JP3734134B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3734134B2
JP3734134B2 JP18537599A JP18537599A JP3734134B2 JP 3734134 B2 JP3734134 B2 JP 3734134B2 JP 18537599 A JP18537599 A JP 18537599A JP 18537599 A JP18537599 A JP 18537599A JP 3734134 B2 JP3734134 B2 JP 3734134B2
Authority
JP
Japan
Prior art keywords
separator plate
fuel cell
electrode
cooling water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18537599A
Other languages
Japanese (ja)
Other versions
JP2001015138A (en
Inventor
匡 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP18537599A priority Critical patent/JP3734134B2/en
Publication of JP2001015138A publication Critical patent/JP2001015138A/en
Application granted granted Critical
Publication of JP3734134B2 publication Critical patent/JP3734134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池のセル構造技術に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、水素と酸素とを利用して直流電力を発生する燃料電池の一種である。この燃料電池は、電解質に高分子膜を用いており、出力が高く電池寿命が長いことなどの特徴を具えている。
【0003】
図1に固体高分子型燃料電池スタックを構成する基本構成を上面よりみた断面図の一部を示す。燃料電池スタックは、単セル1および冷却板2を直列に多数積層したものである。この単セル1は、電解質膜3をアノード電極4およびカソード電極5で挟んで積層したMEA(膜電極接合体)6と、その両側に設けたセパレータ板7および7′からなる。アノード電極4に接して設けられたセパレータ板7は、燃料ガスのガス流路8を有しており、カソード電極5に接して設けられたセパレータ板7′は、酸化剤ガスのガス流路9が設けられている。
【0004】
冷却板2は、電池温度を一定に保つため、1〜数セルごとに挿入される。冷却手段としては、冷却水の循環による水冷方式や、空気による空冷方式などがある。
【0005】
ここで、固体高分子型燃料電池の電解質膜として、固体高分子電解質膜が用いられており、このため固体高分子型燃料電池では、電解質膜の中の電気抵抗率を低下させプロトン導電性を十分に発揮させるために電解質膜が十分に湿潤している必要がある。従来法では、電解質膜の乾燥を防ぎ、電解質膜を十分に湿潤させるために膜加湿法や、セル温度に近い飽和水蒸気を有する反応ガスを用いる方法を採用している。そして、その反応ガスを加湿して電池に用いる方法としては、外部加湿方法と内部加湿方法が挙げられる。
【0006】
外部加湿方法は、加湿水が流れる外部に備えた加湿タンク内に反応ガスを吹き込み、通過させることによりガスを加湿する。しかし、この方法を用いた場合、加湿したガスを加湿タンクから配管内を通して電池内に流す間に、高露点のガスを凝縮してしまうので、これを防ぐために配管の加熱保温を必要とし、電池システムとしての構造の複雑化、コストアップという問題が生じてくる。
【0007】
一方、内部加湿方法としては、特開平9−35737号公報および特開平9−92309号公報などに記載の方法が挙げられる。特開平9−35737号公報には、複数個の単位燃料電池と、単位燃料電池で発生した熱を除去する熱媒が通流する熱交換体の複数個とが積層された積層体の両側に反応ガスを加湿するための加湿器を有した燃料電池スタックが記載されている。特開平9−92309号公報には、各単セルにそれぞれ隣接して加湿部を設け、多孔質支持体と水透過膜を通してセパレータのガス通流部に通流されるガスを加湿する手段を有する燃料電池スタックが記載されている。しかし、内部加湿部の温度は、通常電池の運転温度と等しいかそれ以下であるため、高露点の加湿ガスを得ることは難しい。
【0008】
また、上述した加湿方法ではシステム全体の効率を考えると、加湿のために供給する水分を所定の温度に昇温するエネルギーが必要となり、システムの効率を下げる原因となるため、加湿温度は低いことが要求される。従って、電池システムを複雑化することなく、安定した電池特性にて電池を運転するためには、低加湿ガスの供給によって、安定運転を可能とする固体高分子型電池であることが望ましい。さらに、上述したように供給するガスを加湿して電池に用いるのではなく、ガスを加湿することなく電池に供給し、運転が可能となるならば、加湿タンクなど加湿のための部分が不要となり、電池システムの簡略化、コストダウンが可能となり、さらに好ましい。
【0009】
【発明が解決しようとする課題】
しかしながら、低加湿運転においては、ガス入口においてMEA(膜電極接合体)が乾燥する。MEAの乾燥したセルはセル内部抵抗を増大させ、セル特性を低下させる。本発明は、セル構造の改良により、低加湿条件においても安定に電池の運転ができることを目的としている。
【0010】
【課題を解決するための手段】
上記の問題、つまり低加湿運転においても電池を安定に運転するためには、湿潤側の電極温度を乾燥側の電極温度より高くすることにより、湿潤側の電極から乾燥側の電極へのMEA内での水の拡散を良好にし、MEA内部での水の移動により乾燥を防ぐ。
【0011】
【課題を解決するための手段】
本発明の固体高分子型燃料電池は、ガス流路を有するセパレータ板と、アノード電極と、電解質膜と、カソード電極と、ガス流路を有するセパレータ板とを順次積層した単セルを複数積層した固体高分子型燃料電池において、アノード電極側のセパレータのガス流路およびカソード電極側のセパレータのガス流路の一方に低加湿ガスが流通し、上記低加湿ガスが流通する側の電極の温度よりも他方の電極の温度を高くする手段を有する。
また、本発明の固体高分子型燃料電池は、ガス流路を有するセパレータ板と、アノード電極と、電解質膜と、カソード電極と、ガス流路を有するセパレータ板とを順次積層した単セルを複数積層した固体高分子型燃料電池において、上記各ガス流路に無加湿ガスが流通し、カソード電極の温度をアノード電極の温度よりも高くする手段を有する。
【0012】
さらに、アノード電極側のセパレータのガス流路およびカソード電極側のセパレータのガス流路の一方に低加湿ガスが流通し、上記低加湿ガスが流通する側の電極の温度よりも他方の電極の温度を高くする手段、および上記各ガス流路に無加湿ガスが流通し、カソード電極の温度をアノード電極の温度よりも高くする手段としては、以下にあげる手段好ましい。
【0013】
1)それぞれ異なる熱伝導率を有するアノード電極に隣接するセパレータ板およびカソード電極に隣接するセパレータ板を用いる。
【0014】
ここで、異なる熱伝導率を有するために、アノード電極に隣接するセパレータ板およびカソード電極に隣接するセパレータ板のいずれか一方にグラッシーカーボンを用い、他方にグラファイトを用いることが好ましい。または、アノード電極に隣接するセパレータ板およびカソード電極に隣接するセパレータ板のいずれか一方により多くの樹脂を含浸させた黒鉛を用いることも好ましい。
【0015】
2)アノード電極に隣接するセパレータ板の外側と、カソード電極に隣接するセパレータ板の外側に、冷却水をそれぞれ別系統で流し、一方の冷却水温度を他方の冷却水温度より高くする。
【0016】
3)アノード電極に隣接するセパレータ板の外側およびカソード電極に隣接するセパレータ板の外側に、冷却水をそれぞれ別系統で流し、一方の冷却水流速を他方の冷却水流速より速くする。
【0017】
4)セパレータ板に隣接して積層された冷却板が冷却水流路を片側のみに有し、冷却板の中央部が熱伝導性の低い材料であり、その中央部の外側部分が熱伝導性および導電性の両方が高い材料であること。
【0018】
以下に、本発明についてより詳細に記載する。
【0019】
【発明の実施の形態】
本発明は、低加湿運転においても電池を安定に運転するために、湿潤側の電極温度を乾燥側の電極温度より高くすることを特徴としている。電極間に温度差を付けることによって、湿潤側の電極から乾燥側の電極のMEA内での水の拡散を良好にし、MEA内部での水の移動により乾燥を防ぐことが可能となる。なお、本明細書でいう「低加湿ガス」とはセル温度より低い露点のガスのことをいい、「低加湿運転」とはアノードおよびカソードの少なくとも一方に低加湿ガスを用いる運転のことをいう。
【0020】
電極間の温度差によるMEA内部での水の移動について、図5を参照しながら説明する。図5に電解質膜中の含水率分布の模式図を示す。
【0021】
電解質膜は、高温ほど多くの水を含むことができるという特徴を持つ。湿潤側の電極a)の温度を乾燥側の電極b)より高くすると、電極a)近傍の電解質膜は、電極b)近傍の電解質膜より多く含水し得る。a)側が十分に加湿されている場合、a)の温度が高いことにより、a)近傍の電解質膜は、a)とb)の温度が等しい場合より多く含水し、図5のように、より大きな水濃度勾配ができる。この濃度勾配により、温度の高い電極a)側から温度の低いb)側へMEAの電解質膜中の水の拡散が容易となる。これにより、低加湿条件においても安定な電池の運転が可能となる。
【0022】
よって、一方の電極に低加湿ガスを用いた場合には、低加湿ガスの流れる側の電極の温度を下げるようにすればよい。また、無加湿ガスを用いて電池を運転した場合には、反応の結果、水が発生するカソード電極の温度を、アノード電極の温度より高くすればよい。
【0023】
このことを考慮し、本発明の固体高分子型燃料電池(スタック)を図1から図4を用いて説明する。
【0024】
図1は固体高分子型燃料電池スタックを構成する基本構成を上面から見た断面図であり、図2は固体高分子型燃料電池スタックの簡易図である。
【0025】
本発明の固体高分子型燃料電池は、図1に示すように単セル1と冷却板2が直列に多数積層したものであり、各単セル1は互いに冷却板2を介して対向する面で積層している。単セル1は電解質膜3をアノード電極4とカソード電極5で挟んで形成されるMEAを、燃料ガスのガス流路8を有するセパレータ板7と酸化剤ガス(燃料ガスおよび酸化ガスを合わせて反応ガスとする)のガス流路9を有するセパレータ板7′で挟んで形成される。
【0026】
この単セル1と冷却板2を直列に多数積層し、図2に示すようにその両端に集電板12、電気絶縁板13を設けることによって固体高分子型燃料電池が形成される。
【0027】
本発明より得られる両電極4および5の間に温度差をつける手段は、主に2つに分けられる。
【0028】
第一の手段は、各電極4および5に隣接するセパレータ板7および7′に、異なる熱伝導率を示す材料を用いるか異なる熱伝導率を示す構造を用いるかである。乾燥側の電極に隣接するセパレータ板の熱伝導率が高くなるようにし、他方、つまり湿潤側の電極に隣接するセパレータ板の熱伝導率が劣るようにする。このような手段をとることによって、熱導電性に劣る側、つまり湿潤電極側では、電池反応により発生する熱を十分に除去できないため、乾燥電極側との間には温度差を生じる。具体的には、異なる熱伝導率を与えるために、熱伝導性に優れたセパレータ板にグラファイトを用い、これに対して熱伝導性に劣るセパレータ板にグラッシーカーボンなどを用いるなど、異なる材料を用いる。また、樹脂含浸黒鉛を用いた両セパレータに対し、熱伝導性に劣るセパレータには樹脂含浸量をより多くすることにより、熱伝導率の異なる構造をとる。
【0029】
両電極間に温度差をつける第二の手段としては、セパレータ板に差異をつけるのではなく、以下に記載するように冷却板および冷却板を流通する冷却水に差異をつける。
【0030】
図3に示したような構造の冷却板を流れる冷却水を利用する。図3(a)は、図1のA−A′部分を表しており、図3(b)は、冷却板2をセパレータ板7側からみた斜視図を表している。冷却板2はアノード電極に隣接するセパレータ板7に接触する面に冷却水流路10を、カソード電極に隣接するセパレータ板7′に接触する面に冷却水流路11を有している。この冷却水流路10および11を流れる冷却水において、一方の冷却水を他方の冷却水より高くすることによって各電極の温度差が生じる。
【0031】
または、冷却水流路10および11を流れる冷却水において、一方の冷却水流速を他方の冷却水流速より速くすることにより流速が速い側の温度が、流速の遅い側の温度より低くなり、各電極間に温度差を生じる。
【0032】
さらに、図4に示すような構造の冷却板を利用することもできる。図4(a)は、図1のA−A′部分を表しており、図4(b)は、冷却板2をセパレータ板7側から見た断面図を表している。冷却板2は、アノード電極に隣接するセパレータ板7に接触する面に冷却水流路10を有している。そして、冷却板2の中央部2aにプラスチックなどの熱伝導性の低い材料を用い、その中央部の外側部分2bにカーボンなどの熱伝導性および導電性の高い材料を用いている。このようにすることによって、冷却水流路10と直接に接しているアノード電極側の温度が下がることになり、各電極間に温度差を生じる。また、ここでは、アノード電極側のみに冷却水流路10を設けた場合を示したが、カソード電極側が乾燥しているのであれば、アノード電極側ではなく、カソード電極側に冷却水流路を設けることもできる。
【0033】
本発明の固体高分子型燃料電池は、もちろん両セパレータ板に差異をつける第一の手段と、冷却板およびそこを流通する冷却水に特徴のある第二の手段を同時に具えた手段を有してもよい。
【0034】
なお、各電極間に温度差を付ける手段を上述したが、これに限定されるものではなく、各電極間に温度差がつくのであれば本発明の固体高分子型燃料電池はその他の手段を有してもよい。
【0035】
【実施例】
[実施例1]
図1に示すように、アノード電極とカソード電極で電解質膜を挟んでMEAを形成し、このMEAを反応ガス流路を有するセパレータ板で挟み、これを単セルとして複数積層して、固体高分子型燃料電池を製造した。このときグラッシーカーボンを電極の温度を高くする電極に接するセパレータ板の材料とし、もう一方の電極に隣接するセパレータ板としてグラファイトを用いた。この電池は、両電極間に温度差を生じた。
【0036】
次いで、この固体高分子型燃料電池を用いて、カソード低加湿運転で試験を行った。つまりグラファイトを用いたセパレータ板をカソード電極に隣接させ、グラッシーカーボンを用いた電極をアノード電極に隣接させた。この結果を図6に示す。ア)に示す従来の温度差をつけない電池を運転させたときに比較して、イ)に示す本発明の温度差をつけた電池を運転させたときは、高いセル特性が得られ、セル特性の低下も小さくなった。
【0037】
次に、反応ガスを加湿せずに用いた無加湿運転において試験を行った。この際、グラッシーカーボンを用いたセパレータ板を、生成水ができるカソード電極に隣接したセパレータ板とし、カソード電極の温度を高くすることにより、セル電圧の低下なく運転することができた。
【0038】
[実施例2]
図1に示すように、電極で電解質膜を挟んでMEAを形成し、このMEAをグラファイトからなる反応ガス流路を有するセパレータ板で挟み、これを単セルとして複数積層し、この両側を図3に示すように冷却水流路が両面に設けてある冷却板で挟んで固体高分子型燃料電池を製造した。製造した固体高分子型燃料電池の冷却水流路にそれぞれ温度の異なる冷却水を流すことにより両電極間に温度差を得た。
【0039】
次いで、この固体高分子型燃料電池を用いて、カソード低加湿運転で試験を行った。つまりカソード電極側の冷却水流路に温度の低い冷却水を流し、アノード電極側の冷却水流路に温度の高い冷却水を流した。そして、実施例1と同様の結果を得た。
【0040】
次に、反応ガスを加湿せずに用いた無加湿運転において試験を行った。この際、生成水ができるカソード電極側の冷却水流路に温度の高い冷却水を流した。このようにすることにより、セル電圧の低下なく運転することができた。
【0041】
[実施例3]
図1に示すように、電極で電解質膜を挟んでMEAを形成し、このMEAをグラファイトからなる反応ガス流路を有するセパレータ板で挟み、これを単セルとして積層し、この両側を図3に示すように冷却水流路が両面に設けてある冷却板で挟んで固体高分子型燃料電池を製造した。製造した固体高分子型燃料電池の冷却水流路にそれぞれの流速の異なる冷却水を流すことにより両電極間に温度差を得た。
【0042】
次いで、この固体高分子型燃料電池を用いて、カソード低加湿運転で試験を行った。つまりカソード電極側の冷却水流路にアノード電極側の冷却水流路に流す冷却水の流速より流速の速い冷却水を流した。そして、実施例1と同様の結果を得た。
【0043】
次に、反応ガスを加湿せずに用いた無加湿運転において試験を行った。この際、生成水のできるカソード電極側の冷却水流路にアノード電極側冷却水流路に流した冷却水の流速より流速の遅い冷却水を流した。このようにすることにより、セル電圧の低下なく運転することができた。
【0044】
[実施例4]
図1に示すように、電極で電解質膜を挟みMEAを形成し、このMEAをグラファイトからなる反応ガス流路を有するセパレータ板で挟み、これを単セルとして積層し、この両側を図4に示すように冷却水流路が片面にのみ設けてある冷却板で挟んで固体高分子型燃料電池を製造した。この冷却板は、中央部がプラスチックであり、周囲部がカーボン材である。製造した固体高分子型燃料電池の冷却水流路に冷却水を流すことにより冷却水流路が設けてある側の電極温度を低くすることができ、両電極間に温度差を得た。
【0045】
次いで、この固体高分子型燃料電池を用いて、カソード低加湿運転で試験を行った。つまりカソード電極側の冷却水流路を設けた面がくるように冷却板を積層した。そして、実施例1と同様の結果を得た。
【0046】
次に、反応ガスを加湿せずに用いた無加湿運転において試験を行った。この際、生成水ができるカソード電極側に、冷却水流路を設けていない面がくるように冷却板を積層し、冷却水を流した。このようにすることにより、セル電圧の低下なく運転することができた。
【0047】
【発明の効果】
上述したように、アノード電極の温度とカソード電極の温度に差を付けることにより、MEA内での水の移動が促進され、低加湿運転においても安定に電池を運転することができた。
【図面の簡単な説明】
【図1】燃料電池スタックの一部の上面からの断面図である。
【図2】燃料電池スタックの上面からの断面図である。
【図3】実施例2および実施例3における冷却板を示すものであり、(a)は上面からの断面図であり、(b)は、セパレータ7側からみた冷却板の斜視図である。
【図4】実施例4における冷却板を示すものであり、(a)は上面からの断面図であり、(b)は、セパレータ7側からみた冷却板の断面図である。
【図5】電解質膜中の温度による水の濃度勾配を表す図である。
【図6】無加湿運転における本発明のセル特性と従来のセル特性との比較を表す図である。
【符号の説明】
1 単セル
2 冷却板
2a 中央部
2b 外側部
3 電解質膜
4 アノード電極
5 カソード電極
6 MEA(膜電極接合体)
7、7′ セパレータ板
8 ガス流路
9 ガス流路
10、11 冷却水流路
12 集電板
13 電気絶縁板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cell structure technique for a polymer electrolyte fuel cell.
[0002]
[Prior art]
A polymer electrolyte fuel cell is a type of fuel cell that generates direct-current power using hydrogen and oxygen. This fuel cell uses a polymer membrane as an electrolyte, and has features such as high output and long battery life.
[0003]
FIG. 1 shows a part of a cross-sectional view of the basic configuration of the polymer electrolyte fuel cell stack as seen from above. The fuel cell stack is formed by stacking a large number of single cells 1 and cooling plates 2 in series. This single cell 1 comprises an MEA (membrane electrode assembly) 6 in which an electrolyte membrane 3 is sandwiched between an anode electrode 4 and a cathode electrode 5, and separator plates 7 and 7 'provided on both sides thereof. The separator plate 7 provided in contact with the anode electrode 4 has a gas flow path 8 for fuel gas, and the separator plate 7 ′ provided in contact with the cathode electrode 5 is provided with a gas flow path 9 for oxidant gas. Is provided.
[0004]
The cooling plate 2 is inserted every one to several cells in order to keep the battery temperature constant. As the cooling means, there are a water cooling method by circulation of cooling water, an air cooling method by air, and the like.
[0005]
Here, a solid polymer electrolyte membrane is used as the electrolyte membrane of the polymer electrolyte fuel cell. For this reason, in the polymer electrolyte fuel cell, the electrical resistivity in the electrolyte membrane is reduced and the proton conductivity is reduced. It is necessary that the electrolyte membrane is sufficiently moistened in order to make full use. In the conventional method, in order to prevent the electrolyte membrane from being dried and to sufficiently wet the electrolyte membrane, a membrane humidification method or a method using a reactive gas having saturated water vapor close to the cell temperature is employed. And as a method of humidifying the reaction gas and using it for a battery, an external humidification method and an internal humidification method are mentioned.
[0006]
In the external humidification method, the reaction gas is blown into a humidification tank provided outside where humidified water flows, and the gas is humidified by passing it through. However, when this method is used, high dew point gas is condensed while flowing the humidified gas from the humidification tank through the pipe and into the battery. The problem is that the structure of the system is complicated and the cost is increased.
[0007]
On the other hand, examples of the internal humidification method include methods described in JP-A-9-35737 and JP-A-9-92309. In Japanese Patent Laid-Open No. 9-35737, a plurality of unit fuel cells and a plurality of heat exchangers through which a heat medium that removes heat generated in the unit fuel cells flows are stacked on both sides of the stacked body. A fuel cell stack with a humidifier for humidifying the reaction gas is described. Japanese Patent Application Laid-Open No. 9-92309 discloses a fuel having means for humidifying a gas that is provided adjacent to each single cell and that is passed through a porous support and a water permeable membrane to a gas flow portion of a separator. A battery stack is described. However, since the temperature of the internal humidification part is usually equal to or lower than the operation temperature of the battery, it is difficult to obtain a humid gas having a high dew point.
[0008]
In addition, in consideration of the efficiency of the entire system in the humidification method described above, it is necessary to use energy to raise the moisture supplied for humidification to a predetermined temperature, which causes the efficiency of the system to be lowered. Is required. Therefore, in order to operate a battery with stable battery characteristics without complicating the battery system, it is desirable that the polymer battery be capable of stable operation by supplying a low humidified gas. Further, if the supplied gas is not humidified and used for the battery as described above, but the gas is supplied to the battery without being humidified and operation is possible, a humidifying part such as a humidifying tank is not necessary. Further, the battery system can be simplified and the cost can be reduced, which is more preferable.
[0009]
[Problems to be solved by the invention]
However, in the low humidification operation, the MEA (membrane electrode assembly) is dried at the gas inlet. A dry cell of MEA increases cell internal resistance and degrades cell characteristics. The object of the present invention is to enable stable battery operation even under low humidification conditions by improving the cell structure.
[0010]
[Means for Solving the Problems]
In order to stably operate the battery even in the above problem, that is, in the low humidification operation, by setting the wet side electrode temperature higher than the dry side electrode temperature, the inside of the MEA from the wet side electrode to the dry side electrode can be reduced. The water is diffused well and the water is moved inside the MEA to prevent drying.
[0011]
[Means for Solving the Problems]
The polymer electrolyte fuel cell of the present invention has a plurality of single cells in which a separator plate having a gas flow path, an anode electrode, an electrolyte membrane, a cathode electrode, and a separator plate having a gas flow path are sequentially stacked. In the polymer electrolyte fuel cell, a low humidified gas flows through one of the gas flow path of the separator on the anode electrode side and the gas flow path of the separator on the cathode electrode side, and the temperature of the electrode on the side through which the low humidified gas flows is determined. Has means for increasing the temperature of the other electrode.
The polymer electrolyte fuel cell of the present invention includes a plurality of single cells in which a separator plate having a gas flow path, an anode electrode, an electrolyte membrane, a cathode electrode, and a separator plate having a gas flow path are sequentially stacked. In the stacked polymer electrolyte fuel cell, the non-humidified gas flows through each of the gas flow paths, and the cathode electrode temperature is higher than the anode electrode temperature.
[0012]
Further, the low humidified gas flows through one of the gas flow path of the separator on the anode electrode side and the gas flow path of the separator on the cathode electrode side, and the temperature of the other electrode is higher than the temperature of the electrode on the side where the low humidified gas flows. The following means are preferred as means for increasing the temperature and means for increasing the temperature of the cathode electrode to be higher than the temperature of the anode electrode by allowing a non-humidified gas to flow through each gas flow path .
[0013]
1) A separator plate adjacent to an anode electrode and a separator plate adjacent to a cathode electrode, each having a different thermal conductivity, are used.
[0014]
Here, in order to have different thermal conductivities, it is preferable to use glassy carbon for one of the separator plate adjacent to the anode electrode and the separator plate adjacent to the cathode electrode, and graphite for the other. Alternatively, it is also preferable to use graphite in which more resin is impregnated in either one of the separator plate adjacent to the anode electrode and the separator plate adjacent to the cathode electrode.
[0015]
2) Cooling water is allowed to flow separately from the outside of the separator plate adjacent to the anode electrode and the outside of the separator plate adjacent to the cathode electrode, and one cooling water temperature is set higher than the other cooling water temperature.
[0016]
3) Cooling water is allowed to flow separately from the outside of the separator plate adjacent to the anode electrode and the outside of the separator plate adjacent to the cathode electrode, and one cooling water flow rate is made higher than the other cooling water flow rate.
[0017]
4) The cooling plate laminated adjacent to the separator plate has a cooling water flow path only on one side, the central part of the cooling plate is a material having low thermal conductivity, and the outer part of the central part is thermally conductive and The material must have high conductivity.
[0018]
Hereinafter, the present invention will be described in more detail.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is characterized in that the wet-side electrode temperature is made higher than the dry-side electrode temperature in order to stably operate the battery even in the low humidification operation. By providing a temperature difference between the electrodes, it is possible to improve the diffusion of water in the MEA of the electrode on the dry side from the electrode on the wet side, and it is possible to prevent drying by the movement of water inside the MEA. As used herein, “low humidified gas” refers to a gas having a dew point lower than the cell temperature, and “low humidified operation” refers to an operation using a low humidified gas for at least one of the anode and the cathode. .
[0020]
The movement of water inside the MEA due to the temperature difference between the electrodes will be described with reference to FIG. FIG. 5 shows a schematic diagram of the moisture content distribution in the electrolyte membrane.
[0021]
The electrolyte membrane has a feature that it can contain more water at higher temperatures. If the temperature of the wet side electrode a) is higher than that of the dry side electrode b), the electrolyte membrane near the electrode a) can contain more water than the electrolyte membrane near the electrode b). When the a) side is sufficiently humidified, because of the high temperature of a), the electrolyte membrane in the vicinity of a) contains more water than when the temperatures of a) and b) are equal, and as shown in FIG. A large water concentration gradient is created. This concentration gradient facilitates the diffusion of water in the MEA electrolyte membrane from the high temperature electrode a) side to the low temperature b) side. This makes it possible to operate the battery stably even under low humidification conditions.
[0022]
Therefore, when a low humidification gas is used for one electrode, the temperature of the electrode on the side where the low humidification gas flows may be lowered. Further, when the battery is operated using a non-humidified gas, the temperature of the cathode electrode that generates water as a result of the reaction may be set higher than the temperature of the anode electrode.
[0023]
Considering this, the polymer electrolyte fuel cell (stack) of the present invention will be described with reference to FIGS.
[0024]
FIG. 1 is a cross-sectional view of the basic configuration of the polymer electrolyte fuel cell stack as viewed from above, and FIG. 2 is a simplified diagram of the polymer electrolyte fuel cell stack.
[0025]
As shown in FIG. 1, the solid polymer fuel cell of the present invention has a large number of single cells 1 and cooling plates 2 stacked in series, and each single cell 1 is a surface facing each other through the cooling plate 2. Laminated. The single cell 1 is composed of an MEA formed by sandwiching an electrolyte membrane 3 between an anode electrode 4 and a cathode electrode 5, a separator plate 7 having a fuel gas gas flow path 8 and an oxidizing gas (a combination of a fuel gas and an oxidizing gas). Gas separator) 7 having a gas flow path 9.
[0026]
A large number of the single cells 1 and cooling plates 2 are stacked in series, and a current collecting plate 12 and an electrical insulating plate 13 are provided at both ends thereof as shown in FIG. 2, thereby forming a polymer electrolyte fuel cell.
[0027]
Means for providing a temperature difference between the electrodes 4 and 5 obtained from the present invention is mainly divided into two.
[0028]
The first means is to use a material showing different thermal conductivity or a structure showing different thermal conductivity for the separator plates 7 and 7 ′ adjacent to the electrodes 4 and 5. The thermal conductivity of the separator plate adjacent to the dry side electrode is increased, while the thermal conductivity of the separator plate adjacent to the wet side electrode is decreased. By adopting such means, the heat generated by the battery reaction cannot be sufficiently removed on the side having poor thermal conductivity, that is, on the wet electrode side, so that a temperature difference is generated between the dry electrode side. Specifically, in order to give different thermal conductivity, different materials are used, such as using graphite for the separator plate having excellent thermal conductivity and using glassy carbon or the like for the separator plate having poor thermal conductivity. . Further, in contrast to both separators using resin-impregnated graphite, a separator having poor thermal conductivity has a structure with different thermal conductivity by increasing the amount of resin impregnation.
[0029]
As a second means for creating a temperature difference between the two electrodes, a difference is not given to the separator plate, but a difference is given to the cooling plate and the cooling water flowing through the cooling plate as described below.
[0030]
The cooling water flowing through the cooling plate having the structure shown in FIG. 3 is used. 3A shows the AA ′ portion of FIG. 1, and FIG. 3B shows a perspective view of the cooling plate 2 viewed from the separator plate 7 side. The cooling plate 2 has a cooling water channel 10 on the surface that contacts the separator plate 7 adjacent to the anode electrode, and the cooling water channel 11 on the surface that contacts the separator plate 7 'adjacent to the cathode electrode. In the cooling water flowing through the cooling water flow paths 10 and 11, a temperature difference between the electrodes is generated by making one cooling water higher than the other cooling water.
[0031]
Alternatively, in the cooling water flowing through the cooling water flow paths 10 and 11, by making one cooling water flow velocity faster than the other cooling water flow velocity, the temperature on the higher flow velocity side becomes lower than the temperature on the slower flow velocity side, and each electrode A temperature difference is produced between them.
[0032]
Furthermore, a cooling plate having a structure as shown in FIG. 4 can be used. 4A shows the AA ′ portion of FIG. 1, and FIG. 4B shows a cross-sectional view of the cooling plate 2 viewed from the separator plate 7 side. The cooling plate 2 has a cooling water flow path 10 on the surface in contact with the separator plate 7 adjacent to the anode electrode. A material having low thermal conductivity such as plastic is used for the central portion 2a of the cooling plate 2, and a material having high thermal conductivity and conductivity such as carbon is used for the outer portion 2b of the central portion. By doing so, the temperature on the anode electrode side in direct contact with the cooling water flow path 10 is lowered, and a temperature difference is generated between the electrodes. Further, here, the cooling water flow path 10 is provided only on the anode electrode side. However, if the cathode electrode side is dry, the cooling water flow path is provided on the cathode electrode side instead of the anode electrode side. You can also.
[0033]
The polymer electrolyte fuel cell of the present invention has, of course, a first means for making a difference between both separator plates and a means for simultaneously providing a second means characteristic for the cooling plate and the cooling water flowing therethrough. May be.
[0034]
In addition, although the means for giving a temperature difference between the electrodes has been described above, the present invention is not limited to this, and the solid polymer fuel cell of the present invention has other means as long as there is a temperature difference between the electrodes. You may have.
[0035]
【Example】
[Example 1]
As shown in FIG. 1, an MEA is formed by sandwiching an electrolyte membrane between an anode electrode and a cathode electrode, this MEA is sandwiched between separator plates having a reaction gas flow path, and a plurality of these are stacked as a single cell to form a solid polymer. Type fuel cell was manufactured. At this time, glassy carbon was used as a material for a separator plate in contact with an electrode for increasing the temperature of the electrode, and graphite was used as a separator plate adjacent to the other electrode. This battery produced a temperature difference between both electrodes.
[0036]
Next, using this polymer electrolyte fuel cell, a test was conducted in a cathode low humidification operation. That is, a separator plate using graphite was adjacent to the cathode electrode, and an electrode using glassy carbon was adjacent to the anode electrode. The result is shown in FIG. Compared with the operation of the conventional battery with no temperature difference shown in a), when the battery with the temperature difference of the present invention shown in i) is operated, a high cell characteristic is obtained. The deterioration of characteristics was also reduced.
[0037]
Next, the test was performed in a non-humidified operation using the reaction gas without humidification. At this time, the separator plate using glassy carbon was used as a separator plate adjacent to the cathode electrode capable of generating water, and the cathode electrode temperature was increased, so that the cell voltage could not be lowered.
[0038]
[Example 2]
As shown in FIG. 1, an MEA is formed by sandwiching an electrolyte membrane with electrodes, this MEA is sandwiched between separator plates having a reaction gas flow path made of graphite, and a plurality of these are stacked as a single cell. As shown in Fig. 2, a polymer electrolyte fuel cell was produced by sandwiching cooling water channels between cooling plates provided on both sides. A temperature difference was obtained between the electrodes by flowing cooling water having different temperatures through the cooling water flow paths of the manufactured polymer electrolyte fuel cells.
[0039]
Next, using this polymer electrolyte fuel cell, a test was conducted in a cathode low humidification operation. That is, cooling water having a low temperature was allowed to flow through the cooling water passage on the cathode electrode side, and cooling water having a high temperature was allowed to flow through the cooling water passage on the anode electrode side. And the result similar to Example 1 was obtained.
[0040]
Next, the test was performed in a non-humidified operation using the reaction gas without humidification. At this time, high-temperature cooling water was allowed to flow through the cooling water flow path on the cathode electrode side where generated water was generated. By doing in this way, it was able to drive | operate without the cell voltage fall.
[0041]
[Example 3]
As shown in FIG. 1, an MEA is formed by sandwiching an electrolyte membrane with electrodes, this MEA is sandwiched between separator plates having a reaction gas flow path made of graphite, and this is laminated as a single cell. As shown, a polymer electrolyte fuel cell was produced by sandwiching cooling water channels between cooling plates provided on both sides. A temperature difference was obtained between the two electrodes by flowing cooling water having different flow rates into the cooling water flow path of the manufactured polymer electrolyte fuel cell.
[0042]
Next, using this polymer electrolyte fuel cell, a test was conducted in a cathode low humidification operation. That is, cooling water having a flow rate higher than the flow rate of the cooling water flowing through the cooling water channel on the anode electrode side was passed through the cooling water channel on the cathode electrode side. And the result similar to Example 1 was obtained.
[0043]
Next, the test was performed in a non-humidified operation using the reaction gas without humidification. At this time, cooling water having a flow rate slower than the flow rate of the cooling water flowing in the anode electrode side cooling water flow channel was passed through the cooling water flow channel on the cathode electrode side where generated water was generated. By doing in this way, it was able to drive | operate without the cell voltage fall.
[0044]
[Example 4]
As shown in FIG. 1, an MEA is formed by sandwiching an electrolyte membrane with electrodes, this MEA is sandwiched between separator plates having a reaction gas flow path made of graphite, and this is laminated as a single cell, and both sides thereof are shown in FIG. Thus, a polymer electrolyte fuel cell was manufactured by sandwiching a cooling water channel between cooling plates provided only on one side. The cooling plate has a central portion made of plastic and a peripheral portion made of carbon. By flowing cooling water through the cooling water channel of the manufactured polymer electrolyte fuel cell, the electrode temperature on the side where the cooling water channel was provided could be lowered, and a temperature difference was obtained between the two electrodes.
[0045]
Next, using this polymer electrolyte fuel cell, a test was conducted in a cathode low humidification operation. That is, the cooling plates were laminated so that the surface on which the cooling water flow path on the cathode electrode side was provided. And the result similar to Example 1 was obtained.
[0046]
Next, the test was performed in a non-humidified operation using the reaction gas without humidification. At this time, the cooling plate was laminated so that the surface not provided with the cooling water flow path was on the cathode electrode side where the generated water was formed, and the cooling water was allowed to flow. By doing in this way, it was able to drive | operate without the cell voltage fall.
[0047]
【The invention's effect】
As described above, by making a difference between the temperature of the anode electrode and the temperature of the cathode electrode, the movement of water in the MEA was promoted, and the battery could be stably operated even in the low humidification operation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view from the upper surface of a part of a fuel cell stack.
FIG. 2 is a cross-sectional view from the upper surface of the fuel cell stack.
3A and 3B show a cooling plate in Example 2 and Example 3, wherein FIG. 3A is a cross-sectional view from the top surface, and FIG. 3B is a perspective view of the cooling plate as viewed from the separator 7 side.
4A and 4B show a cooling plate in Example 4, wherein FIG. 4A is a cross-sectional view from the top surface, and FIG. 4B is a cross-sectional view of the cooling plate as viewed from the separator 7 side.
FIG. 5 is a diagram illustrating a concentration gradient of water with temperature in an electrolyte membrane.
FIG. 6 is a diagram showing a comparison between cell characteristics of the present invention and conventional cell characteristics in a non-humidified operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single cell 2 Cooling plate 2a Center part 2b Outer part 3 Electrolyte membrane 4 Anode electrode 5 Cathode electrode 6 MEA (membrane electrode assembly)
7, 7 'Separator plate 8 Gas flow path 9 Gas flow path 10, 11 Cooling water flow path 12 Current collecting plate 13 Electrical insulating plate

Claims (8)

ガス流路を有するセパレータ板と、アノード電極と、電解質膜と、カソード電極と、ガス流路を有するセパレータ板とを順次積層した単セルを複数積層した固体高分子型燃料電池において、アノード電極側のセパレータのガス流路およびカソード電極側のセパレータのガス流路の一方に低加湿ガスが流通し、前記低加湿ガスが流通する側の電極の温度よりも他方の電極の温度を高くする手段を有することを特徴とする固体高分子型燃料電池。A separator plate having a gas flow passage, an anode electrode, an electrolyte membrane, and the cathode electrode, the solid polymer type fuel cell stacking a plurality of sequentially stacked unit cells and a separator plate having a gas flow channel, the anode electrode side A means for increasing the temperature of the other electrode higher than the temperature of the electrode on the side where the low-humidified gas flows, wherein the low-humidified gas flows through one of the separator gas flow path and the cathode electrode-side separator gas flow path. A solid polymer fuel cell, comprising: ガス流路を有するセパレータ板と、アノード電極と、電解質膜と、カソード電極と、ガス流路を有するセパレータ板とを順次積層した単セルを複数積層した固体高分子型燃料電池において、前記各ガス流路に無加湿ガスが流通し、カソード電極の温度をアノード電極の温度よりも高くする手段を有することを特徴とする固体高分子型燃料電池。A separator plate having a gas flow passage, an anode electrode, an electrolyte membrane, and the cathode electrode, the solid polymer type fuel cell stacking a plurality of sequentially stacked unit cells and a separator plate having a gas flow path, wherein each gas A solid polymer fuel cell comprising means for allowing a non-humidified gas to flow through a flow path, and setting a temperature of a cathode electrode higher than a temperature of an anode electrode . 前記手段が、それぞれ異なる熱伝導率を有する前記アノード電極に隣接するセパレータ板および前記カソード電極に隣接するセパレータ板を用いることであることを特徴とする請求項1または2に記載の固体高分子型燃料電池。 3. The solid polymer type according to claim 1 , wherein the means is to use a separator plate adjacent to the anode electrode and a separator plate adjacent to the cathode electrode , each having a different thermal conductivity. Fuel cell. 前記アノード電極に隣接するセパレータ板および前記カソード電極に隣接するセパレータ板のいずれか一方にグラッシーカーボンを用い、他方にグラファイトを用いることを特徴とする請求項3に記載の固体高分子型燃料電池。4. The polymer electrolyte fuel cell according to claim 3, wherein glassy carbon is used for one of the separator plate adjacent to the anode electrode and the separator plate adjacent to the cathode electrode, and graphite is used for the other. 前記アノード電極に隣接するセパレータ板および前記カソード電極に隣接するセパレータ板のいずれか一方により多くの樹脂を含浸させた黒鉛を用いることを特徴とする請求項3に記載の固体高分子型燃料電池。4. The polymer electrolyte fuel cell according to claim 3, wherein graphite impregnated with a large amount of resin is used in one of a separator plate adjacent to the anode electrode and a separator plate adjacent to the cathode electrode. 前記手段が、前記アノード電極に隣接するセパレータ板の外側と、前記カソード電極に隣接するセパレータ板の外側に、冷却水をそれぞれ別系統で流し、一方の冷却水温度を他方の冷却水温度より高くすることであることを特徴とする請求項1から5のいずれかに記載の固体高分子型燃料電池。 The means allows cooling water to flow separately from the outside of the separator plate adjacent to the anode electrode and the outside of the separator plate adjacent to the cathode electrode, so that one cooling water temperature is higher than the other cooling water temperature. 6. The polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein 前記手段が、前記アノード電極に隣接するセパレータ板の外側および前記カソード電極に隣接するセパレータ板の外側に、冷却水をそれぞれ別系統で流し、一方の冷却水流速を他方の冷却水流速より速くすることであることを特徴とする請求項1から5のいずれかに記載の固体高分子型燃料電池。 The means causes cooling water to flow separately from the outside of the separator plate adjacent to the anode electrode and the outside of the separator plate adjacent to the cathode electrode, and makes one cooling water flow rate faster than the other cooling water flow rate. 6. The polymer electrolyte fuel cell according to claim 1, wherein 前記手段が、セパレータ板に隣接して積層された冷却板が冷却水流路を片側のみに有し、前記冷却板の中央部が熱伝導性の低い材料であり、その中央部の外側部分が熱伝導性および導電性の高い材料であることを特徴とする請求項1から5のいずれかに記載の固体高分子型燃料電池。 The means includes a cooling plate laminated adjacent to the separator plate having a cooling water channel only on one side, the central portion of the cooling plate is a material having low thermal conductivity, and the outer portion of the central portion is heated. 6. The polymer electrolyte fuel cell according to claim 1, which is a material having high conductivity and high conductivity.
JP18537599A 1999-06-30 1999-06-30 Polymer electrolyte fuel cell Expired - Fee Related JP3734134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18537599A JP3734134B2 (en) 1999-06-30 1999-06-30 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18537599A JP3734134B2 (en) 1999-06-30 1999-06-30 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001015138A JP2001015138A (en) 2001-01-19
JP3734134B2 true JP3734134B2 (en) 2006-01-11

Family

ID=16169711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18537599A Expired - Fee Related JP3734134B2 (en) 1999-06-30 1999-06-30 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3734134B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231261A (en) * 2001-01-26 2002-08-16 Unitika Ltd Separator for fuel cell and its manufacturing method
JP2002270197A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cull
US20040096715A1 (en) * 2002-11-14 2004-05-20 3M Innovative Properties Company Liquid cooled fuel cell stack
US20040247967A1 (en) * 2003-06-06 2004-12-09 Gennady Resnick Maintaining PEM fuel cell performance with sub-freezing boot strap starts
US7964315B2 (en) 2003-09-12 2011-06-21 Bdf Ip Holdings Ltd. Shutdown methods and designs for fuel cell stacks
KR101131451B1 (en) * 2003-09-12 2012-04-23 비디에프 아이피 홀딩스 리미티드 Shutdown methods and designs for fuel cell stacks
CN100454623C (en) * 2004-04-28 2009-01-21 日产自动车株式会社 Membrane-electrode assembly for fuel cell and fuel cell using same
EP1742282B2 (en) 2004-04-28 2014-12-31 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell using same
US7955739B2 (en) 2005-03-11 2011-06-07 Bdf Ip Holdings Ltd. Shutdown methods and designs for fuel cell stacks
JP5189269B2 (en) * 2006-07-26 2013-04-24 トヨタ自動車株式会社 Fuel cell
JP5298412B2 (en) 2006-08-24 2013-09-25 トヨタ自動車株式会社 Fuel cell
JP2009205859A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Molding material for heat conductive parts, manufacturing method of heat conductive parts, and heat conductive parts
WO2020010361A1 (en) * 2018-07-06 2020-01-09 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Battery internal short circuit trigger and improved performance method

Also Published As

Publication number Publication date
JP2001015138A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
US5773160A (en) Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
JP3610892B2 (en) Fuel cell
JPH08273687A (en) Supply gas humidifier of fuel cell
JP3734134B2 (en) Polymer electrolyte fuel cell
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP4880836B2 (en) Fuel cell stack and reaction gas supply method
JP4632917B2 (en) Polymer electrolyte fuel cell
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JPWO2002047190A1 (en) Polymer electrolyte fuel cell and method of operating the same
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JP2001357869A (en) Solid high-polymer type fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JP2001325971A (en) Solid polymer fuel cell
JP2005142001A (en) Fuel cell having stack structure
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP2009043688A (en) Fuel cell
JPH08306375A (en) Solid polymer type fuel sell
JP3780775B2 (en) Solid polymer electrolyte fuel cell
JPH1173979A (en) Solid polymer electrolyte fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees