JP3737306B2 - Optical product and manufacturing method thereof - Google Patents
Optical product and manufacturing method thereof Download PDFInfo
- Publication number
- JP3737306B2 JP3737306B2 JP07904399A JP7904399A JP3737306B2 JP 3737306 B2 JP3737306 B2 JP 3737306B2 JP 07904399 A JP07904399 A JP 07904399A JP 7904399 A JP7904399 A JP 7904399A JP 3737306 B2 JP3737306 B2 JP 3737306B2
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- photoactive
- matrix
- monomer
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000178 monomer Substances 0.000 claims description 178
- 239000011159 matrix material Substances 0.000 claims description 140
- 238000006116 polymerization reaction Methods 0.000 claims description 107
- 229920000642 polymer Polymers 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 43
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 239000002243 precursor Substances 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 33
- 125000000524 functional group Chemical group 0.000 claims description 28
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 26
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 21
- -1 vinyl aromatic compounds Chemical class 0.000 claims description 17
- 239000004593 Epoxy Substances 0.000 claims description 16
- 125000002091 cationic group Chemical group 0.000 claims description 13
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 11
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 claims description 9
- 229920006037 cross link polymer Polymers 0.000 claims description 9
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 8
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 claims description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 8
- 239000003999 initiator Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 7
- 229920000570 polyether Polymers 0.000 claims description 7
- WVPIRFLUVOJRRR-UHFFFAOYSA-N 1-ethenyl-4-methylsulfanylnaphthalene Chemical compound C1=CC=C2C(SC)=CC=C(C=C)C2=C1 WVPIRFLUVOJRRR-UHFFFAOYSA-N 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 150000001361 allenes Chemical class 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 4
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 4
- 150000003440 styrenes Chemical class 0.000 claims description 4
- 150000003573 thiols Chemical class 0.000 claims description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000003700 epoxy group Chemical group 0.000 claims description 3
- 239000012948 isocyanate Substances 0.000 claims description 3
- 150000002513 isocyanates Chemical class 0.000 claims description 3
- 150000002560 ketene acetals Chemical class 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 claims description 3
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 claims 5
- JMXSUAOKNZHTEI-UHFFFAOYSA-N 1-ethenyl-4-(3-naphthalen-1-ylsulfanylpropylsulfanyl)naphthalene Chemical compound C12=CC=CC=C2C(C=C)=CC=C1SCCCSC1=CC=CC2=CC=CC=C12 JMXSUAOKNZHTEI-UHFFFAOYSA-N 0.000 claims 3
- 150000002148 esters Chemical class 0.000 claims 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims 1
- 150000001241 acetals Chemical class 0.000 claims 1
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000000047 product Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 19
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 238000003860 storage Methods 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 11
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 10
- 238000001093 holography Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- 239000004793 Polystyrene Substances 0.000 description 6
- 238000000149 argon plasma sintering Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 229920002959 polymer blend Polymers 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- WGGLDBIZIQMEGH-UHFFFAOYSA-N 1-bromo-4-ethenylbenzene Chemical compound BrC1=CC=C(C=C)C=C1 WGGLDBIZIQMEGH-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010538 cationic polymerization reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000006845 Michael addition reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000007348 radical reaction Methods 0.000 description 3
- XSQUPVXOENTCJV-UHFFFAOYSA-N (6-phenylpyridin-3-yl)boronic acid Chemical compound N1=CC(B(O)O)=CC=C1C1=CC=CC=C1 XSQUPVXOENTCJV-UHFFFAOYSA-N 0.000 description 2
- DKICYCNWKRHPFR-UHFFFAOYSA-N 1-methylsulfanylnaphthalene Chemical compound C1=CC=C2C(SC)=CC=CC2=C1 DKICYCNWKRHPFR-UHFFFAOYSA-N 0.000 description 2
- KSMCVSQYRCBMGK-UHFFFAOYSA-N 4-methylsulfanylnaphthalene-1-carbaldehyde Chemical compound C1=CC=C2C(SC)=CC=C(C=O)C2=C1 KSMCVSQYRCBMGK-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000012663 cationic photopolymerization Methods 0.000 description 2
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 239000000386 donor Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000852 hydrogen donor Substances 0.000 description 2
- 238000006459 hydrosilylation reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- 238000011177 media preparation Methods 0.000 description 2
- LSEFCHWGJNHZNT-UHFFFAOYSA-M methyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(C)C1=CC=CC=C1 LSEFCHWGJNHZNT-UHFFFAOYSA-M 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012925 reference material Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- GOUZWCLULXUQSR-UHFFFAOYSA-N (2-chlorophenyl) prop-2-enoate Chemical compound ClC1=CC=CC=C1OC(=O)C=C GOUZWCLULXUQSR-UHFFFAOYSA-N 0.000 description 1
- AAAXMNYUNVCMCJ-UHFFFAOYSA-N 1,3-diiodopropane Chemical compound ICCCI AAAXMNYUNVCMCJ-UHFFFAOYSA-N 0.000 description 1
- DLKQHBOKULLWDQ-UHFFFAOYSA-N 1-bromonaphthalene Chemical compound C1=CC=C2C(Br)=CC=CC2=C1 DLKQHBOKULLWDQ-UHFFFAOYSA-N 0.000 description 1
- NHPPIJMARIVBGU-UHFFFAOYSA-N 1-iodonaphthalene Chemical compound C1=CC=C2C(I)=CC=CC2=C1 NHPPIJMARIVBGU-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- PUOIRWDPECROBN-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 3,5-dinitrobenzoate Chemical compound CC(=C)C(=O)OCCOC(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 PUOIRWDPECROBN-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- VDKDFKRKAPXHBH-UHFFFAOYSA-N [3-(2-sulfanylpropanoyloxy)-2,2-bis(2-sulfanylpropanoyloxymethyl)propyl] 2-sulfanylpropanoate Chemical compound CC(S)C(=O)OCC(COC(=O)C(C)S)(COC(=O)C(C)S)COC(=O)C(C)S VDKDFKRKAPXHBH-UHFFFAOYSA-N 0.000 description 1
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 239000012952 cationic photoinitiator Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SPWVRYZQLGQKGK-UHFFFAOYSA-N dichloromethane;hexane Chemical compound ClCCl.CCCCCC SPWVRYZQLGQKGK-UHFFFAOYSA-N 0.000 description 1
- CNTIXUGILVWVHR-UHFFFAOYSA-N diphosphoryl chloride Chemical compound ClP(Cl)(=O)OP(Cl)(Cl)=O CNTIXUGILVWVHR-UHFFFAOYSA-N 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 1
- 229940011411 erythrosine Drugs 0.000 description 1
- 235000012732 erythrosine Nutrition 0.000 description 1
- 239000004174 erythrosine Substances 0.000 description 1
- 239000012259 ether extract Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012682 free radical photopolymerization Methods 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229920005621 immiscible polymer blend Polymers 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000001956 neutron scattering Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- VDNLFJGJEQUWRB-UHFFFAOYSA-N rose bengal free acid Chemical compound OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C(O)=C(I)C=C21 VDNLFJGJEQUWRB-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- JABYJIQOLGWMQW-UHFFFAOYSA-N undec-4-ene Chemical compound CCCCCCC=CCCC JABYJIQOLGWMQW-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical class [H]C([*])=C([H])[H] 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/10—Processes or apparatus for producing holograms using modulated reference beam
- G03H1/12—Spatial modulation, e.g. ghost imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/001—Phase modulating patterns, e.g. refractive index patterns
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/035—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Integrated Circuits (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
【0001】
【関連出願の参照】
本願は1998年3月24日に出願された出願番号第09/046822号の一部継続出願である。
【0002】
【発明の属する技術分野】
本発明は、ホログラフィ記録媒体を含む光学製品、特にホログラフィ記録システムとともに用いると有用な媒体および光学フィルタやビーム配向体などの素子として有用な媒体に関する。
【0003】
【従来の技術】
情報記憶の装置および方法の開発者たちは、記憶容量の増大を求め続けている。この開発の一部として、いわゆるページ式記憶システム、特にホログラフィシステムが、従来の記憶装置の代替物として提案されてきた。ページ式システムはページなどのデータの全2次元表示の記憶および読み出しをするものである。典型的には、記録光が、データを表す暗い部分と透明な部分の2次元配列を通過し、ホログラフィシステムが、3次元で、記憶媒体に刷り込まれた変化する屈折率のパターンとして、ページのホログラフィ表示を記憶する。ホログラフィシステムは、一般的に、“Holographic Memories,"Scientific American, November 1995で議論されており、その開示は参考のため本願に取り入れられている。ホログラフィ記憶の1つの方法は、1998年2月17日に発行された米国特許第5719691号に記載されている、位相相関多重ホログラフィであり、その開示は参考のため本願に取り入れられている。位相相関多重ホログラフィのある実施様態では、参照ビームが位相マスクを通過し、記録媒体内で、データを表示する配列と通過してきた信号ビームと交差し、媒体内にホログラムを形成する。位相マスクと参照ビームの空間的関係は、データの連続した各ページに対して調整され、それにより参照ビームの位相が変調され、データを媒体内の重なった部分に記録できる。データは、参照ビームをデータ記録に用いたのと同じ位相変調をかけて元の記録場所を通過させることにより、後で再構成される。媒体に向ける光を変調または修飾する受動光学成分として、例えば、フィルタやビーム配向体などの体積ホログラムを用いることも可能である。屈折率の差を生じさせる書き込み工程も導波管などの物品を形成することができる。
【0004】
図1は、ホログラフィシステム10の基本構成を表す。システム10には、変調装置12、光記録媒体14およびセンサー16がある。変調装置12は、データを2次元で光学的に表現できれば、いかなる装置でもよい。装置12は、典型的には、変調器上でデータをコード化するエンコードユニットに取り付けられた空間光変調器である。コード化に基づき、装置12は、装置12を通過する信号ビーム20の一部を選択的に通過させたり、遮断したりする。このようにして、ビーム20はデータ画像でコード化される。画像は、光記憶媒体14の上または中のある場所で、コード化された信号ビーム20と参照ビーム22を干渉させることにより記憶される。この干渉は、干渉パターン(すなわちホログラム)を生じ、媒体14内に変化する屈折率のパターンとして保存される。一つの場所に一つ以上のホログラフィ画像を記憶させたり、用いられる参照ビームにより参照ビーム22の角度、波長または位相を変化させることにより、複数のホログラムを重なった状態で記憶させることも可能である。信号ビーム20は、典型的には、媒体14内で参照ビーム22と交差する前にレンズ30を通過する。この交差の前に参照ビーム22がレンズ32を通過することが可能である。データが媒体14内に記憶されると、参照ビーム22を媒体14の同じ場所で、データ記憶の際と同じ角度、波長または位相で交差させることによりデータを検索することが可能である。再構成されたデータはレンズ34を通り、センサー16で検出される。センサー16は、例えば、電荷結合素子や能動画素センサーである。センサー16は、データを復調するユニットに取り付けられているのが典型的である。
【0005】
【発明が解決しようとする課題】
このようなホログラフィ記憶装置の能力は、部分的には記憶媒体により制限されている。鉄をドープしたニオブ酸リチウムが研究目的の記憶媒体として長年使用されてきた。しかし、ニオブ酸リチウムは高価であり、感度が悪く(1J/cm2)、屈折率のコントラストが低く(Δnが約10-4)、破壊的な読みとりを示す(画像が読みとりの際破壊される)。ニオブ酸リチウムに代わるものが、特に感光性ポリマーフィルムの分野で求められてきた。例えば、W.K.Smothers et al.,“Photopolymers for Holography,"SPIE OE/Laser Conference, 1212−03,Los Angeles,CA,1990を参照のこと。この記事に記載されている材料は、液体モノマー物質(光活性モノマー)と光重合開始剤(光に暴露されてモノマーの重合を促進する)を含有する光画像化システムを含有し、光画像化システムは光の暴露に対し実質的に不活性である有機ポリマーホストマトリックスである。情報を材料に書き込む間(データを表示する配列に記録光を通過させることにより)、露光されている領域でモノマーの重合が起こる。重合によるモノマー濃度低下により、材料の露光されていない暗い領域のモノマーは、露光されている領域に拡散する。重合とそれによる濃度勾配が屈折率を変化させ、データを表示するホログラムを形成する。残念なことに、光画像化システムを含む予備形成されたマトリックス材料を基板に付着させるときには溶媒を使用しなければならず、したがって、安定な材料を得てボイドの形成を低減するために、溶媒を十分蒸発させるには、材料の厚さは例えば約150μm未満に制限される。媒体の3次元空間を利用する上記のようなホログラフィプロセスでは、記憶容量は媒体の厚さに比例する。したがって、溶媒除去の必要性が媒体の記憶容量を抑制している(このタイプのホログラフィは、Klein−Cook Qパラメーターが1より大きいため、一般的に体積ホログラフィと呼ばれている。(W.Klein and B.Cook, “Unified approach to ultrasonic light diffraction,"IEEE Transaction on Sonics and Ultrasonics, SU−14,1967,at 123−134参照)体積ホログラフィでは、一般的に媒体の厚さは縞間隔より大きい)。
【0006】
参考のため本願にその開示を取り入れた、米国特許出願番号第08/698142号(我々の参照番号Colvin−Harris−Katz−Schilling 1−2−16−10)も、有機ポリマーマトリックス中の光画像化システムに関連しているが、より厚い媒体を製造できる。特に、前記明細書は有機オリゴマーマトリックス前駆体の液体混合物からそのままでマトリックス材料を重合して形成された記録媒体と光画像化システムを開示している。類似のシステムであるが、オリゴマーを含まないシステムは、D.J.Lougnot et al.,Pure and Appl.Optics,2,383(1993)で議論されている。これらのマトリックス材料の付着にはほとんどまたは全く溶媒を必要としないので、例えば、200μm以上のより大きい厚みが可能である。これらのプロセスから有用な結果が得られるものの、マトリックスポリマーの前駆体と光活性モノマーの反応の可能性がある。このような反応は、マトリックスと重合された光活性モノマー間の屈折率コントラストを低下させ、それにより保存されたホログラムの強度に影響を与える。
【0007】
したがって、ホログラフィ記憶システムへの使用に適した光記録媒体を製造するのに進歩が見られたが、さらなる進歩が望まれる。特に、マトリックス材料と光活性モノマーの反応を実質的に避け、有用なホログラフィ特性を示すような比較的厚い層、例えば200μmより厚い層に製造できる媒体が望まれている。
【0008】
【課題を解決するための手段】
本発明は、従来の記憶媒体の改善で構成されている。本発明では、マトリックス前駆体(すなわち、マトリックスを形成する1種または複数の化合物)および独立した反応で重合する光活性モノマーを使用するので、硬化の間の光活性モノマーとマトリックス前駆体との相互反応およびそれに続くモノマーの重合の阻害の両方を実質的に防止できる。また、相溶性のあるポリマーを形成するマトリックス前駆体と光活性モノマーを使用するので、相分離を実質的に避けることができる。また、そのままで形成するので、所望の厚さの媒体を製造できる。このような材料性状はさまざまな光学製品を製造するのに有用である(向けられる光を制御したり修飾するのに屈折率パターンや屈折率の変調を利用する光学製品)。このような光学製品には、記録媒体の他に、光導波路、ビーム配向体および光学フィルタがあるが、これらに限定されない。独立した反応とは、(a)異なる種類の反応中間体、例えばイオン性対フリーラジカルで進行する反応、(b)中間体およびマトリックスが重合する条件のどちらも、光活性モノマー官能基、すなわちパターン(例えばホログラム)書き込み工程の間、重合の反応部位である光活性モノマー上の基の実質的な重合を誘起しない反応(実質的な重合とはモノマー官能基の20%を超える重合を意味する)および(c)中間体およびマトリックスが重合する条件のどちらも、モノマー官能基とマトリックスとの相互反応を起こすかまたはその後にモノマー官能基の重合を阻害するような、モノマー官能基の非重合反応を誘起しない反応を意味する。ポリマーは、ポリマーのブレンドが、ホログラム形成に使用される波長の90°光散乱で、7×10-3cm-1未満のレイリー比(R90°)で特徴づけられれば、相溶性であると考えられる。レイリー比(Rθ)は従来知られている特性であり、M.Kerker,The Scattering of Light and Other Electromagnetic Radiation,Academic Press,San Diego,1969,at38で議論されているように、媒体が単位強度の非偏光に照らされたとき、単位体積により方向θに散乱されるステラジアンあたりのエネルギーである。レイリー比は、典型的にはレイリー比が既知の参照物質のエネルギー散乱との比較で得られる。例えば、単一のガラス転移温度を示すなどの従来の試験により、混和性であると考えられるポリマーは、相溶性もよいのが典型的である。しかし、相溶性がよいポリマーは必ずしも混和性ではない。そのままとは、マトリックスが光画像化システムの存在下で硬化することを意味する。有用な光記録材料、すなわちマトリックス材料および光活性モノマー、光重合開始剤、および/または他の添加剤が得られ、前記材料は200μmを超える厚さに、好都合には500μmを超える厚さに形成でき、投光露光されるとレイリー比、R90、が7×10-3未満になるような光散乱特性を示すことができる(投光露光とは、材料全体の光活性モノマーの実質的に完全な重合を誘起するのに適した波長の非干渉性光で、光記録材料全体を露光することをいう)。
【0009】
本発明の光学製品は、マトリックス前駆体と光活性モノマーを混合し、混合物を硬化してマトリックスをそのままで形成することを含む工程で形成される。以上で述べたように硬化中にマトリックス前駆体が重合する反応は、光活性モノマーが後にパターン、例えばデータや波導管形の書き込み中に重合される反応から独立しており、さらに、マトリックスポリマーおよび光活性モノマーの重合で生じるポリマー(以下フォトポリマーと称す)は互いに相溶性である(マトリックスは、光記録材料が少なくとも約105Paの弾性係数を示すとき形成されると考えられている。硬化とは、マトリックスがこのような弾性係数を光記録材料内で示すようにマトリックス前駆体を反応させることをいう)。本発明の光学製品は3次元架橋されたポリマーマトリックスおよび1種または複数の光活性モノマーを含有する。少なくとも1種の光活性モノマーは、モノマー官能基以外に、ポリマーマトリックスに実質的に存在しない一つ以上の一部分を含有する(実質的に存在しないとは、マトリックス中に存在、すなわち共有結合されている、光記録材料内のそのような部分が20%以下であるように、光活性モノマー中にその部分を見つけられることである)。このことから生ずる、ホストマトリックスとモノマーの独立性が、ホログラフィ媒体の有用な記録特性と、高濃度の光活性を必要とせずに屈折率の大きな変調の形成が可能になるなどの導波管の望ましい特性を生み出す。さらに、本発明の材料を、以前は必要であった不都合な溶媒展開なしで形成することが可能である。
【0010】
本発明のホログラフィ記録媒体とは対照的に、独立していない反応により重合するマトリックス前駆体と光活性モノマーを使用する媒体は、マトリックス硬化の間、前駆体と光活性モノマーとの実質的な相互反応(例えば、20%を超えるモノマーが硬化のあとマトリックスに結合している)、または光活性モノマーの重合を阻害する他の反応を経験することが多い。相互反応は、マトリックスと光活性モノマーとの屈折率のコントラストを好ましくなく低下させる傾向があり、引き続く光活性モノマーの重合に影響を与えかねず、モノマーの重合を阻害することは明らかにホログラムの書き込みのプロセスに影響を与える。相溶性に関しては、以前の研究はマトリックスポリマー中の光活性モノマーに関してであり、マトリックス内で生成するフォトポリマーの相溶性ではなかった。しかし、フォトポリマーとマトリックスポリマーとが相溶性でない場合、ホログラム形成中に相分離が起こるのが典型的である。そのような相分離がおきると、曇りや不透明部分に反射される光散乱の増加につながり、それにより媒体の質および記憶されたデータが再生される忠実度が低下する。
【0011】
例えばホログラフィ記録媒体のような本発明の光学製品はマトリックス前駆体と光活性モノマーを混合し、前記混合物を硬化してそのままでマトリックスを形成することを含む工程により製造される。マトリックス前駆体と光活性モノマーは、(a)マトリックス前駆体が硬化中に重合する反応が、例えばパターンなどの書き込みの間に光活性モノマーが重合する反応とは独立であるように、および(b)マトリックスポリマーおよび光活性モノマーの重合で生じるポリマー(フォトポリマー)とが互いに相溶性であるように選択される。上述のとおり、光記録材料、すなわちマトリックス材料に加えて光活性モノマー、光重合開始剤および/または他の添加剤が、少なくとも約105Pa、一般的には約105Paから約109Pa、好都合には約106Paから約108Paの弾性係数を示すときに、マトリックスが形成されると考えられる。
【0012】
マトリックスポリマーとフォトポリマーの相溶性があると、成分の大規模な(>100nm)相分離を防ぐ傾向があるが、そのような大規模な相分離があると、望ましくない曇りや不透明が起きるのが典型的である。独立した反応により重合する光活性モノマーとマトリックス前駆体を使用すると、実質的に相互反応をしない硬化されたマトリックスができるが、これはすなわち光活性モノマーがマトリックス硬化の間実質的に不活性であることを意味する。さらに、独立した反応により、その後の光活性モノマーの重合の阻害は起こらない。少なくとも1種の光活性モノマーが、モノマー官能基以外に、ポリマーマトリックスに実質的に存在しない一つ以上の一部分を含有するが、これはすなわち、マトリックス中に存在、すなわち共有結合されている、記録材料内のそのような部分が20%以下であるように、光活性モノマー中にその部分を見つけられることである。これにより得られる光学製品はマトリックスと光活性モノマーが独立しているため、望ましい屈折率を示すことができる。
【0013】
上述の通り、ホログラム、導波管、他の光学製品は、媒体の露光された部分と露光されていない部分の屈折率のコントラスト(Δn)を利用しており、このコントラストは少なくとも部分的にモノマーが露光された領域に拡散することによる。屈折率コントラストが高いと、ホログラムの読み出しの時信号強度が高くなり、導波管中の光波の拘束が効果的になるので、高い屈折率コントラストが望ましい。本発明において高い屈折率コントラストを提供する方法の一つは、マトリックス中に実質的に存在せず、マトリックスの大部分が示す屈折率とは実質的に異なる屈折率を示すような部分(以下屈折率コントラスト部分と称す)を持つ光活性モノマーを使用することである。例えば、主として脂肪族または飽和の脂環式部分を含有し重い元素や共役二重結合(屈折率が低い)を低濃度含有するマトリックスと、主として芳香族や類似の屈折率が高い部分で構成されている光活性モノマーを使用すれば、高いコントラストが得られるであろう。
【0014】
マトリックスは、硬化工程によりマトリックス前駆体からそのままで形成された固体状ポリマーである(硬化とは、前駆体の反応を誘起してポリマー状のマトリックスを形成する工程をいう)。前駆体は、1種または複数のモノマー、1種または複数のオリゴマーまたはモノマーとオリゴマーの混合物でもよい。それに加え、2種以上の前駆体官能基が、前駆体1分子上または1群の前駆体分子上にあってもよい(前駆体官能基とは、マトリックス硬化の間重合の反応部位となる、前駆体分子上にある単数または複数の基である)。光活性モノマーとの混合をよくするため、前記前駆体は、約−50℃から約80℃までの間のある温度で液体であると好都合である。また、マトリックス重合を室温で行えれば好都合である。さらに、前記重合は300分未満、好都合には5から200分の間に行えれば好都合である。前記光記録材料のガラス転移温度(Tg)は、ホログラフィ記録工程の間光活性モノマーが十分拡散し化学反応を行えるよう、十分低ければ好都合である。一般的に、前記Tgはホログラフィ記録が行われる温度より50℃以上高くはなく、すなわち典型的なホログラフィ記録の場合、Tgは約80℃から約−130℃(従来法で測定して)となる。また、マトリックスが直線状の構造でなく3次元の網目構造を示して、前述のような望ましい弾性係数を提供できれば好都合である。
【0015】
【発明の実施の形態】
本発明においてマトリックスポリマーを形成するのに熟慮された重合反応の例としては、カチオンエポキシ重合、カチオンビニルエーテル重合、カチオンアルケニルエーテル重合、カチオンアレンエーテル重合、カチオンケテンアセタール重合、エポキシ−アミン段階重合、エポキシ−メルカプタン段階重合、不飽和エステル−アミン段階重合(マイケル付加による)、不飽和エステル−メルカプタン段階重合(マイケル付加による)、ビニル−シリコンヒドリド段階重合(ヒドロシリル化)、イソシアネート−ヒドロキシル段階重合(ウレタン形成)およびイソシアネート−アミン段階重合(ウレア形成)がある。
【0016】
上記の反応は、適当な触媒により可能になり、または促進される。例えば、カチオンエポキシ重合は、BF3を主成分にした触媒を用いて室温で速く起こり、他のカチオン重合はプロトン存在下で進行し、エポキシ−メルカプタン反応とマイケル付加はアミンなどの塩基により促進され、ヒドロシリル化は白金などの遷移金属触媒の存在下で速く進行し、ウレタンとウレア形成はスズ触媒が用いられるとき速く進行する。光発生の間光活性モノマーの重合を防止する手段がとられれば、光発生触媒をマトリックス形成に用いることも可能である。
【0017】
光活性モノマーは、光により開始する重合を行うことができ、マトリックス材料とともに本発明の重合条件および相溶性の要件を満たせば、いかなるモノマーでも、1種類でも複数でもよい。適した光活性モノマーとしては、フリーラジカル反応で重合するモノマー、例えばアクリレート、メタクリレート、アクリルアミド、メタクリルアミド、スチレン、置換スチレン、ビニルナフタレン、置換ビニルナフタレンおよび他のビニル誘導体のようにエチレン不飽和性を含有する分子がある。マレエートと混合したビニルエーテルやオレフィンと混合したチオールなどのフリーラジカル共重合対システムも適している。ビニルエーテル、アルケニルエーテル、アレンエーテル、ケテンアセタールおよびエポキシなどのカチオン重合系を使用することも可能である。2種以上のモノマー官能基を含有する1種の光活性モノマー分子を用いることも可能である。上述のように、記録媒体中での読み出しを改善するためであれ導波管内の光を効率的に拘束するためであれ、本発明の製品には比較的高い屈折率コントラストが望まれる。それに加え、モノマーが重合すると一般的に材料が収縮するので、少ないモノマー官能基でこのような比較的大きい屈折率の変化を誘起するのが好都合である(例えば、以下の実施例2および3において、ホログラム記録による書き込みが引き起こす収縮はおよそ0.7%である。実施例4で光活性モノマーの濃度を減らしたが、書き込みが引き起こす収縮はそれに対応して減少した(0.30から0.35%))。このような収縮は記憶されたホログラムからデータを検索するのに悪影響をもたらし、伝送損失の増加および他の性能の偏向などにより、導波管素子の性能を低下させる。したがって、必要な屈折率コントラストを得るために重合されるモノマー官能基の数を少なくすることが望ましい。モノマー中のモノマー官能基の数に対するモノマーの分子体積の比を増加させれば、モノマー官能基の数を低減できる。比を増加するには、モノマー中に、大きい屈折率コントラスト部分を取り入れるかおよび/または屈折率コントラスト部分を多量に取り入れればよい。例えば、マトリックスが主に脂肪族または他の屈折率が低い部分から構成され、モノマーが、ベンゼン環により付与されたより高い屈折率を持つ化学種であるならば、ベンゼン環の替わりにナフタレン環を取り入れたり(ナフタレン環は体積が大きい)、1つ以上のベンゼン環を余分に取り入れたりすることにより、モノマー官能基の数を増やさずに、分子体積をモノマー官能基の数に対して増加させることができる。このようにすると、より大きな分子体積/モノマー官能基比を持ち、ある体積分率を持つモノマーの重合に必要なモノマー官能基はより少なくなり、それにより収縮が減少する。しかし、必要とされるモノマーの体積分率は未露光の領域から露光された領域へと拡散し、望ましい屈折率を提供する。
【0018】
しかしながら、モノマーの分子体積は、許容できる速度以下に拡散を遅くするほど大きくてはいけない。拡散速度は、拡散する化学種の大きさ、媒体の粘度および分子間相互作用などの因子で制御される。大きい化学種は拡散するのが遅い傾向があるが、拡散を許容できるレベルにまで上げるために、粘度を下げたり他の分子に調整したりすることが可能な場合もあるであろう。また、本願での議論と一致して、そのような大きい分子がマトリックスとの相溶性を保つようにするのは重要である。
【0019】
複数の屈折率コントラスト部分を含有するモノマーに対して数多くの構造が可能である。例えば、前記部分が直鎖状オリゴマーの主鎖の中に存在したり、オリゴマー鎖に沿った置換基であることが可能である。または、屈折率コントラスト部分を分岐状または樹状の低分子量オリゴマーのサブユニットとすることが可能である。
【0020】
光活性モノマーに加え、光学製品は光重合開始剤を含有するのが典型的である(光重合開始剤と光活性モノマーは光画像化システム全体の一部分である)。前記光重合開始剤は、比較的低いレベルの記録光にさらされると、モノマーの重合を化学的に開始するので、モノマーの直接光誘起重合の必要を避けられる。光重合開始剤は、一般的に特定の光活性モノマーの重合を開始する化学種の源である。典型的には、光画像化システムの重量に対し、0.1から20重量%の光重合開始剤が望ましい結果をもたらす。
【0021】
当業者に知られており、市販されているさまざまな光重合開始剤が、本発明での使用に適している。可視光領域の光に敏感な光重合開始剤、特に、従来のレーザー源、例えばAr+(458,488,514nm)およびHe−Cdレーザー(442nm)の青線および緑線、周波数2倍YAGレーザー(532nm)。He−Ne(633nm)およびKr+レーザー(647および676nm)の赤線などの波長の光に敏感な光重合開始剤を使うのが好都合である。好都合なフリーラジカル開始剤としては、CibaからCGI−784として市販されているビス(η―5−2,4−シクロペンタジエン−1−イル)ビス[2,6−ジフルオロ−3−(1H―ピロール−1−イル)フェニル]チタニウムである。他の可視光フリーラジカル開始剤(共開始剤が必要)としては、Spectra Group LimitedからH−Nu470として市販されている5,7−ジヨード−3−ブトキシ−6−フルオロンがある。染料−水素ドナー系のフリーラジカル光重合開始剤も使用可能である。適した染料の例としては、エオシン、ローズベンガル、エリスロシンおよびメチレンブルーがあり、適した水素ドナーとしては、n−メチルジエタノールアミンなどの4級アミンがある。カチオン重合モノマーの場合は、スルホニウム塩やヨードニウム塩などのカチオン光重合開始剤が用いられる。これらのカチオン光重合開始剤塩は主に紫外領域の光を吸収するので、染料により感光性を高められて可視領域の光を使用するのが典型的である。他の可視領域のカチオン光重合開始剤としては、CibaからIgracure 261として市販されている(η5−2,4−シクロペンタジエン−1−イル)(η6−イソプロピルベンゼン)−鉄(II)ヘキサフルオロフォスフェートがある。光画像化システムに、例えば比較的高いまたは低い屈折率を示す不活性な拡散剤などの、他の添加物を用いることも考えられる。
【0022】
ホログラフィ記録には、マトリックスがメルカプタン−エポキシ段階重合で形成されたポリマーであるのが好都合であり、メルカプタン−エポキシ段階重合で形成されポリエーテルの骨格を持ったポリマーであればより好都合である。前記ポリエーテル骨格は、数種の有用な光活性モノマー、特にビニル芳香族化合物との望ましい相溶性を与える。具体的に言うと、スチレン、ブロモスチレン、ジビニルベンゼンおよび4−メチルチオ−1−ビニルナフタレン(MTVN)から選択された光活性モノマーが、メルカプタン−エポキシ段階重合で形成されポリエーテル骨格を持ったマトリックスポリマーとともに用いるのに有用であることが分かっている。屈折率インデックス部分を2種以上有し、これらのポリエーテルマトリックスポリマーと用いるのが有用なモノマーは、1−(3−ナフト−1−イルチオ)プロピルチオ)−4−ビニルナフタレンである。
【0023】
独立であるために、マトリックス前駆体と光活性モノマーのそれぞれの重合反応は、(a)反応が異なる種類の反応中間体で進行し、(b)中間体およびマトリックスが重合される条件のどちらも、光活性モノマー官能基の実質的な重合を誘起せず、(c)中間体およびマトリックスが重合される条件のどちらも、相互反応(モノマー官能基とマトリックスポリマーの間の反応)を起こしたり、その後にモノマー官能基の重合を阻害したりするような、モノマー官能基の非重合反応を誘起しないよう選択される。(a)項によれば、マトリックスがイオン性の中間体の使用により重合すれば、フリーラジカル反応を利用して光活性モノマーを重合するのが適当であろう。しかし、(b)項によれば、イオン性の中間体は、光活性モノマー官能基の実質的な重合を誘起してはならない。やはり(b)項によれば、例えば、光により重合が開始されたフリーラジカルマトリックス重合は、光により重合が開始する光活性モノマー官能基のカチオン重合を誘起するのが一般的であることに気づかなければならない。他の場合では独立な二つの反応は、両者が単一の反応条件により進められるなら、本発明の目的にとっては独立していない。(c)項によれば、例えば塩基で触媒されるマトリックス重合は、光活性モノマー官能基が塩基に反応して非重合反応を起こすならば、モノマー官能基の重合が独立した反応により起こるとしても、実施すべきでない。具体例としては、塩基で触媒されるエポキシ−メルカプタン重合はアクリル酸エステルモノマーを用いたときは行えないが、これは、アクリル酸エステルはフリーラジカル反応で重合するものの、アクリル酸エステルが塩基触媒の存在下でメルカプタンと反応し、相互反応となるからである。
【0024】
以下の表1は、マトリックス重合反応と光活性モノマー重合が独立に行える場合と、両重合反応が互いに干渉する場合のマトリックス/光活性モノマーの組合せを表す(光活性モノマーは横方向に、マトリックスポリマーは縦方向に示す。「X」は、相互反応または、マトリックス重合中のモノマー重合を示す。「O」は、独立な反応を示す。「I」は、光活性モノマー官能基が重合しない基へ変換する場合や、マトリックス硬化の後でモノマー官能基の重合の速度や収率を低下させる化学種が存在する場合など、光活性モノマーの重合が、ポリマー状マトリックスを形成する試薬または反応により阻害されることを示す)。
【0025】
【表1】
【0026】
本発明の目的には、ポリマーのブレンドが、90°光散乱で、7×10-3cm-1未満のレイリー比(R90°)で特徴づけられれば、前記ポリマーは相溶性であると考えられる。レイリー比、Rθ、は従来知られている特性であり、M.Kerker,The Scattering of Light and Other Electromagnetic Radiation,Academic Press,San Diego,1969で議論されているように、媒体が単位強度の非偏光に照らされたとき、単位体積により方向θにステラジアンあたり散乱されるエネルギーである。測定に用いられる光源は一般的に可視領域の波長を有するレーザーである。通常は、ホログラム書き込みに用いられる波長を使用する。散乱測定は、投光露光された光記録材料上で行われる。散乱された光は、入射光より90°の角度で、典型的には光検出器により集められる。レーザー波長を中心とした狭帯域フィルタを光検出器の前に置き蛍光を遮断することも可能であるが、そのような手段が必要というわけではない。レイリー比は、典型的にはレイリー比が既知の参照物質のエネルギー散乱との比較で得られる。
【0027】
例えば単一のガラス転移温度を示すなどの従来の試験法により混和性であると考えられるポリマーブレンドは、相溶性でもあるのが典型的であり、すなわち混和性は相溶性の一部である。したがって、標準的な混和性ガイドラインおよび表が、相溶性のあるブレンドを選択するのに有用である。しかし、混和性でないポリマーブレンドが上述の光散乱試験により相溶性であることもある。
【0028】
ポリマーブレンドは、従来法により測定して単一のガラス転移温度、Tg、を示すと、一般的に混和性であると考えられる。非混和性のブレンドは、それぞれのポリマーのTg値に対応する2つのガラス転移温度を示すのが典型的である。Tg試験は、熱流量の段階的変化(通常縦軸)としてTgを示す示差走査熱量測定法(DSC)により実施されるのが普通である。報告されるTgは、縦軸が転移の前後の外挿されたベースラインの中点値に達する温度である。Tgを測定するのに動的機械分析(DMA)を用いるのも可能である。DMAでは、ガラス転移領域で数桁低下する、材料の貯蔵弾性率を測定できる。ブレンド中の各ポリマーが、それぞれ互いに近いTgを持つ場合もある。そのような場合には、Brinke et al.,“The thermal characterization of multi−component systems by enthalpy relaxation," Thermochimica Acta.,238(1994), at 75で議論されているような、従来の方法を用いて重なったTgを分離するべきである。
【0029】
混和性を示すマトリックスポリマーと光活性モノマーは、いくつかの方法で選択できる。例えば、O.Olabisi et al.,Polymer−Polymer Miscibility,Academic Press,NewYork,1979;L.M.Robeson,MMI.Press Symp.Ser.,2,177,1982;L.A.Utracki,Polymer Alloys and Blends:Thermodynamics a nd Rheology,Hanser Publishers,Munich,1989;S.Krause in Polymer Handbook,J.Brandrup and E.H.Immergut,Eds.,3rd Ed.,Wiley Interscience,New York,1989,pp.VI347−370などのような、混和性のポリマーに関する出版された編集物が何冊か利用できるが、上記の資料の開示は本願で参考のため取り入れられている。所望のポリマーがこのような参考資料に見つからなくても、特定の手法を用いれば、対照試料を使用して相溶性のある光記録材料を決定できる。
【0030】
混和性または相溶性のあるブレンドの決定は、一般的に混和性を促進する分子間相互作用を考慮すれば、さらに支援される。例えば、ポリスチレンおよびポリ(メチルビニルエーテル)は、メチルエーテル基とフェニル環の間に働く互いに引きつけ合う相互作用により、混和性があることはよく知られている。したがって、あるポリマー中ではメチルエーテル基を他のポリマー中ではフェニル基を用いることにより、二つのポリマーの混和性を、または少なくとも相溶性を高めることが可能である。イオン性相互作用を提供する適当な官能基を取り入れることにより、混和性でないポリマーを混和性にできることが示されている(Z.L.Zhou and A.Eisenberg,J.Polym.Sci.,Polym.Phys.Ed.,21(4),595,1983;R.Muraliand A.Eisenberg,J.Polym.Sci.,Part B:Polym.Phys.,26(7),1385,1988;and A Natansohn et al.,Makromol.Chem.,Macromol.Symp.,16,175,1988参照のこと)。例えば、ポリイソプレンとポリスチレンは非混和性である。しかし、ポリイソプレンが部分的に(5%)スルホン化され、4−ビニルピリジンがポリスチレンと共重合されると、これらの官能性ポリマーのブレンドは混和性となる。スルホン化された基とピリジン基(プロトン移動)の間のイオン性相互作用が、このブレンドを混和性にする推進力であると考えられている。同様に、通常は非混和性であるポリスチレンとポリ(アクリル酸エチル)は、ポリスチレンを少しスルホン化すれば、混和性になる(R.E. Taylor−Smith and R.A. Register,Macromolecules,26,2802,1993参照)。電荷移動も、非混和性のポリマーを混和性にするため利用されてきた。例えば、ポリ(アクリル酸メチル)とポリ(メタクリル酸メチル)は非混和性であるが、ポリ(アクリル酸メチル)を(N−エチルカルバゾール−3−イル)メチルアクリレート(電子供与体)と共重合し、ポリ(メタクリル酸メチル)を2−[(3,5−ジニトロベンゾイル)オキシ]エチルメタクリレート(電子受容体)と共重合すると、供与体と受容体を適量用いれば、それらのポリマーのブレンドは混和性になる(M.C.Piton and A.Natansohn,Mcromolecules,28,15,1995参照)。ポリ(メタクリル酸メチル)とポリスチレンも、対応する供与体−受容体コモノマーを用いれば混和性にできる(M.C.Piton and A.Natansohn,Macromolecules,28,1605,1995参照)。
【0031】
A.Hale and H.Bair,Ch.4−“Polymer Blends and Block Copolymers,"Thermal Characterization of Polymeric Materials,2nd Ed.,Academic Press,1997の中で発表された最近の概略で考慮されているように、ポリマーの混和性または相溶性の試験方法にはさまざまな種類がある。例えば、光学的方法の領域では、不透明は2層から成る物質を示すのが典型的であり、透明は混和性の系を表すのが一般的である。混和性を評価する他の方法としては、中性子散乱、赤外分光法(IR)、核磁気共鳴法(NMR)、x線散乱および回折、蛍光、ブリユアン散乱、溶融滴定、熱量法および化学発光がある。例えば、L.Robeson,supra,;S.Krause,Chemtracts−Macromol.Chem.,2,367,1991a;D.Vesely in Polymer Blends and Alloys,M.J.Folkes and P.S.Hope,Eds.,Blackie Academic and Professional,Glasgow,pp.103−125;M.M.Coleman et al.,Specific Interactions and the Miscibility of Polymer Blends, Technomic Publishing,Lancaster,PA,1991;A.Garton,Infrared Spectroscopyof Polymer Blends,Composites and Surfaces,Hanser,New York,1992;L.W.Kelts et al.,Macrmolecules,26,2941,1993;J.L.White and P.A.Mirau,Macrmolecules,26,3049,1993;J.L.White and P.A.Mirau,Macrmolecules,27,1648,1994;C.A.Cruz et al.,Macrmolecules,12,726,1979;C.J.Landry et al.,Macrmolecules,26,35,1993を参照のこと。
【0032】
ポリマーマトリックスの中へ反応性の基を取り入れることにより、そのような基がホログラフィ記録工程の間光活性モノマーと反応できる場合は、非相溶性であるポリマーの相溶性が高められてきた。光活性モノマーの一部はそのようにして記録の間マトリックスにグラフトされる。これらのグラフトが十分あれば、記録の間相分離を防止または低減することが可能である。しかし、グラフトされた部分とモノマーの屈折率が比較的似ている時は、あまり多くのグラフトがあると、例えば30%を超えるモノマーがマトリックスにグラフトされていると、望ましくなく屈折率コントラストを低下させるであろう。
【0033】
本発明のホログラフィ記録媒体は、ホログラフィ書き込みと読み出しが可能なように、光記録材料を適当に支持することにより形成される。典型的には、媒体の製造は、マトリックス前駆体/光画像化システム混合物を、例えば混合物を封じ込めるためのガスケットを用いて、2枚のプレートの間に付着させるものである。プレートは、ガラスが一般的であるが、データ書き込みに用いる放射に対して透明な物質、例えばポリカーボネートまたはポリ(メタクリル酸メチル)などのプラスティックを使用することも可能である。プレートの間にスペーサーを入れて記録媒体の所望の厚さを保つことも可能である。マトリックス硬化の間、材料が収縮してプレートに応力がかかる可能性があるが、このような応力はプレートの平行度および/または間隔を変え、媒体の光学的特性を損ねる。そのような影響を減らすため、平行度および/または間隔の変化に対応して調節できるマウント、例えば真空チャックを備えた装置にプレートを据えることが有用である。このような装置では、従来の干渉計測法により平行度をリアルタイムで観察し、硬化の間必要な調整をすることができる。このような装置は、例えば米国特許出願第08/867563号(我々の参照番号Campbell−Harris−Levinos 3−5−3)で議論されており、その開示は参考のため本願に取り入れられている。本発明の光記録材料はそのほかの方法でも支持することができる。例えば、マトリックス硬化の前にマトリックス前駆体/光画像化システム混合物を、例えばVycorなどの微細孔ガラス材料のような基材の細孔に付着させることが考えられる。密閉型成形や板押出などの従来のポリマー加工も考えられる。層になった媒体、すなわち光記録材料が間に付着されている、例えばガラスなどの複数の基板を有する媒体も考えられる。
【0034】
本発明の媒体は上述のようなホログラフィシステムで使用できる。ホログラフィ媒体に記憶できる情報の量は、光記録材料の屈折率コントラストΔnおよび光記録材料の厚さ、dの積に比例する(屈折率コントラスト、Δnは従来知られており、平面波の体積ホログラムが書き込まれる材料の屈折率の正弦変動の大きさとして定義される。屈折率は、n(x)=n0+Δncos(Kx)のように変わり、ここでn(x)は空間的に変動する屈折率、xは位置ベクトル、Kxは格子波数ベクトルおよびn0は媒体のベースライン屈折率である。例えば、P.Hariharan,Optical Holography:Principles, Techniques, and Applications, Cambridge Unversity Press,Cambridge,1991,at44を参照)。材料のΔnは、媒体に記録される単一の体積ホログラムまたは多重組の体積ホログラムの回折効率から計算されるのが典型的である。前記Δnは書き込み前の媒体に関連があるが、記録の後行われる測定によって観察される。本発明の光記録材料は3×10-3以上のΔnを示すのが好都合である。
【0035】
他の光学製品の例としては、ビームフィルタ、ビーム配向体、偏向板および光カプラーがある(例えば、L.Solymar and D.Cooke,Volume Holography and Volume Gratings,Academic Press,315−327(1981)を参照のこと。同資料の開示を参考のため本願に取り入れている)。ビームフィルタは、ある特定の角度で飛行してくる入射レーザー光の一部を、その他の光から分離する。具体的には、厚い透過ホログラムのブラッグ選択性は、特定の角度で入射してくる光を選択的に回折させ、他の角度からくる光は偏向されずにホログラムを通過する(J.E.Ludman et al.,“Very thick holographic nonspatial filtering of laserbeams,"Optical Engineering,Vol.36,No.6,1700(1997)を参照のこと。同資料の開示を参考のため本願に取り入れている)。ビーム配向体は、ブラッグ角で入射してくる光を偏向するホログラムである。光カプラーは、典型的には光を光源からターゲットへ向けさせるビーム偏光板の組合わさったものである。一般的にホログラフィ光学素子と言われるこれらの製品は、データ記憶に関して以上で述べたように、記録媒体内に、特定の光学干渉パターンを作ることにより製造される。これらのホログラフィ光学素子用の媒体は、記録媒体や導波管に関して本願で述べた技術により製造できる。
【0036】
上述のとおり、本願で述べた材料の原則はホログラム形成のみならず、導波管のような光学的伝送素子の形成にも適用される。ポリマー状の光導波路は、例えばB.L.Booth,“Optical Interconnection Polymers,"in Polymers for Lightwave and Integrated Optics,Technology and Applications,L.A.Hornak,ed.,Marcel Dekker,Inc.(1992);米国特許第5292620号および米国特許第5219710号で議論されており、その開示を参考のため本願に取り入れている。基本的には、本発明の記録材料は所望の導波管パターンで照射され、導波管パターンと周囲(被覆)の物質との間に屈折率コントラストを提供する。例えば集束レーザー光やマスクを非集束光源とともに用いることにより、露光を行うことが可能である。一般的に、一つの層がこのように露光され導波管パターンを提供し、被覆を完全にするためさらに層が追加され、導波管が完成する。このプロセスは、例えばBooth,supra,235−36ページや米国特許第5292620号の5および6段で議論されている。本発明の利点は、従来の成形技術を利用して、マトリックス硬化の前にマトリックス/光画像化システム混合物をさまざまな形状に成形できることである。例えば、マトリックス/光画像化システム混合物は、リッジ導波管に成形でき、それから屈折率パターンが成形構造に書き込まれる。したがって、ブラッグ格子などの構造を簡単に形成することができる。本発明の特徴は、このようなポリマー状導波管が有用である用途の幅を広げる。
【0037】
以下の典型的な実施例により、本発明はさらに明確になるであろう。
【実施例】
比較例1
89.25重量%のフェノキシエチルアクリレート(光活性モノマー)、10.11重量%のエトキシ化ビスフェノールAジアクリレート(光活性モノマー)、0.5重量%のCiba CGI−784(上記で説明済み)(光重合開始剤)および0.14重量%のジブチルスズジラウリレート(マトリックス形成用の触媒)を含む溶液を調製した。0.0904gの溶液を、0.2784gのジイソシアネート末端ポリプロピレングリコール(分子量=2471)(マトリックス前駆体)と0.05gのα、ω−ジヒドロキシポリプロピレングリコール(分子量=425)(マトリックス前駆体)を含む瓶に加えた。混合物を完全に混合し、光を遮蔽しながら室温で一晩重合させた。重合はイソシアネート基とヒドロキシル基の段階重合であり、ポリウレタンおよび溶解したアクリル酸エステルモノマーが生成した。前記混合物は何もつけていない目には透明に見えた。アクリル酸エステルモノマーの重合を開始する強いタングステンライトにあてると、前記物質は乳白色になり、ポリウレタンマトリックスとアクリル酸エステルポリマーが相溶性でないことを示した。
Krauseから出版されている上述のポリマー混和性の表で調べてみると、ポリウレタンは、塩素化されたポリマーであるSaranRと混和性、したがって相溶性であることが分かる。実施例1では、この情報を利用して作られた系を考慮する。
【0038】
実施例1
98.86重量%の4−クロロフェニルアクリレートおよび1.14重量%のジブチルスズジラウリレートを含む溶液を調製した。この溶液0.017gを、0.2519gのジイソシアネート末端ポリプロピレングリコール(分子量=2471)、0.047gのα、ω−ジヒドロキシポリプロピレングリコール(分子量=425)、0.051gの4−クロロフェニルアクリレートおよび0.00063gのCiba CGI−784(光重合開始剤)を含む瓶に加えた。この混合物を完全に混合し、光を遮蔽しながら室温で一晩重合させた。重合はイソシアネート基とヒドロキシル基の段階重合であり、ポリウレタンおよび溶解したクロロフェニルアクリレートモノマーが生成した。前記混合物は何もつけていない目には透明に見えた。アクリレートモノマーの重合を開始する強いタングステンライトにあてても、試料は透明のままであり、モノマーとマトリックスポリマーの相溶性を示した。
【0039】
実施例2
0.00265gのCiba CGI−784を、0.26248gのスチレン(光活性モノマー)に溶解させた。その溶液を、1.9187gのポリプロピレングリコールジグリシジルエーテル(分子量=380)(PPGDGE)(マトリックス前駆体)、1.2428gのペンタエリスリトールテトラキス(メルカプトプロピオネート)(PETMP)(マトリックス前駆体)および0.1445gのトリス(2,4,6−ジメチルアミノメチル)フェノール(TDMAMP)(マトリックス形成の触媒)と混合した。前記溶液を、ガラススライド上で、厚さが約200μmで直径25mmのテフロンスペーサーの中へ分配し、別のガラススライドをその上にのせた。室温で約1時間放置の後、前記混合物は、メルカプタンとエポキシがアミンを触媒とした共重合を行ったため、ゲル化した。示差走査熱量測定法(DSC)とフーリエ変換赤外分光法(FTIR)測定により、マトリックスの重合は2時間後たつと完全であることが分かった(すなわち、前駆体官能基が測定できるほどなかった)。スチレンモノマーと光重合開始剤を溶解しているエポキシ−メルカプタンマトリックスから成る、丈夫で弾性のある物質が得られた。その媒体の厚さは約270から290μmであった。24時間後、上述の米国特許第5719691号に記載の手順に準じて、一連の多重ホログラムが前記媒体に書き込まれた。1.7×10-3のΔnが達成できた。ホログラフィ記録の後、異常な光散乱は検出されず、重合したスチレンモノマーとエポキシ−メルカプタンマトリックスの間に相溶性があることを示した。
【0040】
実施例3
実施例2で作成した媒体のΔnを増加させるため、ブロモスチレンモノマーを光活性モノマーとして使用した。0.01262gのCiba CGI−784を、0.2194gの4−ブロモスチレン(光活性モノマー)に溶解させた。その溶液を、0.9597gのPPGDGE,0.6042gのPETMPおよび0.084gのTDMAMPと混合した。実施例2と同様に試料を調製しホログラムを記録した。平均で4.2×10-3のΔnが得られた。この場合でも、ホログラフィ記録の後に異常な光散乱は検出されず、さらにDSCからは一つのガラス転移温度が示され、相溶性の系であることが示唆された。
【0041】
実施例4
0.054gのCiba CGI−784を、0.46gの4−ブロモスチレンに溶解させた。その溶液を、3.8gのPPGDGE、2.44gのPETMPおよび0.3gのTDMAMPと混合した。これは、実施例3で用いたブロモスチレンの半分の濃度に相当する。試料調製とホログラム記録は実施例2と同様に行った。Δnは2.5×10-3であった。ブロモスチレンの重合により生じた厚さの減少(収縮)は約0.3%であった。光記録材料の弾性係数は約5.7×106Paであった。
【0042】
実施例5
4−メチルチオ−1−ビニルナフタレン(MTVN)(光活性モノマー)を以下の手順で合成した。
1−メチルチオナフタレンの調製:63g(0.25モル)の1−ヨードナフタレンを窒素雰囲気下で1Lの無水エーテルに溶解させた。溶液を−70℃まで冷却し、ヘキサン(0.27モル)に溶解している2.5Mブチルリチウム(BuLi)109mLを攪拌しながら30分かけて添加した。25g(0.27モル)のジメチルジスルフィドを添加し、4時間かけて室温に戻した。200mLの濃縮Na2CO3水溶液を添加し、有機層をMgSO4で乾燥し、濾過した後、濃縮して42g(97%)の生成物と約10gのヨウ化ブチル副生成物を含有する濃い橙色のオイルを得た。ガラス器具や他の装置は全て、残留スルフィドを分解するため漂白剤で洗浄した。
4−メチルチオ−1−ナフトアルデヒドの調製:14.5gの1−メチルチオナフタレン(0.083モル)を、12.4g(0.17モル)の無水N,N'−ジメチルホルムアミドと混合し、その溶液を氷浴で冷却した。23.9g(0.095モル)のジホスホリルテトラクロライドを攪拌しながら滴下し、温度を15℃未満に保った。この混合物をゆっくりと100℃まで加熱し、その温度で2時間攪拌を続けた。前記混合物を放冷し、氷浴で冷却した。23gの水酸化ナトリウムを200mLの水に溶解した溶液(100gの氷を加えて冷却)を前記反応混合物に注ぎ入れ、この混合物を攪拌しながら穏やかに40℃まで加熱した。この時点で発熱反応が始まったので、加熱を中止し、温度を50℃未満に保つためさらに氷を加えた。温度が35℃未満で落ち着いたとき、200mLのエーテルを攪拌しながら添加した。有機層を分離し、水層をさらに100mLのエーテルで抽出した。合わせたエーテル抽出物をMgSO4で乾燥し、濾過し、濃縮し、120gのシリカゲルを用いたカラムクロマトグラフにかけ、それぞれ0,25,50,75体積%のジクロロメタンを含むヘキサン各500mLで溶出させ、100mLの分画を集めた。生成物は、これらのうち6−8分画から集められ、黄色の固体9.8g(58%)が得られた。
【0043】
4−メチルチオ−1−ビニルナフタレンの調製:19.9g(0.058モル)のメチルトリフェニルホスホニウムブロマイド粉末を150mLの無水テトラヒドロフランに懸濁させた懸濁液を、窒素雰囲気下で攪拌しながら0℃に冷却した。ヘキサン(0.48モル)中に溶解している19mLの2.5MのBuLiを、色をできるだけ薄く保ち、濃い橙色に着色するのを避けながら、30分かけて添加した。この混合物を25℃まで加熱し、この温度で1時間攪拌し、0℃に冷却した。20mLのテトラヒドロフランに溶解している9.8gの4−メチルチオ−1−ナフトアルデヒドを、0℃で攪拌しながら30分かけて添加した。前記混合物を終夜攪拌し、室温まで温度を上げた。10mLのメタノールを加え、減圧下で溶媒を蒸発させた。残留分を、100mLのリグロイン(主にヘプタン)で、90−110℃の沸点において5回抽出し、さらにメタノールを加えて残留分を柔らかく保った。抽出物を濾過し、濃縮し、40gのシリカゲルを通してヘキサンで溶出させた。生成物は500mLの分画から得られ、6.8gの薄い黄色の液体(70%)が得られ、−20℃でオフホワイトの固体の形態で保存した。
媒体の調製:0.0562gのCiba CGI−784を、穏やかに加熱しながら0.1gの4−ブロモスチレンと0.4gのMTVNに加えた。その溶液を2.4gのPPGDGE、1.508gのPETMPおよび0.2gのTDMAMPと混合した。試料調製とホログラム記録は実施例2および3と同様に行った。6.2×10-3という高いΔnが、200μmの厚さで得られた。
【0044】
実施例6
0.26gのCGI−784光重合開始剤を、2.225gの4−ブロモスチレンに溶解させた。この溶液を、19gのPPGDGE、12.2gのPETMPおよび0.34gの1,8−ジアゾビシクロ[5.4.0.]ウンデカ−7−エン(DBU)と混合した。この混合物は7分でゲル化し、マトリックス重合は15分後に終了した。この媒体への多重ホログラム記録は成功した。
【0045】
実施例7
材料の厚さが940μm(ガラススライドを含まず)である試料を以下のようにして調製した。0.75gのCiba CGI−784を、穏やかに加熱しながら1.50gのMTVNに加えた。その溶液を、9.04gのPPGDGE、5.64gのPETMPおよび0.56gのTDMAMPと混合した。1mmまでの厚さの媒体を、上述のように真空ホルダーを用いて調製し、実施例2と同様にホログラムを記録した。Δnを測定すると7.3×10-3であり、実質的にΔnを保ったまま試料の厚さを大きくすることが可能であることが示された。
【0046】
実施例8
異なる光活性モノマーの効果を比較するため5種の媒体を調製した。媒体は、材料の厚みが250μmであり、以下のとおり調製した。
1) スチレン光活性モノマー:実施例2と同様に調製
2) ブロモスチレン光活性モノマー:実施例3と同様に調製
3) ブロモスチレンとMTVN光活性モノマー:実施例5と同様に調製
4) MTVN光活性モノマー:実施例7と同様に調製
5) 1−(3−ナフト−1−イルチオ)プロピルチオ)−4−ビニルナフタレン(NTPVN)光活性モノマー:0.02gのCiba CGI−784を、1.2007gのPPGDGEに溶解させた。この溶液を0.4080gのNTPVN、0.7524gのPETMPおよび0.1358gのTDMAMPと混合した。試料を実施例2と同様に調製した。
35の平面波ホログラムが、上述のホログラフィ装置を用いて、試料中で角度多重化された。書き込みの後、試料を投光露光し、残っている光活性種をすべて反応させた。屈折率コントラストが計算され、図2に(ベストフィットラインとともに)すぐ上に記した参照番号を用いて示してある。図2から、媒体1から5までで、比較的一定のレベルの寸法安定性を保ちながら(媒体の厚さの減少約0.3%)、約1.6×10-3から約9×10-3までの屈折率コントラストの増加が実現できたことが分かる。1−(3−ナフト−1−イルチオ)プロピルチオ)−4−ビニルナフタレンが屈折率コントラスト部分を2つ有すると仮定して、このモノマーを含有する媒体が示す屈折率の増加が期待される。
【0047】
(NTPVNの調製は以下のとおりである。
1−(3−ナフト−1−イルチオ)プロピルチオ)ナフタレンの調製。20.7g(0.1モル)の1−ブロモナフタレンを200mLのエーテルに溶解させた溶液を攪拌しながら、−78℃に冷却し、40mLのBuLiを加えた。温度を−20℃まで上げ、再び−78℃まで下げて、3.2g(0.1モル)の硫黄を加えた。温度を10℃まで上げ、再び−78℃まで下げて、14.8g(0.05モル)の1,3−ジヨードプロパンを加えた。室温まで暖めるにしたがって、ゆっくりした反応が薄層クロマトグラフィーにより示された。混合物を50mLのTHF存在下で還流しながら4時間加熱し、(冷却した後)水酸化ナトリウム水溶液と混合した。有機層をMgSO4で乾燥し、濾過し、濃縮し、100gのシリカゲルを用い、0−30%のジクロロメタンを含む2Lのヘキサンで溶出させながらクロマトグラフにかけた。900mLの生成物帯から5.5gの白色固体が得られ、NMRで純粋であると確認できた。
4−(3−ナフト−1−イルチオ)プロピルチオ)−1−ナフトアルデヒドの調製。上記生成物3.9gと1.42gのジメチルホルムアミドを氷冷しながら混合し、その後2.8gのP2O3Cl4を加えた。混合物を100℃で2時間加熱し、室温に戻し、50mLの氷水に溶かした水酸化ナトリウム2.5gを加えて、40℃に加熱し、室温で攪拌することにより加水分解した。有機物質が分散したときに、エーテルで抽出し、乾燥し、濾過し、濃縮し、750mLのヘキサン−ジクロロメタン勾配の後ジクロロメタン中10%の酢酸エチル(EtOAc)を用いてクロマトグラフにかけた。2.0gの出発物質、1.3gの黄色油状生成物および0.2gのジアルデヒドが得られた。生成物の収率は31%であり、または消費された出発物質を元に考えれば63%である。
1−(3−ナフト−1−イルチオ)プロピルチオ)−4−ビニルナフタレンの調製。上記生成物1.3gをウィッティッヒ試薬(1.4gのメチルトリフェニルホスホニウムブロマイドおよび30mLのTHFに溶かした3.3ミリモル(1当量)のBuLiを0℃から室温まで1時間かけて調製し、再び0℃に戻す)に加えた。室温で一晩攪拌した後、1.6mLのメタノールを加え、溶液を濃縮して、MTVNと同様にリグロインで抽出した。抽出物を一部濃縮し約10mLにして、ジクロロメタンで均一になるまで希釈し、20gのシリカゲルのクロマトグラフにかけ、ヘキサン:ジクロロメタンの1:1溶液で溶出した。1.1g(84%)の粘度のある黄色の油が得られ、NMRにより純粋であると確認できた。真空で30分乾燥した直後に、その物質を媒体調製用の混合物に混合した。本発明の実施態様は、本明細書の考察と本願で開示した本発明の実施より当業者には明らかであろう。
【図面の簡単な説明】
【図1】 基本的なホログラフィ記憶システムを示す図である。
【図2】記録媒体の屈折率コントラストに及ぼす、数種の異なる光活性モノマーの効果を示す図である。[0001]
[Reference to related applications]
This application is a continuation-in-part application of application number 09/046822 filed on March 24, 1998.
[0002]
BACKGROUND OF THE INVENTION
The present invention relates to an optical product including a holographic recording medium, and more particularly to a medium useful when used with a holographic recording system and a medium useful as an element such as an optical filter or a beam alignment body.
[0003]
[Prior art]
Developers of information storage devices and methods continue to seek increased storage capacity. As part of this development, so-called paged storage systems, in particular holographic systems, have been proposed as an alternative to conventional storage devices. The page-based system stores and reads out all two-dimensional displays of data such as pages. Typically, the recording light passes through a two-dimensional array of dark and transparent parts representing the data, and the holographic system is in three dimensions as a pattern of changing refractive index imprinted on the storage medium. Memorize the holographic display. Holographic systems are generally referred to as “Holographic Memories,”Scientific American, November 1995, the disclosure of which is incorporated herein by reference. One method of holographic storage is phase correlated multiplex holography, described in US Pat. No. 5,1969,691, issued February 17, 1998, the disclosure of which is incorporated herein by reference. In one embodiment of phase correlation multiplex holography, a reference beam passes through a phase mask and intersects an array displaying data and a signal beam passing through in a recording medium to form a hologram in the medium. The spatial relationship between the phase mask and the reference beam is adjusted for each successive page of data so that the phase of the reference beam is modulated and the data can be recorded in overlapping portions of the medium. The data is later reconstructed by passing the original recording location with the same phase modulation as that used for data recording. As a passive optical component that modulates or modifies light directed to the medium, for example, a volume hologram such as a filter or a beam alignment body can be used. An article such as a waveguide can also be formed by a writing process that causes a difference in refractive index.
[0004]
FIG. 1 shows a basic configuration of the
[0005]
[Problems to be solved by the invention]
The capabilities of such holographic storage devices are limited in part by the storage medium. Iron doped lithium niobate has been used for many years as a storage medium for research purposes. However, lithium niobate is expensive and has poor sensitivity (1 J / cm2) And the refractive index contrast is low (Δn is about 10).-Four), Indicates destructive reading (images are destroyed when reading). Alternatives to lithium niobate have been sought, particularly in the field of photosensitive polymer films. For example, W.W. K. Smoothers et al. , "Photopolymers for holography," SPIE OE / Laser Conference, 1212-03, Los Angeles, CA, 1990. The material described in this article contains a photoimaging system containing a liquid monomeric substance (photoactive monomer) and a photoinitiator (which is exposed to light to promote polymerization of the monomer) and photoimaging The system is an organic polymer host matrix that is substantially inert to light exposure. While writing information to the material (by passing the recording light through an array that displays the data), polymerization of the monomer occurs in the exposed areas. Due to the decrease in monomer concentration due to polymerization, the unexposed dark area monomer of the material diffuses into the exposed area. Polymerization and the resulting concentration gradient change the refractive index and form a hologram displaying the data. Unfortunately, a solvent must be used when depositing the preformed matrix material containing the photoimaging system on the substrate, and therefore, to obtain a stable material and reduce void formation, In order to fully evaporate, the material thickness is limited to, for example, less than about 150 μm. In the holographic process as described above that utilizes the three-dimensional space of the medium, the storage capacity is proportional to the thickness of the medium. Thus, the need for solvent removal reduces the storage capacity of the medium (this type of holography is generally referred to as volume holography because the Klein-Cook Q parameter is greater than 1 (W. Klein). and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,”IEEE Transaction on Sonics and Ultrasonics, SU-14, 1967, at 123-134) In volume holography, the media thickness is generally larger than the fringe spacing).
[0006]
US patent application Ser. No. 08 / 698,142 (our reference Colvin-Harris-Katz-Schilling 1-2-16-10), the disclosure of which is incorporated herein by reference, is also photo-imaging in an organic polymer matrix. Although related to the system, thicker media can be produced. In particular, the above specification discloses a recording medium and an optical imaging system formed by polymerizing a matrix material as it is from a liquid mixture of organic oligomer matrix precursors. A similar system, but without an oligomer, is described in D.C. J. et al. Lounot et al. ,Pure and Appl. Optics2, 383 (1993). Since little or no solvent is required for the deposition of these matrix materials, larger thicknesses of, for example, 200 μm or more are possible. Although useful results are obtained from these processes, there is the potential for reaction of the matrix polymer precursor with the photoactive monomer. Such a reaction reduces the refractive index contrast between the matrix and the polymerized photoactive monomer, thereby affecting the intensity of the stored hologram.
[0007]
Thus, although progress has been made in producing optical recording media suitable for use in holographic storage systems, further progress is desired. In particular, media that can be made into relatively thick layers, such as layers greater than 200 μm, that substantially avoid reaction of the matrix material with the photoactive monomer and exhibit useful holographic properties are desired.
[0008]
[Means for Solving the Problems]
The present invention consists of improvements over conventional storage media. The present invention uses a matrix precursor (ie, one or more compounds that form the matrix) and a photoactive monomer that polymerizes in an independent reaction, so that the photoactive monomer and matrix precursor interact with each other during curing. Both reaction and subsequent inhibition of monomer polymerization can be substantially prevented. Also, phase separation can be substantially avoided because of the use of a matrix precursor and a photoactive monomer that form a compatible polymer. Moreover, since it forms as it is, the medium of desired thickness can be manufactured. Such material properties are useful in manufacturing a variety of optical products (optical products that utilize refractive index patterns or refractive index modulation to control or modify the light that is directed). Such optical products include, but are not limited to, optical waveguides, beam aligners and optical filters in addition to recording media. Independent reactions include (a) reactions that proceed with different types of reaction intermediates, such as ionic versus free radicals, and (b) the conditions under which the intermediate and matrix polymerize, both photoactive monomer functional groups, i.e. patterns Reactions that do not induce substantial polymerization of groups on the photoactive monomer that is the reaction site of the polymerization during the writing process (eg, hologram) (Substantial polymerization means more than 20% of the monomer functional groups) And (c) both the conditions under which the intermediate and the matrix polymerize may cause a non-polymerization reaction of the monomer functional group that causes the monomer functional group to interact with the matrix or subsequently inhibit the polymerization of the monomer functional group. It means a reaction that does not induce. The polymer is 7 × 10 with 90 ° light scattering of the polymer blend at the wavelength used for hologram formation.-3cm-1Less than Rayleigh ratio (R90°), it is considered compatible. The Rayleigh ratio (Rθ) is a conventionally known characteristic. Kerker,The Scattering of Light and Other Electromagnetic Radiation, Academic Press, San Diego, 1969, at 38, the energy per steradian that is scattered in the direction θ by the unit volume when the medium is illuminated by unit intensity unpolarized light. The Rayleigh ratio is typically obtained by comparison with the energy scattering of a reference material with a known Rayleigh ratio. For example, polymers that are considered miscible by conventional tests, such as exhibiting a single glass transition temperature, are typically compatible. However, compatible polymers are not necessarily miscible. By intact means that the matrix is cured in the presence of the photoimaging system. Useful optical recording materials are obtained, i.e. matrix materials and photoactive monomers, photoinitiators, and / or other additives, which are formed to a thickness of more than 200 [mu] m, conveniently more than 500 [mu] m. Yes, when exposed to light, Rayleigh ratio, R90, 7 × 10-3Light projection properties can be shown (light projection exposure is incoherent light of a wavelength suitable for inducing substantially complete polymerization of the photoactive monomer of the entire material, optical recording Exposure of the entire material).
[0009]
The optical product of the present invention is formed by a process including mixing a matrix precursor and a photoactive monomer, curing the mixture, and forming the matrix as it is. As noted above, the reaction of the matrix precursor polymerizing during curing is independent of the reaction in which the photoactive monomer is later polymerized during writing of patterns, such as data or wave-conduit, and the matrix polymer and Polymers resulting from polymerization of photoactive monomers (hereinafter referred to as photopolymers) are compatible with each other (the matrix has an optical recording material of at least about 10FiveIt is considered to be formed when exhibiting an elastic modulus of Pa. Curing refers to reacting the matrix precursor such that the matrix exhibits such an elastic modulus in the optical recording material). The optical product of the present invention contains a three-dimensionally crosslinked polymer matrix and one or more photoactive monomers. The at least one photoactive monomer contains, in addition to the monomer functionality, one or more moieties that are not substantially present in the polymer matrix (substantially absent is present in the matrix, ie, covalently bound). That part in the optically active material can be found in the photoactive monomer so that it is 20% or less). The independence of the host matrix and the monomer resulting from this makes it possible to form a modulation having a large refractive index without requiring useful recording characteristics of the holographic medium and high optical activity. Create desirable properties. Furthermore, the materials of the present invention can be formed without the disadvantageous solvent development previously required.
[0010]
In contrast to the holographic recording media of the present invention, media that use a matrix precursor and a photoactive monomer that polymerize by independent reactions react substantially between the precursor and the photoactive monomer during matrix curing. Often, a reaction (eg, greater than 20% of the monomer is bound to the matrix after curing) or other reaction that inhibits the polymerization of the photoactive monomer is experienced. The interaction tends to undesirably reduce the refractive index contrast between the matrix and the photoactive monomer, which may affect the subsequent polymerization of the photoactive monomer and clearly inhibits monomer polymerization. Affects the process. Regarding compatibility, previous work has been on photoactive monomers in matrix polymers, not on the compatibility of photopolymers formed within the matrix. However, if the photopolymer and the matrix polymer are not compatible, phase separation typically occurs during hologram formation. Such phase separation leads to an increase in light scattering reflected in the haze and opaque areas, thereby reducing the quality of the media and the fidelity with which the stored data is reproduced.
[0011]
For example, the optical product of the present invention, such as a holographic recording medium, is manufactured by a process comprising mixing a matrix precursor and a photoactive monomer and curing the mixture to form a matrix as it is. The matrix precursor and the photoactive monomer are (a) such that the reaction in which the matrix precursor polymerizes during curing is independent of the reaction in which the photoactive monomer polymerizes during writing, such as a pattern, and (b The matrix polymer and the polymer (photopolymer) resulting from the polymerization of the photoactive monomer are selected to be compatible with each other. As noted above, in addition to the optical recording material, i.e. the matrix material, at least about 10 photoactive monomers, photoinitiators and / or other additives are present.FivePa, generally about 10FiveAbout 10 from Pa9Pa, conveniently about 106About 10 from Pa8It is considered that a matrix is formed when the elastic modulus of Pa is shown.
[0012]
Matrix polymer and photopolymer compatibility tends to prevent large (> 100 nm) phase separation of components, but such large phase separation can cause undesirable haze and opacity. Is typical. Use of photoactive monomers and matrix precursors that polymerize by independent reactions results in a cured matrix that is substantially non-interactive, ie, the photoactive monomer is substantially inert during matrix curing. Means that. Furthermore, the independent reaction does not inhibit the subsequent polymerization of the photoactive monomer. The at least one photoactive monomer contains, other than the monomer functionality, one or more portions that are substantially absent from the polymer matrix, that is, present in the matrix, ie, covalently bonded. That portion of the material can be found in the photoactive monomer so that it is 20% or less. The optical product thus obtained can exhibit a desirable refractive index because the matrix and the photoactive monomer are independent.
[0013]
As noted above, holograms, waveguides, and other optical products make use of the refractive index contrast (Δn) of the exposed and unexposed portions of the media, which contrast is at least partially monomeric. By diffusing into the exposed areas. When the refractive index contrast is high, the signal intensity is high when reading out the hologram, and the light wave in the waveguide is effectively restrained. Therefore, a high refractive index contrast is desirable. One method of providing a high refractive index contrast in the present invention is a portion that is substantially absent from the matrix and exhibits a refractive index substantially different from the refractive index exhibited by the majority of the matrix (hereinafter referred to as refractive). A photoactive monomer having a rate contrast portion). For example, it is mainly composed of a matrix containing aliphatic or saturated alicyclic moieties and containing low concentrations of heavy elements and conjugated double bonds (low refractive index), and mainly aromatic or similar high refractive index moieties. If a photoactive monomer is used, a high contrast will be obtained.
[0014]
The matrix is a solid polymer formed as it is from the matrix precursor by the curing step (curing refers to a step of inducing a reaction of the precursor to form a polymer matrix). The precursor may be one or more monomers, one or more oligomers or a mixture of monomers and oligomers. In addition, two or more precursor functional groups may be on one precursor molecule or on a group of precursor molecules (precursor functional groups are the reactive sites for polymerization during matrix curing, One or more groups on the precursor molecule). Conveniently, the precursor is a liquid at a temperature between about −50 ° C. and about 80 ° C. for better mixing with the photoactive monomer. It is also advantageous if the matrix polymerization can be performed at room temperature. Furthermore, it is advantageous if the polymerization can be carried out in less than 300 minutes, conveniently between 5 and 200 minutes. Glass transition temperature (T) of the optical recording materialgIt is advantageous if it is low enough so that the photoactive monomer can diffuse sufficiently and carry out a chemical reaction during the holographic recording process. In general, the TgIs not more than 50 ° C. above the temperature at which the holographic recording takes place, ie in the case of a typical holographic recording, TgIs about 80 ° C. to about −130 ° C. (measured by conventional methods). It would also be advantageous if the matrix could provide a desirable elastic modulus as described above by showing a three-dimensional network structure rather than a linear structure.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Examples of polymerization reactions contemplated for forming a matrix polymer in the present invention include cationic epoxy polymerization, cationic vinyl ether polymerization, cationic alkenyl ether polymerization, cationic allene ether polymerization, cationic ketene acetal polymerization, epoxy-amine step polymerization, epoxy -Mercaptan stage polymerization, unsaturated ester-amine stage polymerization (by Michael addition), unsaturated ester-mercaptan stage polymerization (by Michael addition), vinyl-silicon hydride stage polymerization (hydrosilylation), isocyanate-hydroxyl stage polymerization (urethane formation) ) And isocyanate-amine step polymerization (urea formation).
[0016]
The above reaction is enabled or facilitated by a suitable catalyst. For example, cationic epoxy polymerization is BFThree, Which takes place rapidly at room temperature using other catalysts, other cationic polymerizations proceed in the presence of protons, the epoxy-mercaptan reaction and Michael addition are promoted by bases such as amines, and hydrosilylations are transition metals such as platinum. Fast progresses in the presence of the catalyst, and urethane and urea formation proceeds faster when tin catalysts are used. It is also possible to use a photogenerating catalyst for matrix formation if measures are taken to prevent polymerization of the photoactive monomer during photogeneration.
[0017]
The photoactive monomer can be polymerized by light, and can be any monomer, one type, or a plurality of types as long as it satisfies the polymerization conditions and compatibility requirements of the present invention together with the matrix material. Suitable photoactive monomers include monomers that polymerize by free radical reactions, such as acrylate, methacrylate, acrylamide, methacrylamide, styrene, substituted styrene, vinyl naphthalene, substituted vinyl naphthalene and other vinyl derivatives. There are molecules to contain. Free radical copolymer pair systems such as vinyl ether mixed with maleate and thiol mixed with olefin are also suitable. It is also possible to use cationic polymerization systems such as vinyl ethers, alkenyl ethers, allene ethers, ketene acetals and epoxies. It is also possible to use one photoactive monomer molecule containing two or more monomer functional groups. As noted above, a relatively high refractive index contrast is desired for the product of the present invention, whether to improve readout in a recording medium or to efficiently constrain light in a waveguide. In addition, it is convenient to induce such a relatively large refractive index change with a small amount of monomer functionality since the material generally shrinks when the monomer is polymerized (eg, in Examples 2 and 3 below). The shrinkage caused by writing by hologram recording is approximately 0.7%, but the concentration of photoactive monomer was reduced in Example 4, but the shrinkage caused by writing was correspondingly reduced (0.30 to 0.35). %)). Such shrinkage adversely affects the retrieval of data from stored holograms and degrades the performance of the waveguide element, such as by increasing transmission loss and other performance deflections. Therefore, it is desirable to reduce the number of monomer functional groups that are polymerized to obtain the required refractive index contrast. If the ratio of the molecular volume of the monomer to the number of monomer functional groups in the monomer is increased, the number of monomer functional groups can be reduced. To increase the ratio, a large refractive index contrast portion and / or a large amount of refractive index contrast portion may be incorporated into the monomer. For example, if the matrix is primarily composed of aliphatic or other low refractive index moieties and the monomer is a species with a higher index of refraction imparted by a benzene ring, incorporate a naphthalene ring instead of a benzene ring (Naphthalene ring has a large volume) By incorporating one or more benzene rings, the molecular volume can be increased with respect to the number of monomer functional groups without increasing the number of monomer functional groups. it can. In this way, less monomer functional groups are required to polymerize monomers having a larger molecular volume / monomer functional group ratio and a certain volume fraction, thereby reducing shrinkage. However, the required volume fraction of monomer diffuses from the unexposed area to the exposed area, providing the desired refractive index.
[0018]
However, the molecular volume of the monomer should not be so great as to slow the diffusion below an acceptable rate. The diffusion rate is controlled by factors such as the size of the diffusing chemical species, the viscosity of the medium and intermolecular interactions. Large species tend to diffuse slowly, but it may be possible to reduce the viscosity or adjust to other molecules to increase the diffusion to an acceptable level. It is also important that such large molecules remain compatible with the matrix, consistent with the discussion in this application.
[0019]
Numerous structures are possible for monomers containing multiple refractive index contrast moieties. For example, the moiety can be present in the main chain of the linear oligomer or can be a substituent along the oligomer chain. Alternatively, the refractive index contrast portion can be a branched or dendritic low molecular weight oligomer subunit.
[0020]
In addition to the photoactive monomer, the optical product typically contains a photoinitiator (the photoinitiator and photoactive monomer are part of the overall photoimaging system). The photoinitiator chemically initiates the polymerization of the monomer when exposed to relatively low levels of recording light, thus avoiding the need for direct photoinduced polymerization of the monomer. Photoinitiators are generally a source of chemical species that initiate the polymerization of a particular photoactive monomer. Typically, 0.1 to 20 weight percent photoinitiator, based on the weight of the photoimaging system, provides desirable results.
[0021]
Various photoinitiators known to those skilled in the art and commercially available are suitable for use in the present invention. Photopolymerization initiators sensitive to light in the visible light region, in particular conventional laser sources such as Ar+(458, 488, 514 nm) and He-Cd laser (442 nm) blue and green lines, frequency doubled YAG laser (532 nm). He-Ne (633 nm) and Kr+It is advantageous to use a photoinitiator that is sensitive to light of a wavelength such as the red line of the laser (647 and 676 nm). Convenient free radical initiators include bis (η-5-2,4-cyclopentadien-1-yl) bis [2,6-difluoro-3- (1H-pyrrole), commercially available from Ciba as CGI-784. -1-yl) phenyl] titanium. Another visible light free radical initiator (requires coinitiator) is 5,7-diiodo-3-butoxy-6-fluorone, commercially available as H-Nu470 from Spectra Group Limited. A free radical photopolymerization initiator based on a dye-hydrogen donor system can also be used. Examples of suitable dyes are eosin, rose bengal, erythrosine and methylene blue, and suitable hydrogen donors are quaternary amines such as n-methyldiethanolamine. In the case of a cationic polymerization monomer, a cationic photopolymerization initiator such as a sulfonium salt or an iodonium salt is used. Since these cationic photopolymerization initiator salts mainly absorb light in the ultraviolet region, it is typical to use light in the visible region with increased photosensitivity by the dye. Another visible range cationic photoinitiator is commercially available from Ciba as Iglacur 261 (ηFive-2,4-cyclopentadien-1-yl) (η6-Isopropylbenzene) -iron (II) hexafluorophosphate. It is contemplated that other additives may be used in the optical imaging system, such as inert diffusing agents that exhibit a relatively high or low refractive index.
[0022]
For holographic recording, it is advantageous for the matrix to be a polymer formed by mercaptan-epoxy step polymerization, and more advantageously if it is a polymer formed by mercaptan-epoxy step polymerization and having a polyether backbone. The polyether backbone provides the desired compatibility with several useful photoactive monomers, particularly vinyl aromatic compounds. Specifically, a photopolymerizable monomer selected from styrene, bromostyrene, divinylbenzene and 4-methylthio-1-vinylnaphthalene (MTVN) is formed by a mercaptan-epoxy step polymerization and is a matrix polymer having a polyether skeleton. It has been found useful for use with. A monomer having two or more refractive index parts and useful for use with these polyether matrix polymers is 1- (3-naphth-1-ylthio) propylthio) -4-vinylnaphthalene.
[0023]
Due to the independence, the respective polymerization reactions of the matrix precursor and the photoactive monomer are (a) the reaction proceeds with different types of reaction intermediates, and (b) both the conditions under which the intermediate and matrix are polymerized. , Does not induce substantial polymerization of the photoactive monomer functional group, and (c) both the intermediate and the conditions under which the matrix is polymerized can cause an interaction (reaction between the monomer functional group and the matrix polymer), Thereafter, it is selected so as not to induce a non-polymerization reaction of the monomer functional group which inhibits the polymerization of the monomer functional group. According to paragraph (a), if the matrix is polymerized by the use of an ionic intermediate, it may be appropriate to polymerize the photoactive monomer using a free radical reaction. However, according to (b), the ionic intermediate must not induce substantial polymerization of the photoactive monomer functional group. Again, according to paragraph (b), for example, it is noted that free radical matrix polymerization initiated by light typically induces cationic polymerization of photoactive monomer functional groups initiated by light. There must be. In other cases, two independent reactions are not independent for the purposes of the present invention if both proceed according to a single reaction condition. According to paragraph (c), for example, matrix polymerization catalyzed by a base may cause a non-polymerization reaction when the photoactive monomer functional group reacts with the base, although the polymerization of the monomer functional group may occur by an independent reaction. Should not be implemented. As a specific example, base-catalyzed epoxy-mercaptan polymerization cannot be performed with acrylate monomers, but this is because acrylates polymerize by free radical reactions, but acrylates are base-catalyzed. This is because it reacts with mercaptan in the presence to form an interaction.
[0024]
Table 1 below shows the matrix / photoactive monomer combinations when the matrix polymerization reaction and the photoactive monomer polymerization can be performed independently and when both polymerization reactions interfere with each other (the photoactive monomer is in the lateral direction, the matrix polymer “X” indicates a monomer reaction during an interreaction or matrix polymerization, “O” indicates an independent reaction, “I” indicates a group in which the photoactive monomer functional group does not polymerize. Polymerization of the photoactive monomer is hindered by reagents or reactions that form the polymeric matrix, such as in the case of transformations, or when there are species that reduce the rate or yield of monomer functional groups after matrix cure. ).
[0025]
[Table 1]
[0026]
For the purposes of the present invention, a blend of polymers is 7 × 10 with 90 ° light scattering.-3cm-1Less than Rayleigh ratio (R90°), the polymer is considered compatible. The Rayleigh ratio, Rθ, is a conventionally known characteristic. Kerker,The Scattering of Light and Other Electromagnetic Radiation, Academic Press, San Diego, 1969, the energy scattered per unit steradian by the unit volume in direction θ when the medium is illuminated by unit intensity unpolarized light. The light source used for the measurement is generally a laser having a wavelength in the visible region. Usually, the wavelength used for hologram writing is used. The scattering measurement is performed on the optical recording material subjected to the projection exposure. The scattered light is collected at a 90 ° angle from the incident light, typically by a photodetector. Although it is possible to place a narrow band filter centered on the laser wavelength in front of the photodetector to block the fluorescence, such a means is not necessary. The Rayleigh ratio is typically obtained by comparison with the energy scattering of a reference material with a known Rayleigh ratio.
[0027]
Polymer blends that are considered miscible by conventional testing methods, such as exhibiting a single glass transition temperature, are typically also compatible, ie miscibility is part of compatibility. Standard miscibility guidelines and tables are therefore useful in selecting compatible blends. However, immiscible polymer blends may be compatible by the light scattering test described above.
[0028]
The polymer blend has a single glass transition temperature, T, as measured by conventional methods.g, Is generally considered miscible. The immiscible blend is the T of each polymer.gTypically, two glass transition temperatures corresponding to the values are shown. TgThe test was performed as a step change in heat flow (usually the vertical axis).gIt is common practice to use differential scanning calorimetry (DSC). Reported TgIs the temperature at which the vertical axis reaches the midpoint value of the extrapolated baseline before and after the transition. TgIt is also possible to use dynamic mechanical analysis (DMA) to measure. DMA can measure the storage modulus of a material, which drops several orders of magnitude in the glass transition region. T polymers close to each other in the blendgMay have. In such cases, Brinke et al. , “The thermal charactarization of multi-component systems by enhancement relaxation,”Thermochimica Acta. , 238 (1994), at 75, and overlapping T using conventional methods.gShould be separated.
[0029]
The miscible matrix polymer and photoactive monomer can be selected in several ways. For example, O.D. Olabisi et al. ,Polymer-Polymer Miscibility, Academic Press, New York, 1979; M.M. Robeson,MMI. Press Symp. Ser., 2, 177, 1982; A. Utracki,Polymer Alloys and Blends: Thermodynamics a nd Rheology, Hanser Publishers, Munich, 1989; Krause inPolymer Handbook, J .; Brandup and E.M. H. Immergut, Eds. , 3rd Ed. , Wiley Interscience, New York, 1989, pp. Although several published compilations of miscible polymers are available, such as VI347-370, the disclosure of the above materials is incorporated herein by reference. Even if the desired polymer is not found in such references, a specific technique can be used to determine compatible optical recording materials using a control sample.
[0030]
The determination of miscible or compatible blends is further aided by considering intermolecular interactions that generally promote miscibility. For example, polystyrene and poly (methyl vinyl ether) are well known to be miscible due to the attractive interactions between the methyl ether group and the phenyl ring. Thus, by using methyl ether groups in one polymer and phenyl groups in another polymer, it is possible to increase the miscibility or at least the compatibility of the two polymers. It has been shown that non-miscible polymers can be made miscible by incorporating appropriate functional groups that provide ionic interactions (Z.L.Zhou and A. Eisenberg, J. et al. Polym. Sci. , Polym. Phys. Ed., 21 (4), 595, 1983; Muraliand A.M. Eisenberg,J. et al. Polym. Sci. , Part B: Polym. Phys., 26 (7), 1385, 1988; and A Natansohn et al. ,Makromol. Chem. , Macromol. Symp., 16, 175, 1988). For example, polyisoprene and polystyrene are immiscible. However, when polyisoprene is partially (5%) sulfonated and 4-vinylpyridine is copolymerized with polystyrene, the blend of these functional polymers becomes miscible. It is believed that the ionic interaction between the sulfonated group and the pyridine group (proton transfer) is the driving force that makes this blend miscible. Similarly, polystyrene and poly (ethyl acrylate), which are normally immiscible, become miscible when the polystyrene is slightly sulfonated (R.E. Taylor-Smith and R.A. Register,Macromolecules, 26, 2802, 1993). Charge transfer has also been utilized to render immiscible polymers miscible. For example, poly (methyl acrylate) and poly (methyl methacrylate) are immiscible, but poly (methyl acrylate) is copolymerized with (N-ethylcarbazol-3-yl) methyl acrylate (electron donor). When poly (methyl methacrylate) is copolymerized with 2-[(3,5-dinitrobenzoyl) oxy] ethyl methacrylate (electron acceptor), using appropriate amounts of donor and acceptor, the blend of these polymers is Become miscible (M.C. Piton and A. Nattansohn,Macromolecules, 28, 15, 1995). Poly (methyl methacrylate) and polystyrene can also be made miscible using the corresponding donor-acceptor comonomer (MC Piton and A. Nattansohn,Macromolecules, 28, 1605, 1995).
[0031]
A. Hale and H.M. Bair, Ch. 4- "Polymer Blends and Block Copolymers,"Thermal Characteristic of Polymeric Materials, 2nd Ed. , Academic Press, 1997, as considered in a recent overview, there are various types of polymer miscibility or compatibility testing methods. For example, in the area of optical methods, opacity typically represents a material composed of two layers, and transparency generally represents a miscible system. Other methods for assessing miscibility include neutron scattering, infrared spectroscopy (IR), nuclear magnetic resonance (NMR), x-ray scattering and diffraction, fluorescence, Brillouin scattering, melt titration, calorimetry, and chemiluminescence. is there. For example, L.M. Robeson,supra,; Krause,Chemtracts-Macromol. Chem., 2, 367, 1991a; Veselly inPolymer Blends and Alloys, M.M. J. et al. Folkes and P.M. S. Hope, Eds. Blackie Academic and Professional, Glasgow, pp. 103-125; M.M. Coleman et al. ,Specific Interactions and the Miscibility of Polymer Blends, Technological Publishing, Lancaster, PA, 1991; Garton,Infrared Spectroscopyof Polymer Blends, Composites and SurfacesHanser, New York, 1992; W. Kelts et al. ,Macmolecules, 26, 2941, 1993; L. White and P.M. A. Mirau,Macmolecules, 26, 3049, 1993; L. White and P.M. A. Mirau,Macmolecules27, 1648, 1994; A. Cruz et al. ,Macmolecules, 12, 726, 1979; C.I. J. et al. Landry et al. ,Macmolecules26, 35, 1993.
[0032]
By incorporating reactive groups into the polymer matrix, the compatibility of incompatible polymers has been increased if such groups can react with the photoactive monomer during the holographic recording process. A portion of the photoactive monomer is thus grafted onto the matrix during recording. If these grafts are sufficient, it is possible to prevent or reduce phase separation during recording. However, when the refractive index of the grafted part and the monomer are relatively similar, too much grafting will undesirably reduce the refractive index contrast if, for example, more than 30% of the monomer is grafted onto the matrix Will let you.
[0033]
The holographic recording medium of the present invention is formed by appropriately supporting an optical recording material so that holographic writing and reading can be performed. Typically, the production of the media consists of depositing the matrix precursor / photoimaging system mixture between two plates, for example using a gasket to contain the mixture. The plate is typically glass, but it is also possible to use a material that is transparent to the radiation used to write the data, such as a plastic such as polycarbonate or poly (methyl methacrylate). It is also possible to put a spacer between the plates to keep the desired thickness of the recording medium. During matrix curing, the material can shrink and stress the plate, but such stress changes the parallelism and / or spacing of the plate and impairs the optical properties of the media. To reduce such effects, it is useful to place the plate in a device with a mount, such as a vacuum chuck, that can be adjusted to accommodate changes in parallelism and / or spacing. In such an apparatus, the parallelism can be observed in real time by a conventional interferometric method, and necessary adjustments can be made during curing. Such devices are discussed, for example, in US patent application Ser. No. 08 / 867,563 (our reference number Campbell-Harris-Levinos 3-5-3), the disclosure of which is incorporated herein by reference. The optical recording material of the present invention can be supported by other methods. For example, it may be envisaged that the matrix precursor / photoimaging system mixture is applied to the pores of a substrate, such as a microporous glass material such as Vycor, prior to matrix curing. Conventional polymer processing such as hermetic molding and plate extrusion is also conceivable. A layered medium, i.e. a medium having a plurality of substrates, e.g. glass, with an optical recording material deposited therebetween is also conceivable.
[0034]
The media of the present invention can be used in holographic systems as described above. The amount of information that can be stored in the holographic medium is proportional to the product of the refractive index contrast Δn of the optical recording material and the thickness of the optical recording material, d (refractive index contrast, Δn is conventionally known, and the volume hologram of a plane wave is Defined as the magnitude of the sinusoidal variation of the refractive index of the material being written, where n (x) = n0+ Δn cos (Kx) Where n (x) is a spatially varying refractive index, x is a position vector, KxIs the lattice wave vector and n0Is the baseline refractive index of the medium. For example, P.I. Hariharan,Optical holography: Principles, Techniques, and Applications, Cambridge University Press, Cambridge, 1991, at44). The Δn of the material is typically calculated from the diffraction efficiency of a single volume hologram or multiple sets of volume holograms recorded on the medium. The Δn is related to the medium before writing, but is observed by measurement performed after recording. The optical recording material of the present invention is 3 × 10-3It is convenient to show the above Δn.
[0035]
Examples of other optical products include beam filters, beam aligners, deflectors and optical couplers (see, for example, L. Solidmar and D. Cooke,Volume Holography and Volume Grattings, Academic Press, 315-327 (1981). The disclosure of this document is incorporated herein for reference). The beam filter separates a part of incident laser light flying at a certain angle from other light. Specifically, the Bragg selectivity of a thick transmission hologram selectively diffracts light incident at a specific angle, and light coming from other angles passes through the hologram without being deflected (J.E. Ludman et al., “Very thick holographic nonspatial filtering of laserbeams,”Optical Engineering, Vol. 36, no. 6, 1700 (1997). The disclosure of this document is incorporated herein for reference). The beam alignment body is a hologram that deflects light incident at a Bragg angle. An optical coupler is typically a combination of beam polarizers that direct light from a light source to a target. These products, commonly referred to as holographic optical elements, are manufactured by creating specific optical interference patterns in a recording medium, as described above with respect to data storage. Media for these holographic optical elements can be manufactured by the techniques described herein with respect to recording media and waveguides.
[0036]
As described above, the material principles described herein apply not only to hologram formation, but also to the formation of optical transmission elements such as waveguides. The polymer optical waveguide is, for example, B.I. L. Booth, “Optical Interconnection Polymers,” inPolymers for Lightwave and Integrated Optics, Technology and ApplicationsL. A. Hornak, ed. , Marcel Dekker, Inc. (1992); U.S. Pat. No. 5,292,620 and U.S. Pat. No. 5,219,710, the disclosures of which are incorporated herein by reference. Basically, the recording material of the present invention is illuminated with a desired waveguide pattern, providing a refractive index contrast between the waveguide pattern and the surrounding (coating) material. For example, exposure can be performed by using a focused laser beam or a mask together with a non-focused light source. In general, one layer is thus exposed to provide a waveguide pattern, and additional layers are added to complete the coating, completing the waveguide. This process is for example Boot,supraPp. 235-36 and U.S. Pat. No. 5,292,620, stages 5 and 6. An advantage of the present invention is that the matrix / photoimaging system mixture can be molded into various shapes prior to matrix curing using conventional molding techniques. For example, the matrix / photoimaging system mixture can be molded into a ridge waveguide, and then the refractive index pattern is written into the molded structure. Therefore, a structure such as a Bragg grating can be easily formed. The features of the present invention broaden the range of applications in which such polymeric waveguides are useful.
[0037]
The invention will be further clarified by the following exemplary examples.
【Example】
Comparative Example 1
89.25 wt% phenoxyethyl acrylate (photoactive monomer), 10.11 wt% ethoxylated bisphenol A diacrylate (photoactive monomer), 0.5 wt% Ciba CGI-784 (described above) ( A solution containing a photoinitiator) and 0.14% by weight dibutyltin dilaurate (catalyst for matrix formation) was prepared. 0.0904 g of solution containing 0.2784 g diisocyanate-terminated polypropylene glycol (molecular weight = 2471) (matrix precursor) and 0.05 g α, ω-dihydroxypolypropylene glycol (molecular weight = 425) (matrix precursor) Added to. The mixture was mixed thoroughly and allowed to polymerize overnight at room temperature with light shielding. The polymerization was a step polymerization of isocyanate groups and hydroxyl groups, producing polyurethane and dissolved acrylate monomer. The mixture appeared clear to the eyes without anything. When exposed to a strong tungsten light that initiates polymerization of the acrylate monomer, the material turned milky white indicating that the polyurethane matrix and the acrylate polymer were not compatible.
Examining the above-mentioned polymer miscibility table published by Krause reveals that polyurethane is miscible and thus compatible with the chlorinated polymer Saran®. Example 1 considers a system created using this information.
[0038]
Example 1
A solution containing 98.86 wt% 4-chlorophenyl acrylate and 1.14 wt% dibutyltin dilaurate was prepared. 0.017 g of this solution was added to 0.2519 g diisocyanate-terminated polypropylene glycol (molecular weight = 2471), 0.047 g α, ω-dihydroxypolypropylene glycol (molecular weight = 425), 0.051 g 4-chlorophenyl acrylate and 0.00063 g. Of Ciba CGI-784 (photoinitiator). This mixture was thoroughly mixed and allowed to polymerize overnight at room temperature while shielding light. The polymerization was a step polymerization of isocyanate and hydroxyl groups, producing polyurethane and dissolved chlorophenyl acrylate monomer. The mixture appeared clear to the eyes without anything. Even when exposed to strong tungsten light that initiates polymerization of the acrylate monomer, the sample remained transparent, indicating compatibility of the monomer with the matrix polymer.
[0039]
Example 2
0.00265 g of Ciba CGI-784 was dissolved in 0.26248 g of styrene (photoactive monomer). The solution was transferred to 1.9187 g of polypropylene glycol diglycidyl ether (molecular weight = 380) (PPGDGE) (matrix precursor), 1.2428 g of pentaerythritol tetrakis (mercaptopropionate) (PETMP) (matrix precursor) and 0 Mixed with 1445 g of tris (2,4,6-dimethylaminomethyl) phenol (TDMPAMP) (catalyst for matrix formation). The solution was dispensed on a glass slide into a Teflon spacer having a thickness of about 200 μm and a diameter of 25 mm, and another glass slide was placed thereon. After standing at room temperature for about 1 hour, the mixture gelled because mercaptan and epoxy were copolymerized with amine as a catalyst. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) measurements showed that the polymerization of the matrix was complete after 2 hours (ie, there was not enough precursor functionality to be measured). ). A tough and elastic material consisting of an epoxy-mercaptan matrix in which styrene monomer and photoinitiator were dissolved was obtained. The media thickness was about 270 to 290 μm. After 24 hours, a series of multiple holograms was written on the medium according to the procedure described in US Pat. 1.7 × 10-3Of Δn could be achieved. No anomalous light scattering was detected after holographic recording, indicating compatibility between the polymerized styrene monomer and the epoxy-mercaptan matrix.
[0040]
Example 3
In order to increase the Δn of the media prepared in Example 2, bromostyrene monomer was used as the photoactive monomer. 0.01262 g of Ciba CGI-784 was dissolved in 0.2194 g of 4-bromostyrene (photoactive monomer). The solution was mixed with 0.9597 g PPGDGE, 0.6042 g PETMP and 0.084 g TDAMP. A sample was prepared and a hologram was recorded in the same manner as in Example 2. 4.2 × 10 on average-3Of Δn was obtained. Even in this case, abnormal light scattering was not detected after holographic recording, and DSC showed one glass transition temperature, suggesting a compatible system.
[0041]
Example 4
0.054 g Ciba CGI-784 was dissolved in 0.46 g 4-bromostyrene. The solution was mixed with 3.8 g PPGDGE, 2.44 g PETMP and 0.3 g TDAMP. This corresponds to half the concentration of bromostyrene used in Example 3. Sample preparation and hologram recording were performed in the same manner as in Example 2. Δn is 2.5 × 10-3Met. The thickness reduction (shrinkage) caused by the polymerization of bromostyrene was about 0.3%. The elastic coefficient of the optical recording material is about 5.7 × 106Pa.
[0042]
Example 5
4-Methylthio-1-vinylnaphthalene (MTVN) (photoactive monomer) was synthesized by the following procedure.
Preparation of 1-methylthionaphthalene: 63 g (0.25 mol) of 1-iodonaphthalene was dissolved in 1 L of anhydrous ether under nitrogen atmosphere. The solution was cooled to −70 ° C., and 109 mL of 2.5 M butyllithium (BuLi) dissolved in hexane (0.27 mol) was added over 30 minutes with stirring. 25 g (0.27 mol) of dimethyl disulfide was added and allowed to warm to room temperature over 4 hours. 200 mL concentrated Na2COThreeAqueous solution is added and the organic layer is MgSO 4Four, Filtered and concentrated to a dark orange oil containing 42 g (97%) of product and about 10 g of butyl iodide byproduct. All glassware and other equipment was washed with bleach to decompose residual sulfide.
Preparation of 4-methylthio-1-naphthaldehyde: 14.5 g 1-methylthionaphthalene (0.083 mol) is mixed with 12.4 g (0.17 mol) anhydrous N, N′-dimethylformamide, The solution was cooled with an ice bath. 23.9 g (0.095 mol) of diphosphoryl tetrachloride was added dropwise with stirring to keep the temperature below 15 ° C. The mixture was slowly heated to 100 ° C. and stirring was continued at that temperature for 2 hours. The mixture was allowed to cool and cooled in an ice bath. A solution of 23 g of sodium hydroxide in 200 mL of water (cooled by adding 100 g of ice) was poured into the reaction mixture, and the mixture was gently heated to 40 ° C. with stirring. At this point, an exothermic reaction began, so heating was stopped and more ice was added to keep the temperature below 50 ° C. When the temperature settled below 35 ° C., 200 mL of ether was added with stirring. The organic layer was separated and the aqueous layer was further extracted with 100 mL ether. The combined ether extracts are MgSOFour, Filtered, concentrated, and column chromatographed using 120 g of silica gel, eluting with 500 mL of hexane each containing 0, 25, 50, and 75 vol% dichloromethane to collect 100 mL fractions. The product was collected from these 6-8 fractions to give 9.8 g (58%) of a yellow solid.
[0043]
Preparation of 4-methylthio-1-vinylnaphthalene: A suspension obtained by suspending 19.9 g (0.058 mol) of methyltriphenylphosphonium bromide powder in 150 mL of anhydrous tetrahydrofuran was stirred while stirring under a nitrogen atmosphere. Cooled to ° C. 19 mL of 2.5 M BuLi dissolved in hexane (0.48 mol) was added over 30 minutes keeping the color as light as possible and avoiding a dark orange coloration. The mixture was heated to 25 ° C., stirred at this temperature for 1 hour, and cooled to 0 ° C. 9.8 g of 4-methylthio-1-naphthaldehyde dissolved in 20 mL of tetrahydrofuran was added over 30 minutes with stirring at 0 ° C. The mixture was stirred overnight and allowed to warm to room temperature. 10 mL of methanol was added and the solvent was evaporated under reduced pressure. The residue was extracted 5 times with 100 mL ligroin (mainly heptane) at a boiling point of 90-110 ° C. and further methanol was added to keep the residue soft. The extract was filtered, concentrated and eluted through 40 g of silica gel with hexane. The product was obtained from a 500 mL fraction and 6.8 g of a pale yellow liquid (70%) was obtained and stored at −20 ° C. in the form of an off-white solid.
Media preparation: 0.0562 g Ciba CGI-784 was added to 0.1 g 4-bromostyrene and 0.4 g MTVN with gentle heating. The solution was mixed with 2.4 g PPGDGE, 1.508 g PETMP and 0.2 g TDAMP. Sample preparation and hologram recording were performed in the same manner as in Examples 2 and 3. 6.2 × 10-3A high Δn of 200 μm was obtained.
[0044]
Example 6
0.26 g of CGI-784 photoinitiator was dissolved in 2.225 g of 4-bromostyrene. This solution was added to 19 g of PPGDGE, 12.2 g of PETMP and 0.34 g of 1,8-diazobicyclo [5.4.0. It was mixed with undeca-7-ene (DBU). The mixture gelled in 7 minutes and the matrix polymerization was complete after 15 minutes. Multiple hologram recording on this medium was successful.
[0045]
Example 7
A sample having a material thickness of 940 μm (not including a glass slide) was prepared as follows. 0.75 g Ciba CGI-784 was added to 1.50 g MTVN with gentle heating. The solution was mixed with 9.04 g PPGDGE, 5.64 g PETMP and 0.56 g TDAMP. Media with a thickness of up to 1 mm were prepared using a vacuum holder as described above, and holograms were recorded as in Example 2. When Δn is measured, 7.3 × 10-3It was shown that it is possible to increase the thickness of the sample while substantially maintaining Δn.
[0046]
Example 8
Five media were prepared to compare the effects of different photoactive monomers. The medium had a material thickness of 250 μm and was prepared as follows.
1) Styrene photoactive monomer: prepared as in Example 2
2) Bromostyrene photoactive monomer: prepared as in Example 3
3) Bromostyrene and MTVN photoactive monomer: prepared as in Example 5
4) MTVN photoactive monomer: prepared as in Example 7
5) 1- (3-Naphtho-1-ylthio) propylthio) -4-vinylnaphthalene (NTPVN) photoactive monomer: 0.02 g Ciba CGI-784 was dissolved in 1.2007 g PGDGE. This solution was mixed with 0.4080 g NTPVN, 0.7524 g PETMP and 0.1358 g TDAMP. Samples were prepared as in Example 2.
35 plane wave holograms were angle multiplexed in the sample using the holography apparatus described above. After writing, the sample was exposed to light and allowed to react with all remaining photoactive species. Refractive index contrast was calculated and is shown in FIG. 2 using the reference numbers immediately above (along with the best fit line). From FIG. 2, while maintaining a relatively constant level of dimensional stability from media 1 to 5 (approximately 0.3% reduction in media thickness), approximately 1.6 × 10-3To about 9 × 10-3It can be seen that an increase in refractive index contrast was achieved. Assuming that 1- (3-naphth-1-ylthio) propylthio) -4-vinylnaphthalene has two refractive index contrast moieties, an increase in the refractive index exhibited by the medium containing this monomer is expected.
[0047]
(The preparation of NTPVN is as follows.
Preparation of 1- (3-naphth-1-ylthio) propylthio) naphthalene. While stirring a solution of 20.7 g (0.1 mol) of 1-bromonaphthalene in 200 mL of ether, the solution was cooled to −78 ° C., and 40 mL of BuLi was added. The temperature was raised to −20 ° C. and again to −78 ° C., and 3.2 g (0.1 mol) of sulfur was added. The temperature was raised to 10 ° C, again lowered to -78 ° C, and 14.8 g (0.05 mole) of 1,3-diiodopropane was added. Slow reaction was shown by thin layer chromatography as it warmed to room temperature. The mixture was heated at reflux in the presence of 50 mL THF for 4 hours and (after cooling) mixed with aqueous sodium hydroxide. The organic layer is MgSOFourDried, filtered, concentrated, and chromatographed using 100 g of silica gel, eluting with 2 L of hexane containing 0-30% dichloromethane. 5.5 g of white solid was obtained from 900 mL of product band and confirmed to be pure by NMR.
Preparation of 4- (3-naphth-1-ylthio) propylthio) -1-naphthaldehyde. 3.9 g of the above product and 1.42 g of dimethylformamide were mixed with ice cooling, and then 2.8 g of P2OThreeClFourWas added. The mixture was heated at 100 ° C. for 2 hours, returned to room temperature, added with 2.5 g of sodium hydroxide dissolved in 50 mL of ice water, heated to 40 ° C. and hydrolyzed by stirring at room temperature. When the organic material was dispersed, extracted with ether, dried, filtered, concentrated, and chromatographed using a 750 mL hexane-dichloromethane gradient followed by 10% ethyl acetate (EtOAc) in dichloromethane. 2.0 g starting material, 1.3 g yellow oily product and 0.2 g dialdehyde were obtained. The product yield is 31% or 63% based on the starting material consumed.
Preparation of 1- (3-naphth-1-ylthio) propylthio) -4-vinylnaphthalene. 1.3 g of the above product was prepared from Wittig reagent (1.4 g of methyltriphenylphosphonium bromide and 3.3 mmol (1 eq) of BuLi dissolved in 30 mL of THF from 0 ° C. to room temperature over 1 hour and again To 0 ° C.). After stirring overnight at room temperature, 1.6 mL of methanol was added and the solution was concentrated and extracted with ligroin as in MTVN. The extract was partially concentrated to about 10 mL, diluted to homogeneity with dichloromethane, chromatographed on 20 g of silica gel and eluted with a 1: 1 solution of hexane: dichloromethane. 1.1 g (84%) of a viscous yellow oil was obtained, which was confirmed to be pure by NMR. Immediately after 30 minutes of vacuum drying, the material was mixed into the media preparation mixture. Embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein.
[Brief description of the drawings]
FIG. 1 shows a basic holographic storage system.
FIG. 2 is a diagram showing the effect of several different photoactive monomers on the refractive index contrast of a recording medium.
Claims (41)
前記基板上に配置された前記3次元架橋ポリマーマトリックスおよび1種または複数の光活性モノマーが、有用な特性を示すために十分な厚い層を形成し、
前記ポリマーマトリックスが、1種または複数の前記光活性モノマーの存在下で、後の記録の際に生じる1種または複数の光活性モノマーの重合反応から独立した重合反応により形成され、
少なくとも1種の光活性モノマーが、モノマー官能基を除き、ポリマーマトリックスに実質的に存在しない部分を含み、
マトリックスポリマーおよび1種または複数の光活性モノマーの重合により生じるポリマーが相溶性となる光学製品。 An optical product comprising a three-dimensional cross-linked polymer matrix and one or more photoactive monomers disposed on a substrate ,
The three-dimensional crosslinked polymer matrix and one or more photoactive monomers disposed on the substrate form a layer that is thick enough to exhibit useful properties;
The polymer matrix is formed in the presence of one or more of the photoactive monomers by a polymerization reaction independent of the polymerization reaction of the one or more photoactive monomers that occurs during subsequent recording;
At least one photoactive monomer includes a portion that is substantially absent from the polymer matrix, excluding the monomer functionality,
An optical product in which the matrix polymer and the polymer resulting from the polymerization of one or more photoactive monomers are compatible.
マトリックス前駆体と光活性モノマーを混合し、
前記マトリックス前駆体を硬化してポリマーマトリックスを形成し、
これを基材に塗布し、有用な特性を示すために十分な厚い層を形成する工程から成り、
前記マトリックス前駆体が、後の記録の際の前記光活性モノマーの重合反応から独立の反応で重合され、
前記マトリックスポリマーおよび前記光活性モノマーの重合から生じるポリマーが相溶性である光学製品の製造工程。 A process of manufacturing an optical product made of three-dimensionally crosslinked polymer matrix and one or more photoactive mono- mer,
Mixing the matrix precursor and the photoactive monomer,
Curing the matrix precursor to form a polymer matrix;
Consists of applying this to a substrate and forming a layer thick enough to exhibit useful properties ,
The matrix precursor is polymerized in a reaction independent of the polymerization reaction of the photoactive monomer during subsequent recording ;
A process for producing an optical product wherein the polymer resulting from the polymerization of the matrix polymer and the photoactive monomer is compatible.
前記プレートとマトリックス前駆体/光活性モノマー混合物の平行度を硬化の間観察し、
必要に応じて、硬化工程の間、前記プレートの関係を調整して前記製品の光学的性質を改良する工程をさらに含む、請求項17に記載の工程。Depositing the matrix precursor / photoactive monomer mixture between two plates before curing;
Observing the parallelism of the plate and matrix precursor / photoactive monomer mixture during curing;
18. The process of claim 17 , further comprising adjusting the plate relationship during the curing process to improve the optical properties of the product, if necessary.
3次元架橋ポリマーマトリックスおよび1種または複数の光活性モノマーを基材に配置して、有用な特性を示すために十分な厚い層を形成し、
3次元架橋ポリマーマトリックスと1種または複数の光活性モノマーから成る製品の選択された領域を照射する工程から成り、
少なくとも1種の光活性モノマーが、モノマー官能基を除き、前記ポリマーマトリックスに実質的に存在しない部分を含み、
前記照射が、前記マトリックスが重合する反応から独立した反応による、1種または複数の前記光活性モノマーの重合を誘起し、
前記ポリマーマトリックスおよび1種または複数の前記光活性モノマーの重合から生じたポリマーが相溶性である、光学製品にパターンを提供する工程。 A process for producing an optical product comprising one or more polymers formed from a three-dimensional crosslinked polymer matrix and one or more photoactive monomers,
Placing a three-dimensional cross-linked polymer matrix and one or more photoactive monomers on a substrate to form a layer that is thick enough to exhibit useful properties;
Irradiating selected areas of a product comprising a three-dimensional crosslinked polymer matrix and one or more photoactive monomers;
At least one photoactive monomer includes a moiety that is substantially absent from the polymer matrix, excluding monomer functional groups;
The irradiation induces polymerization of one or more of the photoactive monomers by a reaction independent of the reaction in which the matrix polymerizes;
Providing a pattern to an optical article, wherein the polymer resulting from the polymerization of the polymer matrix and one or more of the photoactive monomers is compatible.
前記光学製品の前記3次元架橋ポリマーマトリックスおよび1種または複数の光活性モノマーが、有用な特性を示すために十分な厚い層を形成し、
前記ポリマーマトリックスが、1種または複数の前記光活性モノマーの存在下で、後の記録の際に生じる1種または複数の前記光活性モノマーの重合反応から独立した重合反応により形成され、
少なくとも1種の前記光活性モノマーが、モノマー官能基を除き、前記ポリマーマトリックスに実質的に存在しない部分から成り、
前記ポリマーマトリックスおよび1種または複数の前記光活性モノマーから形成された1種または複数の前記ポリマーが相溶性である光学製品。 A formed Ru optical products from one or more polymers formed from three-dimensionally crosslinked polymer matrix and one or more photoactive monomer disposed on the substrate,
The three-dimensional cross-linked polymer matrix of the optical product and one or more photoactive monomers form a layer that is thick enough to exhibit useful properties;
The polymer matrix is formed in the presence of one or more of the photoactive monomers by a polymerization reaction independent of the polymerization reaction of the one or more photoactive monomers that occurs during subsequent recording;
At least one of the photoactive monomers consists of portions that are substantially absent from the polymer matrix, excluding monomer functional groups;
An optical product in which one or more of the polymers formed from the polymer matrix and one or more of the photoactive monomers are compatible.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/046,822 US6103454A (en) | 1998-03-24 | 1998-03-24 | Recording medium and process for forming medium |
US09/208,557 US6482551B1 (en) | 1998-03-24 | 1998-12-09 | Optical article and process for forming article |
US09/208557 | 1998-12-09 | ||
US09/046822 | 1998-12-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11352303A JPH11352303A (en) | 1999-12-24 |
JP3737306B2 true JP3737306B2 (en) | 2006-01-18 |
Family
ID=26724330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07904399A Expired - Fee Related JP3737306B2 (en) | 1998-03-24 | 1999-03-24 | Optical product and manufacturing method thereof |
Country Status (4)
Country | Link |
---|---|
US (2) | US6482551B1 (en) |
EP (1) | EP0945762B1 (en) |
JP (1) | JP3737306B2 (en) |
KR (1) | KR100343202B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029765A1 (en) | 2006-09-05 | 2008-03-13 | Mitsubishi Chemical Corporation | Volume hologram optical recording medium, composition for forming volume hologram recording layer, volume hologram recording material, and volume hologram optical recording method |
WO2008050835A1 (en) | 2006-10-25 | 2008-05-02 | Mitsubishi Chemical Corporation | Volume hologram optical recording medium, composition for volume hologram recording layer formation, and volume hologram recording material |
JP2008261930A (en) * | 2007-04-10 | 2008-10-30 | Fujifilm Corp | Holographic recording composition and holographic recording medium |
WO2021100654A1 (en) | 2019-11-19 | 2021-05-27 | 三菱ケミカル株式会社 | Compound, polymerizable composition, polymer, holographic recording medium, optical material and optical component |
WO2022202538A1 (en) | 2021-03-23 | 2022-09-29 | 三菱ケミカル株式会社 | Compound, method for producing same, polymerizable composition, polymer, holographic recording medium, optical material, and optical component |
Families Citing this family (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482551B1 (en) * | 1998-03-24 | 2002-11-19 | Inphase Technologies | Optical article and process for forming article |
US6627354B1 (en) * | 1999-03-01 | 2003-09-30 | Lucent Technologies Inc. | Photorecording medium, process for fabricating medium, and process for holography using medium |
US20030044690A1 (en) * | 2001-06-27 | 2003-03-06 | Imation Corp. | Holographic photopolymer data recording media, method of manufacture and method of holographically reading, recording and storing data |
US6743552B2 (en) * | 2001-08-07 | 2004-06-01 | Inphase Technologies, Inc. | Process and composition for rapid mass production of holographic recording article |
JP4155771B2 (en) * | 2001-08-27 | 2008-09-24 | 大日本印刷株式会社 | Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording using the same |
US6780546B2 (en) | 2001-08-30 | 2004-08-24 | Inphase Technologies, Inc. | Blue-sensitized holographic media |
US6788443B2 (en) * | 2001-08-30 | 2004-09-07 | Inphase Technologies, Inc. | Associative write verify |
US6765061B2 (en) | 2001-09-13 | 2004-07-20 | Inphase Technologies, Inc. | Environmentally durable, self-sealing optical articles |
US7001541B2 (en) * | 2001-09-14 | 2006-02-21 | Inphase Technologies, Inc. | Method for forming multiply patterned optical articles |
US6825960B2 (en) * | 2002-01-15 | 2004-11-30 | Inphase Technologies, Inc. | System and method for bitwise readout holographic ROM |
US20030206320A1 (en) * | 2002-04-11 | 2003-11-06 | Inphase Technologies, Inc. | Holographic media with a photo-active material for media protection and inhibitor removal |
US7521154B2 (en) | 2002-04-11 | 2009-04-21 | Inphase Technologies, Inc. | Holographic storage media |
US7229741B2 (en) | 2002-05-29 | 2007-06-12 | Inphase Technologies, Inc. | Exceptional high reflective index photoactive compound for optical applications |
DE60306375T2 (en) * | 2002-05-29 | 2007-08-30 | InPhase Technologies, Inc., Longmont | HOLOGRAPHIC DATA STORAGE MEDIA WITH ALUMINUM SALT CONNECTION AND ASYMMETRICAL ACRYLATE COMPOUND |
FR2840269B1 (en) * | 2002-05-30 | 2005-01-28 | Plastic Omnium Cie | STYLE PIECE AND MOTOR VEHICLE HAVING SUCH A PIECE OF STYLE |
US6905904B2 (en) * | 2002-06-24 | 2005-06-14 | Dow Corning Corporation | Planar optical waveguide assembly and method of preparing same |
EP1550677B1 (en) * | 2002-07-30 | 2007-02-28 | Toagosei Co., Ltd. | Composition for holography, method of curing the same, and cured article |
US8786923B2 (en) * | 2002-11-22 | 2014-07-22 | Akonia Holographics, Llc | Methods and systems for recording to holographic storage media |
US20050036182A1 (en) * | 2002-11-22 | 2005-02-17 | Curtis Kevin R. | Methods for implementing page based holographic ROM recording and reading |
US8199388B2 (en) * | 2002-11-22 | 2012-06-12 | Inphase Technologies, Inc. | Holographic recording system having a relay system |
AU2003301206A1 (en) * | 2002-12-23 | 2004-07-22 | Aprilis, Inc. | Sensitizer dyes for photoacid generating systems |
US7092133B2 (en) * | 2003-03-10 | 2006-08-15 | Inphase Technologies, Inc. | Polytopic multiplex holography |
JP2004287138A (en) * | 2003-03-24 | 2004-10-14 | Konica Minolta Holdings Inc | Composition for holographic recording, holographic recording medium and its recording method |
JP2004309683A (en) * | 2003-04-04 | 2004-11-04 | Kanegafuchi Chem Ind Co Ltd | Optical waveguide and grating, lens, photonic crystal, and manufacturing method therefor |
WO2004090646A1 (en) * | 2003-04-09 | 2004-10-21 | Konica Minolta Medical & Graphic, Inc. | Holographic recording medium and recording method using the same |
JP2005043862A (en) * | 2003-04-09 | 2005-02-17 | Konica Minolta Medical & Graphic Inc | Holographic recording composition, holographic recording medium and recording method thereof |
JP2005181953A (en) * | 2003-11-27 | 2005-07-07 | Konica Minolta Medical & Graphic Inc | Holographic recording medium, holographic recording method, and holographic information medium |
US20050058911A1 (en) * | 2003-09-17 | 2005-03-17 | Konica Minolta Medical & Graphic, Inc. | Holographic recording medium, holographic recording method and holographic information medium |
JP4525042B2 (en) * | 2003-10-01 | 2010-08-18 | コニカミノルタエムジー株式会社 | Holographic recording composition, holographic recording medium, and holographic recording method |
WO2005078531A1 (en) * | 2004-02-13 | 2005-08-25 | Toagosei Co., Ltd. | Volume hologram recording material and volume hologram recording medium |
US20070184353A1 (en) * | 2004-02-13 | 2007-08-09 | Shin Satou | Volume hologram recording material and volume hologram recording medium |
JP3914211B2 (en) * | 2004-03-03 | 2007-05-16 | 株式会社東芝 | Hologram recording medium |
JP2005275273A (en) * | 2004-03-26 | 2005-10-06 | Fuji Photo Film Co Ltd | Hologram recording material, hologram recording method, and optical recording medium |
JP4461901B2 (en) * | 2004-05-11 | 2010-05-12 | Tdk株式会社 | Hologram recording material and hologram recording medium |
US7739577B2 (en) * | 2004-06-03 | 2010-06-15 | Inphase Technologies | Data protection system |
US20050270856A1 (en) * | 2004-06-03 | 2005-12-08 | Inphase Technologies, Inc. | Multi-level format for information storage |
US8071260B1 (en) | 2004-06-15 | 2011-12-06 | Inphase Technologies, Inc. | Thermoplastic holographic media |
US7122290B2 (en) * | 2004-06-15 | 2006-10-17 | General Electric Company | Holographic storage medium |
EP1780610A1 (en) * | 2004-08-18 | 2007-05-02 | Konica Minolta Medical & Graphic, Inc. | Holographic recording medium, holographic recording method and holographic information medium |
US7371804B2 (en) * | 2004-09-07 | 2008-05-13 | Ophthonix, Inc. | Monomers and polymers for optical elements |
US8000013B2 (en) * | 2004-09-07 | 2011-08-16 | Ophthonix, Inc. | Tinted lenses that correct for high order aberrations |
JP4649158B2 (en) * | 2004-09-30 | 2011-03-09 | 富士フイルム株式会社 | Hologram recording method |
US7897296B2 (en) * | 2004-09-30 | 2011-03-01 | General Electric Company | Method for holographic storage |
US20060078802A1 (en) * | 2004-10-13 | 2006-04-13 | Chan Kwok P | Holographic storage medium |
JP2006154083A (en) * | 2004-11-26 | 2006-06-15 | Toshiba Corp | Hologram recording medium |
US7704643B2 (en) * | 2005-02-28 | 2010-04-27 | Inphase Technologies, Inc. | Holographic recording medium with control of photopolymerization and dark reactions |
US7623279B1 (en) | 2005-11-22 | 2009-11-24 | Inphase Technologies, Inc. | Method for holographic data retrieval by quadrature homodyne detection |
US20060199081A1 (en) * | 2005-03-04 | 2006-09-07 | General Electric Company | Holographic storage medium, article and method |
US20060280096A1 (en) * | 2005-05-26 | 2006-12-14 | Inphase Technologies, Inc. | Erasing holographic media |
US7742211B2 (en) | 2005-05-26 | 2010-06-22 | Inphase Technologies, Inc. | Sensing and correcting angular orientation of holographic media in a holographic memory system by partial reflection, the system including a galvano mirror |
US20060275670A1 (en) * | 2005-05-26 | 2006-12-07 | Inphase Technologies, Inc. | Post-curing of holographic media |
US7633662B2 (en) * | 2005-05-26 | 2009-12-15 | Inphase Technologies, Inc. | Holographic drive head alignments |
US7548358B2 (en) * | 2005-05-26 | 2009-06-16 | Inphase Technologies, Inc. | Phase conjugate reconstruction of a hologram |
US20060279819A1 (en) * | 2005-05-26 | 2006-12-14 | Inphase Technologies, Inc. | Laser mode stabilization using an etalon |
US7466411B2 (en) * | 2005-05-26 | 2008-12-16 | Inphase Technologies, Inc. | Replacement and alignment of laser |
US7675025B2 (en) | 2005-05-26 | 2010-03-09 | Inphase Technologies, Inc. | Sensing absolute position of an encoded object |
US7397571B2 (en) * | 2005-05-26 | 2008-07-08 | Inphase Technologies, Inc. | Methods and systems for laser mode stabilization |
US8305700B2 (en) * | 2005-05-26 | 2012-11-06 | Inphase Technologies, Inc. | Holographic drive head and component alignment |
US7480085B2 (en) * | 2005-05-26 | 2009-01-20 | Inphase Technologies, Inc. | Operational mode performance of a holographic memory system |
US7710624B2 (en) * | 2005-05-26 | 2010-05-04 | Inphase Technologies, Inc. | Controlling the transmission amplitude profile of a coherent light beam in a holographic memory system |
JP4633562B2 (en) * | 2005-07-06 | 2011-02-16 | 大日本印刷株式会社 | Volume hologram photosensitive composition |
TW200702954A (en) | 2005-07-11 | 2007-01-16 | Toagosei Co Ltd | Volume hologram recording material, the method of processing thereof and the recording medium |
US7649661B2 (en) * | 2005-07-13 | 2010-01-19 | Inphase Technologies, Inc. | Holographic storage device having a reflective layer on one side of a recording layer |
JP2007047302A (en) | 2005-08-08 | 2007-02-22 | Toshiba Corp | Hologram recording medium |
JP2007057572A (en) * | 2005-08-22 | 2007-03-08 | Fujifilm Corp | Composition for optical recording, optical recording medium and method for producing the same |
JP4675196B2 (en) * | 2005-09-20 | 2011-04-20 | 富士フイルム株式会社 | Hologram recording medium composition, hologram recording medium and method for producing the same, hologram recording method and hologram reproducing method |
JP2007093688A (en) * | 2005-09-27 | 2007-04-12 | Toshiba Corp | Hologram recording medium, method for manufacturing master hologram, and method for manufacturing copy hologram |
US20070077498A1 (en) * | 2005-09-30 | 2007-04-05 | Fuji Photo Film Co., Ltd. | Optical recording composition, optical recording medium and production method thereof, optical recording method and optical recording apparatus |
US7813017B2 (en) * | 2005-10-21 | 2010-10-12 | Inphase Technologies, Inc. | Method and system for increasing holographic data storage capacity using irradiance-tailoring element |
JP4807049B2 (en) * | 2005-11-21 | 2011-11-02 | 富士ゼロックス株式会社 | Hologram recording medium and hologram recording method using the same |
US7173744B1 (en) | 2005-12-02 | 2007-02-06 | Inphase Technologies, Inc. | Article comprising holographic medium between substrates having environmental barrier seal and process for preparing same |
US7589877B2 (en) * | 2005-12-02 | 2009-09-15 | Inphase Technologies, Inc. | Short stack recording in holographic memory systems |
US20070160106A1 (en) * | 2006-01-06 | 2007-07-12 | Inphase Technologies | External cavity laser with a tunable holographic element |
CA2645173A1 (en) * | 2006-03-06 | 2007-09-13 | Inphase Technologies, Inc. | Miniature flexure based scanners for angle multiplexing |
US7773276B2 (en) * | 2006-03-07 | 2010-08-10 | Inphase Technologies, Inc. | Method for determining media orientation and required temperature compensation in page-based holographic data storage systems using data page Bragg detuning measurements |
WO2007103569A2 (en) * | 2006-03-09 | 2007-09-13 | Inphase Technologies, Inc. | External cavity laser |
JP4874689B2 (en) * | 2006-03-31 | 2012-02-15 | 富士フイルム株式会社 | Holographic recording composition and optical recording medium using the same |
US20070248890A1 (en) * | 2006-04-20 | 2007-10-25 | Inphase Technologies, Inc. | Index Contrasting-Photoactive Polymerizable Materials, and Articles and Methods Using Same |
JP4765791B2 (en) * | 2006-04-28 | 2011-09-07 | 三菱化学株式会社 | Composition for volume hologram recording material, volume hologram recording material using the same, volume hologram optical recording medium, and volume hologram optical recording method |
US8120832B2 (en) | 2006-05-23 | 2012-02-21 | Inphase Technologies, Inc. | High speed electromechanical shutter |
US7405853B2 (en) | 2006-08-03 | 2008-07-29 | Inphase Technologies, Inc. | Miniature single actuator scanner for angle multiplexing with circularizing and pitch correction capability |
JP2010503025A (en) * | 2006-08-28 | 2010-01-28 | インフェイズ テクノロジーズ インコーポレイテッド | Provided a new type of Fourier transform (FT) lens (204) that improves phase conjugation in holographic data systems. This type of FT lens has a uniquely large isoplanatic patch, which is of assembly tolerance Allows relaxation, asymmetric read / write architecture, and compensation for tilted plate aberrations in the media |
US20080059144A1 (en) * | 2006-09-01 | 2008-03-06 | Inphase Technologies | Emulation of dissimilar removable medium storage device types assisted by information embedded in the logical format |
EP2074467A4 (en) * | 2006-09-29 | 2011-09-07 | Inphase Tech Inc | Magnetic field position feedback for holographic storage scanner |
JP2008096503A (en) * | 2006-10-06 | 2008-04-24 | Toshiba Corp | Method for manufacturing powdery photosensitive composition, photosensitive composition and optical recording medium formed from this photosensitive composition |
BRPI0717852A2 (en) * | 2006-11-01 | 2018-06-12 | Hitachi Ltd | holographic storage device or system, holographic storage retrieval method, device or system, and, article |
EP2390731B1 (en) | 2006-11-01 | 2012-10-24 | InPhase Technologies, Inc. | Monocular holographic data storage system architecture |
JP4197721B2 (en) * | 2006-12-18 | 2008-12-17 | 株式会社東芝 | Hologram recording medium and manufacturing method thereof |
KR101451265B1 (en) * | 2007-02-05 | 2014-10-15 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | Volume phase hologram recording material and optical information recording medium |
WO2008123303A1 (en) * | 2007-03-30 | 2008-10-16 | Daikin Industries, Ltd. | Composition for fluorine-containing volume hologram optical information recording material and fluorine-containing volume hologram optical information recording medium using the same |
JPWO2008123302A1 (en) * | 2007-03-30 | 2010-07-15 | ダイキン工業株式会社 | Photosensitive composition for fluorine-containing volume hologram recording, photosensitive medium for fluorine-containing volume hologram recording and fluorine-containing volume hologram using the same |
US20080239428A1 (en) * | 2007-04-02 | 2008-10-02 | Inphase Technologies, Inc. | Non-ft plane angular filters |
CA2683905A1 (en) | 2007-04-11 | 2008-10-23 | Bayer Materialscience Ag | Advantageous recording media for holographic applications |
JP4918393B2 (en) * | 2007-04-19 | 2012-04-18 | 富士フイルム株式会社 | Optical recording composition and holographic recording medium |
US8031580B1 (en) | 2007-05-25 | 2011-10-04 | Cinram International Inc. | Recording media with features to render media unreadable and method and apparatus for replication of said media |
TW200912515A (en) * | 2007-05-29 | 2009-03-16 | Advanced Polymerik Pty Ltd | Holographic recording medium |
JP2008304807A (en) | 2007-06-11 | 2008-12-18 | Fujifilm Corp | Composition for optical recording, holographic recording medium and information recording and reproducing method |
US8141782B2 (en) * | 2007-07-10 | 2012-03-27 | Inphase Technologies, Inc. | Dual-use media card connector for backwards compatible holographic media card |
JP2010533341A (en) * | 2007-07-10 | 2010-10-21 | インフェイズ テクノロジーズ インコーポレイテッド | Backward compatibility of holographic media with dual-use media card connectors |
CN101971106B (en) * | 2007-07-24 | 2013-10-16 | 共荣社化学株式会社 | Composition for holographic recording medium |
US8399156B2 (en) | 2007-07-26 | 2013-03-19 | Nippon Steel Chemical Co., Ltd. | Volume phase hologram recording material and optical information recording medium using the same |
CN101815957A (en) * | 2007-08-17 | 2010-08-25 | 英法塞技术公司 | HROM clone method, device or system, the product that uses therein and by the product of its generation |
JP5115125B2 (en) * | 2007-10-05 | 2013-01-09 | Tdk株式会社 | Hologram recording material and hologram recording medium |
JP5115126B2 (en) * | 2007-10-05 | 2013-01-09 | Tdk株式会社 | Hologram recording medium |
JP5115137B2 (en) * | 2007-10-16 | 2013-01-09 | Tdk株式会社 | Hologram recording medium |
US20090103416A1 (en) * | 2007-10-17 | 2009-04-23 | Inphase Technologies, Inc. | Layout method for multiplexed holograms |
JP2009186515A (en) * | 2008-02-01 | 2009-08-20 | Toshiba Corp | Holographic recording medium, method for manufacturing holographic recording medium, and optical information recording and reproducing device |
US8446808B2 (en) * | 2008-02-14 | 2013-05-21 | Akonia Holographics, Llc | Use of feedback error and/or feed-forward signals to adjust control axes to optimal recovery position of hologram in holographic data storage system or device |
DE102008009332A1 (en) | 2008-02-14 | 2009-08-20 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Optical elements with gradient structure |
TW201001102A (en) * | 2008-04-16 | 2010-01-01 | Smart Holograms Ltd | Photopolymerizable compositions |
US8311067B2 (en) * | 2008-06-12 | 2012-11-13 | Akonia Holographics, Llc | System and devices for improving external cavity diode lasers using wavelength and mode sensors and compact optical paths |
US20100014133A1 (en) * | 2008-07-21 | 2010-01-21 | Inphase Technologies, Inc. | Method to modify and apply edge seal materials in laminated media |
JP2010026450A (en) * | 2008-07-24 | 2010-02-04 | Toshiba Corp | Hologram recording medium and optical information recording and reproducing device |
WO2010011899A1 (en) * | 2008-07-24 | 2010-01-28 | Inphase Technologies, Inc. | Holographic storage medium and method for gated diffusion of photoactive monomer |
US8254418B2 (en) * | 2008-09-19 | 2012-08-28 | Inphase Technologies, Inc. | Method for finding and tracking single-mode operation point of external cavity diode lasers |
JP2012504777A (en) * | 2008-10-01 | 2012-02-23 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | Media for volume holography based on self-developing polymers |
IL200996A0 (en) * | 2008-10-01 | 2010-06-30 | Bayer Materialscience Ag | Photopolymer formulations having a low crosslinking density |
US8284234B2 (en) | 2009-03-20 | 2012-10-09 | Absolute Imaging LLC | Endoscopic imaging using reflection holographic optical element for autostereoscopic 3-D viewing |
JP2010230911A (en) * | 2009-03-26 | 2010-10-14 | Tdk Corp | Optical device |
US8323854B2 (en) | 2009-04-23 | 2012-12-04 | Akonia Holographics, Llc | Photopolymer media with enhanced dynamic range |
WO2011054791A1 (en) * | 2009-11-03 | 2011-05-12 | Bayer Materialscience Ag | Method for producing a holographic film |
PL2317511T3 (en) * | 2009-11-03 | 2012-08-31 | Bayer Materialscience Ag | Photopolymer formulations with adjustable mechanical module Guv |
KR101782182B1 (en) * | 2009-11-03 | 2017-09-26 | 코베스트로 도이칠란드 아게 | Photopolymer formulation having different writing comonomers |
PL2497085T3 (en) * | 2009-11-03 | 2014-07-31 | Bayer Ip Gmbh | Method for producing a holographic film |
GB2476275A (en) | 2009-12-17 | 2011-06-22 | Dublin Inst Of Technology | Photosensitive holographic recording medium comprising glycerol |
EP2531889B1 (en) * | 2010-02-02 | 2020-06-03 | Covestro Deutschland AG | Use of a photopolymer formulation with ester-based writing monomers for the fabrication of holographic media |
EP2372454A1 (en) * | 2010-03-29 | 2011-10-05 | Bayer MaterialScience AG | Photopolymer formulation for producing visible holograms |
JP6088971B2 (en) * | 2010-08-11 | 2017-03-01 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH | Bifunctional (meth) acrylate writing monomer |
EP2613318B1 (en) * | 2012-01-05 | 2014-07-30 | Bayer Intellectual Property GmbH | Layer construction with a protective coating and an exposed photopolymer layer |
JP6028455B2 (en) * | 2012-08-24 | 2016-11-16 | 大日本印刷株式会社 | Photosensitive composition for volume hologram recording, photosensitive substrate for volume hologram recording, and volume hologram recording body |
JP6497850B2 (en) | 2013-05-08 | 2019-04-10 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | HOLOGRAPHIC RECORDING MEDIUM HAVING HALO PREVENTING LAYER AND PRODUCTION THEREOF |
CN106030711B (en) * | 2013-12-20 | 2019-02-22 | 科思创德国股份有限公司 | Holographic media with improved light sensitivity |
WO2016174798A1 (en) * | 2015-04-27 | 2016-11-03 | ソニー株式会社 | Composition for hologram recording use, hologram recording medium, image display device, and method for producing hologram recording medium |
DE102017104433A1 (en) * | 2017-03-03 | 2018-09-06 | HELLA GmbH & Co. KGaA | Process for producing a plastic component with a layer composite and a molded plastic body |
CN107544207B (en) * | 2017-08-30 | 2020-06-02 | 华中科技大学 | Holographic photopolymer based on thiol olefin click reaction |
WO2019237117A1 (en) | 2018-06-08 | 2019-12-12 | The Regents Of The University Of Colorado, A Body Corporate | High dynamic range two-stage photopolymers |
WO2020121653A1 (en) | 2018-12-11 | 2020-06-18 | ソニー株式会社 | Hologram recording composition, hologram recording medium, diffraction optical element, and optical device, optical component, and image display device in which diffraction optical element is used |
US20200355997A1 (en) | 2019-05-08 | 2020-11-12 | Facebook Technologies, Llc | Thianthrene derivatized monomers and polymers for volume bragg gratings |
US11718580B2 (en) | 2019-05-08 | 2023-08-08 | Meta Platforms Technologies, Llc | Fluorene derivatized monomers and polymers for volume Bragg gratings |
US11634528B2 (en) | 2019-05-08 | 2023-04-25 | Meta Platforms Technologies, Llc | Latent imaging for volume Bragg gratings |
US20200354594A1 (en) | 2019-05-08 | 2020-11-12 | Facebook Technologies, Llc | Thermally reversible and reorganizable crosslinking polymers for volume bragg gratings |
EP3772671A1 (en) | 2019-08-06 | 2021-02-10 | Covestro Deutschland AG | Layer structure for the light exposure of holograms |
US20210155585A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Anthraquinone derivatized monomers and polymers for volume bragg gratings |
US20210155584A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Aromatic substituted methane-core monomers and polymers thereof for volume bragg gratings |
US20210155639A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Thiophosphate and phosphine sulfide derivatized monomers and polymers for volume bragg gratings |
US20210155581A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Aromatic substituted ethane-core monomers and polymers thereof for volume bragg gratings |
US11780819B2 (en) | 2019-11-27 | 2023-10-10 | Meta Platforms Technologies, Llc | Aromatic substituted alkane-core monomers and polymers thereof for volume Bragg gratings |
US11879024B1 (en) | 2020-07-14 | 2024-01-23 | Meta Platforms Technologies, Llc | Soft mold formulations for surface relief grating fabrication with imprinting lithography |
US20220153895A1 (en) | 2020-11-13 | 2022-05-19 | Facebook Technologies, Llc | Substituted propane-core monomers and polymers thereof for volume bragg gratings |
US20220153693A1 (en) | 2020-11-13 | 2022-05-19 | Facebook Technologies, Llc | Substituted mono- and poly-phenyl-core monomers and polymers thereof for volume bragg gratings |
US20220155503A1 (en) | 2020-11-16 | 2022-05-19 | Facebook Technologies, Llc | Chemical diffusion treated volume holograms and methods for making the same |
ES2969163T3 (en) | 2021-02-11 | 2024-05-16 | Xetos Ag | Light-cured HOE composition |
ES2963992T3 (en) | 2021-02-11 | 2024-04-03 | Xetos Ag | 2K system |
EP4043962B1 (en) | 2021-02-11 | 2023-06-07 | Xetos AG | Photopolymerizable composition |
TW202240286A (en) | 2021-03-19 | 2022-10-16 | 美商元平台技術有限公司 | Recording a latent holographic grating and amplification of its dynamic range |
TW202239016A (en) | 2021-03-19 | 2022-10-01 | 美商元平台技術有限公司 | Spatially varying dynamic range in holographic gratings |
TW202240285A (en) | 2021-03-19 | 2022-10-16 | 美商元平台技術有限公司 | Recording a latent holographic grating and amplification of its dynamic range |
US20220332896A1 (en) | 2021-03-31 | 2022-10-20 | Facebook Technologies, Llc | Halogenated monomers and polymers for volume bragg gratings |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1443437A (en) | 1964-05-27 | 1966-06-24 | Owens Illinois Inc | Organic polysiloxane resins and process for their preparation |
US3428599A (en) | 1965-05-24 | 1969-02-18 | Owens Illinois Inc | Method for preparing,without premature gelation,organopolysiloxane |
US3479316A (en) | 1968-12-09 | 1969-11-18 | Owens Illinois Inc | Methods for preparing organopolysiloxanes at neutral conditions |
US3474070A (en) | 1969-01-10 | 1969-10-21 | Owens Illinois Inc | Methods for preparing organopolysiloxanes using ferric-containing catalysts |
US3957497A (en) | 1969-03-11 | 1976-05-18 | Owens-Illinois, Inc. | Polymeric based composition |
US3953620A (en) * | 1974-12-06 | 1976-04-27 | Bell Telephone Laboratories, Incorporated | Producing integrated optical circuits |
JPS52138146A (en) * | 1976-05-14 | 1977-11-18 | Nippon Telegr & Teleph Corp <Ntt> | High molecular optical-guide pass production |
JPS547940A (en) * | 1977-06-20 | 1979-01-20 | Mitsubishi Electric Corp | Production of optical transmission mdedium |
JPS5488144A (en) * | 1977-12-26 | 1979-07-13 | Nippon Telegr & Teleph Corp <Ntt> | Production of high polymer sheet containing optical guides |
US4223121A (en) | 1978-12-04 | 1980-09-16 | Owens-Illinois, Inc. | Organopolysiloxane resins of increased hardness |
US4242252A (en) | 1979-03-26 | 1980-12-30 | Owens-Illinois, Inc. | Preparation of organopolysiloxane resins with weak organic bases |
DE3134123A1 (en) * | 1981-08-28 | 1983-03-17 | Hoechst Ag, 6000 Frankfurt | RADIATION-POLYMERIZABLE MIXTURE AND MADE-UP PHOTOPOLYMERIZABLE COPY MATERIAL |
JPS58163903A (en) | 1982-03-25 | 1983-09-28 | Nippon Sheet Glass Co Ltd | Method for producing optical transmission body of synthetic resin |
US4539232A (en) | 1982-06-03 | 1985-09-03 | Owens-Illinois, Inc. | Solventless liquid organopolysiloxanes |
JPS5971004A (en) | 1982-10-18 | 1984-04-21 | Nippon Sheet Glass Co Ltd | Production of synthetic resin optical circuit |
JPS59152406A (en) * | 1983-02-18 | 1984-08-31 | Nippon Sheet Glass Co Ltd | Method for producing plastic optical transmission body |
EP0130838B1 (en) * | 1983-07-02 | 1987-10-07 | Nippon Sheet Glass Co., Ltd. | Method and apparatus for producing light transmitting article of synthetic resin |
JPS6072927A (en) | 1983-09-30 | 1985-04-25 | Omron Tateisi Electronics Co | Production of polymer microlens |
US4551361A (en) | 1984-11-15 | 1985-11-05 | Owens-Illinois, Inc. | Tintable scratch resistant coating |
JPH0690589B2 (en) | 1984-12-14 | 1994-11-14 | ソニー株式会社 | Hologram recording medium |
EP0486469B2 (en) | 1986-10-03 | 2000-06-21 | PPG Industries Ohio, Inc. | Organic-inorganic hybrid polymer |
US4970129A (en) * | 1986-12-19 | 1990-11-13 | Polaroid Corporation | Holograms |
US4913990A (en) * | 1987-10-20 | 1990-04-03 | Rallison Richard D | Method of tuning a volume phase recording |
US4965152A (en) | 1988-01-15 | 1990-10-23 | E. I. Du Pont De Nemours And Company | Holographic notch filters |
US5116703A (en) | 1989-12-15 | 1992-05-26 | Xerox Corporation | Functional hybrid compounds and thin films by sol-gel process |
FR2667073B1 (en) | 1990-09-25 | 1994-05-06 | Essilor Internal Cie Gle Optique | METHOD FOR MARKING ARTICLES OF TRANSPARENT ORGANIC MATERIAL SUCH AS CONTACT LENSES. |
EP0487086B2 (en) * | 1990-11-22 | 2008-08-13 | Canon Kabushiki Kaisha | Method of preparing volume type phase hologram member using a photosensitive recording medium |
US5254638A (en) | 1991-03-25 | 1993-10-19 | The Reagents Of The University Of California | Composite materials of interpenetrating inorganic and organic polymer networks |
JP2873126B2 (en) | 1991-04-17 | 1999-03-24 | 日本ペイント株式会社 | Photosensitive composition for volume hologram recording |
JPH0643797A (en) * | 1991-05-09 | 1994-02-18 | Nissan Motor Co Ltd | Formation of hologram |
JPH05108000A (en) * | 1991-10-14 | 1993-04-30 | Dainippon Printing Co Ltd | Formation of hologram |
JPH05188843A (en) * | 1992-01-10 | 1993-07-30 | Nissan Motor Co Ltd | Formation of hologram |
JP2953200B2 (en) * | 1992-06-30 | 1999-09-27 | 日本板硝子株式会社 | Optical recording composition, optical recording film and optical recording method |
JP3039165B2 (en) * | 1992-11-10 | 2000-05-08 | 日本板硝子株式会社 | Optical recording film and manufacturing method thereof |
JP3269505B2 (en) * | 1992-11-19 | 2002-03-25 | 三菱瓦斯化学株式会社 | Polymer optical waveguide type optical star coupler |
US5384376A (en) | 1992-12-23 | 1995-01-24 | Eastman Kodak Company | Organic/inorganic hybrid materials |
US5527871A (en) | 1992-12-28 | 1996-06-18 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Layered inorganic-organic polymer shaped article thereof and process for producing the same |
JP2849021B2 (en) * | 1993-04-12 | 1999-01-20 | 日本ペイント株式会社 | Photosensitive composition for volume hologram recording |
US5496670A (en) | 1993-08-30 | 1996-03-05 | Riso National Laboratory | Optical storage medium |
AU684891B2 (en) * | 1994-03-17 | 1998-01-08 | Toppan Printing Co. Ltd. | Photosensitive recording material, photosensitive recording medium, and process for producing hologram using this photosensitive recording medium |
US5607799A (en) | 1994-04-21 | 1997-03-04 | International Business Machines Corporation | Optical photorefractive article |
US5719690A (en) * | 1996-05-31 | 1998-02-17 | International Business Machines Corporation | Photorefractive glass article |
US5874187A (en) | 1996-08-15 | 1999-02-23 | Lucent Technologies Incorporated | Photo recording medium |
JPH10111633A (en) * | 1996-10-04 | 1998-04-28 | Denso Corp | Hologram photosensitive agent, hologram photosensitive material and hologram as well as their production |
US6103454A (en) * | 1998-03-24 | 2000-08-15 | Lucent Technologies Inc. | Recording medium and process for forming medium |
US6482551B1 (en) * | 1998-03-24 | 2002-11-19 | Inphase Technologies | Optical article and process for forming article |
US7001541B2 (en) * | 2001-09-14 | 2006-02-21 | Inphase Technologies, Inc. | Method for forming multiply patterned optical articles |
-
1998
- 1998-12-09 US US09/208,557 patent/US6482551B1/en not_active Expired - Lifetime
-
1999
- 1999-03-16 EP EP99302010.6A patent/EP0945762B1/en not_active Expired - Lifetime
- 1999-03-24 KR KR1019990010004A patent/KR100343202B1/en not_active IP Right Cessation
- 1999-03-24 JP JP07904399A patent/JP3737306B2/en not_active Expired - Fee Related
-
2002
- 2002-04-03 US US10/115,392 patent/US6939648B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029765A1 (en) | 2006-09-05 | 2008-03-13 | Mitsubishi Chemical Corporation | Volume hologram optical recording medium, composition for forming volume hologram recording layer, volume hologram recording material, and volume hologram optical recording method |
WO2008050835A1 (en) | 2006-10-25 | 2008-05-02 | Mitsubishi Chemical Corporation | Volume hologram optical recording medium, composition for volume hologram recording layer formation, and volume hologram recording material |
US8815472B2 (en) | 2006-10-25 | 2014-08-26 | Mitsubishi Chemical Corporation | Volume hologram optical recording medium, composition for volume hologram recording layer formation, and volume hologram recording material |
JP2008261930A (en) * | 2007-04-10 | 2008-10-30 | Fujifilm Corp | Holographic recording composition and holographic recording medium |
WO2021100654A1 (en) | 2019-11-19 | 2021-05-27 | 三菱ケミカル株式会社 | Compound, polymerizable composition, polymer, holographic recording medium, optical material and optical component |
WO2022202538A1 (en) | 2021-03-23 | 2022-09-29 | 三菱ケミカル株式会社 | Compound, method for producing same, polymerizable composition, polymer, holographic recording medium, optical material, and optical component |
Also Published As
Publication number | Publication date |
---|---|
EP0945762B1 (en) | 2013-04-24 |
KR100343202B1 (en) | 2002-07-05 |
JPH11352303A (en) | 1999-12-24 |
US20020142227A1 (en) | 2002-10-03 |
US6482551B1 (en) | 2002-11-19 |
EP0945762A1 (en) | 1999-09-29 |
US6939648B2 (en) | 2005-09-06 |
KR19990078200A (en) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3737306B2 (en) | Optical product and manufacturing method thereof | |
US6103454A (en) | Recording medium and process for forming medium | |
JP5295712B2 (en) | Manufacturing method and composition for rapid mass production of holographic recording products | |
US6780546B2 (en) | Blue-sensitized holographic media | |
US6765061B2 (en) | Environmentally durable, self-sealing optical articles | |
US7229741B2 (en) | Exceptional high reflective index photoactive compound for optical applications | |
US7678507B2 (en) | Latent holographic media and method | |
US7282322B2 (en) | Long-term high temperature and humidity stable holographic optical data storage media compositions with exceptional high dynamic range | |
US20020191236A1 (en) | Method for improved holographic recording using beam apodization | |
KR20070118940A (en) | Hologram recording material | |
KR20220104175A (en) | Anthraquinone Derivatized Monomers and Polymers for Volume Bragg Lattice | |
US7736818B2 (en) | Holographic recording medium and method of making it | |
US20200354496A1 (en) | Latent imaging for volume bragg gratings | |
TW202240285A (en) | Recording a latent holographic grating and amplification of its dynamic range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20050628 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20050701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051026 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |