JP3689124B2 - Stereo microscope - Google Patents

Stereo microscope Download PDF

Info

Publication number
JP3689124B2
JP3689124B2 JP31105593A JP31105593A JP3689124B2 JP 3689124 B2 JP3689124 B2 JP 3689124B2 JP 31105593 A JP31105593 A JP 31105593A JP 31105593 A JP31105593 A JP 31105593A JP 3689124 B2 JP3689124 B2 JP 3689124B2
Authority
JP
Japan
Prior art keywords
optical system
relay
afocal
reflecting member
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31105593A
Other languages
Japanese (ja)
Other versions
JPH07140395A (en
Inventor
豊治 榛澤
朝規 石川
孝 深谷
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP31105593A priority Critical patent/JP3689124B2/en
Publication of JPH07140395A publication Critical patent/JPH07140395A/en
Application granted granted Critical
Publication of JP3689124B2 publication Critical patent/JP3689124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、実体顕微鏡の光学系に関するものである。
【0002】
【従来の技術】
実体顕微鏡は、微細な部分を3次元的に把握できるため、研究、検査、手術などの幅広い分野で使用されている。最近これら分野での技術が高度化し、2人が自由な方向から作業したり、長時間観察するために、楽な姿勢で観察できるような実体顕微鏡の要望が強くなっている。
【0003】
この要望を満たす実体顕微鏡の従来例として、特開平4−156412号公報に記載されたものが知られている。この従来例は、図22に示すような構成のもので、対物レンズと同軸のアフォーカルズーム光学系等からなる変倍可能な光学系30を設置し、その後方に左右一対の接眼光学系を置いたもので、接眼光学系全体を対物レンズの光軸と平行な軸の回りで回転させることによって、前述の要望を達成させるようにしている。
【0004】
しかし、この実体顕微鏡は、接眼光学系の左右観察用の瞳を含むようにアフォーカルズーム光学系の射出瞳を大きくする必要がある。例えば、通常の実体顕微鏡にて使われている2本のアフォーカルズームレンズの片方を相似拡大して前記の要件を満たそうとすると、瞳の大きさは2倍以上になりそれに応じてズームレンズの全長が2倍以上になる。更に顕微鏡の作業性を良くするために作動距離が可変の対物レンズを取付けた実体顕微鏡が実用化されており、その場合光学系の光路長はさらに長くなる。そのために、作業を行なう光学系の物体面と作業者が接眼レンズをのぞく目の位置(アイポイント)とが離れ、物体面付近での作業を行ないにくい。更に、瞳位置から対物レンズまでの距離が離れるために軸外光束が広がり、対物レンズの外径が大きくなり顕微鏡が大型化すると云う問題が生ずる。
【0005】
又、ズーム光学系の瞳径を前述の2倍以上の大きさにしたまま、レンズ系の全長を短くすることも考えられるが、各レンズの焦点距離が短くなり、高精度のレンズ加工が必要になり、又調整が難しくなる欠点が生じ、実用的な大きさのものを作成出来ない。
【0006】
【発明が解決しようとする課題】
本発明は、変倍光学系が左右の観察光学系の瞳を含む1本の実体顕微鏡変倍光学系で、アイポイントを低くして観察しながらの物体面での操作が容易になり、しかも良好な光学性能を有する実体顕微鏡を提供するものである。
【0007】
【課題を解決するための手段】
本発明の実体顕微鏡は、一つの対物レンズとこの対物レンズと同軸に配置されている一つの変倍光学系とを有し、変倍光学系と観察者の瞳の間であって変倍光学系の光軸とは偏芯した位置に瞳となる開口絞りを複数設定し、この開口絞りによって決められる光軸(観察系の光軸)と変倍光学系内部で異なった位置を通るもので、左右共通の1本の光学系(前記の観察系よりも物体側に位置する光学系)の内部で1回結像したアフォーカルリレー光学系を有することを特徴としている。
【0008】
実体顕微鏡は、作業に必要な作動距離を確保したうえで、作業を行なう光学系の物体面とアイポイントを近くする必要がある。顕微鏡の作業者がいる側と反対の側や側方は、多少大きくなっても作業への影響は少ない。そのため、顕微鏡の作業に影響の少ない方向に突出部を設けて、その内部に変倍光学系を配置し、反射部材を使って物体からの光束を変倍光学系に導き、鏡体の入射光束の近くから光束を射出するようにする。このように構成することによって、アイポイントを低く出来、物体面とアイポイントとの距離を短くできる。しかし鏡体内の光路長が長くなり、対物レンズが開口絞りから離れ、軸外光束が広くなり、大きな径の対物レンズが必要になる。そのために幅の広い鏡体になり物体面を直接見づらくなり、作業性の悪い顕微鏡になり実用的ではない。本発明では、この欠点を瞳(開口絞りの像)を対物レンズの近くにリレーして対物レンズ付近の光束を小さくすることによって解決した。つまり、内部にて1回結像するアフォーカルリレー光学系を、左右共通の1本の光学系(開口絞りより物体側の光学系)中に挿入して解決した。
【0009】
ここで対物レンズと開口絞りとの間には、アフォーカル変倍光学系が存在するために、対物レンズの近くにリレーされた開口絞りの像位置が変化する。
【0010】
このような光学系において、対物レンズの外径の大きさは、アフォーカル変倍光学系の倍率が最大の時の光束の状態に左右される。したがって、アフォーカル変倍光学系の倍率が最大の時に開口絞りの像が対物レンズの付近に形成されるようにすれば、レンズの径を小さくすることが可能である。尚、対物レンズが複数のレンズから成るときは物体側のレンズの近くに瞳がリレーされるようにすると好ましい。この場合、接眼レンズに至るまでの間に物体像は変倍光学系とリレー光学系とで2回結像されるため像を180°回転するための正立系は必要としない。しかし左右の光束は、入れ替わるので、そのまま観察すると逆立体になるため瞳と接眼レンズとの間で左右の光束を入れ替える必要がある。
【0011】
図1は、本発明の実体顕微鏡の構成の1例を示す図である。この図1に示すように本発明の実体顕微鏡は、物体からの光線を水平方向に曲げるための第1の反射部材1と、物体からの光線を平行にするための対物レンズ2と、水平方向の光線を再び垂直方向に曲げる第2の反射部材3と、アフォーカル変倍光学系4と、光線を曲げ元の方向に戻すための第3の反射部材5と、アフォーカル光束を結像させるためのレンズ群6と、レンズ群6を射出する光線の方向を下方へ向け、更に水平方向に向け、更に物体からの光束と同じ方向(物体方向)に曲げる反射部材7(反射板7a,7b,7c)と、光束を再び平行光束にするレンズ群8と、複数の観察者方向や撮像系に分岐するための光分割素子9と、瞳を設定するための左右の開口絞り10L,10Rと、左右像を結像するための結像レンズ11L,11Rと、左右の光束を入れ替えるための光学系12と、左右の接眼レンズ13L,13Rとからなっている。
【0012】
ここで、対物レンズ2は物体側より正レンズ群と負レンズ群により構成され、負レンズ群が光軸方向に移動させることによって作動距離WDを変えることが出来るようにしたものである。又変倍光学系4は正レンズ群,負レンズ群,正レンズ群の三つのレンズ群からなり、像側の二つのレンズ群を移動させて変倍を行なうようにしている。尚、対物レンズ2からレンズ群8までは左右光学系に共通であり、同一の光軸上に配置されている。
【0013】
図2はこの実体顕微鏡において、開口絞り10L,10Rから接眼レンズ13L,13Rまでの鏡筒部の1例を示す図で、左右の光束を入れ替える光学系12は四つの反射部材12a,12b,12c,12dにより構成されており、反射部材12a,12bにより右側の結像光束を左側の接眼レンズに、又反射部材12c,12dにより左側の結像光束を右側の接眼レンズに導くようになっている。また左右の接眼レンズ13L,13Rの間に両眼での観察に必要な左右の眼幅調整のためのプリズム15L,15Rが挿入されている。
【0014】
このような光学系において、レンズ群6とレンズ群8とよりなるアフォーカルリレー光学系により、変倍光学系の倍率が最も大きくなる状態での瞳(開口絞りの像)が対物レンズ付近にリレーされるようにしている。なお、レンズ群6は、アフォーカルリレー光学系内の結像点14より物体側のレンズ群、レンズ群8は結像点14より像側の光学系である。
【0015】
この光学系において、複数の観察者が観察する場合、それぞれの観察者の瞳位置が異なることが多い。そのため、開口絞りのすべてを対物レンズの位置にリレーすることができない。このような場合、それぞれの観察者の開口絞りのリレー位置の範囲の中間を対物レンズの位置に調整すると有効径を小さくできる。
【0016】
また、図3に示すように、図1の第2の反射部材3を反射部材3a,3bとし、リレー光学系内の反射部材7として7a,7b,7cに更に7dを増加して3次元的に光学系を配置すれば、即ち反射プリズム3aにより反射プリズム1からの光を水平面内で曲げ、その後反射プリズム3bにより上方に向けるようにし、更に反射プリズム7bからの光を反射プリズム7cにより水平面内で元の方向に戻してから反射プリズム7dにより上方へ向けるようにすれば、顕微鏡より突出する方向を調整することが出来る。
【0017】
この場合、図4に示すように、プリズム7b,7dを逆向きに90°回し、その間にプリズム7cを置くようにすると、対物レンズ2から瞳リレー光学系のレンズ群8までの反射部材を利用して像を180°回転させることも出来る。その場合、左右光束を入れ替える光学系は、不要であり、左右光束を入れ替えずに像を180°回転させる左右一対の正立プリズムを用いればよい。つまり図5に示すように夫々2つのプリズムからなる左右の正立光学系16R1,16R2,16L1,16L2を用いれば、一般的なガリレオ型の実体顕微鏡の鏡筒と同じ構成になる。そのため、ガリレオ型の実体顕微鏡の鏡筒と共通化出来る長所がある。
【0018】
このような光学系では、瞳位置を調節し、かつ反射部材を用いるためにレンズの配置位置にかなりの制限が生ずる。この制限を緩和するためには、レンズ群6とレンズ群8のうち、いずれかのレンズ群或いは、両方のレンズ群を2群に分ければよい。これによって、第3の反射部材5から光分割素子9までの距離とアフォーカルリレー倍率を最適なものに調整することが出来る。
【0019】
更に光分割素子9により分割後の光束に複数の観察者のそれぞれにレンズ群8を設置してもよい。この場合、複数の観察者が夫々倍率を変え観察出来、又レンズ群をズームレンズにすれば観察者各自の観察しやすい倍率に微調整することが出来る。図6は、このような構成で、観察者2人の場合であって、一方の観察者のみ倍率を変化させての観察を可能にした例である。この図6において、光分割プリズム9の透過側に第1の観察者用の光束をアフォーカルにするためのレンズ群8と第1の観察者用の鏡筒18を配置してある。又光分割プリズム9の反射側には、第2の観察者用の光束をアフォーカルにするためのレンズ群17a,17bとその後方の第2の観察者用の鏡筒19が配置してある。このレンズ群17a,17bは、射出する光束をアフォーカル光束に維持しながら、倍率を変化するように光軸上を移動させるようにしてある。
【0020】
なお図6には、第2の観察者のみ変倍しながらの観察を可能にしたものを示してあるが、第1の観察者も変倍観察するようにしてもよい。更に多数の観察者が倍率を調整しながら観察出来る構成にすることも可能である。
【0021】
また、このように構成した場合、第3反射部材5が瞳や結像点から離れるために、軸外光束が広くなり第3の反射部材5の外径が大になりやすい。この反射部材5の径が大きくならないようにするには、総合のアフォーカル倍率を一定にしたまま、アフォーカル変倍系のアフォーカル倍率を上げ、アフォーカルリレー系のアフォーカル倍率を下げるとよい。特にアフォーカルリレー系の倍率を1倍より小さくすると第3の反射部材5の付近のレンズの径を小さく出来るようになるため、鏡体全体の一層の小型化が可能になる。また、アフォーカル変倍系を凸レンズ、凹レンズ、凸レンズからなる3群ズームにすると変倍系を短く出来、全体を小型に出来る。
【0022】
尚本発明の実体顕微鏡は、反射部材を多く配置しているので、この反射部材の一部をハーフミラーに変えて写真装置、テレビ装置、オートフォーカス装置、指標投影装置、他の画像をスーパーインポーズする装置等を取付けることが出来る。特に第3の反射部材5付近は観察部から離れているために、前記のようにハーフミラーを用いての各装置の設置を行なっても観察や作業に影響を与えることがなく、大型な装置でも取付けが可能である。
【0023】
次に、本発明の実体顕微鏡で用いるアフォーカル変倍光学系とアフォーカルリレー光学系の数値例を示す。
数値例1
0 =基準面 d0 =D1 (可変)
1 =0.6864 d1 =0.06386 n1 =1.60311 ν1 =60.7
2 =-0.51403 d2 =0.04032 n2 =1.85026 ν2 =32.3
3 =-1.17302 d3 =D2 (可変)
4 =-0.34692 d4 =0.02016 n3 =1.72916 ν3 =54.7
5 =0.37783 d5 =0.05808
6 =-0.13308 d6 =0.02419 n4 =1.8044 ν4 =39.6
7 =-0.80747 d7 =0.07064 n5 =1.5927 ν5 =35.3
8 =-0.15417 d8 =D3 (可変)
9 =0.80541 d9 =0.03226 n6 =1.85026 ν6 =32.3
10=0.31126 d10=0.07121 n7 =1.497 ν7 =81.6
11=-0.46759 d11=0.01613
12=∞ d12=0.3629 n8 =1.51633 ν8 =64.1
13=∞ d13=0.00806
14=0.3303 d14=0.06186 n9 =1.51633 ν9 =64.1
15=-2.63036 d15=0.04298 n10=1.5213 ν10=52.6
16=0.84049 d16=1.32998
17=∞ d17=0.32258 n11=1.51633 ν11=64.1
18=∞ d18=0.06452
19=-0.14401 d19=0.02595 n12=1.7847 ν12=26.2
20=-0.19417 d20=0.03039
21=∞ d21=0.32258 n13=1.51633 ν13=64.1
22=∞ d22=0.04032
23=-14.63582 d23=0.03226 n14=1.79952 ν14=42.2
24=1.00588 d24=0.05711 n15=1.60311 ν15=60.7
25=-0.40794 d25=0.80645
26=開口絞り
AP=0.80645 ,AD=0.08871 ,A=0.0968
βZ 0.375X 0.75X 1.5 X
1 0.23513 0.04032 0.10274
2 0.04839 0.34973 0.50041
3 0.36802 0.26148 0.04839
ENP 0.60706 0.56164 -0.64207
βr =0.714 X,fOC=1.3548,IH=0.040323
【0024】
数値例2
0 =基準面 d0 =0.050847
1 =0.4925442 d1 =0.0834281 n1 =1.48749 ν1 =70.2
2 =-0.474812 d2 =0.0423728 n2 =1.6765 ν2 =37.5
3 =-1.182482 d3 =D1 (可変)
4 =-0.523820 d4 =0.0211864 n3 =1.834 ν3 =37.2
5 =0.2682305 d5 =0.0607603
6 =-0.138451 d6 =0.0254237 n4 =1.7552 ν4 =27.5
7 =0.3546701 d7 =0.0874550 n5 =1.80518 ν5 =25.4
8 =-0.219867 d8 =D2 (可変)
9 =1.3224827 d9 =0.0338983 n6 =1.85026 ν6 =32.3
10=0.6696354 d10=0.0595425 n7 =1.48749 ν7 =70.2
11=-0.529872 d11=D3 (可変)
12=∞ d12=0.3813559 n8 =1.51633 ν8 =64.1
13=∞ d13=0.0084745
14=0.8065133 d14=0.0738292 n9 =1.60311 ν9 =60.7
15=-0.539466 d15=0.0254237 n10=1.7847 ν10=26.2
16=-1.552770 d16=1.5723571
17=∞ d17=0.2203389 n11=1.51633 ν11=64.1
18=∞ d18=0.0664603
19=-0.328386 d19=0.0256057 n12=1.85026 ν12=32.3
20=0.3641288 d20=0.0458154 n13=1.71736 ν13=29.5
21=-0.415556 d21=0.0951693
22=∞ d22=0.3389830 n14=1.51633 ν14=64.1
23=∞ d23=0.0254237
24=24.324563 d24=0.0338983 n15=1.6445 ν15=40.8
25=0.5318231 d25=0.0677966 n16=1.60311 ν16=60.7
26=-0.525972 d26=1.01695
27=開口絞り
AP=1.0169491 ,AD=0.09322 ,A=0.10169
βZ 0.375X 0.75X 1.5 X
1 0.05128 0.33268 0.47337
2 0.35445 0.25324 0.05847
3 0.23104 0.05085 0.11256
ENP 0.18528 0.48537 -0.78405
βr =0.714 X,fOC=1.4237,IH=0.042373
【0025】
数値例3
0 =基準面 d0 =0.050847
1 =18.627873 d1 =0.0247486 n1 =1.741 ν1 =52.7
2 =-4.252746 d2 =0.0042372
3 =0.9474827 d3 =0.0681677 n2 =1.72916 ν2 =54.7
4 =-1.180707 d4 =0.0423728 n3 =1.80518 ν3 =25.4
5 =-5.860852 d5 =D1 (可変)
6 =-0.396629 d6 =0.0211864 n4 =1.85026 ν4 =32.3
7 =0.3824245 d7 =0.0487516
8 =-0.405606 d8 =0.0338983 n5 =1.53996 ν5 =59.5
9 =0.3183145 d9 =0.0482891 n6 =1.80518 ν6 =25.4
10=1741.561 d10=D2 (可変)
11=1.4346549 d11=0.0381355 n7 =1.834 ν7 =37.2
12=0.4381331 d12=0.0831096 n8 =1.618 ν8 =63.4
13=-0.440553 d13=0.3411328
14=∞ d14=0.3813559 n9 =1.51633 ν9 =64.1
15=∞ d15=0.0084745
16=0.5284915 d16=0.0957926 n10=1.618 ν10=63.4
17=-0.526626 d17=0.0482751 n11=1.834 ν11=37.2
18=-5.096974 d18=1.4915253
19=∞ d19=0.2203389 n12=1.51633 ν12=64.1
20=∞ d20=0.0186949
21=-3.573787 d21=0.0961652 n13=1.834 ν13=37.2
22=-0.543674 d22=0.0338983 n14=1.56732 ν14=42.8
23=0.4358255 d23=0.0334448
24=∞ d24=0.3559322 n15=1.51633 ν15=64.1
25=∞ d25=0.0254237
26=1.0161958 d26=0.0430328 n16=1.7847 ν16=26.2
27=0.6530680 d27=0.0586621 n17=1.618 ν17=63.4
28=-0.738788 d28=0.92308
29=開口絞り
AP=1.0169491 ,AD=0.09322 ,A=0.10169
βZ 0.45 X 0.9 X 1.8 X
1 0.0508474 0.3673346 0.5255765
2 0.2459698 0.1809286 0.0508474
3 0.3411327 0.0896868 0.0615261
ENP 0.2286542 0.0465839 -1.32839
βr =0.794 X,fOC=1.4237,IH=0.056483
上記の数値例は、変倍系の最大長で規格化した値である。データー中r1 ,r2 ,・・・ は各レンズ面の曲率半径(基準面r0は実施例では第2反射部材の射出面)、d1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。又ADは変倍光学系の光軸に対する左右の接眼光学系の光軸の偏芯量、Aは接眼光学系の開口絞りの径、APは接眼光学系の開口絞りとアフォーカルリレー光学系を含む変倍光学系の最終面との光軸方向の距離(プリズム等を含む場合は空気換算長)、IHは接眼光学系の光軸からの最大像高、HHは第2レンズ群の主点間隔、βZ はアフォーカル変倍光学系の倍率、βr はアフォーカルリレー光学系の倍率、ENPは入射瞳位置、fOCは結像レンズの焦点距離である。
【0026】
数値例1(第1の例)は、図7、図8に示す通りで、図7の第13面(r13)までがアフォーカル変倍光学系、図8の第25面(r25)までがアフォーカルリレー光学系である。
【0027】
又図7に示すガラスブロック( 12 〜r 13 )は反射部材(プリズム)5、図8に示すガラスブロック( 17 〜r 18 )は反射部材7c、ガラスブロック(r 21 〜r 22 )は反射部材7dであり、面r16と面r17の間には反射部材7a,7bが配置されているがこの数値例1は反射部材7a,7bとしミラーを設けたものであり、データー並びに図8には示していない。また収差状況は図13乃至図15の通りである。
【0028】
数値例2(第2の例)は、図9、図10に示す通りで、図9の第13面(r13)までがアフォーカル変倍光学系、図10の第26面(r26)までがアフォーカルリレー光学系である。
【0029】
この数値例2も図9のガラスブロック( 12 〜r 13 )が反射部材5、図10のガラスブロック( 17 〜r 18 )および( 22 〜r 23 )が夫々反射部材7c、7dであり、又面r16と面r17の間には反射部材7a,7bに相当する2枚のミラーが配置されているがデーターおよび図10には示していない。この数値例2の収差状況は図16乃至図18の通りである。
【0030】
数値例1では、変倍光学系中の第1群( 1 〜r 3 )と第2群( 4 〜r 8 )を移動させて変倍を行なっているが、この数値例2では、変倍光学系中の第2群( 4 〜r 8 )と第3群( 9 〜r 11 )を移動させて変倍を行なっている。これによって最低倍率の瞳の位置を最高倍率の入射瞳位置に近づけやすくなり、観察視野を広げる場合に有効である。
【0031】
数値例3(第3の例)は、図11、図12に示す通りで、図11の第15面(r15)までがアフォーカル変倍光学系、図12の第28面(r28)までがアフォーカルリレー光学系である。
【0032】
この数値例3も図11のガラスブロック( 14 〜r 15 )が反射部材5、図12のガラスブロック( 19 〜r 20 )および( 24 〜r 25 )が反射部材7c、7dであり、又面r18と面r19の間には反射部材7a,7bに相当する2枚のミラーが配置されているがデーターおよび図12には示していない。この数値例の収差状況は図19乃至図21に示す通りである。
【0033】
この数値例は、倍率、解像、立体感を上げた例である。
【0034】
これらの光学系は、いずれも入射瞳付近に対物レンズをおけば対物レンズの直径を小さく出来る。
【0035】
【発明の効果】
本発明の実体顕微鏡は、アフォーカル変倍光学系と共にアフォーカルリレー光学系を用いることによって小型で低いアイポイントで、しかも良好な光学系になし得るものである。
【図面の簡単な説明】
【図1】本発明の実体顕微鏡の構成を示す図
【図2】本発明の実体顕微鏡の鏡筒部の1例を示す図
【図3】本発明の実体顕微鏡の他の構成を示す図
【図4】本発明の実体顕微鏡の更に他の構成を示す図
【図5】本発明の実体顕微鏡の鏡筒部の他の例を示す図
【図6】本発明の実体顕微鏡の鏡筒部の更に他の例を示す図
【図7】本発明の実体顕微鏡で用いる変倍光学系の第1の例を示す断面図
【図8】本発明の実体顕微鏡で用いるリレー光学系の第1の例を示す断面図
【図9】本発明の実体顕微鏡で用いる変倍光学系の第2の例を示す断面図
【図10】本発明の実体顕微鏡で用いるリレー光学系の第2の例を示す断面図
【図11】本発明の実体顕微鏡で用いる変倍光学系の第3の例を示す断面図
【図12】本発明の実体顕微鏡で用いるリレー光学系の第3の例を示す断面図
【図13】前記の変倍光学系とリレー光学系よりなる光学系の第1の例の横収差図
【図14】前記の変倍光学系とリレー光学系よりなる光学系の第1の例の左右方向の非点収差図
【図15】前記の変倍光学系とリレー光学系よりなる光学系の第1の例の垂直方向の非点収差図
【図16】前記の変倍光学系とリレー光学系よりなる光学系の第2の例の横収差図
【図17】前記の変倍光学系とリレー光学系よりなる光学系の第2の例の左右方向の非点収差図
【図18】前記の変倍光学系とリレー光学系よりなる光学系の第2の例の垂直方向の非点収差図
【図19】前記の変倍光学系とリレー光学系よりなる光学系の第3の例の横収差図
【図20】前記の変倍光学系とリレー光学系よりなる光学系の第3の例の左右方向の非点収差図
【図21】前記の変倍光学系とリレー光学系よりなる光学系の第3の例の垂直方向の非点収差図
【図22】従来の実体顕微鏡の構成を示す図
【符号の説明】
2 対物レンズ
3 反射部材
4 変倍光学系
5 反射部材
6 アフォーカルリレー系のレンズ群
7 反射部材
8 アフォーカルリレー系のレンズ群
10L,10R 左右の開口絞り
[0001]
[Industrial application fields]
The present invention relates to an optical system of a stereomicroscope.
[0002]
[Prior art]
Stereomicroscopes are used in a wide range of fields such as research, inspection, and surgery because they can grasp minute parts three-dimensionally. With the recent advancement of technology in these fields, there is a strong demand for a stereomicroscope that can be observed in an easy posture so that two persons can work from any direction or observe for a long time.
[0003]
As a conventional example of a stereomicroscope that satisfies this demand, one described in Japanese Patent Laid-Open No. 4-156212 is known. This conventional example is configured as shown in FIG. 22, and an optical system 30 capable of zooming, such as an afocal zoom optical system coaxial with the objective lens, is installed, and a pair of left and right eyepiece optical systems are provided behind it. The above-mentioned demand is achieved by rotating the entire eyepiece optical system around an axis parallel to the optical axis of the objective lens.
[0004]
However, this stereomicroscope needs to increase the exit pupil of the afocal zoom optical system so as to include the left and right observation pupils of the eyepiece optical system. For example, if one of the two afocal zoom lenses used in a normal stereomicroscope is enlarged in a similar manner to satisfy the above requirement, the size of the pupil is more than doubled, and the zoom lens accordingly. Will be more than double the total length. Furthermore, in order to improve the workability of the microscope, a stereomicroscope equipped with an objective lens having a variable working distance has been put into practical use. In this case, the optical path length of the optical system is further increased. Therefore, the object surface of the optical system that performs the work is separated from the position (eye point) of the eye that the operator looks through the eyepiece lens, and it is difficult to perform work near the object surface. Furthermore, since the distance from the pupil position to the objective lens is increased, the off-axis light beam spreads, and the problem arises that the outer diameter of the objective lens increases and the microscope becomes larger.
[0005]
Although it is possible to shorten the overall length of the lens system while keeping the pupil diameter of the zoom optical system at least twice as large as described above, the focal length of each lens is shortened and high-precision lens processing is required. In addition, there is a disadvantage that adjustment becomes difficult, and a practical size cannot be created.
[0006]
[Problems to be solved by the invention]
The present invention is a single stereoscopic microscope variable magnification optical system in which the variable magnification optical system includes the left and right pupils of the observation optical system, and the operation on the object surface while observing with a low eye point becomes easy. A stereomicroscope having good optical performance is provided.
[0007]
[Means for Solving the Problems]
The stereomicroscope of the present invention has one objective lens and one variable magnification optical system arranged coaxially with the objective lens, and is provided between the variable magnification optical system and the pupil of the observer, and the variable magnification optical system. The optical axis of the system is a system in which a plurality of aperture stops serving as pupils are set at eccentric positions, and the optical axis determined by the aperture stop (the optical axis of the observation system) passes through different positions within the variable magnification optical system. And an afocal relay optical system that forms an image once in an optical system common to the left and right (an optical system located on the object side of the observation system).
[0008]
The stereomicroscope needs to keep the working distance necessary for the work, and close the object surface and eye point of the optical system for the work. The side opposite to the side where the operator of the microscope is located or the side is slightly affected even if it becomes slightly larger. For this reason, a projection is provided in a direction that has little effect on the operation of the microscope, a variable magnification optical system is arranged inside it, a light beam from the object is guided to the variable magnification optical system using a reflecting member, and the incident light flux of the mirror body The light beam is emitted from the vicinity. With this configuration, the eye point can be lowered, and the distance between the object plane and the eye point can be shortened. However, the optical path length in the lens body becomes long, the objective lens moves away from the aperture stop, the off-axis light beam becomes wide, and an objective lens having a large diameter is required. Therefore, it becomes a wide mirror and it is difficult to see the object surface directly, and it becomes a microscope with poor workability and is not practical. In the present invention, this disadvantage is solved by relaying the pupil (aperture stop image) near the objective lens to reduce the light flux near the objective lens. That is, the afocal relay optical system that forms an image once inside is inserted into one common optical system (the optical system closer to the object than the aperture stop).
[0009]
Here, since an afocal variable magnification optical system exists between the objective lens and the aperture stop, the image position of the aperture stop relayed near the objective lens changes.
[0010]
In such an optical system, the size of the outer diameter of the objective lens depends on the state of the light beam when the magnification of the afocal variable magnification optical system is maximum. Accordingly, if the aperture stop image is formed in the vicinity of the objective lens when the magnification of the afocal variable magnification optical system is maximum, the diameter of the lens can be reduced. When the objective lens is composed of a plurality of lenses, it is preferable that the pupil is relayed near the lens on the object side. In this case, since the object image is formed twice by the variable power optical system and the relay optical system before reaching the eyepiece, no erecting system for rotating the image by 180 ° is required. However, since the left and right light beams are interchanged, the left and right light beams need to be interchanged between the pupil and the eyepiece because it becomes an inverted solid when observed as it is.
[0011]
FIG. 1 is a diagram showing an example of the configuration of a stereomicroscope according to the present invention. As shown in FIG. 1, the stereomicroscope of the present invention includes a first reflecting member 1 for bending light rays from an object in the horizontal direction, an objective lens 2 for making light rays from the object parallel, and a horizontal direction. The second reflecting member 3 for bending the light beam again in the vertical direction, the afocal variable magnification optical system 4, the third reflecting member 5 for returning the light beam to the original direction of bending, and an afocal light beam are imaged. a lens group 6 for, towards the direction of the ray emerging the lens 6 downwards, further horizontally toward the further bent in the same direction (the object side) and the light beam from the object reflector member 7 (reflecting plate 7a, 7b 7c), a lens group 8 for converting the light beam into a parallel light beam again, a light splitting element 9 for branching to a plurality of observer directions and image pickup systems, and left and right aperture stops 10L, 10R for setting a pupil, An imaging lens 11L for forming left and right images, And 1R, an optical system 12 for replacing the left and right light beams, the left and right eyepieces 13L, consists and 13R.
[0012]
Here, the objective lens 2 is composed of a positive lens group and a negative lens group from the object side, and the working distance WD can be changed by moving the negative lens group in the optical axis direction. The variable magnification optical system 4 includes three lens groups, a positive lens group, a negative lens group, and a positive lens group, and performs zooming by moving the two lens groups on the image side. The objective lens 2 to the lens group 8 are common to the left and right optical systems and are arranged on the same optical axis.
[0013]
FIG. 2 is a view showing an example of a lens barrel portion from the aperture stops 10L, 10R to the eyepieces 13L, 13R in this stereomicroscope. The optical system 12 for switching the right and left light beams has four reflecting members 12a, 12b, 12c. 12d, and the right imaging beam is guided to the left eyepiece by the reflecting members 12a and 12b, and the left imaging beam is guided to the right eyepiece by the reflecting members 12c and 12d. . In addition, prisms 15L and 15R for adjusting the left and right eye width necessary for observation with both eyes are inserted between the left and right eyepieces 13L and 13R.
[0014]
In such an optical system, the afocal relay optical system including the lens group 6 and the lens group 8 relays the pupil (aperture stop image) in the vicinity of the objective lens in the state where the magnification of the variable power optical system is maximized. To be. The lens group 6 is a lens group on the object side from the image forming point 14 in the afocal relay optical system, and the lens group 8 is an optical system on the image side from the image forming point 14.
[0015]
In this optical system, when a plurality of observers observe, the pupil positions of the observers are often different. Therefore, it is not possible to relay all of the aperture stop to the position of the objective lens. In such a case, the effective diameter can be reduced by adjusting the middle of the range of the relay position of the aperture stop of each observer to the position of the objective lens.
[0016]
Further, as shown in FIG. 3, the second reflecting member 3 in FIG. 1 is changed to reflecting members 3a and 3b, and the reflecting member 7 in the relay optical system is further increased by 7d to 7a, 7b and 7c, and is three-dimensional. In other words, the light from the reflecting prism 1 is bent in the horizontal plane by the reflecting prism 3a and then directed upward by the reflecting prism 3b, and the light from the reflecting prism 7b is further in the horizontal plane by the reflecting prism 7c. If the light is returned to the original direction and then directed upward by the reflecting prism 7d, the direction protruding from the microscope can be adjusted.
[0017]
In this case, as shown in FIG. 4, when the prisms 7b and 7d are rotated 90 ° in the opposite direction and the prism 7c is placed therebetween, the reflecting member from the objective lens 2 to the lens group 8 of the pupil relay optical system is used. The image can also be rotated 180 °. In that case, an optical system for switching the right and left light beams is not necessary, and a pair of left and right erect prisms that rotate the image 180 ° without replacing the left and right light beams may be used. In other words, as shown in FIG. 5, if left and right erecting optical systems 16R 1 , 16R 2 , 16L 1 , and 16L 2 each comprising two prisms are used, the same structure as that of a general Galileo stereomicroscope is obtained. . Therefore, there is an advantage that it can be shared with the barrel of a Galileo stereo microscope.
[0018]
In such an optical system, since the pupil position is adjusted and the reflecting member is used, the lens arrangement position is considerably limited. In order to alleviate this limitation, any one of the lens group 6 and the lens group 8 or both lens groups may be divided into two groups. As a result, the distance from the third reflecting member 5 to the light splitting element 9 and the afocal relay magnification can be adjusted to the optimum values.
[0019]
Furthermore, a lens group 8 may be provided for each of a plurality of observers in the light beam divided by the light dividing element 9. In this case, a plurality of observers can change the magnification and observe, and if the lens group is a zoom lens, the observer can finely adjust the magnification to be easily observed by each observer. FIG. 6 shows an example in which such a configuration is used in the case of two observers and only one observer can observe with changing magnification. In FIG. 6, a lens group 8 for making the first observer's light beam afocal and a first observer's barrel 18 are arranged on the transmission side of the light splitting prism 9. Further, on the reflection side of the light splitting prism 9, lens groups 17a and 17b for making the second observer's luminous flux afocal and a second observer's barrel 19 behind it are arranged. . The lens groups 17a and 17b are moved on the optical axis so as to change the magnification while maintaining the emitted light beam as an afocal light beam.
[0020]
In FIG. 6, only the second observer is allowed to observe while changing the magnification, but the first observer may also observe the magnification. Furthermore, it is possible to adopt a configuration in which a large number of observers can observe while adjusting the magnification.
[0021]
Moreover, when comprised in this way, since the 3rd reflection member 5 leaves | separates from a pupil or an imaging point, an off-axis light beam becomes wide and the outer diameter of the 3rd reflection member 5 tends to become large. In order to prevent the diameter of the reflecting member 5 from becoming large, it is preferable to increase the afocal magnification of the afocal variable magnification system and decrease the afocal magnification of the afocal relay system while keeping the total afocal magnification constant. . In particular, if the magnification of the afocal relay system is made smaller than 1, the diameter of the lens in the vicinity of the third reflecting member 5 can be reduced, so that the entire lens body can be further reduced in size. Further, if the afocal zooming system is a three-group zoom composed of a convex lens, a concave lens, and a convex lens, the zooming system can be shortened and the whole can be made compact.
[0022]
Since the stereomicroscope of the present invention has a large number of reflecting members, a part of the reflecting member is changed to a half mirror to superimpose a photographic device, a television device, an autofocus device, an index projection device, and other images. A pose device can be attached. In particular, since the vicinity of the third reflecting member 5 is away from the observation part, even if each apparatus is installed using the half mirror as described above, the large-scale apparatus does not affect the observation and work. But it can be installed.
[0023]
Next, numerical examples of the afocal variable magnification optical system and the afocal relay optical system used in the stereomicroscope of the present invention will be shown.
Numerical example 1
r 0 = reference plane d 0 = D 1 (variable)
r 1 = 0.6864 d 1 = 0.06386 n 1 = 1.60311 ν 1 = 60.7
r 2 = −0.51403 d 2 = 0.04032 n 2 = 1.85026 ν 2 = 32.3
r 3 = -1.17302 d 3 = D 2 (variable)
r 4 = -0.34692 d 4 = 0.02016 n 3 = 1.72916 ν 3 = 54.7
r 5 = 0.37783 d 5 = 0.05808
r 6 = -0.13308 d 6 = 0.02419 n 4 = 1.8044 ν 4 = 39.6
r 7 = -0.80747 d 7 = 0.07064 n 5 = 1.5927 ν 5 = 35.3
r 8 = -0.15417 d 8 = D 3 (variable)
r 9 = 0.80541 d 9 = 0.03226 n 6 = 1.85026 ν 6 = 32.3
r 10 = 0.31126 d 10 = 0.07121 n 7 = 1.497 ν 7 = 81.6
r 11 = -0.46759 d 11 = 0.01613
r 12 = ∞ d 12 = 0.3629 n 8 = 1.51633 ν 8 = 64.1
r 13 = ∞ d 13 = 0.00806
r 14 = 0.3303 d 14 = 0.06186 n 9 = 1.51633 ν 9 = 64.1
r 15 = -2.63036 d 15 = 0.04298 n 10 = 1.5213 ν 10 = 52.6
r 16 = 0.84049 d 16 = 1.32998
r 17 = ∞ d 17 = 0.32258 n 11 = 1.51633 ν 11 = 64.1
r 18 = ∞ d 18 = 0.06452
r 19 = -0.14401 d 19 = 0.02595 n 12 = 1.7847 ν 12 = 26.2
r 20 = -0.19417 d 20 = 0.03039
r 21 = ∞ d 21 = 0.32258 n 13 = 1.51633 ν 13 = 64.1
r 22 = ∞ d 22 = 0.04032
r 23 = -14.63582 d 23 = 0.03226 n 14 = 1.79952 ν 14 = 42.2
r 24 = 1.00588 d 24 = 0.05711 n 15 = 1.60311 ν 15 = 60.7
r 25 = -0.40794 d 25 = 0.80645
r 26 = aperture stop AP = 0.80645, AD = 0.8871, A = 0.0968
β Z 0.375X 0.75X 1.5 X
D 1 0.23513 0.04032 0.10274
D 2 0.04839 0.34973 0.50041
D 3 0.36802 0.26148 0.04839
ENP 0.60706 0.56164 -0.64207
β r = 0.714 X, fOC = 1.3548, IH = 0.040323
[0024]
Numerical example 2
r 0 = reference plane d 0 = 0.050847
r 1 = 0.4925442 d 1 = 0.0834281 n 1 = 1.48749 ν 1 = 70.2
r 2 = −0.474812 d 2 = 0.0423728 n 2 = 1.6765 ν 2 = 37.5
r 3 = -1.182482 d 3 = D 1 (variable)
r 4 = -0.523820 d 4 = 0.0211864 n 3 = 1.834 ν 3 = 37.2
r 5 = 0.2682305 d 5 = 0.0607603
r 6 = -0.138451 d 6 = 0.0254237 n 4 = 1.7552 ν 4 = 27.5
r 7 = 0.3546701 d 7 = 0.0874550 n 5 = 1.80518 ν 5 = 25.4
r 8 = -0.219867 d 8 = D 2 (variable)
r 9 = 1.3224827 d 9 = 0.0338983 n 6 = 1.85026 ν 6 = 32.3
r 10 = 0.6696354 d 10 = 0.0595425 n 7 = 1.48749 ν 7 = 70.2
r 11 = -0.529872 d 11 = D 3 (variable)
r 12 = ∞ d 12 = 0.3813559 n 8 = 1.51633 ν 8 = 64.1
r 13 = ∞ d 13 = 0.0084745
r 14 = 0.8065133 d 14 = 0.0738292 n 9 = 1.60311 ν 9 = 60.7
r 15 = −0.539466 d 15 = 0.0254237 n 10 = 1.7847 ν 10 = 26.2
r 16 = -1.552770 d 16 = 1.5723571
r 17 = ∞ d 17 = 0.2203389 n 11 = 1.51633 ν 11 = 64.1
r 18 = ∞ d 18 = 0.0664603
r 19 = -0.328386 d 19 = 0.0256057 n 12 = 1.85026 ν 12 = 32.3
r 20 = 0.3641288 d 20 = 0.0458154 n 13 = 1.71717 ν 13 = 29.5
r 21 = -0.415556 d 21 = 0.0951693
r 22 = ∞ d 22 = 0.3389830 n 14 = 1.51633 ν 14 = 64.1
r 23 = ∞ d 23 = 0.0254237
r 24 = 24.324563 d 24 = 0.0338983 n 15 = 1.6445 ν 15 = 40.8
r 25 = 0.5318231 d 25 = 0.0677966 n 16 = 1.60311 ν 16 = 60.7
r 26 = -0.525972 d 26 = 1.01695
r 27 = aperture stop AP = 1.0169491, AD = 0.09322, A = 0.10169
β Z 0.375X 0.75X 1.5 X
D 1 0.05128 0.33268 0.47337
D 2 0.35445 0.25324 0.05847
D 3 0.23104 0.05085 0.11256
ENP 0.18528 0.48537 -0.78405
β r = 0.714 X, fOC = 1.4237, IH = 0.042373
[0025]
Numerical example 3
r 0 = reference plane d 0 = 0.050847
r 1 = 18.627873 d 1 = 0.0247486 n 1 = 1.741 ν 1 = 52.7
r 2 = -4.252746 d 2 = 0.0042372
r 3 = 0.9474827 d 3 = 0.0681677 n 2 = 1.72916 ν 2 = 54.7
r 4 = -1.180707 d 4 = 0.0423728 n 3 = 1.80518 ν 3 = 25.4
r 5 = -5.860852 d 5 = D 1 (variable)
r 6 = -0.396629 d 6 = 0.0211864 n 4 = 1.85026 ν 4 = 32.3
r 7 = 0.3824245 d 7 = 0.0487516
r 8 = -0.405606 d 8 = 0.0338983 n 5 = 1.53996 ν 5 = 59.5
r 9 = 0.3183145 d 9 = 0.0482891 n 6 = 1.80518 ν 6 = 25.4
r 10 = 1741.561 d 10 = D 2 (variable)
r 11 = 1.4346549 d 11 = 0.0381355 n 7 = 1.834 ν 7 = 37.2
r 12 = 0.4381331 d 12 = 0.0831096 n 8 = 1.618 ν 8 = 63.4
r 13 = -0.440553 d 13 = 0.3411328
r 14 = ∞ d 14 = 0.3813559 n 9 = 1.51633 ν 9 = 64.1
r 15 = ∞ d 15 = 0.0084745
r 16 = 0.5284915 d 16 = 0.0957926 n 10 = 1.618 ν 10 = 63.4
r 17 = -0.526626 d 17 = 0.0482751 n 11 = 1.834 ν 11 = 37.2
r 18 = -5.096974 d 18 = 1.4915253
r 19 = ∞ d 19 = 0.2203389 n 12 = 1.51633 ν 12 = 64.1
r 20 = ∞ d 20 = 0.0186949
r 21 = -3.573787 d 21 = 0.0961652 n 13 = 1.834 ν 13 = 37.2
r 22 = -0.543674 d 22 = 0.0338983 n 14 = 1.56732 ν 14 = 42.8
r 23 = 0.4358255 d 23 = 0.0334448
r 24 = ∞ d 24 = 0.3559322 n 15 = 1.51633 ν 15 = 64.1
r 25 = ∞ d 25 = 0.0254237
r 26 = 1.0161958 d 26 = 0.0430328 n 16 = 1.7847 ν 16 = 26.2
r 27 = 0.6530680 d 27 = 0.0586621 n 17 = 1.618 ν 17 = 63.4
r 28 = -0.738788 d 28 = 0.92308
r 29 = Aperture stop AP = 1.0169491, AD = 0.09322, A = 0.10169
β Z 0.45 X 0.9 X 1.8 X
D 1 0.0508474 0.3673346 0.5255765
D 2 0.2459698 0.1809286 0.0508474
D 3 0.3411327 0.0896868 0.0615261
ENP 0.2286542 0.0465839 -1.32839
β r = 0.794 X, fOC = 1.4237, IH = 0.056483
The above numerical example is a value normalized by the maximum length of the variable magnification system. In the data, r 1 , r 2 ,... Are curvature radii of the lens surfaces (reference surface r 0 is the exit surface of the second reflecting member in the embodiment), d 1 , d 2 ,. Thickness and lens spacing, n 1 , n 2 ,... Are the refractive indices of the respective lenses, and ν 1 , ν 2 ,. AD is the decentering amount of the optical axis of the left and right eyepiece optical system with respect to the optical axis of the variable magnification optical system, A is the diameter of the aperture stop of the eyepiece optical system, and AP is the aperture stop of the eyepiece optical system and the afocal relay optical system. The distance in the optical axis direction from the final surface of the variable magnification optical system including (in the case of including a prism or the like, the air conversion length), IH is the maximum image height from the optical axis of the eyepiece optical system, and HH is the principal point of the second lens group The interval, β Z is the magnification of the afocal variable magnification optical system, β r is the magnification of the afocal relay optical system, ENP is the entrance pupil position, and fOC is the focal length of the imaging lens.
[0026]
Numerical example 1 (first example) is as shown in FIG. 7 and FIG. 8, and the 13th surface (r 13 ) of FIG. 7 is the afocal variable magnification optical system, and the 25th surface (r 25 ) of FIG. Up to this point is the afocal relay optical system.
[0027]
Glass shown in Matazu 7 blocks (r 12 ~r 13) is reflecting member (prism) 5, a glass block (r 17 ~r 18) shown in FIG. 8 is reflecting member 7c, glass block (r 21 ~r 22) is reflecting a member 7d, the numerical example 1 but reflecting member 7a, 7b is arranged between the surfaces r 16 and the surface r 17 are those provided with a mirror and a reflective member 7a, 7b, data and Figures Not shown in FIG. Aberrations are as shown in FIGS.
[0028]
Numerical example 2 (second example) is as shown in FIG. 9 and FIG. 10, and the 13th surface (r 13 ) of FIG. 9 is the afocal variable magnification optical system, and the 26th surface (r 26 ) of FIG. Up to this point is the afocal relay optical system.
[0029]
This numerical example 2 also glass blocks (r 12 ~r 13) is a reflecting member 5 in FIG. 9, a glass block (r 17 ~r 18) and (r 22 ~r 23) is respectively reflecting member 7c in FIG. 10, in 7d There, the reflection member 7a between Matamen r 16 and the surface r 17, although two mirrors corresponding to 7b are arranged not shown in data and FIG. The aberration status of Numerical Example 2 is as shown in FIGS.
[0030]
In Numerical Example 1, but by moving the first group in the variable power optical system (r 1 ~r 3) and the second group of (r 4 ~r 8) are subjected to variable magnification, in the numerical example 2, by moving the second group in the variable power optical system (r 4 ~r 8) and the third group (r 9 ~r 11) is performed zooming. This makes it easier to bring the position of the pupil with the lowest magnification closer to the entrance pupil position with the highest magnification, which is effective for widening the observation field.
[0031]
Numerical example 3 (third example) is as shown in FIG. 11 and FIG. 12, up to the fifteenth surface (r 15 ) in FIG. 11, and the 28th surface (r 28 ) in FIG. Up to the afocal relay optical system.
[0032]
Glass block (r 14 ~r 15) is reflecting member 5 of this numerical example 3 is also 11, the glass block (r 19 ~r 20) in FIG. 12 and is (r 24 ~r 25) has a reflective member 7c, 7d , the reflecting member 7a between Matamen r 18 and the surface r 19, although two mirrors corresponding to 7b are arranged not shown in data and 12. The aberration situation of this numerical example is as shown in FIGS.
[0033]
This numerical example is an example in which the magnification, resolution, and stereoscopic effect are increased.
[0034]
In any of these optical systems, if the objective lens is provided near the entrance pupil, the diameter of the objective lens can be reduced.
[0035]
【The invention's effect】
The stereomicroscope according to the present invention is small and has a low eye point and can be a good optical system by using an afocal relay optical system together with an afocal variable magnification optical system.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a stereomicroscope according to the present invention. FIG. 2 is a diagram showing an example of a lens barrel portion of the stereomicroscope according to the present invention. FIG. 4 is a diagram showing still another configuration of the stereomicroscope of the present invention. FIG. 5 is a diagram showing another example of the lens barrel of the stereomicroscope of the present invention. FIG. 7 is a sectional view showing a first example of a variable magnification optical system used in the stereomicroscope of the present invention. FIG. 8 is a first example of a relay optical system used in the stereomicroscope of the present invention. FIG. 9 is a cross-sectional view showing a second example of a variable magnification optical system used in the stereomicroscope of the present invention. FIG. 10 is a cross-sectional view showing a second example of the relay optical system used in the stereomicroscope of the present invention. FIG. 11 is a cross-sectional view showing a third example of a variable magnification optical system used in the stereomicroscope of the present invention. FIG. 12 is a relay light used in the stereomicroscope of the present invention. FIG. 13 is a cross-sectional view showing a third example of the system. FIG. 13 is a transverse aberration diagram of the first example of the optical system including the variable magnification optical system and the relay optical system. FIG. Astigmatism diagram in the left-right direction of the first example of the optical system comprising the system. FIG. 15 is a diagram showing astigmatism in the vertical direction of the first example of the optical system comprising the variable magnification optical system and the relay optical system. FIG. 16 is a transverse aberration diagram of the second example of the optical system composed of the variable magnification optical system and the relay optical system. FIG. 17 shows the second example of the optical system composed of the variable magnification optical system and the relay optical system. Astigmatism diagram in the left-right direction. [FIG. 18] Astigmatism diagram in the vertical direction of the second example of the optical system composed of the above-described variable-power optical system and relay optical system. [FIG. 19] FIG. FIG. 20 is a lateral aberration diagram of the third example of the optical system comprising the optical system. FIG. 20 is a lateral view of the third example of the optical system comprising the variable magnification optical system and the relay optical system. Astigmatism diagram [FIG. 21] Astigmatism diagram in the vertical direction of the third example of the optical system comprising the variable power optical system and the relay optical system. [FIG. 22] A diagram showing the configuration of a conventional stereomicroscope Explanation of]
2 Objective lens 3 Reflecting member 4 Variable magnification optical system 5 Reflecting member 6 Afocal relay lens group 7 Reflecting member 8 Afocal relay lens groups 10L and 10R Left and right aperture stops

Claims (12)

対物レンズと変倍光学系とリレー光学系とを同軸で有し、前記変倍光学系の光軸から偏芯した位置に複数の瞳が設定されるように前記光軸から偏芯した位置に複数の開口絞りを設定し、前記対物レンズは水平方向の光軸を有し、物体からの光束を前記対物レンズに向ける第1の反射部材と、水平方向の光束を垂直方向に向ける第2の反射部材と、垂直方向の光束を水平方向に向ける第3の反射部材と、前記リレー光学系中に配置され光束を物体からの光束と同じ方向に向ける第4の反射部材を少なくとも有し、前記第4の反射部材が前記第1の反射部材の近傍に配置され、前記リレー光学系により前記複数の瞳をリレー結像することを特徴とする実体顕微鏡。An objective lens, a variable magnification optical system, and a relay optical system are coaxially arranged, and at positions decentered from the optical axis so that a plurality of pupils are set at positions decentered from the optical axis of the variable magnification optical system. A plurality of aperture stops are set, the objective lens has a horizontal optical axis, a first reflecting member for directing a light beam from an object to the objective lens, and a second for directing a horizontal light beam in a vertical direction a reflecting member, and a third reflecting member directing the light beam in the direction perpendicular to the horizontal direction, has at least a fourth reflecting member directing in the same direction as the light beam the light beam is disposed in the relay optical system from the object, the A stereomicroscope characterized in that a fourth reflecting member is disposed in the vicinity of the first reflecting member and the plurality of pupils are relay-imaged by the relay optical system. 立体観察のための左右光路を有するズーム光学系において、前記ズーム光学系は、複数の部材からなるアフォーカル変倍光学系とそれに続くアフォーカルリレー光学系とからなり、前記ズーム光学系の物体側に水平方向の光軸を有する対物レンズが配置され、物体からの光束を前記対物レンズに向ける第1の反射部材と、水平方向の光束を垂直方向に向ける第2の反射部材と、垂直方向の光束を水平方向に向ける第3の反射部材と、前記アフォーカルリレー光学系中に配置され光束を物体からの光束と同じ方向に向ける第4の反射部材を少なくとも有し、前記第4の反射部材が前記第1の反射部材の近傍に配置され、前記アフォーカルリレー光学系は少なくとも二つの開口絞りを前記アフォーカル変倍光学系に結像することを特徴とするズーム光学系。In a zoom optical system having a left and right optical path for stereoscopic observation, the zoom optical system includes an afocal variable magnification optical system composed of a plurality of members and a subsequent afocal relay optical system, and the object side of the zoom optical system An objective lens having a horizontal optical axis is disposed on the first reflecting member for directing a light beam from an object toward the objective lens , a second reflecting member for directing a horizontal light beam in a vertical direction, a third reflecting member directing the light beam in the horizontal direction, has at least a fourth reflecting member directing in the same direction as the light beam the light beam is located in the afocal relay optical system from the object, the fourth reflecting member Zoo There is disposed in the vicinity of the first reflecting member, the afocal relay optical system, characterized in that for imaging the at least two aperture stop to the afocal zoom optical system Optical system. 物体側から順に対物レンズと変倍光学系とリレー光学系とを同軸で有し、前記変倍光学系の光軸から偏芯した位置に複数の瞳が設定されるように、前記リレー光学系の像側で前記光軸から偏芯した位置に複数の開口絞りを設定し、前記変倍光学系の倍率が最大の時に前記変倍光学系の物体側から見た前記開口絞りの像が前記対物レンズの付近に形成されることを特徴とする実体顕微鏡。  The relay optical system has an objective lens, a zoom optical system, and a relay optical system coaxially in order from the object side, and a plurality of pupils are set at positions decentered from the optical axis of the zoom optical system. A plurality of aperture stops are set at positions decentered from the optical axis on the image side, and when the magnification of the zoom optical system is maximum, the image of the aperture stop viewed from the object side of the zoom optical system is the image A stereomicroscope characterized by being formed in the vicinity of an objective lens. 立体観察のための左右光路を有するズーム光学系において、前記ズーム光学系は、物体側から順に複数の部材からなるアフォーカル変倍光学系とそれに続く1回結像のアフォーカルリレー光学系とからなり、前記ズーム光学系の物体側に対物レンズが配置され、前記アフォーカルリレー光学系の像側に開口絞りが配置され、前記アフォーカル変倍光学系の倍率が最大の時に前記ズーム光学系の入射側から見た前記開口絞りの像が前記対物レンズの付近に形成されることを特徴とするズーム光学系。  In a zoom optical system having left and right optical paths for stereoscopic observation, the zoom optical system includes an afocal variable magnification optical system composed of a plurality of members in order from the object side, and a subsequent afocal relay optical system for image formation once. An objective lens is disposed on the object side of the zoom optical system, an aperture stop is disposed on the image side of the afocal relay optical system, and the zoom optical system has a maximum magnification when the magnification of the afocal variable power optical system is maximum. A zoom optical system, wherein an image of the aperture stop viewed from the incident side is formed in the vicinity of the objective lens. 前記開口絞りより物体側の光学系で像の回転がなく、前記開口絞りの後に左右の光束を入れ替えることを特徴とする請求項1又は3の実体顕微鏡。  4. The stereomicroscope according to claim 1, wherein an image is not rotated by an optical system closer to the object side than the aperture stop, and right and left light beams are switched after the aperture stop. 前記開口絞りより物体側の光学系で像が180°回転され、前記開口絞りの後に左右それぞれに正立光学系を設けたことを特徴とする請求項1又は3の実体顕微鏡。  4. The stereomicroscope according to claim 1, wherein an image is rotated by 180 ° in an optical system closer to the object side than the aperture stop, and an erecting optical system is provided on each of the left and right sides after the aperture stop. 前記リレー光学系中に、複数の光束に分岐するための光分割素子を設けたことを特徴とする請求項1又は3の実体顕微鏡。  4. The stereomicroscope according to claim 1, wherein a light splitting element for branching into a plurality of light beams is provided in the relay optical system. 前記リレー光学系の倍率が1より大きいことを特徴とする請求項1又は3の実体顕微鏡。  4. The stereomicroscope according to claim 1, wherein a magnification of the relay optical system is larger than one. 前記アフォーカルリレー光学系中に、複数の光束に分岐するための光分割素子を設けたことを特徴とする請求項2又は4のズーム光学系。  5. The zoom optical system according to claim 2, wherein a light splitting element for branching into a plurality of light beams is provided in the afocal relay optical system. 前記アフォーカルリレー光学系の倍率が1より大きいことを特徴とする請求項2又は4のズーム光学系。  5. The zoom optical system according to claim 2, wherein a magnification of the afocal relay optical system is larger than 1. 光分割素子をさらに有し、該光分割素子で分岐されたそれぞれの光路に設定された開口絞りのリレー位置の範囲の中間を前記対物レンズ付近に調整することを特徴とする請求項1の実体顕微鏡。  2. An entity according to claim 1, further comprising a light splitting element, wherein an intermediate portion of a relay position range of an aperture stop set in each optical path branched by the light splitting element is adjusted in the vicinity of the objective lens. microscope. 光分割素子をさらに有し、該光分割素子で分岐されたそれぞれの光路に設定された開口絞りのリレー位置の範囲の中間を、前記対物レンズ付近に調整することを特徴とする請求項2のズーム光学系。Further comprising a light dividing element, each of the intermediate range of the relay position of the diaphragm set shedding the light path branched by the optical splitter, and adjusting the vicinity before Symbol pair objective lens according to claim 2 zoom optical system.
JP31105593A 1993-11-18 1993-11-18 Stereo microscope Expired - Fee Related JP3689124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31105593A JP3689124B2 (en) 1993-11-18 1993-11-18 Stereo microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31105593A JP3689124B2 (en) 1993-11-18 1993-11-18 Stereo microscope

Publications (2)

Publication Number Publication Date
JPH07140395A JPH07140395A (en) 1995-06-02
JP3689124B2 true JP3689124B2 (en) 2005-08-31

Family

ID=18012572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31105593A Expired - Fee Related JP3689124B2 (en) 1993-11-18 1993-11-18 Stereo microscope

Country Status (1)

Country Link
JP (1) JP3689124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU213152U1 (en) * 2022-04-26 2022-08-31 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Dual channel microscope

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752356B2 (en) 1997-04-09 2006-03-08 オリンパス株式会社 Stereo microscope
JP4302199B2 (en) * 1998-03-13 2009-07-22 オリンパス株式会社 Stereo microscope that can be observed by multiple people
JP2001208979A (en) 2000-01-27 2001-08-03 Mitaka Koki Co Ltd Stereoscopic microscope
KR100360744B1 (en) * 2000-04-15 2002-11-13 주식회사 대양이앤씨 Optical System for Head Mount Display
KR100617829B1 (en) * 2004-10-20 2006-08-28 삼성전자주식회사 Optical device for zoom-camera
JP4912610B2 (en) * 2005-04-25 2012-04-11 オリンパス株式会社 microscope
DE102006009452B4 (en) * 2005-10-20 2010-07-01 Carl Zeiss Surgical Gmbh stereomicroscope
DE102006012388A1 (en) * 2005-10-20 2007-04-26 Carl Zeiss Surgical Gmbh microscopy system
JP5105882B2 (en) * 2007-01-12 2012-12-26 オリンパスメディカルシステムズ株式会社 Stereo microscope
JP2013047837A (en) * 2012-10-25 2013-03-07 Olympus Medical Systems Corp Stereoscopic optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU213152U1 (en) * 2022-04-26 2022-08-31 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Dual channel microscope

Also Published As

Publication number Publication date
JPH07140395A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
US6201648B1 (en) Optical system
EP0660155B1 (en) Image display apparatus
EP0845692A2 (en) Optical system with a rotationally asymmetric curved surface
JP3563800B2 (en) Observation optical device
JP2002174773A (en) Stereoscopic microscope inspection system
JPS62287213A (en) Variable tilt angle binocular lens barrel
JPH0658454B2 (en) Variable magnification finder
JPH10282428A (en) Stereomicroscope
JP3689124B2 (en) Stereo microscope
JPH01233430A (en) Keplerian finder optical system
JP3645655B2 (en) Stereo microscope
US7085045B2 (en) Stereoscopic microscope
JP4068765B2 (en) Zoom lens
JP3326877B2 (en) Albada finder
JPH08307904A (en) Optical system for solid photographing
JP2530014B2 (en) Stereomicroscope
JPH04355712A (en) Binocular vision device
JP3454851B2 (en) Stereo microscope
JP2958096B2 (en) Stereo microscope
JP3577107B2 (en) Stereo microscope
WO2011068185A1 (en) Image forming optical system and microscope device
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
JP3093017B2 (en) Stereo microscope
JP2583465B2 (en) Stereo microscope
JPH0345802B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees