JP3699783B2 - Chip-type semiconductor and manufacturing method thereof - Google Patents

Chip-type semiconductor and manufacturing method thereof Download PDF

Info

Publication number
JP3699783B2
JP3699783B2 JP19344196A JP19344196A JP3699783B2 JP 3699783 B2 JP3699783 B2 JP 3699783B2 JP 19344196 A JP19344196 A JP 19344196A JP 19344196 A JP19344196 A JP 19344196A JP 3699783 B2 JP3699783 B2 JP 3699783B2
Authority
JP
Japan
Prior art keywords
sealing resin
mold frame
chip
type semiconductor
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19344196A
Other languages
Japanese (ja)
Other versions
JPH1041550A (en
Inventor
剛 三浦
Original Assignee
株式会社シチズン電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シチズン電子 filed Critical 株式会社シチズン電子
Priority to JP19344196A priority Critical patent/JP3699783B2/en
Publication of JPH1041550A publication Critical patent/JPH1041550A/en
Application granted granted Critical
Publication of JP3699783B2 publication Critical patent/JP3699783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオード素子、フォトダイオード素子、フォトトランジスタ素子などの半導体素子を絶縁基板の上にダイボンドするタイプのチップ型半導体およびその製造方法に関するものである。
【0002】
【従来の技術】
従来のチップ型半導体は、図7に示したように、ガラスエポキシ樹脂等からなる絶縁基板1と、絶縁基板1の上面にエッチング等によりパターン形成された一対の電極部2a,2bと、一方の電極部2a上に塗布した導電性の銀ペースト9を介してダイボンドされた半導体素子3と、この半導体素子3と他方の電極部2bとをワイヤボンディングした金属細線4と、受発光の指向性を調整すると共に外光を遮断するためのプラスチック等からなるモールド枠5と、半導体素子3及び金属細線4を封止するエポキシ樹脂等からなる封止用樹脂6と、絶縁基板1の下面に形成されたプリント基板用電極8とからなる。
【0003】
この種のチップ型半導体10を製造する手段としては、先ず絶縁基板1の電極部2a上に銀ペースト9を塗布し、その上に半導体素子3を載置したのちキュア炉で銀ペースト9を硬化して半導体素子3をダイボンドする。次いで半導体素子3と他の電極部2bとをワイヤボンディングしたのち、前記半導体素子3と金属細線4の周囲に接着剤11を塗布し、その上にモールド枠5を載置したのち再びキュア炉に入れて接着剤11を硬化する。そして、最後にモールド枠5の中に封止用樹脂6を充填し、再びキュア炉に入れて封止用樹脂6を固めて完成させる。
【0004】
【発明が解決しようとする課題】
ところで、上記構成からなるチップ型半導体を10をプリント基板12に実装する際、プリント基板12上に塗布した半田13の上にチップ型半導体10を載置した状態でリフローを通すため、チップ型半導体10が高温にさらされることになる。この時、モールド枠5及び封止用樹脂6も一緒に熱膨張するが、封止用樹脂6の熱膨張係数がモールド枠5のそれよりも大きく、また封止用樹脂6がモールド枠5に密着していることから、封止用樹脂6の横方向への膨張がモールド枠5によって制限されることになる。その結果、図7に示したように、封止用樹脂6には横方向への伸びを妨げる熱応力Fが働くことになる。一方、封止用樹脂6は上下方向にも膨張しようとするが、下方向への膨張が絶縁基板1によって制限されることから、絶縁基板1による制限を受けない上方向に大きく膨張することになる。このように、横方向と縦方向の膨張の違いによって封止用樹脂6の内部にひずみが発生すると、何の制限も受けない上方向への膨張力が原因で半導体素子3が絶縁基板1の電極部2aから剥離するという問題があった。
【0005】
そこで、本発明は、チップ型半導体をプリント基板上に実装する際のリフロー等による高温加熱時において、封止用樹脂の内部ひずみの発生を周辺に拡散することで半導体素子が絶縁基板の電極部から剥離するのを防止するものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、絶縁基板と、その上面に形成された電極部にダイボンドされた発光ダイオード素子及びフォトトランジスタ素子と、これらの素子および素子にワイヤボンディングされた金属細線を素子ごとに封止する封止用樹脂と、これら封止用樹脂の周囲を取り囲むモールド枠とで構成されてなるチップ型半導体であって前記モールド枠には前記封止用樹脂の間を仕切る中央壁が形成されており、封止用樹脂の周囲にはモールド枠およびモールド枠の中央壁との間にそれぞれ空隙部が設けられると共に、前記モールド枠及び中央壁の壁面は前記空隙部を介して封止用樹脂と対向する面が垂直であることを特徴とする。
【0007】
また、請求項2に係る発明は、電極部が形成された絶縁基板上に仮枠を設置すると共に半導体素子をダイボンドし、仮枠内に封止用樹脂を充填固化したのち仮枠を取り外し、この封止用樹脂の周囲にモールド枠を載置し、上記封止用樹脂との間に空隙部を設けた状態でモールド枠を絶縁基板に固着したことを特徴とする。
【0008】
【発明の実施の形態】
以下、添付図面に基づいて本発明に係るチップ型半導体の実施例を詳細に説明する。図1は本発明をフォトリフレクタ20に適用した場合の斜視図、図2は図1のA−A線断面図である。この実施例に係るフォトリフレクタ20は、チップ型発光ダイオード21と、チップ型フォトトランジスタ22とを一体に並設したものである。フォトリフレクタ20は、ガラスエポキシ樹脂等からなる絶縁基板23と、絶縁基板23の下面に形成された一対のプリント基板用電極24,25と、絶縁基板23の上面にエッチング等により形成された電極部28a,28bおよび29a,29bと、一方の電極部28a,29aの上に塗布された導電性の銀ペーストを介してダイボンドされる発光ダイオード素子26及びフォトトランジスタ素子27と、これら発光ダイオード素子26及びフォトトランジスタ素子27と他方の電極部28b,29bとをそれぞれワイヤボンディングした金属細線30と、発光ダイオード素子26及びフォトトランジスタ素子27を封止する透光性樹脂31,32と、透光性樹脂31,32の周りを取り囲むようにして発光ダイオード素子26及びフォトトランジスタ素子27を保護し且つ受発光の指向性を調整すると共に外光を遮断するためのプラスチック製モールド枠33とからなる。モールド枠33には透光性樹脂31,32間を仕切る中央壁34が形成されており、発光ダイオード素子26とフォトトランジスタ素子27とが相互に影響し合わないように配慮してある。また、この実施例では透光性樹脂31,32の周囲とモールド枠33との間に一定幅の空隙部35が設けられている。この空隙部35は、各透光性樹脂31,32とモールド枠33の中央壁34との間にも設けられている。なお、絶縁基板23の側面にはスルーホール電極36が形成されている。
【0009】
上述のフォトリフレクタ20は、発光ダイオードとフォトトランジスタの機能を兼ね備えた光検出素子として用いられる。チップ型発光ダイオード21のプリント基板用電極24からスルーホール電極36、電極部28a、発光ダイオード素子26及び金属細線30に電流が流れると、発光ダイオード素子26が電気エネルギを光エネルギに変換して発光する。そして、発光した光は反射してチップ型フォトトランジスタ22のフォトトランジスタ素子27に受光され、電気信号に増幅変換される。
【0010】
このような構成からなるフォトリフレクタ20にあっては、図2に示したように、プリント基板12上に実装する際にリフロー内で高温にさらされるが、上述したように透光性樹脂31,32とモールド枠33との間に一定の空隙部35が設けてあるので、透光性樹脂31,32の横方向への膨張がモールド枠33によって制限されるといったことがなく、図2に二点鎖線で示したように、横方向に自由に膨張できる。それ結果、従来のように横方向での熱応力を受けるといったことがない。また、図2に示したように、透光性樹脂31,32は上方向にも自由に膨張できることから、熱応力による透光性樹脂31,32の内部ひずみの発生を拡散することができ、結果的に発光ダイオード素子26及びフォトトランジスタ素子27が電極部28a,29aから剥離するのを防止できることになる。
なお、上記空隙部35は、透光性樹脂31,32やモールド枠33の熱膨張係数、フォトリフレクタ20の大きさ、リフロー温度等を考慮に入れて必要最小限の間隔で設定される。
【0011】
次に、上記フォトリフレクタ20の製造方法を図3及び図4の概略図及び図5の工程図に基づいて説明する。なお、各部位の説明には上記実施例とは異なる符号を用いる。先ず、電極部42a,42bが形成された絶縁基板41の上面に仮枠43を配置する(ステップ1)。次いで、仮枠43内において、電極部42a上に半導体素子44をダイボンドし(ステップ2)、更に金属細線45にてワイヤボンディングした後(ステップ3)、前記仮枠11内に封止用樹脂46を充填し、キュア炉に入れて封止用樹脂46を固化する(ステップ4)。
【0012】
次いで、図4に示したように、仮枠43を取り外して封止用樹脂46の周囲を露出させる(ステップ5)。そして、仮枠43を取り外した絶縁基板41上に接着剤47を塗布し、その上にモールド枠48を載置したのち、キュア炉に入れてモールド枠48を固定する(ステップ6)。モールド枠48は仮枠43より内周部が少し大きめに作られており、絶縁基板41上に載置した時に封止用樹脂46の周面との間に空隙部49が形成される。なお、上記実施例では絶縁基板41上に仮枠43を設けてから半導体素子44をダイボンドした場合について説明したが、先に半導体素子44をダイボンドし、金属細線45をワイヤボンディングしてから仮枠43を設けてもよい。上述した製造方法は、上記実施例に係るフォトリフレクタ20のみならず、チップ型発光ダイオード及びチップ型フォトトランジスタを単体で製造する場合にも適用することができる。
【0013】
図6は本発明の他の実施例を示したものである。この実施例に係るチップ型半導体は、仮枠を用いた上述の製造方法とは異なって、絶縁基板41上にダイボンドした半導体素子44および金属細線45の上に封止用樹脂46をポッティングし、これをキュア炉で硬化したのち、その周囲にモールド枠48を配置したものである。従って、この実施例においても、半導体素子44の上にポッティングした封止用樹脂46とモールド枠48との間に空隙部49が形成されるので、リフロー時にチップ型半導体が高温にさらされても封止用樹脂46の膨張がモールド枠48によって制限されるといったことがなく、封止用樹脂46の内部ひずみの発生が空隙部49に拡散されることになる。
【0014】
【発明の効果】
以上説明したように、本発明に係るチップ型半導体によれば、絶縁基板上にダイボンドされた半導体素子の封止用樹脂と、その周面を取り囲むモールド枠との間に空隙部を設けたので、チップ型半導体をプリント基板上に実装する際の高温加熱下での封止用樹脂の膨張がモールド枠によって制限を受けることがなく、封止用樹脂の内部ひずみの発生が空隙部方向へ拡散することで、半導体素子が絶縁基板の電極部から剥離するのを防止することができた。
【0015】
また、本発明に係るチップ型半導体の製造方法によれば、仮枠を配置した状態で封止用樹脂を充填固化し、仮枠を取り外したのちに封止用樹脂の周りにモールド枠を固着するようにしたので、封止用樹脂とモールド枠との間に所望の空隙部を容易且つ精度良く設けることが出来ると同時に、空隙部の調整を容易に行えるといった効果がある。
【図面の簡単な説明】
【図1】本発明に係るチップ型半導体の一実施例を示す斜視図である。
【図2】図1のA−A線断面図である。
【図3】本発明のチップ型半導体の製造方法において、仮枠を配置した時の製造過程を示す断面図である。
【図4】上記製造方法において、仮枠を外した時の製造過程を示す断面図である。
【図5】本発明に係るチップ型半導体の製造工程図である。
【図6】本発明に係るチップ型半導体の他の実施例を示す断面図である。
【図7】従来のチップ型半導体の一例を示す断面図である。
【符号の説明】
20 フォトリフレクタ(チップ型半導体)
21 チップ型発光ダイオード(チップ型半導体)
22 チップ型フォトトランジスタ(チップ型半導体)
23 絶縁基板
26 発光ダイオード素子(半導体素子)
27 フォトトランジスタ素子(半導体素子)
28a,28b 電極部
29a,29b 電極部
31,32 透光性樹脂(封止用樹脂)
33 モールド枠
35 空隙部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip type semiconductor in which a semiconductor element such as a light emitting diode element, a photodiode element, and a phototransistor element is die-bonded on an insulating substrate, and a method for manufacturing the same.
[0002]
[Prior art]
As shown in FIG. 7, the conventional chip type semiconductor includes an insulating substrate 1 made of glass epoxy resin, a pair of electrode portions 2a and 2b patterned on the upper surface of the insulating substrate 1 by etching, and the like. A semiconductor element 3 die-bonded via a conductive silver paste 9 applied on the electrode part 2a, a metal wire 4 obtained by wire-bonding the semiconductor element 3 and the other electrode part 2b, and directivity of light reception and emission Formed on the lower surface of the insulating substrate 1 is a mold frame 5 made of plastic or the like for adjusting and blocking external light, a sealing resin 6 made of epoxy resin or the like for sealing the semiconductor elements 3 and the fine metal wires 4, and the like. And the printed circuit board electrode 8.
[0003]
As a means for manufacturing this type of chip-type semiconductor 10, first, a silver paste 9 is applied on the electrode portion 2a of the insulating substrate 1, and after placing the semiconductor element 3 thereon, the silver paste 9 is cured in a curing furnace. Then, the semiconductor element 3 is die-bonded. Next, after wire bonding the semiconductor element 3 and the other electrode portion 2b, the adhesive 11 is applied around the semiconductor element 3 and the fine metal wire 4, and the mold frame 5 is placed thereon, and then again in the curing furnace. Put the adhesive 11 to cure. Finally, the sealing resin 6 is filled in the mold frame 5 and is again put in a curing furnace to solidify the sealing resin 6 and complete.
[0004]
[Problems to be solved by the invention]
By the way, when the chip type semiconductor 10 having the above-described configuration is mounted on the printed board 12, the chip type semiconductor is used because the chip type semiconductor 10 is placed on the solder 13 applied on the printed board 12 and reflow is performed. 10 will be exposed to high temperatures. At this time, the mold frame 5 and the sealing resin 6 are also thermally expanded together, but the thermal expansion coefficient of the sealing resin 6 is larger than that of the mold frame 5, and the sealing resin 6 is in the mold frame 5. Because of the close contact, the expansion of the sealing resin 6 in the lateral direction is limited by the mold frame 5. As a result, as shown in FIG. 7, thermal stress F that hinders lateral expansion acts on the sealing resin 6. On the other hand, the sealing resin 6 tends to expand in the vertical direction, but since the downward expansion is limited by the insulating substrate 1, it is greatly expanded upward without being restricted by the insulating substrate 1. Become. As described above, when distortion occurs in the sealing resin 6 due to the difference between the expansion in the horizontal direction and the vertical direction, the semiconductor element 3 is formed on the insulating substrate 1 due to the upward expansion force without any limitation. There was a problem of peeling from the electrode part 2a.
[0005]
Accordingly, the present invention provides an electrode portion of an insulating substrate by diffusing the generation of internal strain of a sealing resin to the periphery during high-temperature heating such as reflow when mounting a chip-type semiconductor on a printed circuit board. It prevents peeling from.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an invention according to claim 1 includes an insulating substrate, a light-emitting diode element and a phototransistor element die-bonded to an electrode portion formed on the upper surface, and wire bonding to these elements and elements. and a sealing resin for sealing the thin metal wires for each device, a chip-type semiconductor formed is composed of a mold frame surrounding these sealing resin and the mold frame for resin the sealing A central wall is formed between the mold frame and the center wall of the mold frame, and the wall surface of the mold frame and the center wall is The surface facing the sealing resin through the gap is vertical .
[0007]
In the invention according to claim 2, the temporary frame is placed on the insulating substrate on which the electrode portion is formed and the semiconductor element is die-bonded, and after the sealing resin is filled and solidified in the temporary frame, the temporary frame is removed, A mold frame is placed around the sealing resin, and the mold frame is fixed to an insulating substrate with a gap provided between the sealing resin and the sealing resin.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a chip-type semiconductor according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view when the present invention is applied to a photo reflector 20, and FIG. 2 is a cross-sectional view taken along line AA of FIG. The photoreflector 20 according to this embodiment has a chip-type light emitting diode 21 and a chip-type phototransistor 22 that are integrally arranged in parallel. The photo reflector 20 includes an insulating substrate 23 made of glass epoxy resin, a pair of printed circuit board electrodes 24 and 25 formed on the lower surface of the insulating substrate 23, and an electrode portion formed on the upper surface of the insulating substrate 23 by etching or the like. 28a, 28b and 29a, 29b, a light-emitting diode element 26 and a phototransistor element 27 which are die-bonded via a conductive silver paste applied on one electrode portion 28a, 29a, and the light-emitting diode element 26 and A thin metal wire 30 in which the phototransistor element 27 and the other electrode portions 28b and 29b are respectively wire-bonded, translucent resins 31 and 32 for sealing the light emitting diode element 26 and the phototransistor element 27, and a translucent resin 31 , 32 so as to surround the light emitting diode element 26 and the photo diode. Made of a plastic mold frame 33 for blocking the external light with adjusting the directivity of and protects the transistor element 27 emitting and receiving light. The mold frame 33 is formed with a central wall 34 for partitioning the translucent resins 31 and 32 so that the light emitting diode element 26 and the phototransistor element 27 do not affect each other. In this embodiment, a gap 35 having a constant width is provided between the periphery of the translucent resins 31 and 32 and the mold frame 33. The gap 35 is also provided between the translucent resins 31 and 32 and the central wall 34 of the mold frame 33. A through-hole electrode 36 is formed on the side surface of the insulating substrate 23.
[0009]
The above-described photo reflector 20 is used as a photodetecting element having the functions of a light emitting diode and a phototransistor. When current flows from the printed circuit board electrode 24 of the chip-type light emitting diode 21 to the through-hole electrode 36, the electrode portion 28a, the light emitting diode element 26, and the thin metal wire 30, the light emitting diode element 26 converts electric energy into light energy to emit light. To do. The emitted light is reflected and received by the phototransistor element 27 of the chip-type phototransistor 22 and amplified and converted into an electric signal.
[0010]
In the photo reflector 20 having such a configuration, as shown in FIG. 2, the photo reflector 20 is exposed to a high temperature in the reflow when being mounted on the printed circuit board 12. 2 is provided between the mold frame 33 and the mold frame 33, the lateral expansion of the translucent resins 31 and 32 is not limited by the mold frame 33. As indicated by the dotted line, it can expand freely in the lateral direction. As a result, the thermal stress in the lateral direction is not received as in the prior art. Moreover, as shown in FIG. 2, since the translucent resins 31 and 32 can freely expand upward, the generation of internal strain of the translucent resins 31 and 32 due to thermal stress can be diffused, As a result, the light emitting diode element 26 and the phototransistor element 27 can be prevented from being peeled off from the electrode portions 28a and 29a.
The gap portion 35 is set at a minimum necessary interval in consideration of the thermal expansion coefficients of the translucent resins 31 and 32 and the mold frame 33, the size of the photo reflector 20, the reflow temperature, and the like.
[0011]
Next, a method for manufacturing the photo reflector 20 will be described with reference to the schematic diagrams of FIGS. 3 and 4 and the process diagrams of FIG. In addition, the description different from the said Example is used for description of each site | part. First, the temporary frame 43 is disposed on the upper surface of the insulating substrate 41 on which the electrode portions 42a and 42b are formed (Step 1). Next, in the temporary frame 43, the semiconductor element 44 is die-bonded on the electrode portion 42 a (step 2) and further wire-bonded with the fine metal wire 45 (step 3), and then the sealing resin 46 is placed in the temporary frame 11. And is placed in a curing furnace to solidify the sealing resin 46 (step 4).
[0012]
Next, as shown in FIG. 4, the temporary frame 43 is removed to expose the periphery of the sealing resin 46 (step 5). Then, an adhesive 47 is applied on the insulating substrate 41 from which the temporary frame 43 has been removed, and the mold frame 48 is placed thereon, and then placed in a curing furnace to fix the mold frame 48 (step 6). The mold frame 48 has a slightly larger inner periphery than the temporary frame 43, and a gap 49 is formed between the mold frame 48 and the peripheral surface of the sealing resin 46 when placed on the insulating substrate 41. In the above embodiment, the case where the semiconductor element 44 is die-bonded after the provisional frame 43 is provided on the insulating substrate 41 has been described. However, the semiconductor element 44 is first die-bonded and the fine metal wire 45 is wire-bonded, and then 43 may be provided. The manufacturing method described above can be applied not only to the photo reflector 20 according to the above embodiment, but also to the case where a chip-type light emitting diode and a chip-type phototransistor are manufactured alone.
[0013]
FIG. 6 shows another embodiment of the present invention. Unlike the above-described manufacturing method using a temporary frame, the chip-type semiconductor according to this embodiment pots a sealing resin 46 on the semiconductor element 44 and the metal thin wire 45 die-bonded on the insulating substrate 41, After this is cured in a curing furnace, a mold frame 48 is arranged around it. Accordingly, also in this embodiment, since the gap 49 is formed between the sealing resin 46 potted on the semiconductor element 44 and the mold frame 48, even if the chip-type semiconductor is exposed to a high temperature during reflow. The expansion of the sealing resin 46 is not limited by the mold frame 48, and the occurrence of internal strain of the sealing resin 46 is diffused into the gap 49.
[0014]
【The invention's effect】
As described above, according to the chip-type semiconductor according to the present invention, the gap is provided between the resin for sealing the semiconductor element die-bonded on the insulating substrate and the mold frame surrounding the peripheral surface. The expansion of the sealing resin under high-temperature heating when mounting a chip-type semiconductor on a printed circuit board is not limited by the mold frame, and the generation of internal strain in the sealing resin diffuses toward the gap By doing so, it was possible to prevent the semiconductor element from being peeled off from the electrode portion of the insulating substrate.
[0015]
Further, according to the chip type semiconductor manufacturing method of the present invention, the sealing resin is filled and solidified in a state where the temporary frame is arranged, and the mold frame is fixed around the sealing resin after the temporary frame is removed. Thus, there is an effect that a desired gap can be easily and accurately provided between the sealing resin and the mold frame, and at the same time, the gap can be easily adjusted.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a chip-type semiconductor according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view showing a manufacturing process when a temporary frame is arranged in the chip type semiconductor manufacturing method of the present invention.
FIG. 4 is a cross-sectional view showing a manufacturing process when a temporary frame is removed in the manufacturing method.
FIG. 5 is a manufacturing process diagram of a chip-type semiconductor according to the present invention.
FIG. 6 is a cross-sectional view showing another embodiment of a chip-type semiconductor according to the present invention.
FIG. 7 is a cross-sectional view showing an example of a conventional chip type semiconductor.
[Explanation of symbols]
20 Photo reflector (chip type semiconductor)
21 Chip type light emitting diode (chip type semiconductor)
22 Chip type phototransistor (chip type semiconductor)
23 Insulating substrate 26 Light emitting diode element (semiconductor element)
27 Phototransistor element (semiconductor element)
28a, 28b Electrode part 29a, 29b Electrode part 31, 32 Translucent resin (sealing resin)
33 Mold frame 35 Cavity

Claims (3)

絶縁基板と、その上面に形成された電極部にダイボンドされた発光ダイオード素子及びフォトトランジスタ素子と、これらの素子および素子にワイヤボンディングされた金属細線を素子ごとに封止する封止用樹脂と、これら封止用樹脂の周囲を取り囲むモールド枠とで構成されてなるチップ型半導体であって
前記モールド枠には前記封止用樹脂の間を仕切る中央壁が形成されており、封止用樹脂の周囲にはモールド枠およびモールド枠の中央壁との間にそれぞれ空隙部が設けられると共に、前記モールド枠及び中央壁の壁面は前記空隙部を介して封止用樹脂と対向する面が垂直であることを特徴とするチップ型半導体。
An insulating substrate, a light emitting diode element and the phototransistor element is die-bonded to the electrode portions formed on the upper surface thereof, a sealing resin for sealing the wire bonded metal thin wire for each element in these devices and elements, a chip-type semiconductor formed is composed of a mold frame surrounding these sealing resin,
The mold frame is formed with a central wall that partitions the sealing resin, and a gap is provided between the mold frame and the central wall of the mold frame around the sealing resin. The chip-type semiconductor according to claim 1, wherein the mold frame and the wall surface of the center wall are perpendicular to the sealing resin through the gap .
前記封止用樹脂の周囲にはモールド枠およびモールド枠の中央壁との間にそれぞれ一定幅の空隙部が設けられる請求項1記載のチップ型半導体。The chip-type semiconductor according to claim 1, wherein a gap having a constant width is provided between the mold resin and a central wall of the mold frame around the sealing resin. 電極部が形成された絶縁基板上に仮枠を設置すると共に半導体素子をダイボンドし、仮枠内に封止用樹脂を充填固化したのち仮枠を取り外し、この封止用樹脂の周囲にモールド枠を載置し、上記封止用樹脂との間に空隙部を設けた状態でモールド枠を絶縁基板に固着したことを特徴とするチップ型半導体の製造方法。  A temporary frame is placed on the insulating substrate on which the electrode portion is formed and the semiconductor element is die-bonded. After the sealing resin is filled and solidified in the temporary frame, the temporary frame is removed, and the mold frame is formed around the sealing resin. And a mold frame is fixed to the insulating substrate in a state where a gap is provided between the sealing resin and the sealing resin.
JP19344196A 1996-07-23 1996-07-23 Chip-type semiconductor and manufacturing method thereof Expired - Fee Related JP3699783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19344196A JP3699783B2 (en) 1996-07-23 1996-07-23 Chip-type semiconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19344196A JP3699783B2 (en) 1996-07-23 1996-07-23 Chip-type semiconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1041550A JPH1041550A (en) 1998-02-13
JP3699783B2 true JP3699783B2 (en) 2005-09-28

Family

ID=16308048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19344196A Expired - Fee Related JP3699783B2 (en) 1996-07-23 1996-07-23 Chip-type semiconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3699783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692206B2 (en) * 2002-12-06 2010-04-06 Cree, Inc. Composite leadframe LED package and method of making the same
JP2006313943A (en) * 2003-02-18 2006-11-16 Sharp Corp Semiconductor light emitting device, manufacturing method thereof, and electronic imaging device

Also Published As

Publication number Publication date
JPH1041550A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US6602737B2 (en) Semiconductor package with heat-dissipating structure and method of making the same
JP5596901B2 (en) Power light emitting die package having a reflective lens and method of manufacturing the same
JP3069082B2 (en) Method of manufacturing photoelectric device and photoelectric device
JP3507251B2 (en) Optical sensor IC package and method of assembling the same
JP5695488B2 (en) Luminous body package
US6730533B2 (en) Plastic packaging of LED arrays
JP4926337B2 (en) light source
JP3618551B2 (en) Optical semiconductor module
US20070267643A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP2000174350A (en) Optical semiconductor module
JP4545956B2 (en) Semiconductor device and manufacturing method thereof
JPH11346008A (en) Semiconductor device
TWI289960B (en) Housing for a laser-diode-component, laser-diode-component and its production method
JPH11330131A (en) Semiconductor device
JPH1050734A (en) Chip type semiconductor
JP3239640B2 (en) Semiconductor device manufacturing method and semiconductor device
JP3699783B2 (en) Chip-type semiconductor and manufacturing method thereof
JPH11112036A (en) Surface mounting semiconductor device
JP3638328B2 (en) Surface mount type photocoupler and manufacturing method thereof
JP3655338B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP3449538B2 (en) Photoelectric conversion element and method for manufacturing the same
JP4409074B2 (en) Semiconductor device
JP2003060240A (en) Light-emitting diode and manufacturing method therefor
JP2534061Y2 (en) Solid-state imaging device
JPH10190051A (en) Led light emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees