JP3702396B2 - Coal gasification combined power generation system - Google Patents

Coal gasification combined power generation system Download PDF

Info

Publication number
JP3702396B2
JP3702396B2 JP08132496A JP8132496A JP3702396B2 JP 3702396 B2 JP3702396 B2 JP 3702396B2 JP 08132496 A JP08132496 A JP 08132496A JP 8132496 A JP8132496 A JP 8132496A JP 3702396 B2 JP3702396 B2 JP 3702396B2
Authority
JP
Japan
Prior art keywords
coal
coal gasification
exhaust gas
power generation
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08132496A
Other languages
Japanese (ja)
Other versions
JPH09268904A (en
Inventor
俊之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP08132496A priority Critical patent/JP3702396B2/en
Publication of JPH09268904A publication Critical patent/JPH09268904A/en
Application granted granted Critical
Publication of JP3702396B2 publication Critical patent/JP3702396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高効率、かつ環境保全性に優れた石炭ガス化複合発電装置に関する。
【0002】
【従来の技術】
図2は従来の、湿式脱硫設備及び硫黄回収設備を用いる石炭ガス化複合発電装置の構成の一例を示すフロ−シ−トである。該図に示される装置は、本願発明者の発明である「石炭ガス化プラントの硫黄回収方法及び装置」(特開平6−293888号公報)に記載の実施例である。
空気分離装置1においては、空気圧縮機3に吸入された空気2が、熱交換機4を経て精留塔5内で窒素7と酸素6に分離される。この酸素6をガス化剤として、石炭ホッパ9から供給される石炭8は石炭ガス化炉10にてガス化され、CO及びH2を主成分とする粗生成ガス11を生成する。粗生成ガス11は熱回収ボイラ12により冷却され、脱塵装置13を経て脱H2S塔14に供給される。脱H2S塔14では、吸収液により粗生成ガス11中のH2S、COS等の硫黄化合物がガスタ−ビン16の許容濃度以下まで除去される。精製されたガス15はガスタ−ビン16に送られ、発電機20で発電が行われる。ガスタ−ビン16からの燃焼排ガスは排熱回収ボイラ17にて熱回収された後、煙突18より大気に放出される。このボイラ17で得られた蒸気31は、熱回収ボイラ12で得られる蒸気31とともに蒸気タ−ビン19に送られ、発電機20で発電が行われる。
【0003】
脱H2S塔14でH2S、COS等の硫黄化合物を吸収した吸収液は再生塔21に送られ、吸収液の熱分解による劣化を防ぐため、10気圧以下の低圧蒸気37により加熱することで吸収しているH2S、COSを脱離し再生される。この蒸気37は、石炭ガス化炉に続く熱回収ボイラ12で得られる高圧蒸気31を減圧して使用する。再生塔21の上部より放出される再生排ガス22の硫黄化合物(H2S、COS)の濃度は、約30vol%程度となる。
【0004】
再生排ガス22は焼却炉24に導かれ、再生排ガス22中の硫黄化合物は空気23により二酸化硫黄に酸化される。焼却炉24では火炎を安定に保つため、油、LPG等の助燃料32が常に燃焼される。焼却炉24で発生する燃焼排ガス25は温度が500〜1000℃のガスであり、かつ数vol%のSO2を含むため、熱交換器26で水蒸気31aによる熱回収を行った後、吸収塔27に導かれる。吸収塔27では石灰石スラリ−28と燃焼排ガス25を接触させることにより、燃焼排ガス25に含まれるSO2は、煙突18出口のプラント排ガス44中のSO2含有量が環境規制値以下となるまで吸収除去される。吸収塔27の下部からは石灰石スラリ−28がSO2と反応することにより生成する亜硫酸カルシウム42が抜出される。次に酸化塔41に導かれ空気40により酸化されて硫酸カルシウム43となる。硫酸カルシウム43はシックナ−29に送られ、脱水された後、石膏30が回収される。
【0005】
ガス化炉起動時には、ガス化炉10に石炭を投入する前に、ガス化炉10から脱塵装置13の間をガス中の水分が凝縮しなくなる温度まで昇温する必要がある。このため補助燃料45を燃焼させることにより得られる高温の燃焼ガスを、ガス化炉10から脱塵装置13に通す。この補助燃料45の燃焼によって生成されるガス化炉起動時排ガス35は、切替弁33及び34の操作により煙突18から大気中に放出する。上記補助燃料45には通常の高圧下でのガス化運転時に使用した場合でも相変化のない液体燃料、すなわち重油、軽油等が通常用いられてい
【0006】
る。
【発明が解決しようとする課題】
前記の従来技術において、以下の点が課題とされていた。
1.石炭ガス化炉10から脱塵装置13の間は、生成した石炭ガス11中の水分が凝縮するのを防ぐために、ガス化炉起動時には補助燃料45を燃焼した燃焼ガスの熱を用いて昇温する。この際に補助燃料45として燃焼される前記液体燃料には通常硫黄分が含まれるため、燃焼排ガス35にはSO2が含まれる。湿式脱硫設備の吸収液はSO2の吸収も可能であるので、燃焼ガスを脱H2S塔14に通すことにより脱硫を行うことはできるが、その場合吸収したSO2を脱離して吸収液を再生することは困難であり、SO2を吸収した分本来の用途であるH2Sの吸収性能が減少することが問題となる。このため従来の装置においては、起動時の燃焼排ガス35を脱H2S塔14をバイパスさせ煙突18から大気へ放出させていた。
従って起動時排ガス35の脱硫は行われず、装置起動時の環境保全性は好ましいとはいえない。また起動時の補助燃料45に高硫黄分の燃料を用いた場合には、起動時においては環境規制値を満足できない可能性もあり、燃料の性状によってはガス化炉起動時の排ガス中のSO2を除去するための装置が別途必要になる。
【0007】
2.吸収液の再生塔21での吸収液加熱用の蒸気37は、吸収液の熱分解を避けるため吸収液の沸点以下であり、かつできるだけ低温の蒸気を用いることが望ましく通常約200℃程度とすべきである。従来の装置では、湿式脱硫設備の吸収液を再生するのに必要な低圧蒸気として、熱回収ボイラ12で発生する高圧蒸気31の一部を減圧して使用するため、高圧蒸気を利用した蒸気タ−ビン19における発電の効率低下を招いていた。
【0008】
本発明の目的は従来技術における上記の課題を解决し、環境保全性に優れ、かつ高効率の石炭ガス化複合発電装置を提供するにある。
【0009】
【課題を解決するための手段】
上記目的は、酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、石炭ガス化炉の起動時に発生する排ガスを前記焼却炉に導く導入手段を備えたことを特徴とする石炭ガス化複合発電装置により達成される。
【0010】
上記目的はまた、酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、石炭ガス化炉の起動時に発生する排ガスを前記焼却炉に導き、その排ガス中の硫黄分も石膏として回収することを特徴とする石炭ガス化複合発電装置により達成される。
ガス化炉起動時の燃焼排ガスを脱H2S塔をバイパスさせて前記焼却炉に導くことにより、起動時の排ガス中のSO2の除去が可能となり環境保全性は保たれる。
【0011】
上記目的はまた、酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、前記焼却炉の排ガスの排熱を利用して前記脱硫設備の吸収液再生塔の再生熱源となる水蒸気を発生させる再生用蒸気発生手段と、この再生用蒸気発生手段で発生した水蒸気を前記吸収液再生塔の熱源部に送る手段を備えたことを特徴とする石炭ガス化複合発電装置により達成される。
【0012】
上記目的はまた、酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、前記焼却炉の高温排ガスの排熱を利用して吸収液再生塔の再生熱源となる水蒸気を得、その水蒸気を前記湿式脱硫設備の吸収液再生用熱源として使用することを特徴とする石炭ガス化複合発電装置により達成される。
【0013】
焼却炉出口の排ガス温度は、石炭の組成や湿式ガス精製設備(脱H2S塔、再生塔等)の運転条件により異なるが、通常約500〜1000℃となる。吸収塔に入る前記排ガスの温度は低いほど脱硫効果が高く経済的であるため、焼却炉出口の燃焼排ガスは、再生用蒸気発生手段によってその排熱が回収されて冷却される。その排熱回収で発生する蒸気の温度は任意に選定できる。そこで、再生用蒸気発生手段で発生させる蒸気温度を吸収液再生塔の再生熱源温度とする。通常は150℃から250℃の範囲、特に200℃程度とし、その蒸気を吸収液再生塔での吸収液加熱再生用熱源として用いることで、発電のため必要となる高圧蒸気を一部減圧する等の措置を講ずることなく、経済的な蒸気系統を構成することができる。
【0014】
上記目的はまた、上記の特徴を組み合わせた石炭ガス化複合発電装置により達成される。
【0015】
【発明の実施の形態】
次に本発明を具体例によって説明する。図1は湿式脱硫設備及び硫黄回収設備を用いる石炭ガス化複合発電システムの構成の一例を示すフロ−シ−トである。空気分離装置1にて空気2から分離される酸素6をガス化剤として、石炭9は石炭ガス化炉10にてガス化され、CO及びH2を主成分とする粗生成ガス11を生成する。粗生成ガス11は熱回収ボイラ12により冷却され、脱塵装置13を経て脱H2S塔14に供給される。脱H2S塔14では、吸収液により粗生成ガス11中のH2S、COS等の硫黄化合物がガスタ−ビン16の許容濃度以下まで除去される。精製されたガス15はガスタ−ビン16に送られ、発電が行われ、ガスタ−ビン16からの燃焼排ガスは排熱回収ボイラ17にて冷却されると同時に高圧蒸気31を回収し、煙突18より大気に放出される。ここで得られた蒸気は、熱回収ボイラ12で得られる蒸気31とともに蒸気タ−ビン19に送られ、発電が行われる。
【0016】
脱H2S塔14でH2S、COS等の硫黄化合物を吸収した吸収液は再生塔21に送られ,再生用蒸気37により加熱することで吸収しているH2S、COSを脱離し再生される。再生排ガス22は焼却炉24に導かれ、再生排ガス22中の硫黄化合物は空気23により二酸化硫黄に酸化される。焼却炉24では、火炎を安定にたもつため油、LPG等の助燃料32が常に燃焼される。焼却炉24で発生する燃焼排ガス25は、温度が500〜1000℃のガスであり、かつ数vol%のSO2を含むため、高圧蒸気発生手段である熱交換器26で150〜250℃(5気圧〜40気圧)の水蒸気を発生させて冷却した後、吸収塔27に導かれる。吸収塔27では石灰石スラリ−28と燃焼排ガス25を接触させることにより燃焼排ガス25に含まれるSO2が、煙突18出口のプラント排ガス44中のSO2含有量が環境規制値以下となるまで吸収除去される。吸収塔27の下部からは石灰石スラリ−28がSO2と反応することにより生成する亜硫酸カルシウム42が抜き出され、次に酸化塔41に導かれ、そこで空気40により酸化されて硫酸カルシウム43となる。硫酸カルシウム43は、シックナ−29に送られ、脱水された後、石膏30が回収される。
【0017】
ガス化炉起動時には、石炭ガス化炉10で補助燃料45の重油又は軽油を空気又は酸素で燃焼させて高温の燃焼ガスを得、石炭ガス化炉10から脱塵装置13の間の昇温及び昇圧を行なう。この際の燃焼排ガス35は、切替弁33及び34を操作することにより脱H2S塔14をバイパスさせて焼却炉24に通す。焼却炉24では補助燃料32を空気により燃焼させておく。焼却炉出口のSO2を含む燃焼排ガス25は、熱交換器26で冷却後、石灰石による脱硫を行なう吸収塔27に導く。これにより、起動時の排ガス35中のSO2の除去が可能となる。また石炭ガス化炉10から脱塵装置13間の昇温が終了後、ガス化炉10への石炭投入開始時には、排出ガス中の硫黄分はSO2からH2Sと変化するが、この場合においても焼却炉24でH2SがSO2に酸化されるため、ガス化炉燃料切替時においても排出ガス中の硫黄分は脱硫され、環境保全性は保たれる。燃焼排ガス25中のSO2は吸収塔27で石灰石スラリ−と反応し、石膏30が回収される。
【0018】
焼却炉24から排出された燃焼排ガス25は、前記の如く熱交換器26によって熱交換が行われて焼却熱が回収され、その回収により水蒸気37を生成する。ここで36はボイラ水、38はボイラ水循環ポンプ、39はスチ−ムドラムである。この蒸気37の温度を略200℃に設定し、焼却炉24で発生した熱エネルギ−を再生塔21での吸収液加熱再生用熱源として用いる。これにより、発電のため必要となる高圧蒸気31を一部減圧する等の措置を講ずる必要がなくなる。
【0019】
本発明の他の具体例としては、石炭のガス化剤として酸素の代わりに空気を用いる方式、ガスタ−ビンの代わりに燃料電池を用いる方式等があげられる。
【0020】
【発明の効果】
本発明によれば、ガス化炉起動時に発生する硫黄酸化物の大気中への放出量を脱硫装置を通過させることなく大幅に減少させ、石炭ガス脱硫能力を損なうことなく環境保全性に優れた装置を実現する。さらに、系内で回収された高圧蒸気のエネルギ−損失を減少させ、より高い発電効率を得ることが可能になり、経済的な石炭ガス化複合発電装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る石炭ガス化複合発電装置の構成図である。
【図2】従来の石炭ガス化複合発電装置の構成図である。
【符号の説明】
1 空気分離装置
8 石炭
10 ガス化炉
11 粗生成ガス
12 熱回収ボイラ
14 脱H2S塔
21 再生塔
22 再生排ガス
24 焼却炉
25 燃焼排ガス
26 熱交換器
27 吸収塔
29 シックナ−
31 高圧蒸気
37 低圧蒸気
39 スチ−ムドラム
41 酸化塔
45 起動時燃料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combined coal gasification combined power generation apparatus having high efficiency and excellent environmental conservation.
[0002]
[Prior art]
FIG. 2 is a flowchart showing an example of the configuration of a conventional coal gasification combined power generation apparatus using a wet desulfurization facility and a sulfur recovery facility. The apparatus shown in the figure is an example described in “Sulfur recovery method and apparatus for coal gasification plant” (Japanese Patent Laid-Open No. Hei 6-293888) which is the invention of the present inventor.
In the air separation device 1, the air 2 sucked into the air compressor 3 is separated into nitrogen 7 and oxygen 6 in the rectification tower 5 through the heat exchanger 4. Using this oxygen 6 as a gasifying agent, coal 8 supplied from a coal hopper 9 is gasified in a coal gasification furnace 10 to generate a crude product gas 11 mainly composed of CO and H 2 . The crude product gas 11 is cooled by a heat recovery boiler 12 and supplied to a de-H 2 S tower 14 through a dust removing device 13. In the de-H 2 S tower 14, sulfur compounds such as H 2 S and COS in the crude product gas 11 are removed by the absorbing solution to below the allowable concentration of the gas turbine 16. The purified gas 15 is sent to the gas turbine 16 and is generated by the generator 20. The combustion exhaust gas from the gas turbine 16 is recovered by the exhaust heat recovery boiler 17 and then discharged from the chimney 18 to the atmosphere. The steam 31 obtained by the boiler 17 is sent to the steam turbine 19 together with the steam 31 obtained by the heat recovery boiler 12, and power is generated by the generator 20.
[0003]
The absorption liquid that has absorbed sulfur compounds such as H 2 S and COS in the de-H 2 S tower 14 is sent to the regeneration tower 21 and heated by low-pressure steam 37 of 10 atmospheres or less in order to prevent deterioration due to thermal decomposition of the absorption liquid. Thus, the absorbed H 2 S and COS are desorbed and regenerated. This steam 37 uses the high-pressure steam 31 obtained in the heat recovery boiler 12 following the coal gasification furnace under reduced pressure. The concentration of the sulfur compound (H 2 S, COS) in the regeneration exhaust gas 22 released from the upper part of the regeneration tower 21 is about 30 vol%.
[0004]
The regenerated exhaust gas 22 is guided to the incinerator 24, and the sulfur compound in the regenerated exhaust gas 22 is oxidized to sulfur dioxide by the air 23. In the incinerator 24, auxiliary fuel 32 such as oil and LPG is always burned in order to keep the flame stable. Since the combustion exhaust gas 25 generated in the incinerator 24 is a gas having a temperature of 500 to 1000 ° C. and contains several vol% of SO 2 , the heat exchanger 26 performs heat recovery with the water vapor 31 a, and then the absorption tower 27. Led to. By contacting the limestone slurry 28 and the combustion exhaust gas 25 in the absorption tower 27, SO 2 contained in the combustion exhaust gas 25 is absorbed until the SO 2 content in the plant exhaust gas 44 at the outlet of the chimney 18 becomes equal to or lower than the environmental regulation value. Removed. Calcium sulfite 42 produced by the reaction of the limestone slurry 28 with SO 2 is extracted from the lower part of the absorption tower 27. Next, it is led to the oxidation tower 41 and oxidized by the air 40 to become calcium sulfate 43. Calcium sulfate 43 is sent to thickener 29, and after dehydration, gypsum 30 is recovered.
[0005]
At the time of starting the gasifier, it is necessary to raise the temperature between the gasifier 10 and the dust removing device 13 to a temperature at which the moisture in the gas does not condense before charging the gasifier 10 with coal. Therefore, high-temperature combustion gas obtained by burning the auxiliary fuel 45 is passed from the gasification furnace 10 to the dust removing device 13. The gasifier start-up exhaust gas 35 generated by the combustion of the auxiliary fuel 45 is released from the chimney 18 into the atmosphere by operating the switching valves 33 and 34. As the auxiliary fuel 45, a liquid fuel having no phase change even when used in a gasification operation under a normal high pressure, that is, heavy oil, light oil or the like is usually used.
The
[Problems to be solved by the invention]
In the prior art described above, the following points have been problems.
1. In order to prevent moisture in the generated coal gas 11 from condensing between the coal gasifier 10 and the dust removing device 13, the temperature is raised using the heat of the combustion gas combusted in the auxiliary fuel 45 when the gasifier is started. To do. At this time, since the liquid fuel combusted as the auxiliary fuel 45 usually contains a sulfur content, the combustion exhaust gas 35 contains SO 2 . Since the absorption liquid of the wet desulfurization facility can also absorb SO 2 , desulfurization can be performed by passing the combustion gas through the de-H 2 S tower 14. In that case, the absorbed SO 2 is desorbed and the absorption liquid. Is difficult to regenerate, and the problem is that the absorption performance of H 2 S, which is the original application, decreases due to the absorption of SO 2 . For this reason, in the conventional apparatus, the combustion exhaust gas 35 at the time of start-up is discharged from the chimney 18 to the atmosphere by bypassing the de-H 2 S tower 14.
Therefore, desulfurization of the start-up exhaust gas 35 is not performed, and it cannot be said that environmental conservation at the time of start-up of the apparatus is preferable. In addition, when a high-sulfur fuel is used as the auxiliary fuel 45 at the start-up, there is a possibility that the environmental regulation value cannot be satisfied at the start-up. Depending on the properties of the fuel, SO in the exhaust gas at the start-up of the gasifier A separate device for removing 2 is required.
[0007]
2. The absorption liquid heating steam 37 in the absorption liquid regeneration tower 21 is preferably less than the boiling point of the absorption liquid to avoid thermal decomposition of the absorption liquid, and is preferably as low a temperature as possible, usually about 200 ° C. Should. In the conventional apparatus, a part of the high-pressure steam 31 generated in the heat recovery boiler 12 is decompressed and used as the low-pressure steam necessary for regenerating the absorption liquid of the wet desulfurization facility. -The efficiency of power generation in the bin 19 was reduced.
[0008]
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a highly efficient coal gasification combined power generation apparatus having excellent environmental conservation and high efficiency.
[0009]
[Means for Solving the Problems]
The purpose is to gasify coal in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component, and to degas the H 2 S-containing exhaust gas generated in the incinerator when the gas is desulfurized with a wet desulfurization facility. In a combined gasification combined cycle power plant that recovers sulfur in the coal as gypsum by reacting the combustion gas generated by the combustion with limestone, the exhaust gas generated at the start of the coal gasification furnace to the incinerator This is achieved by a combined coal gasification combined cycle power generation system characterized in that it has introduction means for guiding.
[0010]
The above object is also to incinerate the H 2 S-containing exhaust gas generated when coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component and the gas is desulfurized with a wet desulfurization facility. In a combined gasification combined cycle power plant that recovers sulfur in the coal as gypsum by reacting the combustion gas generated by the combustion with limestone, the exhaust gas generated at the start of the coal gasification furnace This is achieved by a combined coal gasification combined power generation system characterized in that the sulfur content in the exhaust gas is also recovered as gypsum.
By guiding the combustion exhaust gas at the start of the gasification furnace to the incinerator by bypassing the de-H 2 S tower, SO 2 in the exhaust gas at the start can be removed, and environmental conservation is maintained.
[0011]
The above object is also to incinerate the H 2 S-containing exhaust gas generated when coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component and the gas is desulfurized with a wet desulfurization facility. In a combined gasification combined cycle power plant that recovers sulfur in coal as gypsum by reacting the combustion gas generated by the combustion with limestone, the desulfurization using the exhaust heat of the incinerator A regeneration steam generating means for generating water vapor as a regeneration heat source of the absorption liquid regeneration tower of the facility, and means for sending the steam generated by the regeneration steam generation means to the heat source section of the absorption liquid regeneration tower are provided. This is achieved by the combined coal gasification combined power generation system.
[0012]
The above object is also to incinerate the H 2 S-containing exhaust gas generated when coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component and the gas is desulfurized with a wet desulfurization facility. In the combined gasification combined cycle power plant that recovers sulfur in the coal as gypsum by reacting the combustion gas generated by the combustion with limestone, and absorbing it by using the exhaust heat of the high temperature exhaust gas from the incinerator This is achieved by a combined coal gasification combined cycle power generation apparatus characterized in that steam serving as a regeneration heat source for a liquid regeneration tower is obtained and the steam is used as a heat source for regeneration of an absorbing liquid in the wet desulfurization facility.
[0013]
The exhaust gas temperature at the incinerator outlet varies depending on the composition of coal and the operating conditions of the wet gas purification equipment (de-H 2 S tower, regeneration tower, etc.), but is usually about 500 to 1000 ° C. Since the lower the temperature of the exhaust gas entering the absorption tower, the higher the desulfurization effect and the more economical, the exhaust gas at the outlet of the incinerator is recovered and cooled by the regeneration steam generating means. The temperature of the steam generated by the exhaust heat recovery can be arbitrarily selected. Therefore, the steam temperature generated by the regeneration steam generating means is set as the regeneration heat source temperature of the absorption liquid regeneration tower. Usually, the temperature is in the range of 150 ° C. to 250 ° C., particularly about 200 ° C., and the steam is used as a heat source for heating and regenerating the absorbing liquid in the absorbing liquid regeneration tower, thereby partially reducing the pressure of the high-pressure steam necessary for power generation, etc. An economical steam system can be constructed without taking the above measures.
[0014]
The above object is also achieved by a combined coal gasification combined cycle power generation apparatus that combines the above characteristics.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described by way of specific examples. FIG. 1 is a flowchart showing an example of the configuration of a combined coal gasification combined power generation system using a wet desulfurization facility and a sulfur recovery facility. Coal 9 is gasified in a coal gasification furnace 10 using oxygen 6 separated from air 2 in the air separation device 1 as a gasifying agent, and a crude product gas 11 mainly composed of CO and H 2 is generated. . The crude product gas 11 is cooled by a heat recovery boiler 12 and supplied to a de-H 2 S tower 14 through a dust removing device 13. In the de-H 2 S tower 14, sulfur compounds such as H 2 S and COS in the crude product gas 11 are removed by the absorbing solution to below the allowable concentration of the gas turbine 16. The purified gas 15 is sent to the gas turbine 16 to generate power, and the combustion exhaust gas from the gas turbine 16 is cooled by the exhaust heat recovery boiler 17 and simultaneously collects the high-pressure steam 31 from the chimney 18. Released into the atmosphere. The steam obtained here is sent to the steam turbine 19 together with the steam 31 obtained by the heat recovery boiler 12 to generate power.
[0016]
The absorption liquid that has absorbed sulfur compounds such as H 2 S and COS in the de-H 2 S tower 14 is sent to the regeneration tower 21 and heated by the regeneration steam 37 to desorb the absorbed H 2 S and COS. Played. The regenerated exhaust gas 22 is guided to the incinerator 24, and the sulfur compound in the regenerated exhaust gas 22 is oxidized to sulfur dioxide by the air 23. In the incinerator 24, auxiliary fuel 32 such as oil and LPG is always burned in order to keep the flame stable. The combustion exhaust gas 25 generated in the incinerator 24 is a gas having a temperature of 500 to 1000 ° C. and contains several vol% of SO 2 , so that it is 150 to 250 ° C. (5 After generating and cooling water vapor (atmospheric pressure to 40 atmospheric pressure), it is guided to the absorption tower 27. In the absorption tower 27, by contacting the limestone slurry 28 and the combustion exhaust gas 25, the SO 2 contained in the combustion exhaust gas 25 is absorbed and removed until the SO 2 content in the plant exhaust gas 44 at the outlet of the chimney 18 becomes the environmental regulation value or less. Is done. From the lower part of the absorption tower 27, calcium sulfite 42 produced by the reaction of the limestone slurry 28 with SO 2 is extracted and then led to the oxidation tower 41 where it is oxidized by the air 40 to become calcium sulfate 43. . The calcium sulfate 43 is sent to the thickener 29, and after dehydration, the gypsum 30 is recovered.
[0017]
At the start of the gasification furnace, heavy oil or light oil of the auxiliary fuel 45 is burned with air or oxygen in the coal gasification furnace 10 to obtain a high-temperature combustion gas, and the temperature rise between the coal gasification furnace 10 and the dust removing device 13 is increased. Boost the voltage. The combustion exhaust gas 35 at this time passes through the incinerator 24 by operating the switching valves 33 and 34 to bypass the de-H 2 S tower 14. In the incinerator 24, the auxiliary fuel 32 is burned with air. The combustion exhaust gas 25 containing SO 2 at the outlet of the incinerator is cooled by a heat exchanger 26 and then led to an absorption tower 27 that performs desulfurization with limestone. Thereby, it is possible to remove SO 2 in the exhaust gas 35 at the time of startup. In addition, after the temperature rise between the coal gasifier 10 and the dedusting device 13 is completed, the sulfur content in the exhaust gas changes from SO 2 to H 2 S at the start of coal input to the gasifier 10. In this case, since H 2 S is oxidized to SO 2 in the incinerator 24, the sulfur content in the exhaust gas is desulfurized even when the gasifier fuel is switched, and the environmental conservation is maintained. The SO 2 in the combustion exhaust gas 25 reacts with the limestone slurry in the absorption tower 27, and the gypsum 30 is recovered.
[0018]
The combustion exhaust gas 25 discharged from the incinerator 24 is heat-exchanged by the heat exchanger 26 as described above, and the incineration heat is recovered, and the steam 37 is generated by the recovery. Here, 36 is boiler water, 38 is a boiler water circulation pump, and 39 is a steam drum. The temperature of the steam 37 is set to approximately 200 ° C., and the heat energy generated in the incinerator 24 is used as a heat source for absorbing and heating the absorbing liquid in the regeneration tower 21. This eliminates the need to take measures such as partially depressurizing the high-pressure steam 31 required for power generation.
[0019]
Other specific examples of the present invention include a system that uses air instead of oxygen as a gasification agent for coal, a system that uses a fuel cell instead of a gas turbine, and the like.
[0020]
【The invention's effect】
According to the present invention, the amount of sulfur oxide generated when the gasification furnace is started to the atmosphere is greatly reduced without passing through the desulfurization apparatus, and the environmental conservation is excellent without impairing the coal gas desulfurization capability. Realize the device. Furthermore, the energy loss of the high-pressure steam recovered in the system can be reduced, and higher power generation efficiency can be obtained, and an economical coal gasification combined power generation apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a combined coal gasification combined power generation apparatus according to the present invention.
FIG. 2 is a configuration diagram of a conventional coal gasification combined power generation device.
[Explanation of symbols]
1 air separation unit 8 coal 10 gasifier 11 crude gas 12 heat recovery boiler 14 de H 2 S tower 21 regenerator 22 regeneration exhaust gas 24 incinerator 25 flue gas 26 heat exchanger 27 absorbing tower 29 thickener -
31 High-pressure steam 37 Low-pressure steam 39 Steam drum 41 Oxidation tower 45 Start-up fuel

Claims (5)

酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、石炭ガス化炉の起動時に発生する排ガスを前記焼却炉に導く導入手段を備えたことを特徴とする石炭ガス化複合発電装置。Coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component, and the H 2 S-containing exhaust gas generated when the gas is desulfurized with a wet desulfurization facility is incinerated in an incinerator. In a coal gasification combined cycle power generation system that recovers sulfur content in coal as gypsum by reacting combustion gas generated by combustion with limestone, introducing means for introducing exhaust gas generated at the start of the coal gasification furnace to the incinerator A coal gasification combined cycle power generation system comprising: 酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、石炭ガス化炉の起動時に発生する排ガスを前記焼却炉に導き、その排ガス中の硫黄分も石膏として回収することを特徴とする石炭ガス化複合発電装置。Coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component, and the H 2 S-containing exhaust gas generated when the gas is desulfurized with a wet desulfurization facility is incinerated in an incinerator. In a combined coal gasification combined power generation system that recovers sulfur in coal as gypsum by reacting combustion gas generated by combustion with limestone, the exhaust gas generated at the start of the coal gasification furnace is led to the incinerator, and the exhaust gas Coal gasification combined cycle power generation system that collects sulfur content in gypsum. 酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、前記焼却炉の排ガスの排熱を利用して前記脱硫設備の吸収液再生塔の再生熱源となる水蒸気を発生させる再生用蒸気発生手段と、この再生用蒸気発生手段で発生した水蒸気を前記吸収液再生塔の熱源部に送る手段を備えたことを特徴とする石炭ガス化複合発電装置。Coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component, and the H 2 S-containing exhaust gas generated when the gas is desulfurized with a wet desulfurization facility is incinerated in an incinerator. In a coal gasification combined power generation system that recovers sulfur content in coal as gypsum by reacting combustion gas generated by combustion with limestone, regeneration of the absorption liquid of the desulfurization facility using exhaust heat of the exhaust gas from the incinerator Coal gasification comprising: a regeneration steam generating means for generating water vapor as a regeneration heat source for the tower; and a means for sending the steam generated by the regeneration steam generation means to the heat source section of the absorption liquid regeneration tower Combined power generator. 酸素又は酸素を主成分とするガス化剤により石炭を石炭ガス化炉でガス化し、そのガスを湿式の脱硫設備により脱硫する際に、発生するH2S含有排ガスを焼却炉で焼却し、その燃焼により発生する燃焼ガスを石灰石と反応させることにより石炭中の硫黄分を石膏として回収する石炭ガス化複合発電装置において、前記焼却炉の排ガスの排熱を利用して吸収液再生塔の再生熱源となる水蒸気を得、その水蒸気を前記湿式脱硫設備の吸収液再生用熱源として使用することを特徴とする石炭ガス化複合発電装置。Coal is gasified in a coal gasification furnace with oxygen or a gasifying agent containing oxygen as a main component, and the H 2 S-containing exhaust gas generated when the gas is desulfurized with a wet desulfurization facility is incinerated in an incinerator. In a coal gasification combined cycle power generation system that recovers sulfur content in coal as gypsum by reacting combustion gas generated by combustion with limestone, the regeneration heat source of the absorption liquid regeneration tower using the exhaust heat of the exhaust gas from the incinerator A coal gasification combined power generation apparatus characterized by using the steam as a heat source for regenerating an absorbent in the wet desulfurization facility. 請求項1又は2、及び請求項3又は4の特徴を有する石炭ガス化複合発電装置。A coal gasification combined cycle power generation device having the features of claim 1 or 2 and claim 3 or 4.
JP08132496A 1996-04-03 1996-04-03 Coal gasification combined power generation system Expired - Lifetime JP3702396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08132496A JP3702396B2 (en) 1996-04-03 1996-04-03 Coal gasification combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08132496A JP3702396B2 (en) 1996-04-03 1996-04-03 Coal gasification combined power generation system

Publications (2)

Publication Number Publication Date
JPH09268904A JPH09268904A (en) 1997-10-14
JP3702396B2 true JP3702396B2 (en) 2005-10-05

Family

ID=13743222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08132496A Expired - Lifetime JP3702396B2 (en) 1996-04-03 1996-04-03 Coal gasification combined power generation system

Country Status (1)

Country Link
JP (1) JP3702396B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658350B2 (en) * 2001-02-22 2011-03-23 電源開発株式会社 Method and apparatus for reducing sulfur compounds
US7805923B2 (en) 2006-12-12 2010-10-05 Mitsubishi Heavy Industries, Ltd. Integrated coal gasification combined cycle plant
JP5074116B2 (en) * 2007-07-12 2012-11-14 株式会社日立製作所 Regenerative desulfurization apparatus and desulfurization system
JP5161906B2 (en) * 2010-03-05 2013-03-13 三菱重工業株式会社 Gas treatment method and gasification equipment in gasification equipment
JP4999992B2 (en) * 2011-03-03 2012-08-15 中国電力株式会社 Gas turbine combined power generation system
DE102011002320B3 (en) * 2011-04-28 2012-06-21 Knauf Gips Kg Method and device for generating electricity from hydrogen sulfide-containing exhaust gases

Also Published As

Publication number Publication date
JPH09268904A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
JP2954972B2 (en) Gasification gas combustion gas turbine power plant
RU2287067C2 (en) System with hybrid cycle of gasification of coal using recirculating working fluid medium and method of power generation
AU2008311229B2 (en) Systems and methods for carbon dioxide capture
CA2704398C (en) System and methods for treating transient process gas
KR20020026536A (en) Apparatus and method for cleaning acidic gas
EP2285470A1 (en) Carbon dioxide removal from synthesis gas at elevated pressure
JPS61283728A (en) Method of generating electric energy and steam
JP2004331701A (en) Coal gasification plant, coal gasification process and coal gasification power plant
JPS6248527B2 (en)
JPH04244504A (en) Carbon dioxide recovery type coal thermal power system
CA2036052C (en) Process for purifying high-temperature producing gases and composite power plant with coal gasification
JPH11315727A (en) Gasification combined cycle power generation plant for removal of carbon dioxide
JP3702396B2 (en) Coal gasification combined power generation system
CN112408324B (en) Coupled chemical chain reaction and CO2Efficient low-energy-consumption hydrogen-electric heating-cooling poly-generation system and method for separation and trapping
JP2870929B2 (en) Integrated coal gasification combined cycle power plant
JP2003292976A (en) Gasification plant for fuel and fuel gasification/hybrid power generation system
JP3787820B2 (en) Gasification combined power generation facility
JPH0633370B2 (en) Coal gasification power plant
KR100194555B1 (en) High reliability and high efficiency coal gasification combined cycle system and power generation method
JP3233628B2 (en) Gasification power plant
JP2018096359A (en) Power generating facility
JPS5825713B2 (en) Operation method in high sulfur oil gasification equipment
JPH11116975A (en) Gasificaiton power plant
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant
JPH10287885A (en) Gas purification apparatus in composite power generation installation of fossil fuel gasification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term