JP3680994B2 - Sewage sludge treatment method - Google Patents

Sewage sludge treatment method Download PDF

Info

Publication number
JP3680994B2
JP3680994B2 JP2001379572A JP2001379572A JP3680994B2 JP 3680994 B2 JP3680994 B2 JP 3680994B2 JP 2001379572 A JP2001379572 A JP 2001379572A JP 2001379572 A JP2001379572 A JP 2001379572A JP 3680994 B2 JP3680994 B2 JP 3680994B2
Authority
JP
Japan
Prior art keywords
sludge
polymer flocculant
sewage
amount
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001379572A
Other languages
Japanese (ja)
Other versions
JP2003175400A (en
Inventor
謙三 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2001379572A priority Critical patent/JP3680994B2/en
Publication of JP2003175400A publication Critical patent/JP2003175400A/en
Application granted granted Critical
Publication of JP3680994B2 publication Critical patent/JP3680994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥等の脱水前の前処理において、汚泥の一部を濃縮処理することにより脱水性を向上させ、活性余剰汚泥の前処理手段として利用できるようにした下水汚泥の処理方法に関する
【0002】
【従来の技術】
従来、下水処理場で発生する活性余剰汚泥あるいは活性余剰汚泥と初沈汚泥との混合生汚泥は汚泥濃度が低く、高分子凝集剤を添加して凝集させたフロックは強度が弱い。この凝集汚泥を直接脱水機で処理すると処理能力が低く、脱水したケーキ水分も高く、大規模な脱水機が必要となる。脱水機の種類によっては脱水処理することが困難となる。脱水前に凝集汚泥を全量濃縮して脱水処理を行なう場合においても、濃縮機で濃縮した時点で凝集フロックの破壊が起り、処理能力やケーキ水分が期待した通りの効果が出ない。そして、濃縮汚泥を脱水前に再度高分子凝集剤を添加して再凝集させる場合でも、凝集効率が悪く、薬品代が高くつく。その対策として、例えば、汚泥を凝集濃縮した後に脱水処理する方法が特開平7−31999号公報や特開平8−323399号公報に記載してあ
【0003】
【発明が解決しようとする課題】
上述の特開平7−31999号公報に記載してある汚泥処理方法は、有機汚泥にアニオン性高分子凝集剤を添加撹拌後、この汚泥にカチオン性高分子凝集剤を添加撹拌し、凝集フロックを生成させている。この凝集汚泥に高分子凝集剤分散液を添加して濃縮装置で予備濃縮を行なうか、あるいはこの凝集汚泥を濃縮装置で予備濃縮した後、高分子凝集剤分散液を凝集汚泥に添加して脱水処理を行なう汚泥の処理方法である。そして、特開平8−323399号公報に記載の汚泥処理方法は、凝集剤を添加する前段において汚泥の全量を膜濃縮装置で分離液と濃縮汚泥に分離し、この濃縮汚泥に高分子凝集剤を添加して撹拌凝集させている。この凝集汚泥に分離液の一部を添加混合することにより、分離液中に残存しているアニオン分を利用してさらに凝集を促進させ、この汚泥を脱水機で脱水処理を行なうようにした汚泥の処理方法である。
【0004】
しかしながら、特開平7−31999号公報に記載の発明においては、アニオン及びカチオンの2種類の高分子凝集剤を使用するため、1種類の高分子凝集剤で汚泥処理を行なう方法に比べ、薬注設備が余分に必要で、設置スペースも広くなり、ランニングコストも嵩むという課題がある。さらに、スクリーン濃縮機によって最大に濃縮をおこなうため、濃縮汚泥の流動性が低くなる恐れが有り、流動性の低い汚泥をスクリュープレスに圧入すれば、スクリューの回転に非常に大きいトルクが必要となる。外筒のろ材にかかる負荷も非常に大きくなるので、スクリュープレスの強度や所要動力が大きくなるため、設備費用が嵩むという課題もある。また、特開平8−323399号公報に記載の発明においては、濃縮装置に膜を使用しているため、濃縮装置自体が高価であり、膜の維持管理に要する費用も高くつくものである。そして、濃縮汚泥に膜の分離液を添加して、分離液中のアニオン分によって凝集を促進するようにしたものであるが、膜の分離液中には汚泥粒子の存在が非常に少ないため、汚泥粒子の表面のアニオン基も少なく、凝集を促進するためのアニオン量の調節が難しいという課題が有る。
【0005】
【課題を解決するための手段】
前述した課題を解決するための本願発明の下水汚泥の処理方法は、下水汚泥の一部にカチオン系高分子凝集剤を添加して凝集処理し、この凝集汚泥と残りの下水汚泥を混合した後、脱水処理する汚泥の処理方法において、下水汚泥の全量の50〜80%を凝集処理し、凝集汚泥を回転濃縮機に供給して濃縮倍率を5〜15倍に濃縮し、濃縮汚泥と残りの原汚泥とを混合し、この混合汚泥に少量のカチオン系高分子凝集剤を添加して凝集フロックを生成させ、汚泥供給ポンプ7の汚泥供給量を制御しながらスクリュープレスで固液分離処理を行なうもので、効率の良い脱水処理を行うことができるものである。
【0006】
【発明の実施の形態】
本願発明は上記のように構成したので、下水汚泥の一部にカチオン系高分子凝集剤を添加して撹拌機で混合撹拌を行ない、凝集フロックを生成させる。高分子凝集剤を添加された下水汚泥中の懸濁物質はアニオン基の電位が中和され、懸濁物質同志が凝集してフロック化が促進する。そして、回転濃縮機で濃縮操作を行なう汚泥は原汚泥量の50〜80%とし、濃縮倍率は5〜15倍となるようにしたものである。この凝集汚泥を回転濃縮機で濃縮した後、この濃縮汚泥に残りの原汚泥を供給し、撹拌機で混合することにより、凝集性が復元する。さらに、少量のカチオン系高分子凝集剤を添加して撹拌機で混合撹拌することにより、脱水性が向上して、強固なフロックを生成する。高分子凝集剤の使用量も減少する。また、上記の濃縮汚泥の固液分離を行なう脱水機として圧入式スクリュープレスを使用することにより、効率の良い脱水処理を行なうことができケーキ含水率は低下し、ろ過速度は大幅に向上する。
【0007】
本願発明の処理方法を図1のフローシートに基づき説明する。図1に示すように、下水処理場で発生する活性余剰汚泥あるいは混合生汚泥の低濃度の下水汚泥Aが汚泥貯留槽1に供給される。符号1aは汚泥の沈降防止のために設けた撹拌機である。この汚泥貯留槽1に貯留された下水汚泥Aの50〜80%の量を汚泥移送ポンプ2aで回転濃縮機3に供給する。この時、汚泥移送ポンプ2aと回転濃縮機3との間の汚泥供給ラインに高分子凝集剤貯留槽4に貯留している高分子凝集剤を定量式の高分子凝集剤供給ポンプ5aによって一定量だけ汚泥に添加する。使用する高分子凝集剤は下水汚泥の場合にはカチオン性高分子凝集剤が有効で効果的である。高分子凝集剤を添加された下水汚泥中の懸濁物質はアニオン基の電位が中和され、懸濁物質同志が凝集してフロック化が促進する。そして、この凝集汚泥は回転濃縮機3のスクリーン3aを駆動機3bで回転させながら濃縮操作を行ない、5〜15倍に濃縮された汚泥は回転濃縮機3の汚泥排出口3cから自然流下で汚泥混合槽6に投入される。回転濃縮機3で分離された分離液は機外に排出される。この時の濃縮汚泥量は1/5〜1/15に減少する。
【0008】
上述の汚泥混合槽6に汚泥貯留槽1に残っている未濃縮汚泥を汚泥移送ポンプ2bで供給し、撹拌機6aで濃縮汚泥と未濃縮汚泥とを混合することにより、凝集性が復元するものである。そして、この混合汚泥を一軸ネジポンプ等の定量式の汚泥供給ポンプ7で密閉型の凝集混和槽8へ圧送するとともに、定量式の高分子凝集剤供給ポンプ5bで高分子凝集剤を少量、凝集混和槽8に供給し、撹拌機8aで混合汚泥と高分子凝集剤とを混合撹拌することにより、汚泥中の固形物を再凝集させ、強固なフロックを生成するとともに、この凝集汚泥をスクリュープレス9への圧入圧力を一定になるように、圧力制御器(PIC)8bで汚泥供給ポンプ7の汚泥供給量を制御しながらスクリュープレスの軸芯より圧入する。
【0009】
次に、図2に基づき上記の凝集汚泥の脱水処理について説明するが、その前に、圧入式脱水機のスクリュープレスについて詳述する。スクリュープレスは、ろ室を形成する外筒スクリーン9aとスクリュー軸9b、ろ室内の汚泥に脱水力を与えるスクリュー軸9bと一体になったスクリュー羽根9c、スクリュー軸9bを回転させる駆動機9d、脱水ケーキ水分を調整するプレッサー装置9e等で構成されている。以下に各部の構造を詳述する。
【0010】
外筒スクリーン9aはスクリーンを支持する外筒と1.5mmφ〜0.5mmφ孔のパンチングプレートを使用したろ材で構成され、パンチングプレートの孔は汚泥投入側が大きく、脱水ケーキ排出側に向かって小さな孔で形成されている。スクリュー軸9bはその外周部にスパイラル状のスクリュー羽根9cを固着したものである。このスクリュー軸9bは、汚泥投入側から脱水ケーキ排出側に向かって太くなっている円錐形状をしており、外筒スクリーン9aとスクリュー軸9bで形成されるろ室は、脱水ケーキ排出側に向かってその容積を連続的に小さくしている。そして、プレッサー装置9eは、脱水ケーキ排出部に設けたテーパーコーン型の押圧板で、エアーシリンダーで前後に移動するようになっており、排出される脱水ケーキの含水率をある一定に保てるようになっている。
【0011】
上記のように構成したスクリュープレスの軸芯より圧入された凝集汚泥は供給孔9fから濃縮ゾーンBへ圧入され、ここで圧入圧力による濃縮が行なわれ、続いてスクリュー羽根9cによってろ過ゾーンCへと搬送され、さらに、圧搾ゾーンDへと送られる。上述したようにろ室は汚泥投入側からケーキ排出側に向かって容積が小さくなっているため、汚泥はこの容積変化とスクリュー羽根9cによるスラスト力を受け、内部圧力を次第に上昇させながら圧搾脱水され、ろ液とケーキに分離され、ケーキ排出側まできた脱水ケーキは、プレッサー装置9eの押圧を押しのけて機外に排出される。
【0012】
【実施例】
以下に、本発明の汚泥処理方法で脱水効率が向上する効果を確かめるために行なった脱水試験を説明する。
試験機仕様
濃縮試験を行なった濃縮機の仕様は次の通りである。
・型式 円筒スクリーン回転濃縮機
・スクリーン径 300φ(mm)
・スクリーン長さ 450L(mm)
・スクリーン孔径 1.0φ(mm)
・有効ろ過面積 0.44m2
・回転数 1.5〜33rpm
脱水試験を行なった脱水機の仕様は次の通りである。
・型式 スクリュープレス型脱水機
・スクリーン径 200φ(mm)
・スクリーン長さ 1000L(mm)
・スクリーン孔径 0.5〜1.5φ(mm)
【0013】
脱水試験結果を以下に示す。
試験日 平成13年7月〜11月
試験場所 某下水処理場内
試験原液 混合生汚泥A(汚泥濃度0.5%W/V)
混合生汚泥B(汚泥濃度1.0%W/V)
余剰汚泥(汚泥濃度0.4%W/V)
使用高分子 カチオン系高分子凝集剤
以下、表1・表2・表3に各試験原液の脱水試験結果を示す。
【0014】
【表1】

Figure 0003680994
【0015】
【表2】
Figure 0003680994
【0016】
【表3】
Figure 0003680994
【0017】
表1・表2・表3より原汚泥を濃縮操作を行なわないで脱水した場合と、全量濃縮を行なって脱水した場合とを比較すると、混合生汚泥A、混合生汚泥B、余剰汚泥ともにケーキ含水率は低下し、ろ過速度は大幅に向上している。そして、高分子凝集剤の使用量も減少している。尚、原汚泥を濃縮操作を行なわないで脱水する場合のスクリュープレスの回転数を0.5rpmとしたのは、ケーキ含水率が高くなり過ぎ、目標値(脱水後のケーキ処分に要する費用等から算出した数値)を達成することが出来ないためである。混合生汚泥A及び混合生汚泥Bのケーキ含水率の目標値は77%に設定し、余剰汚泥のケーキ含水率の目標値は87%に設定した。
【0018】
次に、全量濃縮汚泥と濃縮汚泥に原汚泥を混合した汚泥とを比較してみると、まず、表1の混合生汚泥Aについては濃縮汚泥:原汚泥の混合比が2:1及び1:1の濃縮汚泥+原汚泥では高分子凝集剤の使用量、ケーキ含水率、ろ過速度ともに向上しており、良好な結果が得られている。又、濃縮汚泥:原汚泥の混合比が1:2の場合はケーキ含水率が若干高くなっている点を除けば、高分子凝集剤の使用量、ろ過速度の向上がみられる。表2の混合生汚泥Bにおいては濃縮汚泥:原汚泥の全ての混合比で高分子凝集剤の使用量、ろ過速度の向上がみられた。ケーキ含水率については、混合比1:1のものが向上している以外は、全量濃縮汚泥のほうが良好となっている。しかし、全ての混合比においてケーキ含水率の目標値は達成している。表3の余剰汚泥については混合比1:3の汚泥が高分子凝集剤の使用量、ろ過速度、ケーキ含水率の全てにおいて良好となっている。又、高分子凝集剤の使用量においても全ての混合比で同じかあるいは向上している。ケーキ含水率については混合比が1:3より大きくなるほど高くなる傾向となっている。ろ過速度も混合比が1:3をピークとして混合比が大きくなるほど、ろ過速度は低下している。
【0019】
上記、脱水試験結果を考察すると、混合生汚泥Aにおいては濃縮汚泥:原汚泥の混合比が2:1の場合が良好な結果を示している。次に、混合生汚泥Bにおいては混合比が1:1の場合が最も良好な結果を示している。そして、余剰汚泥については混合比が1:3の場合が最も良好な結果となっている。
【0020】
【発明の効果】
上記のように本願発明の下水汚泥の処理方法は、高分子凝集剤の使用量、ケーキ含水率、ろ過速度ともに向上する。
即ち、下水汚泥の一部に高分子凝集剤を添加して混合撹拌を行ない、凝集フロックを生成させるので、懸濁物質同志が凝集してフロック化が促進する。
次に、この凝集汚泥を回転濃縮機で濃縮処理を行ない、
この濃縮汚泥に未濃縮の原汚泥を供給して少量の高分子凝集剤を添加後、混合撹拌することにより、凝集性が復元して強固なフロックを生成し、脱水性が向上するものである。使用する高分子凝集剤が減量でき、脱水ケーキ水分の低下、ろ過速度の向上が図れ、効率の良い脱水処理を行なうことができる。
【図面の簡単な説明】
【図1】 本発明に係る下水汚泥の処理方法のフローシート図である。
【図2】 本発明に係る下水汚泥の処理方法で使用する脱水機の概念図である。
【符号の説明】
回転濃縮機
汚泥供給ポンプ
スクリュープレス[0001]
BACKGROUND OF THE INVENTION
The present invention provides a method for treating sewage sludge that improves dewaterability by concentrating a part of sludge in a pretreatment before dewatering of sewage sludge and the like and can be used as a pretreatment means for activated surplus sludge. concerning.
[0002]
[Prior art]
Conventionally, activated surplus sludge generated in a sewage treatment plant or mixed raw sludge of activated surplus sludge and primary sedimentation sludge has a low sludge concentration, and flocs aggregated by adding a polymer flocculant have low strength. When this agglomerated sludge is directly treated with a dehydrator, the treatment capacity is low, the dehydrated cake moisture is high, and a large-scale dehydrator is required . Depending on the type of dehydrator, it becomes difficult to perform dehydration. Even when the total amount of the coagulated sludge is concentrated before dehydration and dewatering is performed, the coagulation floc is destroyed at the time of concentration by the concentrator, and the processing capacity and cake moisture are not as expected. Even when the concentrated sludge is re-agglomerated by adding a polymer flocculant again before dehydration, the agglomeration efficiency is poor and the chemical cost is high. As a countermeasure, for example, a method of dewatering sludge after flocculation enriched Ru tare described in JP-A-7-31999 and JP 8-323399.
[0003]
[Problems to be solved by the invention]
In the sludge treatment method described in JP-A-7-31999, the anionic polymer flocculant is added to and stirred with organic sludge, and then the cationic polymer flocculant is added to and stirred with this sludge. It is generated . Add the polymer flocculant dispersion to the coagulated sludge and pre-concentrate with a concentrator, or pre-concentrate the coagulated sludge with a concentrator, and then add the polymer coagulant dispersion to the coagulated sludge and dehydrate it. This is a method for treating sludge. In the sludge treatment method described in JP-A-8-323399, the entire amount of sludge is separated into a separation liquid and concentrated sludge by a membrane concentrator before adding the flocculant, and the polymer flocculant is added to the concentrated sludge. Add and agglomerate with stirring . By adding and mixing a part of the separated liquid to this agglomerated sludge, agglomeration is further promoted by utilizing the anion content remaining in the separated liquid, and this sludge is subjected to a dehydration treatment with a dehydrator. It is a processing method.
[0004]
However, in the invention described in JP-A-7-31999, since two types of polymer flocculants, an anion and a cation, are used, compared with a method of performing sludge treatment with one type of polymer flocculant, chemical injection There is a problem that extra equipment is required, the installation space is increased, and the running cost is increased. Furthermore, since the maximum concentration is performed by the screen concentrator, the fluidity of the concentrated sludge may be lowered. If sludge with low fluidity is pressed into the screw press, a very large torque is required to rotate the screw. The Since the load applied to the filter medium of the outer cylinder becomes very large, the strength and required power of the screw press increase, and there is a problem that the equipment cost increases. In the invention described in JP-A-8-323399, a membrane is used for the concentrating device. Therefore, the concentrating device itself is expensive, and the cost required for maintaining and managing the membrane is high. And, the separation liquid of the membrane is added to the concentrated sludge, and the aggregation is promoted by the anion content in the separation liquid, but the presence of the sludge particles in the separation liquid of the membrane is very small. There are few anionic groups on the surface of the sludge particles, and there is a problem that it is difficult to adjust the amount of anions for promoting aggregation.
[0005]
[Means for Solving the Problems]
The sewage sludge treatment method of the present invention for solving the above-mentioned problem is that after adding a cationic polymer flocculant to a part of the sewage sludge and aggregating the mixture, the aggregated sludge and the remaining sewage sludge are mixed. In the sludge treatment method for dewatering, 50 to 80% of the total amount of sewage sludge is agglomerated, and the agglomerated sludge is supplied to a rotary concentrator to concentrate the concentrate to 5 to 15 times. The raw sludge is mixed, and a small amount of cationic polymer flocculant is added to the mixed sludge to generate agglomerated flocs, and solid-liquid separation processing is performed with a screw press while controlling the sludge supply amount of the sludge supply pump 7. Therefore, an efficient dehydration process can be performed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Since the present invention is configured as described above , a cationic polymer flocculant is added to a part of the sewage sludge and mixed and stirred with a stirrer to generate agglomerated flocs. Suspended substances in sewage sludge to which a polymer flocculant is added neutralize the potential of anionic groups, and the suspended substances coagulate to promote flocking. And the sludge which performs concentration operation with a rotary concentrator shall be 50 to 80% of the amount of raw sludge, and the concentration ratio will be 5 to 15 times. After condensing this coagulated sludge with a rotary concentrator, the remaining raw sludge is supplied to the concentrated sludge and mixed with an agitator to restore the cohesiveness. Furthermore, by adding a small amount of cationic polymer flocculant and mixing and stirring with a stirrer, the dehydrating property is improved and a strong floc is generated. The amount of polymer flocculant used is also reduced. Moreover, by using a press-fitting screw press as a dehydrator for performing solid-liquid separation of the above-described concentrated sludge, an efficient dehydration treatment can be performed , the cake moisture content is reduced, and the filtration rate is greatly improved. .
[0007]
The processing method of this invention is demonstrated based on the flow sheet of FIG. As shown in FIG. 1, sewage sludge A having a low concentration of activated surplus sludge or mixed raw sludge generated in a sewage treatment plant is supplied to the sludge storage tank 1. The code | symbol 1a is the stirrer provided in order to prevent sedimentation of sludge. An amount of 50 to 80% of the sewage sludge A stored in the sludge storage tank 1 is supplied to the rotary concentrator 3 by the sludge transfer pump 2a. At this time, a fixed amount of the polymer flocculant stored in the polymer flocculant reservoir 4 in the sludge supply line between the sludge transfer pump 2a and the rotary concentrator 3 is measured by the quantitative polymer flocculant supply pump 5a. Only add to sludge. When the polymer flocculant used is sewage sludge, a cationic polymer flocculant is effective and effective. Suspended substances in sewage sludge to which a polymer flocculant is added neutralize the potential of anionic groups, and the suspended substances coagulate to promote flocking. The coagulated sludge is concentrated while rotating the screen 3a of the rotary concentrator 3 with the drive unit 3b. The sludge concentrated 5 to 15 times is sludge in a natural flow from the sludge discharge port 3c of the rotary concentrator 3. The mixing tank 6 is charged. The separated liquid separated by the rotary concentrator 3 is discharged outside the apparatus. The amount of concentrated sludge at this time decreases to 1/5 to 1/15.
[0008]
Cohesiveness is restored by supplying unconcentrated sludge remaining in the sludge storage tank 1 to the sludge mixing tank 6 by the sludge transfer pump 2b and mixing the concentrated sludge and unconcentrated sludge with the agitator 6a. It is. Then, the mixed sludge is pumped to the closed type coagulant mixing tank 8 by a quantitative sludge supply pump 7 such as a single screw pump, and a small amount of the polymer coagulant is coagulated and mixed by a quantitative polymer coagulant supply pump 5b. is supplied to the tank 8, by mixing and stirring the mixture sludge and polymer flocculant with stirrer 8a, reaggregated solids in the sludge, to generate a strong floc, the aggregation sludge screw press 9 the injection pressure to be constant to be press-fit of the shaft center of the screw press 9 while controlling the sludge supply amount of the sludge supply pump 7 at a pressure controller (PIC) 8b.
[0009]
Next, the above-described dewatering treatment of the coagulated sludge will be described with reference to FIG. 2, but before that, the screw press of the press-fit dewatering machine will be described in detail. The screw press 9 includes an outer cylinder screen 9a and a screw shaft 9b that form a filter chamber, a screw blade 9c integrated with a screw shaft 9b that applies a dehydrating force to sludge in the filter chamber, a drive unit 9d that rotates the screw shaft 9b , It comprises a presser device 9e for adjusting dehydrated cake moisture. The structure of each part will be described in detail below.
[0010]
The outer cylinder screen 9a is composed of a filter medium using an outer cylinder that supports the screen and a punching plate with a hole of 1.5 mmφ to 0.5 mmφ, and the hole of the punching plate is large on the sludge input side and small toward the dewatered cake discharge side. It is formed with. The screw shaft 9b has a spiral screw blade 9c fixed to the outer periphery thereof. The screw shaft 9b has a conical shape that is thicker from the sludge input side toward the dewatered cake discharge side, and the filter chamber formed by the outer cylinder screen 9a and the screw shaft 9b faces the dewatered cake discharge side. The volume is continuously reduced. The presser device 9e is a tapered cone-type pressing plate provided in the dewatered cake discharge section, and is moved back and forth by an air cylinder so that the moisture content of the discharged dehydrated cake can be kept constant. It has become.
[0011]
The agglomerated sludge that is press-fitted from the shaft core of the screw press 9 configured as described above is press-fitted into the concentrating zone B through the supply hole 9f , where concentration is performed by the press-fitting pressure, and then to the filtration zone C by the screw blade 9c . And further sent to the squeeze zone D. As described above, since the volume of the filter chamber decreases from the sludge input side to the cake discharge side, the sludge is subjected to the volume change and the thrust force by the screw blades 9c, and is compressed and dehydrated while gradually increasing the internal pressure. is separated into the filtrate and cake, dehydrated cakes come to cake discharge side, Ru is discharged out of the machine displacement pressing of the presser device 9e.
[0012]
【Example】
Below, the dehydration test performed in order to confirm the effect which the dewatering efficiency improves by the sludge processing method of this invention is demonstrated.
Tester specifications The specifications of the concentrator for which the concentration test was conducted are as follows.
・ Model Cylindrical screen rotary concentrator ・ Screen diameter 300φ (mm)
・ Screen length 450L (mm)
・ Screen hole diameter 1.0φ (mm)
・ Effective filtration area 0.44m2
・ Rotation speed 1.5-33rpm
The specifications of the dehydrator subjected to the dehydration test are as follows.
・ Model Screw press type dehydrator ・ Screen diameter 200φ (mm)
・ Screen length 1000L (mm)
・ Screen hole diameter 0.5-1.5φ (mm)
[0013]
The results of the dehydration test are shown below.
Test date July-November 2001 Test location In the sewage treatment plant Test stock solution Mixed raw sludge A (sludge concentration 0.5% W / V)
Mixed raw sludge B (sludge concentration 1.0% W / V)
Surplus sludge (sludge concentration 0.4% W / V)
Polymers used Cationic polymer flocculant Tables 1, 2, and 3 show the results of dehydration tests of each test stock solution.
[0014]
[Table 1]
Figure 0003680994
[0015]
[Table 2]
Figure 0003680994
[0016]
[Table 3]
Figure 0003680994
[0017]
From Table 1, Table 2, and Table 3, comparing raw sludge without deconcentration and dehydration with full concentration, mixed raw sludge A, mixed raw sludge B, and excess sludge are cakes. The moisture content is decreasing and the filtration rate is greatly improved. And the usage-amount of a polymer flocculent is also decreasing. In addition, the rotational speed of the screw press 9 when dewatering the raw sludge without performing the concentration operation is set to 0.5 rpm, the moisture content of the cake becomes too high, and the target value (cost required for cake disposal after dehydration, etc.) This is because the numerical value calculated from (1) cannot be achieved. The target value of the cake moisture content of the mixed raw sludge A and the mixed raw sludge B was set to 77%, and the target value of the cake moisture content of the excess sludge was set to 87%.
[0018]
Next, comparing the total amount of concentrated sludge and the sludge obtained by mixing the original sludge with the concentrated sludge, first, the mixed sludge A of Table 1 has a mixing ratio of concentrated sludge: raw sludge of 2: 1 and 1: In the case of No. 1 concentrated sludge + raw sludge, the amount of polymer flocculant used, the moisture content of the cake, and the filtration rate were improved, and good results were obtained. In addition, when the mixing ratio of concentrated sludge: raw sludge is 1: 2, the amount of the polymer flocculant used and the filtration rate are improved except for the fact that the moisture content of the cake is slightly high. In the mixed raw sludge B shown in Table 2, the use amount of the polymer flocculant and the filtration rate were improved at all mixing ratios of concentrated sludge: raw sludge. As for the moisture content of the cake, the whole amount of concentrated sludge is better except that the mixture having a mixing ratio of 1: 1 is improved. However, the target value of the moisture content of the cake is achieved at all the mixing ratios. About the excess sludge of Table 3, the sludge of mixing ratio 1: 3 is favorable in all the usage-amount of a polymer flocculent, a filtration speed, and a cake moisture content. Also, the amount of the polymer flocculant used is the same or improved at all the mixing ratios. The cake moisture content tends to increase as the mixing ratio becomes larger than 1: 3. The filtration rate also decreases as the mixing ratio increases with a peak mixing ratio of 1: 3.
[0019]
Considering the results of the above dehydration test, the mixed raw sludge A shows a good result when the mixing ratio of concentrated sludge: raw sludge is 2: 1. Next, in the mixed raw sludge B, the best results are shown when the mixing ratio is 1: 1. And the surplus sludge has the best result when the mixing ratio is 1: 3.
[0020]
【The invention's effect】
As described above, the method for treating sewage sludge of the present invention improves both the amount of the polymer flocculant used, the moisture content of the cake, and the filtration rate.
That is, a polymer flocculant is added to a part of the sewage sludge and mixed and stirred to produce agglomerated flocs. Therefore, suspended substances coagulate to promote flocking.
Next, this agglomerated sludge is concentrated using a rotary concentrator ,
By supplying unconcentrated raw sludge to this concentrated sludge, adding a small amount of polymer flocculant, and then mixing and stirring, the agglomeration is restored and a strong floc is generated to improve the dewaterability. . The amount of the polymer flocculant to be used can be reduced, the moisture of the dehydrated cake can be reduced, the filtration rate can be improved, and an efficient dehydration treatment can be performed.
[Brief description of the drawings]
FIG. 1 is a flow sheet diagram of a method for treating sewage sludge according to the present invention.
FIG. 2 is a conceptual diagram of a dehydrator used in the sewage sludge treatment method according to the present invention.
[Explanation of symbols]
3- turn concentrator
7 Sludge supply pump
9 screw press

Claims (1)

下水汚泥の一部にカチオン系高分子凝集剤を添加して凝集処理し、この凝集汚泥と残りの下水汚泥を混合した後、脱水処理する汚泥の処理方法において、下水汚泥の全量の50〜80%を凝集処理し、この凝集汚泥を回転濃縮機(3)に供給して濃縮倍率を5〜15倍に濃縮すると共に、濃縮汚泥と残りの原汚泥とを混合し、この混合汚泥に少量のカチオン系高分子凝集剤を添加して凝集フロックを生成させ、汚泥供給ポンプ(7)の汚泥供給量を制御しながらスクリュープレス(9)で固液分離処理を行なうことを特徴とする下水汚泥の処理方法。By adding a cationic polymer flocculant in a portion of the sewage sludge and flocculation treatment, after mixing the agglomerated sludge and the rest of the sewage sludge, the treatment method of sludge dewatering process, the total amount of sewage sludge 50-80 % the aggregate process, while concentrate the concentration ratio by supplying the agglomeration sludge rotary concentrator (3) 5 to 15 fold, was mixed with concentrated sludge and the remaining raw sludge, a small amount of this mixture sludge A sewage sludge is characterized in that a cationic polymer flocculant is added to produce agglomerated floc, and a solid-liquid separation process is performed with a screw press (9) while controlling the sludge supply amount of the sludge supply pump (7) . Processing method.
JP2001379572A 2001-12-13 2001-12-13 Sewage sludge treatment method Expired - Lifetime JP3680994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379572A JP3680994B2 (en) 2001-12-13 2001-12-13 Sewage sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379572A JP3680994B2 (en) 2001-12-13 2001-12-13 Sewage sludge treatment method

Publications (2)

Publication Number Publication Date
JP2003175400A JP2003175400A (en) 2003-06-24
JP3680994B2 true JP3680994B2 (en) 2005-08-10

Family

ID=19186883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379572A Expired - Lifetime JP3680994B2 (en) 2001-12-13 2001-12-13 Sewage sludge treatment method

Country Status (1)

Country Link
JP (1) JP3680994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106838A1 (en) 2009-03-19 2010-09-23 株式会社石垣 Concentrator-integrated screw press

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702607B2 (en) * 2005-06-14 2011-06-15 株式会社石垣 Continuous pressure dehydrator using sheet metal filter media
JP5481654B2 (en) * 2008-05-13 2014-04-23 株式会社神鋼環境ソリューション Sludge treatment method and treatment system
JP5087053B2 (en) * 2009-07-07 2012-11-28 株式会社奥村組 Muddy water dewatering method and system
JP5240232B2 (en) * 2010-04-23 2013-07-17 株式会社石垣 Control system and control device
JP5327159B2 (en) * 2010-07-29 2013-10-30 株式会社石垣 Sludge concentration and dehydration system and control method thereof
WO2012093478A1 (en) * 2011-01-06 2012-07-12 株式会社奥村組 Method and system for dehydration of muddy water
JP5999877B2 (en) * 2011-06-20 2016-09-28 株式会社タクマ Sludge treatment system
JP6270328B2 (en) * 2013-03-29 2018-01-31 株式会社クボタ Sludge concentration and dehydration system
CN103342447A (en) * 2013-06-26 2013-10-09 广东省生态环境与土壤研究所 Method for improving sludge dewatering performance
CN106145582A (en) * 2016-08-25 2016-11-23 江苏东邦机械有限公司 A kind of integration of sludge concentrating and dewatering set structure
CN115626753B (en) * 2022-10-25 2024-05-28 福建省明能新型建材有限公司 Sewage sludge dewatering and drying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106838A1 (en) 2009-03-19 2010-09-23 株式会社石垣 Concentrator-integrated screw press
KR101337290B1 (en) * 2009-03-19 2013-12-05 가부시키가이샤 이시가키 Concentrator-integrated screw press
US8881648B2 (en) 2009-03-19 2014-11-11 Ishigaki Company Limited Concentrator-integrated screw press

Also Published As

Publication number Publication date
JP2003175400A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
JP3680994B2 (en) Sewage sludge treatment method
JP4496489B2 (en) Method for controlling raw sludge supply amount of dehydrator and its control device
JP6378865B2 (en) Sludge treatment method and apparatus
WO2012108312A1 (en) Method and device for sludge flocculation
JP5837694B2 (en) Sludge treatment method and treatment apparatus
JP2010000437A (en) Screw press having flocculation device
JP2010058039A (en) Sludge dewatering apparatus and sludge dewatering method
JP2010057997A (en) Sludge dewatering apparatus and method
CN113402150A (en) Magnetic coagulation sludge treatment process
JP5835089B2 (en) Sludge dewatering system
JP5846037B2 (en) Constant press-fitting pressure control method in screw press
JP3222278B2 (en) Sludge dewatering method
JPH06344000A (en) Dehydration process for sludge
JPS59183896A (en) Sludge dehydrating method
JPH06320200A (en) Device and method for concentration and dewatering of sludge
JP5846038B2 (en) Constant press-fitting pressure control method in screw press
JPH10192900A (en) Sludge coagulating apparatus
JP6362304B2 (en) Sludge treatment method and apparatus
JPS6048199A (en) Sludge dehydrator
JP5835088B2 (en) Sludge dewatering system
JP2003154400A (en) Dehydration method utilizing carbonized sludge and dehydrator therefor
JPS6125700A (en) Dehydrating method of organic sludge
JPS6041600A (en) Dehydration method of sludge
JPH05317899A (en) Treatment of sludge
JP2002192199A (en) Method and apparatus for dehydrating sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Ref document number: 3680994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term