supporting the rotary cutting tool around its central axis,
Rotating means for rotating the rotary cutting tool around its central axis,
Phase angle detection means for detecting a phase angle around the central axis of the rotary cutting tool;
Tool rotation positioning means for positioning the rotary cutting tool at a plurality of phase angle positions around the central axis based on a signal from the phase angle detection means;
Tool outer diameter measuring means for outputting a signal corresponding to the outer diameter of each of the rotary cutting tools positioned at the plurality of phase angle positions;
Based on the signal from the phase angle detecting means and the signal from the tool outer diameter measuring means, after obtaining an approximate phase angle reference position giving the maximum outer diameter, a predetermined phase centered on the phase angle reference position An angle measurement range is defined, the outer diameter of the rotary cutting tool is measured by the tool outer diameter measurement means at a number of phase angles within the phase angle measurement range, and the relationship between the phase angle and the outer diameter is determined by a least square method. And calculating a new phase angle reference position that gives a maximum outer diameter of the rotary cutting tool from the quadratic curve by approximation with a quadratic curve , and after the calculation, the phase angle measurement range is narrowed under the conditions measuring the outer diameter, a tool measuring device comprising a maximum outer径位phase angular position calculation means, a for a similar operation to calculate a more accurate phase angle reference position.
前記工具外径測定手段は、投光部と受光部とを有して前記投光部から前記受光部へ向けて前記回転切削工具の前記中心軸線を横断させて光を照射し、前記受光部が受けた光の明暗に対応した信号を出力する光学センサを具備する請求項1に記載の工具測定装置。The tool outer diameter measuring means includes a light projecting unit and a light receiving unit, irradiates light across the central axis of the rotary cutting tool from the light projecting unit toward the light receiving unit, and the light receiving unit The tool measuring device according to claim 1, further comprising an optical sensor that outputs a signal corresponding to light brightness and darkness received by. 前記工具支持手段は、前記中心軸線に沿って延設された主軸と、前記主軸を回転自在に支持するハウジングとを備えた主軸頭を具備する請求項1または2に記載の工具測定装置。The tool measuring device according to claim 1, wherein the tool support means includes a spindle head including a spindle extending along the central axis and a housing that rotatably supports the spindle. 前記位相角検知手段は、前記主軸の回転角度を検知するロータリーエンコーダを具備する請求項3に記載の工具測定装置。The tool measuring apparatus according to claim 3, wherein the phase angle detection unit includes a rotary encoder that detects a rotation angle of the spindle. 前記回転手段は前記主軸を回転するサーボモータを具備し、工具回転位置決め手段は、前記サーボモータを制御する数値制御装置を具備する請求項3または4に記載の工具測定装置。The tool measuring apparatus according to claim 3 or 4, wherein the rotating means includes a servo motor that rotates the spindle, and the tool rotation positioning means includes a numerical controller that controls the servo motor. 前記主軸頭は、前記中心軸線と平行な軸線方向に直線移動自在に配設されている請求項2から5の何れか1項に記載の工具測定装置。The tool measuring device according to any one of claims 2 to 5, wherein the spindle head is disposed so as to be linearly movable in an axial direction parallel to the central axis. 前記工具測定装置は、
前記主軸頭を前記軸線に沿って移動する軸送り手段と、
前記主軸頭の前記中心軸線に平行な軸線に沿った位置を検知する軸位置検知手段とを具備し、
前記軸線に沿った2点において、前記回転切削工具の最大外径を与える位相角度位置を演算し、両者の差分である位相角度差と、前記2点間の距離とに基づいて前記回転切削工具の切刃のねじれ角を演算するねじれ角演算手段とを更に具備する請求項6に記載の工具測定装置。
The tool measuring device comprises:
An axis feeding means for moving the spindle head along the axis;
Shaft position detecting means for detecting a position along an axis parallel to the central axis of the spindle head;
The phase angle position that gives the maximum outer diameter of the rotary cutting tool is calculated at two points along the axis, and the rotary cutting tool is calculated based on the phase angle difference that is the difference between the two and the distance between the two points. The tool measuring device according to claim 6, further comprising a torsion angle calculating means for calculating a torsion angle of the cutting edge.
回転切削工具の最大外径を与える位相角度位置を測定するための工具測定装置において、
回転切削工具を回転自在に支持する主軸頭と、
前記回転切削工具を回転させるサーボモータと、
前記回転切削工具の中心軸線回りの位相角度を検知するロータリーエンコーダと、
前記回転切削工具の各々の外径に対応した信号を出力する光学センサとを具備し、
前記ロータリーエンコーダからの信号と前記光学センサからの信号とに基づき、最大外径を与える凡その位相角度基準位置を求めた後、該位相角度基準位置を中心とする所定の位相角度測定範囲を定め、該位相角度測定範囲内の多数の位相角度で前記回転切削工具の外径を前記工具外径測定手段で測定し、前記位相角度と前記外径との関係を最小二乗法により二次曲線で近似して該二次曲線から前記回転切削工具の最大外径を与える新たな位相角度基準位置を演算すると共に、該演算をした後に前記位相角度測定範囲を狭めた条件で前記外径を測定し、より正確な位相角度基準位置を算出するための同様の演算をする工具測定装置。
In a tool measuring device for measuring a phase angle position that gives the maximum outer diameter of a rotary cutting tool,
A spindle head that rotatably supports the rotary cutting tool;
A servo motor for rotating the rotary cutting tool;
A rotary encoder that detects a phase angle around a central axis of the rotary cutting tool;
An optical sensor that outputs a signal corresponding to the outer diameter of each of the rotary cutting tools,
Based on the signal from the rotary encoder and the signal from the optical sensor, after obtaining an approximate phase angle reference position that gives the maximum outer diameter, a predetermined phase angle measurement range centered on the phase angle reference position is determined. The outer diameter of the rotary cutting tool is measured by the tool outer diameter measuring means at a number of phase angles within the phase angle measurement range, and the relationship between the phase angle and the outer diameter is expressed by a quadratic curve by the least square method. Calculate a new phase angle reference position that gives the maximum outer diameter of the rotary cutting tool from the quadratic curve , and measure the outer diameter under the condition that the phase angle measurement range is narrowed after the calculation. The tool measuring device which performs the same calculation for calculating a more accurate phase angle reference position .
回転切削工具の最大外径を与える位相角度位置を測定するための工具測定方法において、
(a)回転切削工具をその中心軸線回りに回転自在に支持する段階と、
(b)前記回転切削工具を前記中心軸線回りの位相角度位置に位置決めする段階と、
(c)前記複数の位相角度位置に位置決めされた回転切削工具の外径を測定する段階と、
(d)前記段階(b)及び(c)を所定回数繰り返す段階と、
(e)前記段階(d)により、最大外径を与える凡その位相角度基準位置を求めた後、該位相角度基準位置を中心とする所定の位相角度測定範囲を定め、該位相角度測定範囲内の多数の位相角度位置と前記外径との関係を最小二乗法により二次曲線で近似し、該二次曲線から前記回転切削工具の最大外径を与える新たな位相角度基準位置を演算すると共に、該演算をした後に前記位相角度測定範囲を狭めた条件で前記外径を測定し、より正確な位相角度基準位置を算出するための同様の演算をする段階とを具備する工具測定方法。
In the tool measurement method for measuring the phase angle position that gives the maximum outer diameter of the rotary cutting tool,
(A) supporting the rotary cutting tool rotatably about its central axis;
(B) positioning the rotary cutting tool at a phase angle position around the central axis;
(C) measuring an outer diameter of the rotary cutting tool positioned at the plurality of phase angle positions;
(D) repeating the steps (b) and (c) a predetermined number of times;
(E) After obtaining the approximate phase angle reference position giving the maximum outer diameter in the step (d), a predetermined phase angle measurement range centered on the phase angle reference position is determined, and the phase angle measurement range numerous approximated by a quadratic curve by the least squares method the relationship between the outer diameter of the phase angle positions, as well as calculating a new phase angle reference position from the secondary curve gives the maximum outer diameter of the rotary cutting tool A tool measuring method comprising: performing the same calculation for calculating the more accurate phase angle reference position by measuring the outer diameter under the condition that the phase angle measurement range is narrowed after the calculation .
(f)前記回転切削工具を前記中心軸線に沿った1点に位置決めする段階と、
(g)前記段階(b)〜(e)を実行する段階と、
(h)前記回転切削工具を前記中心軸線に沿った他の1点に位置決めする段階と、
(i)前記段階(b)〜(e)を実行する段階と、
(j)前記中心軸線に沿った2点において、前記回転切削工具の最大外径を与える位相角度位置を演算し、両者の差分である位相角度差と、前記2点間の距離とに基づいて前記回転切削工具の切刃のねじれ角を演算する段階とを更に具備する請求項8に記載の工具測定方法。
(F) positioning the rotary cutting tool at one point along the central axis;
(G) performing the steps (b) to (e);
(H) positioning the rotary cutting tool at another point along the central axis;
(I) performing the steps (b) to (e);
(J) At two points along the central axis, the phase angle position that gives the maximum outer diameter of the rotary cutting tool is calculated, and based on the phase angle difference that is the difference between the two and the distance between the two points The tool measuring method according to claim 8, further comprising calculating a twist angle of a cutting edge of the rotary cutting tool.
JP2003206569A 2003-08-07 2003-08-07 Tool measuring apparatus and method Expired - Fee Related JP3748866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206569A JP3748866B2 (en) 2003-08-07 2003-08-07 Tool measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206569A JP3748866B2 (en) 2003-08-07 2003-08-07 Tool measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2005052910A JP2005052910A (en) 2005-03-03
JP3748866B2 true JP3748866B2 (en) 2006-02-22

Family

ID=34363388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206569A Expired - Fee Related JP3748866B2 (en) 2003-08-07 2003-08-07 Tool measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP3748866B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426320B2 (en) * 2008-10-29 2014-02-26 グリーソンアジア株式会社 Cutter blade inspection device
KR101440642B1 (en) 2009-08-03 2014-09-25 두산인프라코어 주식회사 tool damage detector of machine tool
EP3318837B1 (en) 2015-06-30 2020-07-15 Big Daishowa Co., Ltd. Tool-shape measurement device
JP6542742B2 (en) * 2016-11-17 2019-07-10 トヨタ自動車株式会社 Drill blade phase measurement device and drill blade phase measurement method
CN112969900B (en) * 2018-10-30 2023-01-06 芝浦机械株式会社 Tool shape measuring device and tool shape measuring method
JP2023061684A (en) * 2021-10-20 2023-05-02 芝浦機械株式会社 Tool measuring device and tool measuring method

Also Published As

Publication number Publication date
JP2005052910A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP5372598B2 (en) Processing method and processing system
JP5465922B2 (en) Processing method and processing system
US8494800B2 (en) Method and program for identifying mechanical errors
JP5595798B2 (en) Workpiece measuring method and apparatus for machine tool
EP2253928B1 (en) Roundness measuring apparatus
CN112378345B (en) Gear angle offset measuring device and method based on laser displacement sensor
JP2014533207A (en) Machine tool and workpiece measurement method
JPH10141934A (en) Method for measuring sphericity of ball end mill
JPH06109440A (en) Tool measuring apparatus
JP3433710B2 (en) V-groove shape measuring method and apparatus
JP3748866B2 (en) Tool measuring apparatus and method
JP2004114203A (en) Apparatus for measuring profile of workpiece and profile measuring system using the same
JP2004205288A (en) Measuring instrument and accuracy analyzer equipped with the same
JP2021094600A (en) Machine tool and shape measurement method of workpiece machining part
JP3880030B2 (en) V-groove shape measuring method and apparatus
JP2006194739A (en) Apparatus and method for measuring fluctuation of object to be measured
JP2578041B2 (en) Automatic taper grinding method and device
JP2009262241A (en) Alignment method, alignment support apparatus, and alignment support program
JP4136475B2 (en) Non-contact measuring method and measuring apparatus
JP4529664B2 (en) Tool shape measuring apparatus and method
JP2007260789A (en) Sizing detecting method and sizing device
JP2019015704A (en) Cam profile measurement device
JPH0749955B2 (en) Tool inspection device and tool inspection method
JP5305193B2 (en) V-groove shape measuring method and apparatus
JP4159809B2 (en) Non-contact measuring method and measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees