JP3717287B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP3717287B2
JP3717287B2 JP27698597A JP27698597A JP3717287B2 JP 3717287 B2 JP3717287 B2 JP 3717287B2 JP 27698597 A JP27698597 A JP 27698597A JP 27698597 A JP27698597 A JP 27698597A JP 3717287 B2 JP3717287 B2 JP 3717287B2
Authority
JP
Japan
Prior art keywords
seismic isolation
sliding plate
bearing device
flexible support
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27698597A
Other languages
Japanese (ja)
Other versions
JPH11108113A (en
Inventor
善弘 添田
博幸 海藤
幸夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP27698597A priority Critical patent/JP3717287B2/en
Publication of JPH11108113A publication Critical patent/JPH11108113A/en
Application granted granted Critical
Publication of JP3717287B2 publication Critical patent/JP3717287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は上下に間隔を隔てた2つの部材間に取付けられ、これらの2つの部材間の相対的な変位による運動エネルギーを吸収するエネルギー吸収体、特に橋梁、ビル、家屋等の土木建築物の免震支承装置であって、外部からの地震動等の振動エネルギーを吸収させて上部構造体を地震動等の振動から保護する技術に関する。
【0002】
【従来の技術】
従来、免震装置としての「鉛プラグ入積層ゴム支承」が知られているが、これは、エネルギー吸収材である円柱形状の鉛プラグを変形させるのに積層ゴムの剪断変形を利用するものである。鉛プラグは、ゴムと中間鋼板とを交互に積層したゴム積層体の中央部に上下方向に貫く空孔を開け、この空孔の中に鉛プラグを流し込みや圧入で封入したものである。ゴムと中間鋼板の積層体は、土木建築物の基礎部分や中間部分を鉛直方向には比較的硬いが、水平方向についての二次元の移動には自由度があり、剪断力に対して弾性的な変形を許容する作用をする。一方、エネルギー吸収材としての鉛プラグはダンパーとして機能を果たし、剪断方向の振動エネルギーを吸収して振動を抑制する作用をする。この種の「鉛プラグ入積層ゴム支承」は、特開昭52−49609号公報に「周期的剪断エネルギー吸収体」として開示されている。
【0003】
ゴム積層体の空孔に鉛プラグを封入する際、空孔の体積より鉛の体積を数%程度大きくしておき、鉛プラグに対して圧力を加えることにより中間鋼板が鉛に食い込むように「インターロック」させることが、鉛の塑性変形による減衰効果を発揮させる上で重要な要素となる。
このようにして構成された「鉛プラグ入積層ゴム支承」は、比較的小さな数10%程度の剪断歪みの範囲内では安定したエネルギー吸収材として機能するが、剪断歪の大きさは+/−100 %程度が限界であり、無理に大きな剪断歪みを与えると繰り返し変形の間に鉛プラグにヒビ割れが入って破壊するに至り、エネルギー吸収能力を喪失するという欠点があった。ゴム自体は400 %以上の剪断歪みまで変形可能であるが、金属の鉛はこのような大きな剪断歪みに耐えきれずに徐々に柔らかいゴム層に入り込んで初期の形とかけ離れた形状になり破断にいたる。これを防ぐために、中間鋼板の枚数を20〜40枚程度に増やすことが行われている。
【0004】
鉛プラグが繰り返し変形を受ける間にヒビ割れが生じたり、エネルギー吸収能力を喪失するという問題に対処するために、特開昭59−62742号公報の「エネルギー吸収装置」、特開昭61−176776号公報の「周期的せん断エネルギー吸収装置」には、鉛プラグの周囲にこの鉛プラグの変形を許容する可撓性の壁で構成された拘束手段を設けることが提案されている。しかしながら、これらの拘束手段は、鉛プラグの周囲に螺旋状に巻かれた帯材からなるもので、剪断歪みが非常に大きい場合には対応困難であった。
【0005】
一方、鉛プラグをゴム積層体に挿入するのではなく、鉛自体の塑性変形によるエネルギー吸収効果を利用して、鉛プラグ単体でダンパーとして使うことも行われている。この場合も、鉛の塑性変形による破壊を防止する為に内部に補強材を埋め込んだり(特開昭61−290245号公報)、表面を螺旋状のワイヤで被覆したり(特開昭61−294230号公報)、外周を径方向の相対移動を規制する鋼製リングで覆ったり(特開昭61−294232号公報)、外周を密接して複数の鋼体リングで積層状態に装着したり(特開昭61−294234号公報)、外周を断面がS字形の帯鋼板を螺旋状に巻き付けたり(特開昭62−274124号公報)することが提案されている。しかしながら、いずれも、長期間にわたって鉛を破断防止するには到っておらず、若干の延命効果を得るレベルに留まっている。
【0006】
また、ゴム等の可撓性材料からなる弾性支持体の鉛直方向に沿った中空部に、複数枚の摺動板を水平方向に摺動自在に積層し、平常時において荷重を弾性支持体だけでなく、摺動板の積層体によっても支持させるようにした防振装置が提案されており(実開昭63−102806号公報)、更に、弾性支持体と摺動板の積層体との間に粘性物質を充填した防振装置も提案されている(実開昭63−102807号公報)。
【0007】
【発明が解決しようとする課題】
ゴムと中間剛性板とを上下方向に交互に積層してなる可撓性支承体である弾性支持体と、複数枚の摺動板を水平方向に摺動自在に積層した摺動板の積層体とによって、橋梁、ビル、家屋等の土木建築物を含む2つの部材間を支持する従来の免震装置において、一般に、地震による水平変位が生じたときでも座屈しない高さと外径寸法をもつ形状に成形されている。
【0008】
また、例えば実開昭63−102806号公報、実開昭63−102807号公報に開示されている、防振装置においても、ゴム等の可撓性材料からなる弾性支持体による支承に加えて複数の摺動板の積層体により荷重を分担して支持し、摺動板の摩擦力により振動減衰効果を与えているが、従来のかかる防振装置では充分な振動減衰効果を発揮させることは出来なかった。
【0009】
そこで、本発明では、免震支承装置に良好な振動減衰性能と最適なトリガー機能を与えることにより、軽微な地震動に対しては、可撓性支承体の振動減衰性能で構造物に伝えることなく吸収し、強度の地震動に対しては、弾塑性部材・摺動板積層体・可撓性支承体のすべての振動減衰性能で構造物に振動を伝えることなく吸収する免震支承装置で、この地震動に対する免震支承装置の性能発現を支承自体に設計可能である免震支承装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
このような課題を達成するために、本発明では、ゴム等のエラストマー層と中間剛性板とを上下方向に交互に積層してなる可撓性支承体と、鉄合金、銅若しくはその合金、ポリテトラフルオロエチレン、黒鉛のいずれか1又は複数から成る摺動板を上下方向に積み重ねた摺動板積層体と、を具備し、該摺動板積層体は前記可撓性支承体に取り囲まれるように配置されており、これらの両者が共同して荷重を支える構造とし、前記摺動板積層体の摺動体の幾つかは他の摺動体と摩擦係数の異なる材質から成ることを特徴とする免震支承装置が提供される。
【0011】
この免震支承装置によれば、摺動板が鉄合金、銅若しくはその合金、ポリテトラフルオロエチレン、黒鉛のように摩擦係数が比較的高く、且つ鉛直方向の受圧力の高い材料で形成されているので、可撓性支承体に水平方向の変位が生じた際に、エラストマー層と摺動板積層体が共に作用する為、構造物に対して振動を伝えることなく吸収し、地震動に対しては十分な減衰効果を生じる。
【0012】
また、前記可撓性支承体に上下方向に貫通した中空部が設けられ、該中空部の内部に前記摺動板積層体が配置されていることを特徴とする。この場合において、前記摺動板は円板又は環状板であり、該摺動板の積層数は前記中間剛性板の積層数と同数若しくは多数であることが好ましい。
【0013】
前記エラストマー層が架橋した汎用ゴム、特殊ゴム、ウレタン、熱可塑性エラストマー、若しくは加硫ゴムを分散させた熱可塑性エラストマーであることが好ましい。一方、前記中間剛性板は鉄又は鉄合金の板からなる。
前記エラストマー層が前記中間剛性板に加硫接着、常温接着若しくは他の方法で固着されるのが好ましい。
【0014】
また、本発明は、ゴム等のエラストマーを主体とする可撓性支承体と、該可撓性支承体を上下方向に貫通して設けた中空部に該中空部の内周との間で僅かな隙間をもって挿入された、環状摺動板を互いに摺動可能となるように上下方向に積み重ねた摺動板積層体と、該摺動板積層体の中心孔を上下方向に貫通するように挿入された運動エネルギーを吸収する弾塑性部材と、から成り、前記可撓性支承体と摺動板積層体とが共同して荷重を支える構造としたことを特徴とする免震支承装置が提供される。
【0015】
この免震支承装置によれば、更に、振動に対する減衰特性に優れた、鉛等からなる弾塑性部材が摺動板積層体の中心孔に挿入されているので、可撓性支承体に水平方向の変位が生じた際のエネルギー減衰効果が、摺動板積層体によるものと弾塑性部材によるものと二重に作用することとなり、より大きな振動減衰効果を発揮させることができる。
【0016】
また、可撓性支承体の中空部の内周面と摺動板の間に僅かな隙間があるので、可撓性支承体の中空部に積層されている環状摺動板は可撓性支承体に水平変位が生じても、極めて軽微の地震である場合のようにその水平方向の変位が非常に僅かである場合は、環状摺動板自体はその摩擦力も影響して変位を生じないこととなり、有効なトリガー機能が作用する。
【0017】
この場合においても、前記環状摺動板は、鉄合金、銅若しくはその合金、ポリテトラフルオロエチレン、黒鉛のいずれか1又は複数から成るのが好ましい。また、同様に、前記可撓性支承体はゴム等のエラストマー層と中間剛性板とを上下方向に交互に積層してなる可撓性支承体であることが好ましい。
前記可撓性支承体の中間剛性板の中空部の内径をe、前記摺動板の外径dとした時、これらの関係を次のとおりとする。
【0018】
0<(e−d)/d<0.3、
好ましくは、0.01<(e−d)/d<0.1
また、前記エラストマー層の厚さの総和をx、前記中間剛性板の厚さの総和をy、前記環状摺動板の厚さをa、そのリング幅(外径−内径/2)をbとした時、これらの関係を次のとおりとする。
【0019】
3*x/(x+y)<b/a
好ましくは、4*x/(x+y)<b/a
更に、また、前記摺動板の内径を、前記弾塑性部材の外径をpとした時、これらの関係を次のとおりとする。
0<(c−p)/p<0.3
好ましくは、0.01<(c−p)/p<0.15
可撓性支承体の中間剛性板、摺動板及び弾塑性部材の寸法を上記のように規定することにより、これらの三者間の隙間等が最適の範囲に設定できることとなる。可撓性支承体に水平方向の変位が生じた際に、変位が微少である場合は、その変位が弾塑性部材の一部と摺動板積層体及び中間剛性板とエラストマー層の積層部位に伝わる。一方、変位が大である場合は、その変位が弾塑性部材の全体と摺動板積層体及び中間剛性板とエラストマー層の積層部位に伝わる。上記変位の大小の区別は、前記式0<(c−p)/p<0.3で規定され、この設定により、水平方向の変位を与える際に最適なトリガー効果を与えることができる。
【0020】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
図1は本発明の免震支承装置の第1の実施形態を示す縦断面図である。図において、可撓性支承体10はゴム等の可撓性材料からなる環状の弾性板ないしエラストマー層11と薄肉鋼材からなる中間剛性板12とを交互に多数積層されたものである。
【0021】
エラストマー層11は、架橋した汎用ゴム、特殊ゴム、ウレタン、熱可塑性エラストマー、若しくは加硫ゴムを分散させた熱可塑性エラストマー等からなる。エラストマー層11は、高減衰性を有する組成物に限定されるものではなく、減衰性を有しない若しくは減衰性が小さい組成物でもよい。
中間剛性板12は、鉄又は鉄合金で構成するのが好適である。エラストマー層11と中間剛性板12とは加硫接着、常温接着若しくはその他の方法で互いに固着・積層されている。常温硬化型接着剤としては、1液型でも2液型でも良いが、フェノール系接着剤、ウレタン系接着剤、変性シリコーン接着剤、ゴム系接着剤、シアノアクリレート系接着剤、エポキシ系接着剤等が挙げられる。使用する接着剤の種類は用いるエラストマー及び中間剛性板の種類、必要とされる接着力等に応じて適宜決定される。
【0022】
本発明の中間剛性板鉄合金は、純鉄及び鉄と炭素等からなる合金を指している。従って、本発明の鉄および鉄合金には、純鉄、軟鉄・鋼(普通鋼、炭素鋼、特殊鋼、合金鋼等)・鋳鉄または銑鉄等の鉄鋼等を例示する事が出来る。しかし、本発明で使用される鉄若しくは鉄合金は、これらに限定されるものでは無い。
可撓性支承体10の上端面と下端面にはそれぞれ環状の上面板14と、下面板16を同心状に接着して、中空円筒状に成形される。可撓性支承体10の上面板14と下面板16には、それぞれ受圧板15、17をボルト18、19によって取付け、可撓性支承体10の上下両端を閉塞している。
【0023】
可撓性支承体10の中空部13には、中空部13の高さとほぼ同一の高さに積層した複数枚の摺動板20が可撓性支承体10の中空部13の内周面との間に僅かな隙間25を保って収容されている。この摺動板20は、圧縮力に対して高い受圧力を有する材料、即ち、鉄合金、銅若しくはその合金、ポリテトラフルオロエチレン、黒鉛のいずれかの材料により平板状に成形されており、積層された状態で比較的高い摩擦係数をもって相互に接触していると共に互いに水平方向に摺動できるようになっている。
【0024】
摺動板20はすべて同一の材質のものであっても良いが、摺動板20の幾つかを他の摺動板と摩擦係数の異なる材質のものを選定し、摺動板20の積層体が全体として所望の摩擦力を生ずるように調整することができる。
上記構成の免震支承装置を建物等の構造物と地盤等の床面との間に設置した場合、鉛直方向に負荷される荷重は、平常時の直立状態においては、可撓性支承体10の全平面と、中空部13に積層されている摺動板20の全平面との双方の面積で支持されるから、可撓性支承体10は全荷重を部分的に負担すればよく、可撓性支承体10が受ける圧縮応力は摺動板のない単なる中空体の場合よりも小さくなる。
【0025】
また、地震が発生した場合は、図2及び図3に示すように、可撓性支承体10が水平方向に変位して傾斜するが、これに伴って可撓性支承体10が水平方向の力を受ける側の内周面によって摺動板20に押圧力が加えられるため、この押圧力により摺動板20が相互に摺動しながら水平方向に移動し、可撓性支承体10の変形時の形状と同一形状に傾斜した段階状になる。
【0026】
このように可撓性支承体10が水平方向に変位したときは、固定されている下端面22に対して水平変位した上端面21を鉛直下方に投影した重なり部分の面積24の中、可撓性支承体10の重なり面積24aによって鉛直方向の荷重の一部を可撓性支承体10が支持し、その余の大部分の荷重は可撓性支承体10の重なり面積24aを除いた部分の重なり面積24bによって摺動板20が支持するから、この場合においても可撓性支承体10に生ずる圧縮応力が増大することはない。
【0027】
したがって、可撓性支承体10が中空状に成形されていても、摺動板20を積層しない単なる中空体とは異なり、鉛直荷重による可撓性支持体10の圧縮ひずみの増加が小さいためクリープ現象を大幅に低減することができる。
この免震支承装置の作用時において、可撓性支承体10の中空部に積層されている摺動板20が可撓性支承体10の水平変位に伴って水平移動しても、摺動板20それ自体には原形状態に復元する力はないから、可撓性支承体10の水平ばね定数には何らの影響も与えない。また、その場合において、摺動板20が前述のように鉄合金若しくは銅合金、ポリテトラフルオロエチレン、黒鉛等のように摩擦係数の高い材料からなるので、水平方向に力が加わったとき、摺動板20の摺動によるエネルギー吸収と可撓性支承体10でのエネルギー吸収が同時に生じることとなって、高い振動エネルギー吸収効果を発現することとなる。
【0028】
図4は本発明の免震支承装置の第2の実施形態を示す縦断面図であり、図5は第2の実施形態の作用時の縦断面図である。第1実施形態と同様に、可撓性支承体10はゴム等からなる環状のエラストマー層11と薄肉の中間剛性板12とを交互に多数積層し、上端面と下端面にそれぞれ環状ないしワッシャー状の上面板14と、下面板16を同心状に接着し、それぞれ受圧板15、17をボルト18、19によって取付け、上下両端を閉塞したものである。
【0029】
各摺動板20は、鉄合金若しくは銅合金、ポリテトラフルオロエチレン、黒鉛のいずれか材質からなる点は第1実施形態の場合と同様であるが、第2実施形態では、各摺動板20は環状の薄板、即ちワッシャー状に形成されている。
ワッシャー状摺動板20の積層体によって形成される中心孔32を上下方向に貫通するように運動エネルギーを吸収する「鉛プラグ」と称される鉛からなる弾塑性部材30が挿入される。そして、摺動板20の積層体の中心孔32の内周面と弾塑性部材30との間には僅かな隙間34が残るようにされる。なお、可撓性支承体10の中空部13の内周面と摺動板20の間に僅かな隙間25があるのは第1実施形態の場合と同様である。
【0030】
これらの隙間25及び34は次のように設定される。即ち、図5において各種の寸法を示すが、可撓性支承体10の中間剛性板12の中空部30の内径をe、ワッシャー摺動板20の外径dとした時、これらの関係を次のとおりとする。
0<(e−d)/d<0.3、
好ましくは、0.01<(e−d)/d<0.1
また、ワッシャー状摺動板20の内径をc、弾塑性部材30の外径をpとした時、これらの関係を次のとおりとする。
【0031】
0<(c−p)/p<0.3、
好ましくは、0.01<(c−p)/p<0.15
この免震支承装置の作用時において、可撓性支承体10の中空部13の内周面と摺動板20の間に僅かな隙間25があるので、可撓性支承体10の中空部に積層されているワッシャー状摺動板20は可撓性支承体10に水平変位が生じても、極めて軽微の地震である場合のようにその水平方向の変位が非常に僅かである場合は、ワッシャー状摺動板20自体はその摩擦力にも影響して変位を生じないこととなり、有効なトリガー機能が作用する。
【0032】
更にまた、この実施形態では、ワッシャー状摺動板20の積層体の中心孔32の内周面と弾塑性部材30との間には上述のような僅かな隙間34があるので、ワッシャー状摺動板20の積層体が地震動により水平変位が生じても、それが極めて軽微である場合は、弾塑性部材30には変位を生じないこととなり、トリガー機能が段階的に作用する。
【0033】
次に、この免震支承装置における上下方向の寸法関係は次のように設定するのが好ましい。即ち、可撓性支承体10のエラストマー層11の厚さの総和をx、中間剛性板12の厚さの総和をy、ワッシャー状摺動板の厚さをa、そのリング幅{(外径−内径)/2}をbとした時、これらの関係を次のとおりとする。
3*x/(x+y)<b/a
好ましくは、4*x<(x+y)<b/a
このように規定することで、この図5の示す免震支承装置の作用時において、可撓性支承体10に所定の水平方向の変位が生じても、ワッシャー状摺動板20は座屈を生ずることがなく、且つ鉛からなる弾塑性部材30がワッシャー状摺動板20の積層体の中心孔32からはみ出す恐れはなくなる。なお、図5において、弾塑性部材30の高さhはエラストマー層11の厚さの総和をxと中間剛性板12の厚さの総和yとの和(x+y)に等しいものとする。
【0034】
なお、エラストマー層11の数は2〜200の範囲内に設定され、中間剛性板12の数は上下両端部がエラストマー層とされるため、エラストマー層11の層数より1つ小さい数とされる。
また、エラストマー層11は前述のような高減衰特性を有する組成物または減衰特性を有しないか若しくは減衰特性が小さい組成物であってもよい。エラストマー層の硬さはG100%のとき0.1〜20MPaとなるように選定するのが好ましい。
【0035】
この実施形態では、鉛直方向に負荷される荷重は、平常時の直立状態においては、可撓性支承体10の全平面と、中空部13に積層されているワッシャー状摺動板20の全平面との双方の面積で殆ど支持される。これに対し、弾塑性部材30の面積は比較的小さいので、荷重の負担には余り寄与しないが、可撓性支承体10及びワッシャー状摺動板20の積層体に比べて遙に減衰効果が大きく、減衰効果に寄与している。
【0036】
図7は剪断歪みに対する等価減衰定数の関係を示す。計算値は、建設省土木研究所発行の「道路橋の免震設計法マニュアル」の「第4章 免震装置の設計 4.3 鉛プラグ入り積層ゴムの設計」に記載の等価線形モデルの計算式に基づき算出した結果を示している。一方、実測値は、本発明の支承測定結果を示している。支承の仕様を以下に示す。
実施例1
エラストマー層:G=175%における剪断応力1.2MPa
弾塑性部材:鉛プラグ(直径30mm)
実施例2
エラストマー層:G=175%における剪断応力1.2MPa
弾塑性部材:鉛プラグ(直径21mm)
比較例1
エラストマー層:G=175%における剪断応力1.2MPa
弾塑性部材:鉛プラグ(直径30mm)
比較例2
エラストマー層:G=175%における剪断応力1.2MPa
本発明の環状摺動板は、鉄又はその合金、アルミニウム又はその合金、鉄合金、銅又はその合金、ポリテトラフルオロエチレン、黒鉛の少なくとも1つからなる。ここで、上記鉄合金は、純鉄及び鉄と炭素等からなる合金を指している。従って、本発明の鉄および鉄合金には、純鉄、軟鉄・鋼(普通鋼、炭素鋼、特殊鋼、合金鋼等)・鋳鉄または銑鉄等の鉄鋼等を例示する事が出来るが、これらに限定されるものでは無い。一方、上記銅合金は、Cu−Zn系の黄銅、Cu−Zn−Pb系の鉛入り黄銅、Cu−Zn−Sn系のすず入り黄銅、Cu−Sn−P系のりん青銅、Cu−Al系のアルミニウム青銅、Cu−Ni系のキュプロニッケル、Cu−Ni−Zn系の洋白、Cu−Be系のベリリウム銅、Cu−Ti合金、Cu−Cr合金、Cu−Zr合金、Cu−Sn系のすず青銅等およびこれらに少量の合金元素を添加した合金等を例示することが出来る。しかし、本発明で使用される鉄合金若しくは銅合金は、これらに限定されるものでは無い。更に、摩擦係数を高める手法として、これらの材料の表面に凹凸を付与又は他の材料で表面処理しても構わない。
【0037】
以上、添付図面を参照して本発明の実施形態について詳細に説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の精神ないし範囲内において種々の形態、変形、修正等が可能であることに留意すべきである。
【0038】
【発明の効果】
以上に説明したような、本発明では、免震支承装置に最適なトリガー効果を与えることにより、軽微な地震動に対しては、構造物に対して振動を伝えることなく吸収し、強度の地震動に対しては充分な振動減衰効果を生じさせることができ、各種の建造物に対して有効な免震支承装置が得られる。
【図面の簡単な説明】
【図1】本発明の免震支承装置の第1実施形態の縦断面図である。
【図2】図1に示した可撓性支承体の水平変位時の状態を示す平面図である。
【図3】図2の状態における可撓性支承体及び摺動板積層体の縦断面図である。
【図4】本発明の免震支承装置の第2実施形態の縦断面図である。
【図5】図4に示した可撓性支承体の水平変位時の状態を示す平面図である。
【図6】第2実施形態における免震支承装置の各部分の寸法を示す図であり、(A)は免震支承装置の平面図、(B)はワッシャー状摺動板の断面図、(C)は弾塑性部材の側面及び平面図である。
【図7】剪断歪みに対する等価減衰定数の関係を示す。
【符号の説明】
10…可撓性支承体
11…エラストマー層
12…中間剛性板
13…中空部
14、16…上下面板
15、17…受圧板
20…ワッシャー状摺動板
25…隙間
30…弾塑性部材(鉛プラグ)
32…摺動板積層体の内周
34…隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention is installed between two members spaced vertically, and absorbs kinetic energy due to relative displacement between these two members, particularly for civil engineering buildings such as bridges, buildings, and houses. The present invention relates to a seismic isolation device, which relates to a technique for protecting an upper structure from vibrations such as seismic motion by absorbing vibration energy such as seismic motion from the outside.
[0002]
[Prior art]
Conventionally, “laminated rubber bearings with lead plugs” are known as seismic isolation devices, which use shear deformation of laminated rubber to deform cylindrical lead plugs that are energy absorbers. is there. The lead plug is formed by opening a hole penetrating in the vertical direction in the central portion of a rubber laminate in which rubber and intermediate steel plates are alternately laminated, and enclosing the lead plug into the hole by pouring or press-fitting. The laminated body of rubber and intermediate steel plate is relatively hard in the vertical direction for the foundation and intermediate parts of civil engineering buildings, but has two degrees of freedom in the horizontal direction and is elastic to shear forces. It acts to allow various deformations. On the other hand, the lead plug as an energy absorbing material functions as a damper and acts to suppress vibration by absorbing vibration energy in the shear direction. This type of “laminated rubber bearing with lead plug” is disclosed as “periodic shear energy absorber” in Japanese Patent Application Laid-Open No. 52-49609.
[0003]
When encapsulating lead plugs in the holes of the rubber laminate, the volume of the lead should be about several percent larger than the volume of the holes, and the intermediate steel sheet will bite into the lead by applying pressure to the lead plugs. Interlocking is an important factor for exhibiting the damping effect due to plastic deformation of lead.
The “lead plug-containing laminated rubber bearing” constructed in this way functions as a stable energy absorbing material within a relatively small range of several tens of percent of shear strain, but the magnitude of shear strain is +/−. The limit is about 100%, and if a large shear strain is applied forcibly, the lead plug cracks and breaks during repeated deformation, resulting in a loss of energy absorption capability. The rubber itself can be deformed to a shear strain of 400% or more, but the metal lead can not withstand such a large shear strain and gradually enters the soft rubber layer to become a shape that is far from the initial shape and breaks. It ’s all over. In order to prevent this, the number of intermediate steel plates is increased to about 20 to 40.
[0004]
In order to cope with the problem of cracking or loss of energy absorption capability while the lead plug is repeatedly deformed, Japanese Patent Application Laid-Open No. 59-62742 discloses an “energy absorption device”, Japanese Patent Application Laid-Open No. 61-176676. In the “periodic shear energy absorbing device” disclosed in Japanese Patent Publication No. Hokukai, it is proposed to provide a restraining means composed of a flexible wall that allows deformation of the lead plug around the lead plug. However, these restraining means are made of a band material spirally wound around the lead plug, and it is difficult to cope with the case where the shear strain is very large.
[0005]
On the other hand, instead of inserting the lead plug into the rubber laminate, the lead plug alone is used as a damper by utilizing the energy absorption effect by plastic deformation of the lead itself. In this case as well, a reinforcing material is embedded inside to prevent breakage due to plastic deformation of lead (Japanese Patent Laid-Open No. 61-290245), or the surface is covered with a spiral wire (Japanese Patent Laid-Open No. 61-294230). No.), the outer circumference is covered with a steel ring that restricts the relative movement in the radial direction (Japanese Patent Laid-Open No. Sho 61-294232), and the outer circumference is closely attached with a plurality of steel body rings (specialized) Japanese Laid-Open Patent Publication No. 61-294234), and it has been proposed to wrap a steel strip having an S-shaped outer periphery in a spiral shape (Japanese Patent Laid-Open No. 62-274124). However, none of them has prevented lead from being broken for a long period of time, and has remained at a level where a slight life-prolonging effect is obtained.
[0006]
In addition, a plurality of sliding plates are slidable horizontally in a hollow portion along the vertical direction of an elastic support made of a flexible material such as rubber, and the load is applied only to the elastic support in normal times. In addition, there has been proposed a vibration isolator which is supported by a laminated body of sliding plates (Japanese Utility Model Publication No. 63-102806), and further between the elastic supporting body and the laminated body of sliding plates. An anti-vibration device in which a viscous substance is filled is proposed (Japanese Utility Model Publication No. 63-102807).
[0007]
[Problems to be solved by the invention]
A laminate of an elastic support, which is a flexible support formed by alternately laminating rubber and intermediate rigid plates in the vertical direction, and a sliding plate in which a plurality of sliding plates are slidably laminated in the horizontal direction. In conventional seismic isolation devices that support between two members including civil engineering buildings such as bridges, buildings, houses, etc., in general, they have a height and outer diameter that do not buckle even when a horizontal displacement occurs due to an earthquake. It is molded into a shape.
[0008]
In addition, in the vibration isolator disclosed in, for example, Japanese Utility Model Laid-Open No. 63-102806 and Japanese Utility Model Laid-Open No. 63-102807, in addition to the support by the elastic support made of a flexible material such as rubber, The load is distributed and supported by the laminated body of sliding plates, and the vibration damping effect is given by the frictional force of the sliding plate. However, with such conventional vibration isolator, sufficient vibration damping effect can be exhibited. There wasn't.
[0009]
Therefore, in the present invention, the seismic isolation bearing device is provided with good vibration damping performance and an optimal trigger function, so that slight earthquake motion can be transmitted to the structure with the vibration damping performance of the flexible bearing. This is a seismic isolation bearing device that absorbs and absorbs strong earthquake vibrations without transmitting vibrations to the structure with all vibration damping performances of elastic-plastic members, sliding plate laminates and flexible bearings. An object of the present invention is to provide a seismic isolation bearing device that can design the performance expression of the seismic isolation bearing device against seismic motion in the bearing itself.
[0010]
[Means for Solving the Problems]
In order to achieve such a problem, in the present invention, a flexible support formed by alternately laminating elastomer layers such as rubber and intermediate rigid plates in the vertical direction, and an iron alloy, copper or an alloy thereof, poly A sliding plate laminate in which sliding plates made of one or more of tetrafluoroethylene and graphite are stacked in the vertical direction, and the sliding plate laminate is surrounded by the flexible support body. The slide plate laminate has a structure in which some of the sliding bodies are made of a material having a different friction coefficient from that of the other sliding bodies. A seismic bearing device is provided.
[0011]
According to this seismic isolation bearing device, the sliding plate is made of a material having a relatively high friction coefficient and high vertical pressure, such as iron alloy, copper or its alloy, polytetrafluoroethylene, and graphite. Therefore, when a horizontal displacement occurs in the flexible bearing body, the elastomer layer and the sliding plate laminate work together, so it absorbs without transmitting vibration to the structure and resists earthquake motion. Produces a sufficient damping effect.
[0012]
Moreover, the flexible support body is provided with a hollow portion penetrating in the vertical direction, and the sliding plate laminate is disposed inside the hollow portion. In this case, the sliding plate is preferably a circular plate or an annular plate, and the number of stacked sliding plates is preferably the same as or larger than the number of stacked intermediate rigid plates.
[0013]
The elastomer layer is preferably a general-purpose rubber, a special rubber, a urethane, a thermoplastic elastomer, or a thermoplastic elastomer in which a vulcanized rubber is dispersed. On the other hand, the intermediate rigid plate is made of iron or an iron alloy plate.
It is preferable that the elastomer layer is fixed to the intermediate rigid plate by vulcanization adhesion, room temperature adhesion, or other methods.
[0014]
Further, the present invention provides a flexible bearing body mainly composed of an elastomer such as rubber, and a hollow portion formed by penetrating the flexible bearing body in the vertical direction between the inner periphery of the hollow portion. Inserted so as to penetrate vertically through the center hole of the sliding plate laminate inserted in a vertical direction so that the annular sliding plates can be slid relative to each other. An elasto-plastic member that absorbs kinetic energy, and a structure that supports the load in cooperation with the flexible support body and the sliding plate laminate is provided. The
[0015]
According to this seismic isolation bearing device, an elastic-plastic member made of lead or the like having excellent damping characteristics against vibration is inserted into the center hole of the sliding plate laminate, so that the flexible bearing body has a horizontal direction. The energy attenuating effect when this displacement occurs acts in a double manner on the sliding plate laminate and on the elastic-plastic member, so that a greater vibration attenuating effect can be exhibited.
[0016]
In addition, since there is a slight gap between the inner peripheral surface of the hollow portion of the flexible bearing body and the sliding plate, the annular sliding plate stacked on the hollow portion of the flexible bearing body is replaced with the flexible bearing body. Even if a horizontal displacement occurs, if the displacement in the horizontal direction is very slight, as in the case of an extremely slight earthquake, the annular sliding plate itself will not be displaced due to its frictional force, An effective trigger function is activated.
[0017]
Also in this case, the annular sliding plate is preferably made of one or more of iron alloy, copper or its alloy, polytetrafluoroethylene, and graphite. Similarly, the flexible support is preferably a flexible support formed by alternately laminating elastomer layers such as rubber and intermediate rigid plates in the vertical direction.
When the inner diameter of the hollow portion of the intermediate rigid plate of the flexible support is e and the outer diameter d of the sliding plate, these relationships are as follows.
[0018]
0 <(ed) / d <0.3,
Preferably, 0.01 <(ed) / d <0.1
Also, x is the total thickness of the elastomer layer, y is the total thickness of the intermediate rigid plate, a is the thickness of the annular sliding plate, and b is its ring width (outer diameter-inner diameter / 2). The relationship is as follows.
[0019]
3 * x / (x + y) <b / a
Preferably, 4 * x / (x + y) <b / a
Further, when the inner diameter of the sliding plate is c 1 and the outer diameter of the elastic-plastic member is p, these relationships are as follows.
0 <(cp) / p <0.3
Preferably, 0.01 <(cp) / p <0.15
By defining the dimensions of the intermediate rigid plate, the sliding plate, and the elastic-plastic member of the flexible support body as described above, the gap between these three members can be set within the optimum range. When the displacement in the horizontal direction is small in the flexible support body, if the displacement is very small, the displacement is applied to a part of the elastic-plastic member, the sliding plate laminate, the intermediate rigid plate, and the elastomer layer. It is transmitted. On the other hand, when the displacement is large, the displacement is transmitted to the entire elastic-plastic member, the sliding plate laminate, the intermediate rigid plate, and the laminated portion of the elastomer layer. The magnitude of the displacement is defined by the above equation 0 <(cp) / p <0.3. With this setting, an optimal trigger effect can be given when applying a horizontal displacement.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of the seismic isolation bearing device of the present invention. In the figure, a flexible support 10 is formed by laminating a large number of annular elastic plates or elastomer layers 11 made of a flexible material such as rubber and intermediate rigid plates 12 made of a thin steel material.
[0021]
The elastomer layer 11 is made of a crosslinked general-purpose rubber, special rubber, urethane, thermoplastic elastomer, or thermoplastic elastomer in which vulcanized rubber is dispersed. The elastomer layer 11 is not limited to a composition having a high damping property, and may be a composition having no damping property or a small damping property.
The intermediate rigid plate 12 is preferably made of iron or an iron alloy. The elastomer layer 11 and the intermediate rigid plate 12 are fixed to each other and laminated by vulcanization adhesion, room temperature adhesion, or other methods. The room-temperature curable adhesive may be one-pack type or two-pack type, but phenol adhesive, urethane adhesive, modified silicone adhesive, rubber adhesive, cyanoacrylate adhesive, epoxy adhesive, etc. Is mentioned. The type of adhesive used is appropriately determined according to the type of elastomer and intermediate rigid plate used, the required adhesive strength, and the like.
[0022]
The intermediate rigid plate iron alloy of the present invention refers to an alloy made of pure iron or iron and carbon. Therefore, examples of the iron and iron alloy of the present invention include pure iron, soft iron / steel (ordinary steel, carbon steel, special steel, alloy steel, etc.), iron and steel such as cast iron and pig iron. However, the iron or iron alloy used in the present invention is not limited to these.
An annular upper surface plate 14 and a lower surface plate 16 are concentrically bonded to the upper end surface and the lower end surface of the flexible support body 10 to form a hollow cylinder. Pressure receiving plates 15 and 17 are attached to the upper surface plate 14 and the lower surface plate 16 of the flexible support body 10 by bolts 18 and 19, respectively, and the upper and lower ends of the flexible support body 10 are closed.
[0023]
In the hollow portion 13 of the flexible support body 10, a plurality of sliding plates 20 stacked at almost the same height as the hollow portion 13 are connected to the inner peripheral surface of the hollow portion 13 of the flexible support body 10. Are accommodated with a slight gap 25 between them. The sliding plate 20 is formed into a flat plate shape from a material having a high pressure with respect to a compressive force, that is, an iron alloy, copper or an alloy thereof, polytetrafluoroethylene, or graphite. In this state, they are in contact with each other with a relatively high coefficient of friction and can slide in the horizontal direction.
[0024]
All of the sliding plates 20 may be made of the same material, but some of the sliding plates 20 are selected from materials having a different friction coefficient from other sliding plates, and a laminated body of the sliding plates 20 is used. Can be adjusted to produce the desired frictional force as a whole.
When the seismic isolation bearing device having the above configuration is installed between a structure such as a building and a floor surface such as the ground, the load applied in the vertical direction is the flexible bearing 10 in a normal upright state. Therefore, the flexible support 10 only needs to partially bear the entire load, and is supported by the area of both the entire plane of the sliding plate 20 and the entire plane of the sliding plate 20 laminated on the hollow portion 13. The compressive stress received by the flexible support 10 is smaller than that of a simple hollow body without a sliding plate.
[0025]
Further, when an earthquake occurs, as shown in FIGS. 2 and 3, the flexible support body 10 is displaced in the horizontal direction and tilted, and accordingly, the flexible support body 10 is moved in the horizontal direction. Since a pressing force is applied to the sliding plate 20 by the inner peripheral surface on the force receiving side, the sliding plate 20 moves in the horizontal direction while sliding against each other by this pressing force, and the flexible support 10 is deformed. It becomes a step shape inclined to the same shape as the time shape.
[0026]
Thus, when the flexible support body 10 is displaced in the horizontal direction, the flexible support body 10 is flexible in the overlapping portion area 24 projected vertically downward from the upper end surface 21 horizontally displaced with respect to the fixed lower end surface 22. The flexible bearing body 10 supports a part of the load in the vertical direction by the overlapping area 24a of the flexible bearing body 10, and most of the remaining load is a portion of the flexible bearing body 10 excluding the overlapping area 24a. Since the sliding plate 20 is supported by the overlapping area 24b, even in this case, the compressive stress generated in the flexible support body 10 does not increase.
[0027]
Therefore, even if the flexible support 10 is formed in a hollow shape, unlike a simple hollow body in which the sliding plate 20 is not laminated, the increase in the compressive strain of the flexible support 10 due to the vertical load is small, so The phenomenon can be greatly reduced.
Even when the sliding plate 20 stacked in the hollow portion of the flexible bearing 10 moves horizontally in accordance with the horizontal displacement of the flexible bearing 10 during the operation of the seismic isolation bearing device, the sliding plate Since 20 itself does not have a force to restore the original state, the horizontal spring constant of the flexible bearing 10 is not affected. In this case, since the sliding plate 20 is made of a material having a high friction coefficient such as iron alloy, copper alloy, polytetrafluoroethylene, graphite or the like as described above, the sliding plate 20 is slid when a force is applied in the horizontal direction. Energy absorption due to sliding of the moving plate 20 and energy absorption in the flexible support body 10 occur simultaneously, and a high vibration energy absorption effect is exhibited.
[0028]
FIG. 4 is a longitudinal sectional view showing a second embodiment of the seismic isolation bearing device of the present invention, and FIG. 5 is a longitudinal sectional view at the time of operation of the second embodiment. Similar to the first embodiment, the flexible support body 10 is formed by alternately laminating a large number of annular elastomer layers 11 made of rubber or the like and thin intermediate rigid plates 12, and annular or washer-shaped on the upper end surface and the lower end surface, respectively. The upper surface plate 14 and the lower surface plate 16 are bonded concentrically, the pressure receiving plates 15 and 17 are attached by bolts 18 and 19, respectively, and the upper and lower ends are closed.
[0029]
Each sliding plate 20 is the same as in the first embodiment in that it is made of any material of iron alloy, copper alloy, polytetrafluoroethylene, and graphite. In the second embodiment, each sliding plate 20 Is formed in the shape of an annular thin plate, that is, a washer.
An elastic-plastic member 30 made of lead called “lead plug” that absorbs kinetic energy is inserted so as to penetrate the central hole 32 formed by the laminated body of the washer-like sliding plates 20 in the vertical direction. A slight gap 34 is left between the inner peripheral surface of the center hole 32 of the laminated body of the sliding plates 20 and the elastic-plastic member 30. In addition, as in the case of the first embodiment, there is a slight gap 25 between the inner peripheral surface of the hollow portion 13 of the flexible support 10 and the sliding plate 20.
[0030]
These gaps 25 and 34 are set as follows. 5 shows various dimensions. When the inner diameter of the hollow portion 30 of the intermediate rigid plate 12 of the flexible support 10 is e and the outer diameter d of the washer sliding plate 20, these relationships are as follows. It shall be as follows.
0 <(ed) / d <0.3,
Preferably, 0.01 <(ed) / d <0.1
Further, when the inner diameter of the washer-shaped sliding plate 20 is c and the outer diameter of the elastic-plastic member 30 is p, these relationships are as follows.
[0031]
0 <(cp) / p <0.3,
Preferably, 0.01 <(cp) / p <0.15
During the operation of the seismic isolation bearing device, since there is a slight gap 25 between the inner peripheral surface of the hollow portion 13 of the flexible bearing body 10 and the sliding plate 20, the hollow portion of the flexible bearing body 10 is provided. If the horizontal displacement of the laminated washer-like sliding plate 20 is generated in the flexible bearing 10, even if the horizontal displacement is very small, as in the case of an extremely slight earthquake, the washer 20 The sliding plate 20 itself is not affected by the frictional force and does not cause a displacement, so that an effective trigger function acts.
[0032]
Furthermore, in this embodiment, there is the slight gap 34 as described above between the inner peripheral surface of the center hole 32 of the laminated body of the washer-like sliding plates 20 and the elastic-plastic member 30, so Even if a horizontal displacement of the laminated body of the moving plates 20 is caused by an earthquake motion, if it is very slight, the elastic-plastic member 30 is not displaced, and the trigger function acts stepwise.
[0033]
Next, it is preferable to set the dimensional relationship in the vertical direction in the seismic isolation bearing device as follows. That is, the total thickness of the elastomer layer 11 of the flexible support 10 is x, the total thickness of the intermediate rigid plate 12 is y, the thickness of the washer-like sliding plate is a, the ring width {(outer diameter -When (inner diameter) / 2} is b, these relations are as follows.
3 * x / (x + y) <b / a
Preferably, 4 * x <(x + y) <b / a
By defining in this way, the washer-like sliding plate 20 does not buckle even when a predetermined horizontal displacement occurs in the flexible bearing 10 when the seismic isolation bearing device shown in FIG. There is no possibility that the elastic-plastic member 30 made of lead protrudes from the center hole 32 of the laminated body of the washer-like sliding plates 20. In FIG. 5, the height h of the elastic-plastic member 30 is set so that the total thickness of the elastomer layer 11 is equal to the sum (x + y) of x and the total thickness y of the intermediate rigid plate 12.
[0034]
The number of elastomer layers 11 is set within a range of 2 to 200, and the number of intermediate rigid plates 12 is one smaller than the number of elastomer layers 11 because the upper and lower end portions are elastomer layers. .
Further, the elastomer layer 11 may be a composition having a high attenuation characteristic as described above, or a composition having no attenuation characteristic or a small attenuation characteristic. The hardness of the elastomer layer is preferably selected to be 0.1 to 20 MPa when G is 100%.
[0035]
In this embodiment, the load applied in the vertical direction is the entire plane of the flexible support 10 and the entire plane of the washer-like sliding plate 20 stacked in the hollow portion 13 in the normal upright state. And is almost supported by both areas. On the other hand, since the area of the elastoplastic member 30 is relatively small, it does not contribute much to the burden of load, but has a damping effect on the heel compared to the laminated body of the flexible support 10 and the washer-like sliding plate 20. It greatly contributes to the damping effect.
[0036]
FIG. 7 shows the relationship of the equivalent damping constant to the shear strain. Calculated values are calculated from the equivalent linear model described in “Chapter 4 Design of Seismic Isolation Equipment 4.3 Design of Laminated Rubber with Lead Plug” in the “Seismic Isolation Design Method Manual for Road Bridges” published by the Ministry of Construction, Public Works Research Institute. The result calculated based on the formula is shown. On the other hand, the actual measurement value indicates the bearing measurement result of the present invention. The specifications of the bearing are shown below.
Example 1
Elastomer layer: Shear stress 1.2 MPa at G = 175%
Elasto-plastic member: Lead plug (diameter 30mm)
Example 2
Elastomer layer: Shear stress 1.2 MPa at G = 175%
Elasto-plastic member: Lead plug (21 mm in diameter)
Comparative Example 1
Elastomer layer: Shear stress 1.2 MPa at G = 175%
Elasto-plastic member: Lead plug (diameter 30mm)
Comparative Example 2
Elastomer layer: Shear stress 1.2 MPa at G = 175%
The annular sliding plate of the present invention comprises at least one of iron or an alloy thereof, aluminum or an alloy thereof, iron alloy, copper or an alloy thereof, polytetrafluoroethylene, and graphite. Here, the iron alloy refers to pure iron and an alloy composed of iron and carbon. Accordingly, examples of the iron and iron alloy of the present invention include pure iron, soft iron / steel (ordinary steel, carbon steel, special steel, alloy steel, etc.), cast iron, pig iron, and other irons. It is not limited. On the other hand, the above copper alloys include Cu-Zn brass, Cu-Zn-Pb lead-containing brass, Cu-Zn-Sn tin-containing brass, Cu-Sn-P phosphor bronze, Cu-Al-based Aluminum bronze, Cu-Ni-based cupronickel, Cu-Ni-Zn-based white, Cu-Be-based beryllium copper, Cu-Ti alloy, Cu-Cr alloy, Cu-Zr alloy, Cu-Sn-based Examples include tin bronze and the like and alloys obtained by adding a small amount of alloy elements to these. However, the iron alloy or copper alloy used in the present invention is not limited to these. Furthermore, as a method for increasing the friction coefficient, the surface of these materials may be provided with unevenness or may be surface-treated with other materials.
[0037]
Although the embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to the above-described embodiments, and various forms, modifications, and modifications are within the spirit and scope of the present invention. It should be noted that etc. are possible.
[0038]
【The invention's effect】
As described above, according to the present invention, by providing an optimal trigger effect to the seismic isolation bearing device, light seismic motion can be absorbed without transmitting vibration to the structure, resulting in strong seismic motion. On the other hand, a sufficient vibration damping effect can be produced, and an effective seismic isolation bearing device can be obtained for various buildings.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first embodiment of a seismic isolation bearing device according to the present invention.
FIG. 2 is a plan view showing a state of the flexible support shown in FIG. 1 at the time of horizontal displacement.
3 is a longitudinal sectional view of the flexible support body and the sliding plate laminate in the state of FIG. 2;
FIG. 4 is a longitudinal sectional view of a second embodiment of the seismic isolation device of the present invention.
FIG. 5 is a plan view showing a state of the flexible support shown in FIG. 4 at the time of horizontal displacement.
6A and 6B are diagrams showing dimensions of each part of the seismic isolation bearing device according to the second embodiment, wherein FIG. 6A is a plan view of the seismic isolation bearing device, and FIG. 6B is a cross-sectional view of a washer-like sliding plate; C) is a side view and a plan view of an elastic-plastic member.
FIG. 7 shows the relationship of equivalent damping constant to shear strain.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Flexible support body 11 ... Elastomer layer 12 ... Intermediate | middle rigid board 13 ... Hollow part 14, 16 ... Upper and lower surface plates 15, 17 ... Pressure-receiving plate 20 ... Washer-like sliding plate 25 ... Gap 30 ... Elasto-plastic member (lead plug) )
32 ... Inner circumference 34 of sliding plate laminated body ... Gap

Claims (16)

ゴム等のエラストマー層と中間剛性板とを上下方向に交互に接着・積層してなる可撓性支承体と、鉄合金、銅若しくはその合金、ポリテトラフルオロエチレン、黒鉛の少なくとも1つから成る複数の摺動板を互いに摺動可能となるように上下方向に積み重ねた摺動板積層体と、を具備し、該摺動板積層体は前記可撓性支承体に取り囲まれるように配置されており、これらの両者が共同して荷重を支える構造とし、前記摺動板積層体の摺動板の幾つかは他の摺動板と摩擦係数の異なる材質から成ることを特徴とする免震支承装置。A flexible support formed by alternately adhering and laminating elastomer layers such as rubber and intermediate rigid plates in the vertical direction, and a plurality of at least one of iron alloy, copper or its alloy, polytetrafluoroethylene, and graphite A sliding plate laminate in which the sliding plates are stacked in the vertical direction so as to be slidable with each other, and the sliding plate laminate is disposed so as to be surrounded by the flexible support body. Both of these have a structure that supports the load jointly, and some of the sliding plates of the sliding plate laminate are made of a material having a different friction coefficient from the other sliding plates. apparatus. 前記可撓性支承体に上下方向に貫通した中空部が設けられ、該中空部に前記摺動板積層体が配置されていることを特徴とする請求項1に記載の免震支承装置。  The seismic isolation bearing device according to claim 1, wherein a hollow portion penetrating in the vertical direction is provided in the flexible bearing body, and the sliding plate laminate is disposed in the hollow portion. 前記摺動板は円板又は環状板であり、該摺動板の積層数は前記中間剛性板の積層数と同数若しくは多数であることを特徴とする請求項1又は2に記載の免震支承装置。  The seismic isolation bearing according to claim 1 or 2, wherein the sliding plate is a circular plate or an annular plate, and the number of stacked sliding plates is the same as or larger than the number of stacked intermediate rigid plates. apparatus. 前記エラストマー層が、架橋した汎用ゴム、特殊ゴム、ウレタン、熱可塑性エラストマー、若しくは加硫ゴムを分散させた熱可塑性エラストマーであることを特徴とする請求項1〜のいずれか1項に記載の免震支承装置。Wherein the elastomeric layer is crosslinked generic rubber, special rubber, urethane, according to any one of claims 1 to 3, characterized in that a thermoplastic elastomer thermoplastic elastomer or a vulcanized rubber dispersed, Seismic isolation device. 前記中間剛性板は、鉄又は鉄合金の板からなることを特徴とする請求項1〜のいずれか1項に記載の免震支承装置。The seismic isolation bearing device according to any one of claims 1 to 4 , wherein the intermediate rigid plate is made of iron or an iron alloy plate. 前記エラストマー層が前記中間剛性板に加硫接着、常温接着若しくは他の方法で固着されていることを特徴とする請求項1〜のいずれか1項に記載の免震支承装置。The seismic isolation bearing device according to any one of claims 1 to 5 , wherein the elastomer layer is fixed to the intermediate rigid plate by vulcanization adhesion, room temperature adhesion, or other methods. 可撓性支承体と、該可撓性支承体を上下方向に貫通して設けた中空部に該中空部の内周との間で僅かな隙間をもって挿入された、環状摺動板を互いに摺動可能となるように上下方向に積み重ねた摺動板積層体と、該摺動板積層体の中心孔を上下方向に貫通するように挿入された運動エネルギーを吸収する弾塑性部材と、から成り、前記可撓性支承体と摺動板積層体とが共同して荷重を支える構造としたことを特徴とする免震支承装置。  The annular slide plates inserted between the flexible support and the hollow portion provided through the flexible support in the vertical direction with a slight gap between the inner periphery of the hollow portion are slid relative to each other. A sliding plate stack that is vertically stacked so as to be movable, and an elastic-plastic member that absorbs kinetic energy inserted so as to penetrate the center hole of the sliding plate stack in the vertical direction. A base-isolated bearing device characterized in that the flexible bearing body and the sliding plate laminate jointly support a load. 前記弾塑性部材は鉛からなることを特徴とする請求項に記載の免震支承装置。The seismic isolation bearing device according to claim 7 , wherein the elastic-plastic member is made of lead. 前記環状摺動板は、鉄合金、銅若しくはその合金、ポリテトラフルオロエチレン、黒鉛の少なくとも1つから成ることを特徴とする請求項又はに記載の免震支承装置。The seismic isolation bearing device according to claim 7 or 8 , wherein the annular sliding plate is made of at least one of iron alloy, copper or an alloy thereof, polytetrafluoroethylene, and graphite. 前記可撓性支承体はゴム等のエラストマー層と中間剛性板とを上下方向に交互に接着・積層してなる可撓性支承体であることを特徴とする請求項7〜9のいずれか1項に記載の免震支承装置。10. The flexible support body according to any one of claims 7 to 9 , wherein the flexible support body is a flexible support body formed by alternately bonding and laminating elastomer layers such as rubber and intermediate rigid plates in the vertical direction. Seismic isolation device as described in the paragraph. 前記可撓性支承体の中空部を規定する中間剛性板の中心孔の内径をe、前記環状摺動板の外径dとした時、
0<(e−d)/d<0.3
であることを特徴とする請求項10に記載の免震支承装置。
When the inner diameter of the central hole of the intermediate rigid plate that defines the hollow portion of the flexible support body is e, and the outer diameter d of the annular sliding plate,
0 <(ed) / d <0.3
The seismic isolation bearing device according to claim 10 .
前記エラストマー層の厚さの総和をx、前記中間剛性板の厚さの総和をy、前記環状摺動板の厚さをa、そのリング幅をbとした時、
3*x/(x+y)<b/a
であることを特徴とする請求項10又は11に記載の免震支承装置。
When the total thickness of the elastomer layer is x, the total thickness of the intermediate rigid plate is y, the thickness of the annular sliding plate is a, and the ring width is b,
3 * x / (x + y) <b / a
The seismic isolation bearing device according to claim 10 or 11 , characterized in that
前記環状摺動板の内径を、前記弾塑性部材の外径をpとした時、
0<(c−p)/p<0.3
であることを特徴とする請求項1012のいずれか1項に記載の免震支承装置。
When the inner diameter of the annular sliding plate is c and the outer diameter of the elastic-plastic member is p,
0 <(cp) / p <0.3
The seismic isolation bearing device according to any one of claims 10 to 12 , wherein:
前記弾塑性部材の水平方向の断面積は、この免震支承装置の荷重を受ける全断面積の10%以下であることを特徴とする請求項13のいずれか1項に記載の免震支承装置。Sectional area of the horizontal direction of the elastic-plastic member, seismic isolation according to any one of claims 7 to 13, characterized in that this receive the load of the seismic isolation bearing device is not more than 10% of the total cross-sectional area Bearing device. 前記摺動板のせん断弾性率(G)が前記エラストマー層のせん断弾 性率より大であることを特徴とする請求項1〜14のいずれか1項に記載の免震支承装置。Seismic isolation bearing device according to any one of claims 1 to 14, wherein the shear modulus of the sliding plate (G) is greater than the shear bullet resistance ratio of the elastomeric layer. 前記エラストマー層はせん断弾性率(G)が100%のときせん断応力が0.1〜20MPaであることを特徴とする請求項1〜15のいずれか1項に記載の免震支承装置。The seismic isolation bearing device according to any one of claims 1 to 15 , wherein the elastomer layer has a shear stress of 0.1 to 20 MPa when the shear modulus (G) is 100%.
JP27698597A 1997-10-09 1997-10-09 Seismic isolation device Expired - Fee Related JP3717287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27698597A JP3717287B2 (en) 1997-10-09 1997-10-09 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27698597A JP3717287B2 (en) 1997-10-09 1997-10-09 Seismic isolation device

Publications (2)

Publication Number Publication Date
JPH11108113A JPH11108113A (en) 1999-04-20
JP3717287B2 true JP3717287B2 (en) 2005-11-16

Family

ID=17577170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27698597A Expired - Fee Related JP3717287B2 (en) 1997-10-09 1997-10-09 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3717287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004475A1 (en) 2006-07-06 2008-01-10 Oiles Corporation Earthquake isolation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878235B (en) * 2012-09-21 2014-06-11 哈尔滨工程大学 Compound phonon crystal rod with multi-dimensional vibration absorbing function
KR101292397B1 (en) * 2013-01-16 2013-08-07 오영수 Oscillating wave absorber of multi-wavelength
CN110805636B (en) * 2019-10-16 2021-11-05 南京航空航天大学 Annular piezoelectric stack-based damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004475A1 (en) 2006-07-06 2008-01-10 Oiles Corporation Earthquake isolation device

Also Published As

Publication number Publication date
JPH11108113A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
US5862638A (en) Seismic isolation bearing having a tension damping device
US4593502A (en) Energy absorbers
TWI403651B (en) Seismic isolation device
US8844205B2 (en) Compressed elastomer damper for earthquake hazard reduction
AU620587B2 (en) Improvements in or relating to energy absorbers
US5303524A (en) Earthquaker protection system and method of installing same
JP5638762B2 (en) Building
CN112281641B (en) Grid damping support
JP3717287B2 (en) Seismic isolation device
US5161338A (en) Laminated rubber support assembly
JP5845130B2 (en) Laminated rubber bearing
JP3114624B2 (en) Seismic isolation device
JP6579026B2 (en) Seismic isolation bearings for bridges and bridges using them
JP4023696B2 (en) Lead filled laminated rubber bearing
JPS6047417B2 (en) Internal seismic support system for buildings
TW201842281A (en) Base isolation supporting device
CN209909074U (en) Metal rubber composite shock absorber
JP3410172B2 (en) Lead encapsulated laminated rubber bearing
JP3503712B2 (en) Lead encapsulated laminated rubber
JPH08319732A (en) Three dimensional seismic isolator for building
JP2006308063A (en) Base isolation bearing
KR102230710B1 (en) Elastic bearing with multi-layer friction core
JPH10311163A (en) Base isolation device
CN115492271B (en) Multistage hybrid energy consumption damper
JP3749367B2 (en) Elastic bearing with movement limiter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees