JP3743774B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3743774B2
JP3743774B2 JP07063497A JP7063497A JP3743774B2 JP 3743774 B2 JP3743774 B2 JP 3743774B2 JP 07063497 A JP07063497 A JP 07063497A JP 7063497 A JP7063497 A JP 7063497A JP 3743774 B2 JP3743774 B2 JP 3743774B2
Authority
JP
Japan
Prior art keywords
battery
layer
battery case
case
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07063497A
Other languages
Japanese (ja)
Other versions
JPH10255728A (en
Inventor
哲 斉藤
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP07063497A priority Critical patent/JP3743774B2/en
Publication of JPH10255728A publication Critical patent/JPH10255728A/en
Application granted granted Critical
Publication of JP3743774B2 publication Critical patent/JP3743774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池等の非水電解質電池に関するものである。
【0002】
【従来の技術】
非水電解質電池は、初期には腕時計用やカメラ用の一次電池として商品化された。その後、コバルト酸リチウムをはじめとする金属酸化物や金属複合酸化物などの正極や、リチウムイオンを保持させたカーボンやグラファイトなど負極の研究が進み、それらを用いた高エネルギー密度非水電解質二次電池が開発され、最近では、携帯用ビデオカメラ、携帯用パソコン、携帯用無線電話などのポータブル電子機器用に広く利用されている。
【0003】
高エネルギー電池を得るためには、電池の活物質として、電圧が高く、単位重量当たりの容量の大きい材料を使用する必要があり、このような負極材料として、負極にリチウムをはじめとするアルカリ金属やその合金、あるいはリチウムイオンを保持した炭素等を使用する。これらの負極材料は、水と直接反応するために水溶液電質液は使用できず、有機溶媒にリチウム塩などを溶解させた電解液、すなわち非水電解液を使用することが特徴である。
【0004】
【発明が解決しようとする課題】
非水電解質二次電池は、高い放電電圧、大容量、良好なサイクル寿命をもち、電池反応ではガス発生がなく、しかも本質的に水分をきらうために密閉構造となっているのが普通である。また、非水電解質二次電池では、電池内部の電極にある程度の圧力をかけて反応を安定させる必要があることから、電池ケースの材料には主に鉄が使用されてきた。
【0005】
ところが鉄の密度は7.87g/cmもあるため、電池全体の重量に占める電池ケースの重量の割合は、電池の大きさにもよるが、約30パーセントにも達するのが普通であった。これでは、電池の活物質にいくら高エネルギー物質を使用しても、その利点が失われてしまう。
【0006】
そこで、非水電解質二次電池の電池ケースに、できるだけ密度の小さい材料、例えば高分子化合物を使用し、電池の重量当たりのエネルギー密度を高めることが考えられる。高分子化合物の比重は、ポリ塩化ビニル約1.4、ポリエチレン約0.95、ポリプロピレン約0.90、ポリスチレン約1.05であり、金属と比べるとかなり小さい。
【0007】
しかし、高分子材料の強度は鉄などの金属に比べて劣っているために、電池を単独で使用する場合にはあまりふさわしくないが、複数の電池を組み合わせた組電池にして使用する場合には、普通複数個の電池を別のケースに入れた状態で使用するので、単電池のケースが鉄のような強度を持たなくても使用が可能である。
【0008】
しかし、電池ケースに高分子材料を使用する場合、別の問題が生じる。すなわち、高分子材料は水を良く通すという性質がある。高分子材料の透湿率(単位:g・cm×1012/cm・sec・cmHg)は、高密度ポリエチレン=5.1、キャストポリプロピレン=4.8、ポリスチレン=96、ポリ塩化ビニル=110、ポリ三フッ化塩化エチレン=0.25などのように、フッ素系樹脂を除いてかなり大きな値であるため、電池を長期間貯蔵中にケースを通して電池の内部に水が入り、電池が劣化してしまうという問題があつた。
【0009】
なお、フッ素樹脂のなかには透湿率が0.023(単位は上に同じ)のようにあまり水を通さないものもあり、電池ケースをフッ素樹脂のみで作製することも考えられるが、フッ素樹脂は比重が約2であるために、高エネルギー密度電池のケースとしてはふさわしくない。
【0010】
【課題を解決するための手段】
本発明は、上記問題点を解決するために、非水電解質電池の電池ケースにエチレンのすべての水素がフッ素と塩素で置換された化合物の重合体層と、その両側に配置された固体材料からなる層とをとりつけるものである。
【0011】
【発明の実施の形態】
本発明は、非水電解質を使用したすべての一次電池および二次電池への適用が可能であり、特に高エネルギー密度が要求される携帯用各種機器の電源に使用する電池に有効である。本発明になる非水電解質電池は、少なくとも三層で構成された電池ケースを使用し、中間層にエチレンのすべての水素がフッ素と塩素で置換された化合物の重合体を使用することによってケースを通して電池内部への水分の侵入を防止するものである。
【0012】
エチレンのすべての水素がフッ素と塩素で置換された化合物の重合体は、一般に「フッ素油」として知られている物質であり、4つの水素がすべてフッ素で置換した化合物の重合体や、3つがフッ素と置換し1つが塩素と置換した三フッ化塩化エチレンの重合体などの総称であり、平均分子量によって室温では液体状からワックス状まで、いろいろな形態をとる。
【0013】
電池ケースの中間層にフッ素油を使用する場合、フッ素油は液体の場合もあるので、フッ素油層を両側から挟まなければならないため、電池ケースを構成する層は少なくとも三層必要であり、もちろん三層以上使用してもかまわない。
【0014】
ここでは最も単純な電池ケースが三層の場合について説明する。電池ケースを構成する三層のうち、電池ケースの内部の層を第一の層、中間層を第二の層、電池ケースの外部の層を第三の層とする。高エネルギー密度電池を得るためには、電池を構成するすべての材料の比重(密度)ができるだけ小さいことが望ましいので、第一の層、第二の層、第三の層はいずれも密度の小さい材料から選択する必要がある。
【0015】
第一の層と第三の層は、形状維持のために固体材料を使用する必要があり、また、第一の層は直接電解液と接触するため、使用する電解液に応じてそれとは反応しない材質を選ぶ必要があり、いずれも高分子材料が好ましい。
【0016】
本発明は、第二の層にエチレンのすべての水素がフッ素と塩素で置換された化合物の重合体、すなわちフッ素油を使用する。フッ素油の中で、平均分子量の小さいものは、液体状有機化合物としては特異な性質をもつ物質であるが、塩素の置換数が増えるとフッ素の性質が少しづつ変化するため、エチレンの四つの置換基のうち、少なくとも一つはフッ素であることが好ましく、3つがフッ素と置換し1つが塩素と置換した三フッ化塩化エチレンが最も好ましい。
【0017】
高エネルギー密度電池を得るためには、電池ケースをできるだけ軽くする必要があり、そのためには電池ケースの厚みを薄くすればよい。そのため、第二の層に使用するフッ素油としては、液体も固体も使用可能であるが、薄い層にし易いという点からは、液体の方が好ましい。すなわち、フッ素油の25℃での粘度は平均分子量によって変化し、平均分子量が500の場合の粘度は約20〜50センチポイズ、平均分子量が700の場合の粘度は約500〜900センチポイズ、平均分子量が1100の場合はグリース状になる。本発明の、電池のケースの第二の層に使用するフッ素油は、これらいずれの粘度のものでも使用でき、また、一種でもよく、二種以上を組み合わせて使用してもよい。
【0018】
さらに、フッ素油の比重は通常約1.9〜2.0であるため、フッ素油の層の厚みをできるだけ薄くして、重量を少なくすることが好ましい。また、第一の層および第三の層は、必ずしも単一の材料から構成されている必要はなく、それぞれ二種以上の材料からなる層を積層した複数の層から構成されていてもよい。
【0019】
なお、高エネルギー密度非水電解質電池の電解質としては、広い電位窓、高いイオン導電率、広い使用温度範囲、電極材料や活物質に対して安定な系が望ましく、このような系としては、例えば、高誘電率溶媒としてエチレンカーボネート(EC)が、低粘度溶媒としてジメチルカーボネート(DMC)とジエチルカーボネート(DEC)が好ましく、これらの溶媒の混合割合を体積比でEC:DMC:DEC=2:2:1とし、この混合溶媒に電位安定性と安全性に優れる塩としてのLiPF 6 を溶解した溶液が使用されている。
【0020】
なお、電解質の溶媒としては上記以外にも、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ブチレンカーボネートなどの種々の有機溶媒も使用でき、また電解質塩としてはLiPF以外にもLiClO、LiBF、LiAsF、LiCFSOなどのリチウム塩も使用でき、しかもこれらに限定されるものではない。
【0021】
さらに、正極活物質としては、リチウムとコバルト・ニッケル・マンガン・鉄との複合酸化物、あるいはリチウムとコバルト・ニッケル・マンガン・鉄から選ばれる2種以上を有する複合酸化物が好ましく、また、負極活物質としては金属リチウムやリチウム合金、あるいは、低温焼成の低結晶性炭素から天然黒鉛などの高結晶性炭素にいたる、形状・種類・複数の種類の混合物などの、リチウムイオンを吸蔵する炭素材料も使用できるが、もちろんこれらに限定されるものではない。
【0022】
【実施例】
本発明になる非水電解質電池の構造を好適な実施例を用いて詳述する。
【0023】
[実施例1]
本発明になる非水電解質二次電池と従来の非水電解質二次電池を比較するために、つぎの三つの非水電解質二次電池を作製し、その特性を求めた。作製した三つの電池は、電池ケースが次のように異なっている以外は、電極や電解液などすべてまったく同じものを使用した。
【0024】
電池A(本発明の電池):電池ケースに三層構造のケースを使用。
電池B(従来の電池):電池ケース材料に鉄を使用。
電池C(比較電池):電池ケース材料にポリプロピレンを使用。
【0025】
図1は、本発明になる非水電解質二次電池Aの断面構造を示したもので、電池1は、正極板2、負極板3、セパレータ4および電解液(図示省略)が電池ケース5に収納された角形リチウム二次電池である。
【0026】
正極板2は、重量比で、活物質としてのLiCoO90部、導電助剤としてのアセチレンブラック4部、結着剤としてのポリフッ化ビニリデン6部、溶剤としてのN−メチル−2−ピロリドン100部を混合してペースト状にし、厚み20μmのアルミニウム箔の両面に塗布・乾燥・圧延し、幅30mmに切断して作製した。
【0027】
負極板3は、重量比で、炭素粉末88部、結着剤としてのポリフッ化ビニリデン12部、溶剤としてのN−メチル−2−ピロリドン150部を混合してペースト状にし、厚み18μmの銅箔の両面に塗布・乾燥・圧延し、幅30mmに切断して作製した。
【0028】
セパレータ4は、厚さ25μm、幅32mmのポリエチレン微多孔膜からなり、これに電解液が吸収されている。電解液としては、LiPFを1mol/l含むエチレンカーボネート:ジメチルカーボネート:ジエチルカーボネート=2:2:1(体積比)の混合溶液を使用した。
【0029】
電池のケース5の寸法は、厚さ0.42mm、内寸33×47×mmとし、第一の層6と第三の層8の材質は厚さ0.2mmのポリプロピレン板とし、第一の層6と第三の層8の間に、厚さ0.02mmの平均分子量が約500の三フッ化塩化エチレン(室温では液体状)からなる第二の層7を取り付けたものである。
【0030】
これら正極板2、セパレータ4及び負極板3を順次重ね合わせ、ポリエチレン製の巻芯9を中心として、その周囲に長円渦状に巻いた後、正極リード線10または負極リード線11と電気的に接続されて、電池のケース5に収納される。
【0031】
負極リード線11はニッケルからなり、その一端が、鉄製で中央に貫通口を有する矩形板状の蓋12の偏心位置にあらかじめ抵抗溶接されている。蓋12の貫通口には、円柱状の正極端子13が低融点ガラス14にて気密に固着されており、その正極端子13にSUS317J1からなる正極リード線10の一部が抵抗溶接されている。
【0032】
そして、上記渦巻き電極群の末端で正極板2と負極板3とが離され、正極板2の端部が正極リード線10の他端に接続され、負極板3の端部が負極リード線11の他端に抵抗溶接されている。正極板2の接続端と負極板3の接続端とは、ポリプロピレン製のカバー15にて絶縁されている。なお、正極板2と正極リード線10とは、ハリカシメ法により接続されている。
【0033】
蓋12を電池ケース5に押し込むことにより、電池を密封した。従来の電池Bのケースは、厚さ0.3mm、内寸33×47×7mmの鉄製本体の表面に、厚さ2μmのニッケルメッキを施したものである。比較例としての電池Cのケースは、厚さ0.45mm、内寸33×47×mmのポリプロピレン製とした。
【0034】
各電池ケースの重量を比較すると、電池ケースに高分子材料を使用した電池Aおよび電池Cのケースの重量は、電池ケースに鉄を使用した電池Bのケースの重量の約8分の1であった。これらの三つの電池を、作製直後に次の条件で5サイクルの充放電を行ったところ、放電電圧や容量に差は見られなかった。
【0035】
周囲温度:25℃
充電:[200mA定電流、4.1Vまで]+[4.1V定電圧、5時間]
放電:400mA定電流、終止電圧3.0V
【0036】
その後六か月間室温で放置した後、同じ条件で充放電を行ったところ、電池Aと電池Bの放電特性は作製直後とほぼ同じであったが、電池ケースにポリプロピレンを使用した電池Cの放電容量は、作製直後の約70パーセントに減少していた。
【0037】
[実施例2]
電池ケースの第二の層の材質に、平均分子量が約1100の三フッ化塩化エチレン(室温ではグリース状)からなる第二の層7を)を使用し、その他の点はすべて実施例1で述べた電池Aと同じである非水電解質二次電池を作製した。この電池の放電特性は、作製直後と六か月保存後ではほとんど同じであった。
【0038】
[実施例3]
電池ケースの第二の層の材質に、平均分子量が約1300の三フッ化塩化エチレン(室温ではハードワックス状)からなる第二の層7を使用し、その他の点はすべて実施例1で述べた電池Aと同じである非水電解質二次電池を作製した。この電池の放電特性は、作製直後と六か月保存後ではほとんど同じであった。
【0039】
【発明の効果】
本発明になる非水電解質二次電池は、電池のケースにエチレンのすべての水素がフッ素または塩素で置換された化合物の重合体、いわゆるフッ素油の層を備えているため、電池のケースの外側の層を通して水が透過した場合、フッ素油は吸水性がないために水を通さず、水はフッ素油層で阻止され、電池の内部には侵入しなくなる。したがって、電池のケースに鉄等の密度の大きい金属を使用するかわりに、密度の小さい材料、例えば各種高分子材料等を使用することができる。このようにして電池ケースの重量を大幅に軽減することにより、高エネルギー密度電池が得られるものである。さらに、本発明になる非水電解質二次電池は、電池ケースに、前記重合体の層の両側に配置された固体材料からなる層を備えているため、前記重合体の層の形状が維持される。
【0040】
なお、フッ素油は、一種のみ使用する場合、室温で液体の場合には二種以上混合する場合、ワックス状と液体を二種以上組み合わせて使用する場合などが考えられ、いずれの場合もその有効性には変わりがない。
【0041】
また、本発明になる電池のケースは、実施例で述べた低融点ガラスを用いて気密とした蓋の構造以外にも、例えば安全弁を取り付けた構造の場合などにも有効であり、さらに、非水電解質二次電池のみならず、非水電解質一次電池にも有効である。
【図面の簡単な説明】
【図1】本発明になる非水電解質二次電池Aの断面構造を示す図
【符号の説明】
1 電池
2 正極板
3 負極板
4 セパレータ
5 電池ケース
6 電池ケースの第一の層
7 電池ケースの第二の層
8 電池ケースの第三の層
12 蓋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery such as a lithium secondary battery.
[0002]
[Prior art]
Nonaqueous electrolyte batteries were initially commercialized as primary batteries for watches and cameras. Since then, research has progressed on positive electrodes such as metal oxides and metal composite oxides such as lithium cobaltate, and negative electrodes such as carbon and graphite holding lithium ions, and high energy density non-aqueous electrolyte secondary batteries using them. Batteries have been developed and are recently widely used for portable electronic devices such as portable video cameras, portable personal computers, and portable radio telephones.
[0003]
In order to obtain a high energy battery, it is necessary to use a material having a high voltage and a large capacity per unit weight as an active material of the battery. As such a negative electrode material, an alkaline metal such as lithium is used for the negative electrode. Or an alloy thereof, or carbon holding lithium ions is used. Since these negative electrode materials react directly with water, an aqueous electrolyte solution cannot be used, and an electrolytic solution in which a lithium salt or the like is dissolved in an organic solvent, that is, a nonaqueous electrolytic solution is used.
[0004]
[Problems to be solved by the invention]
Non-aqueous electrolyte secondary batteries usually have a high discharge voltage, a large capacity, a good cycle life, no gas generation in the battery reaction, and a sealed structure for essentially eliminating moisture. . In nonaqueous electrolyte secondary batteries, it is necessary to apply a certain amount of pressure to the electrodes inside the battery to stabilize the reaction, so iron has mainly been used as the material for the battery case.
[0005]
However, since the density of iron is as high as 7.87 g / cm 3, the ratio of the weight of the battery case to the total weight of the battery generally reached about 30 percent, depending on the size of the battery. . In this case, no matter how much high-energy material is used for the battery active material, the advantage is lost.
[0006]
Therefore, it is conceivable to increase the energy density per weight of the battery by using a material having a density as low as possible, such as a polymer compound, for the battery case of the non-aqueous electrolyte secondary battery. The specific gravity of the polymer compound is about 1.4 polyvinyl chloride, about 0.95 polyethylene, about 0.90 polypropylene and about 1.05 polystyrene, which is considerably smaller than that of metal.
[0007]
However, since the strength of the polymer material is inferior to that of metals such as iron, it is not very suitable when the battery is used alone, but when it is used as an assembled battery combining a plurality of batteries. In general, since a plurality of batteries are used in a different case, the battery can be used even if the battery case does not have the strength of iron.
[0008]
However, when a polymer material is used for the battery case, another problem arises. That is, the polymer material has a property of allowing water to pass well. The moisture permeability of the polymer material (unit: g · cm × 10 12 / cm 2 · sec · cmHg) is high density polyethylene = 5.1, cast polypropylene = 4.8, polystyrene = 96, polyvinyl chloride = 110. Since the value is quite large except for fluororesin, such as polytrifluoroethylene chloride = 0.25, water enters the battery through the case during long-term storage and the battery deteriorates. There was a problem that it would end up.
[0009]
Some fluororesins have a moisture permeability of 0.023 (the unit is the same as above) and do not allow much water to pass through, and it is conceivable that the battery case is made of only the fluororesin. Since the specific gravity is about 2, it is not suitable as a case of a high energy density battery.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a battery case of a non-aqueous electrolyte battery comprising a polymer layer of a compound in which all hydrogen of ethylene is substituted with fluorine and chlorine, and a solid material disposed on both sides thereof. It attaches with the layer which becomes .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be applied to all primary batteries and secondary batteries using a non-aqueous electrolyte, and is particularly effective for a battery used as a power source for various portable devices requiring high energy density. The nonaqueous electrolyte battery according to the present invention uses a battery case composed of at least three layers, and uses a polymer of a compound in which all hydrogen of ethylene is substituted with fluorine and chlorine for an intermediate layer. This prevents moisture from entering the battery.
[0012]
A polymer of a compound in which all hydrogen of ethylene is substituted with fluorine and chlorine is a substance generally known as “fluorine oil”, and a polymer of a compound in which all four hydrogens are substituted with fluorine, or three It is a generic term for polymers of ethylene trifluoride chloride substituted with fluorine and one substituted with chlorine, and takes various forms from liquid to wax at room temperature depending on the average molecular weight.
[0013]
When fluorine oil is used for the intermediate layer of the battery case, the fluorine oil may be liquid. Therefore, the fluorine oil layer must be sandwiched from both sides, so at least three layers are required. You can use more than one layer.
[0014]
Here, the case where the simplest battery case has three layers will be described. Of the three layers constituting the battery case, the inner layer of the battery case is the first layer, the intermediate layer is the second layer, and the outer layer of the battery case is the third layer. In order to obtain a high energy density battery, it is desirable that the specific gravity (density) of all the materials constituting the battery is as small as possible. Therefore, the first layer, the second layer, and the third layer are all low in density. It is necessary to select from materials.
[0015]
The first and third layers must use solid materials to maintain their shape, and the first layer is in direct contact with the electrolyte, so it reacts with it depending on the electrolyte used It is necessary to select a material that does not, and in any case, a polymer material is preferable.
[0016]
The present invention uses a polymer of a compound in which all hydrogen of ethylene is substituted with fluorine and chlorine, that is, fluorine oil, in the second layer. Among fluorine oils, those with a low average molecular weight are substances that have unique properties as liquid organic compounds, but as the number of chlorine substitutions increases, the properties of fluorine change little by little. Of the substituents, at least one is preferably fluorine, and most preferably trichloroethylene chloride in which three are substituted with fluorine and one is substituted with chlorine.
[0017]
In order to obtain a high energy density battery, it is necessary to make the battery case as light as possible. To that end, the thickness of the battery case should be reduced. For this reason, as the fluorine oil used in the second layer, either liquid or solid can be used, but liquid is preferred from the viewpoint that it is easy to form a thin layer. That is, the viscosity at 25 ° C. of fluorine oil varies depending on the average molecular weight. When the average molecular weight is 500, the viscosity is about 20 to 50 centipoise, and when the average molecular weight is 700, the viscosity is about 500 to 900 centipoise and the average molecular weight is In the case of 1100, it becomes grease-like. The fluorine oil used for the second layer of the battery case of the present invention can be used with any of these viscosities, or one kind may be used, or two or more kinds may be used in combination.
[0018]
Furthermore, since the specific gravity of fluorine oil is usually about 1.9 to 2.0, it is preferable to reduce the weight by reducing the thickness of the fluorine oil layer as much as possible. In addition, the first layer and the third layer do not necessarily need to be composed of a single material, and may be composed of a plurality of layers in which layers composed of two or more materials are laminated.
[0019]
In addition, as an electrolyte of a high energy density non-aqueous electrolyte battery, a wide potential window, high ionic conductivity, a wide use temperature range, a system that is stable with respect to an electrode material and an active material is desirable. Further, ethylene carbonate (EC) is preferable as the high dielectric constant solvent, and dimethyl carbonate (DMC) and diethyl carbonate (DEC) are preferable as the low viscosity solvent. The mixing ratio of these solvents is EC: DMC: DEC = 2: 2 by volume ratio. A solution in which LiPF 6 as a salt having excellent potential stability and safety is dissolved in this mixed solvent is used.
[0020]
In addition to the above, various organic solvents such as propylene carbonate, 1,2-dimethoxyethane, 1,2-butylene carbonate can be used as the solvent for the electrolyte, and LiClO 4 can be used as the electrolyte salt in addition to LiPF 6. Lithium salts such as LiBF 4 , LiAsF 6 , and LiCF 3 SO 3 can also be used, but are not limited thereto.
[0021]
Furthermore, the positive electrode active material is preferably a composite oxide of lithium and cobalt / nickel / manganese / iron, or a composite oxide having two or more selected from lithium and cobalt / nickel / manganese / iron. Active materials include metallic lithium and lithium alloys, or carbon materials that occlude lithium ions, such as low-temperature fired low crystalline carbon to highly crystalline carbon such as natural graphite, and mixtures of shapes, types, and multiple types. However, it is of course not limited to these.
[0022]
【Example】
The structure of the nonaqueous electrolyte battery according to the present invention will be described in detail with reference to a preferred embodiment.
[0023]
[Example 1]
In order to compare the non-aqueous electrolyte secondary battery according to the present invention with the conventional non-aqueous electrolyte secondary battery, the following three non-aqueous electrolyte secondary batteries were produced and their characteristics were determined. For the three batteries produced, all the same electrodes and electrolytes were used except that the battery cases were different as follows.
[0024]
Battery A (battery of the present invention): A three-layer case is used for the battery case.
Battery B (conventional battery): Iron is used as a battery case material.
Battery C (comparative battery): Polypropylene is used as the battery case material.
[0025]
FIG. 1 shows a cross-sectional structure of a non-aqueous electrolyte secondary battery A according to the present invention. The battery 1 includes a positive electrode plate 2, a negative electrode plate 3, a separator 4 and an electrolyte (not shown) in a battery case 5. This is a stored prismatic lithium secondary battery.
[0026]
The positive electrode plate 2 has a weight ratio of 90 parts of LiCoO 2 as an active material, 4 parts of acetylene black as a conductive additive, 6 parts of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone 100 as a solvent. The parts were mixed to form a paste, which was coated, dried and rolled on both sides of an aluminum foil having a thickness of 20 μm, and cut to a width of 30 mm.
[0027]
The negative electrode plate 3 was prepared by mixing 88 parts of carbon powder, 12 parts of polyvinylidene fluoride as a binder, and 150 parts of N-methyl-2-pyrrolidone as a solvent into a paste, and a copper foil having a thickness of 18 μm. It was prepared by coating, drying and rolling on both sides of the film and cutting it to a width of 30 mm.
[0028]
The separator 4 is made of a polyethylene microporous film having a thickness of 25 μm and a width of 32 mm, and the electrolytic solution is absorbed therein. As the electrolytic solution, a mixed solution of ethylene carbonate: dimethyl carbonate: diethyl carbonate = 2: 2: 1 (volume ratio) containing 1 mol / l of LiPF 6 was used.
[0029]
The battery case 5 has a thickness of 0.42 mm and an inner dimension of 33 × 47 × mm. The material of the first layer 6 and the third layer 8 is a polypropylene plate having a thickness of 0.2 mm. Between the layer 6 and the third layer 8, a second layer 7 made of ethylene trifluoride chloride (a liquid form at room temperature) having a thickness of 0.02 mm and an average molecular weight of about 500 is attached.
[0030]
The positive electrode plate 2, the separator 4 and the negative electrode plate 3 are sequentially stacked and wound in an oval shape around a polyethylene core 9, and then electrically connected to the positive electrode lead wire 10 or the negative electrode lead wire 11. Connected and stored in battery case 5.
[0031]
The negative electrode lead wire 11 is made of nickel, and one end thereof is resistance-welded in advance to an eccentric position of a rectangular plate-like lid 12 made of iron and having a through hole in the center. A cylindrical positive electrode terminal 13 is airtightly fixed to the through-hole of the lid 12 with a low melting point glass 14, and a part of the positive electrode lead wire 10 made of SUS317J1 is resistance-welded to the positive electrode terminal 13.
[0032]
Then, the positive electrode plate 2 and the negative electrode plate 3 are separated from each other at the end of the spiral electrode group, the end of the positive electrode plate 2 is connected to the other end of the positive electrode lead wire 10, and the end of the negative electrode plate 3 is connected to the negative electrode lead wire 11. It is resistance welded to the other end. The connection end of the positive electrode plate 2 and the connection end of the negative electrode plate 3 are insulated by a polypropylene cover 15. In addition, the positive electrode plate 2 and the positive electrode lead wire 10 are connected by the staking method.
[0033]
The battery was sealed by pushing the lid 12 into the battery case 5. The case of the conventional battery B is obtained by nickel plating with a thickness of 2 μm on the surface of an iron main body having a thickness of 0.3 mm and an inner size of 33 × 47 × 7 mm. The case of the battery C as a comparative example was made of polypropylene having a thickness of 0.45 mm and an inner size of 33 × 47 × mm.
[0034]
Comparing the weights of the battery cases, the weights of the battery A and the battery C using a polymer material for the battery case are about one-eighth of the weight of the battery B using iron for the battery case. It was. When these three batteries were charged and discharged for 5 cycles under the following conditions immediately after production, there was no difference in discharge voltage or capacity.
[0035]
Ambient temperature: 25 ° C
Charging: [200mA constant current, up to 4.1V] + [4.1V constant voltage, 5 hours]
Discharge: 400mA constant current, final voltage 3.0V
[0036]
Then, after standing at room temperature for 6 months, charging and discharging were performed under the same conditions. The discharge characteristics of the battery A and the battery B were almost the same as those immediately after the production, but the discharge of the battery C using polypropylene as the battery case The capacity was reduced to about 70 percent immediately after fabrication.
[0037]
[Example 2]
As the material of the second layer of the battery case, the second layer 7 made of ethylene trifluoride chloride (grease-like at room temperature) having an average molecular weight of about 1100 is used. A non-aqueous electrolyte secondary battery which is the same as the battery A described above was produced. The discharge characteristics of this battery were almost the same immediately after fabrication and after storage for 6 months.
[0038]
[Example 3]
As the material for the second layer of the battery case, the second layer 7 made of ethylene trifluoride chloride (hard wax shape at room temperature) having an average molecular weight of about 1300 is used. All other points are described in Example 1. A non-aqueous electrolyte secondary battery that was the same as the battery A was prepared. The discharge characteristics of this battery were almost the same immediately after fabrication and after storage for 6 months.
[0039]
【The invention's effect】
The non-aqueous electrolyte secondary battery according to the present invention includes a polymer of a compound in which all of hydrogen in ethylene is substituted with fluorine or chlorine, a so-called fluorine oil layer, in the battery case. When water permeates through this layer, fluorine oil does not absorb water, and thus does not allow water to pass through. Water is blocked by the fluorine oil layer and does not enter the battery. Therefore, instead of using a metal with a high density such as iron for the battery case, a material with a low density, such as various polymer materials, can be used. Thus, a high energy density battery is obtained by significantly reducing the weight of the battery case. Furthermore, since the nonaqueous electrolyte secondary battery according to the present invention includes a layer made of a solid material disposed on both sides of the polymer layer in the battery case, the shape of the polymer layer is maintained. The
[0040]
In addition, when only one type of fluoro oil is used, when it is a liquid at room temperature, two or more types may be mixed, or two or more types of wax and liquid may be used in combination. There is no change in sex.
[0041]
Further, the battery case according to the present invention is effective not only in the case of the airtight lid structure using the low melting point glass described in the embodiment, but also in the case of a structure with a safety valve attached, for example. This is effective not only for water electrolyte secondary batteries but also for nonaqueous electrolyte primary batteries.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of a nonaqueous electrolyte secondary battery A according to the present invention.
DESCRIPTION OF SYMBOLS 1 Battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Battery case 6 First layer of battery case 7 Second layer of battery case 8 Third layer of battery case 12 Lid

Claims (1)

電池ケースに、エチレンのすべての水素がフッ素と塩素で置換された化合物の重合体の層と、その両側に配置された固体材料からなる層とを備えたことを特徴とする、非水電解質電池。A non-aqueous electrolyte battery comprising: a battery case comprising a polymer layer of a compound in which all hydrogen of ethylene is substituted with fluorine and chlorine; and a layer made of a solid material disposed on both sides thereof. .
JP07063497A 1997-03-06 1997-03-06 Non-aqueous electrolyte battery Expired - Fee Related JP3743774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07063497A JP3743774B2 (en) 1997-03-06 1997-03-06 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07063497A JP3743774B2 (en) 1997-03-06 1997-03-06 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH10255728A JPH10255728A (en) 1998-09-25
JP3743774B2 true JP3743774B2 (en) 2006-02-08

Family

ID=13437279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07063497A Expired - Fee Related JP3743774B2 (en) 1997-03-06 1997-03-06 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3743774B2 (en)

Also Published As

Publication number Publication date
JPH10255728A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
CN100463281C (en) Battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
US20030059684A1 (en) Nonaqueous electrolyte battery and nonaqueous electrolytic solution
US20050238956A1 (en) Negative electrode for lithium battery and lithium battery comprising same
JP4664978B2 (en) Non-aqueous electrolyte containing oxygen anion and lithium secondary battery using the same
US6984471B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH09259929A (en) Lithium secondary cell
JP2003242965A (en) Two sheets of positive electrode collectors for alkaline metal ion electrochemical battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP2001185213A5 (en)
JP4366792B2 (en) Battery electrolyte and non-aqueous electrolyte secondary battery
CN111386622B (en) Cylindrical secondary battery
JP4845245B2 (en) Lithium battery
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JP3410027B2 (en) Non-aqueous electrolyte battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002203551A (en) Non-aqueous electrolyte battery
JPH11354154A (en) Nonaqueous electrolyte secondary battery
JP2003017058A (en) Non-aqueous electrolyte battery
JP2001015125A (en) Lithium battery
JP3743774B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051214

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees