JP3657184B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3657184B2
JP3657184B2 JP2000285450A JP2000285450A JP3657184B2 JP 3657184 B2 JP3657184 B2 JP 3657184B2 JP 2000285450 A JP2000285450 A JP 2000285450A JP 2000285450 A JP2000285450 A JP 2000285450A JP 3657184 B2 JP3657184 B2 JP 3657184B2
Authority
JP
Japan
Prior art keywords
cold air
storage chamber
cooler
refrigerator
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000285450A
Other languages
Japanese (ja)
Other versions
JP2002090028A (en
Inventor
正恭 西田
善一 井上
宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000285450A priority Critical patent/JP3657184B2/en
Publication of JP2002090028A publication Critical patent/JP2002090028A/en
Application granted granted Critical
Publication of JP3657184B2 publication Critical patent/JP3657184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/062Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation along the inside of doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator, in which a plurality of storage chambers of different temperatures are cooled by the same cooler, cooling efficiency can be improved, and the low chamber-temperature can be easily maintained. SOLUTION: In the refrigerator, a storage chamber 10 keeps supplies, a cooler 25 generates cool air for cooling the chamber 10 and an ice-temperature chamber 14. The cool air is branched and conducted through a cool-air discharging path 27 and an ice-temperature duct 60 into the chambers 10 and 14. A cool-air return path 28 conducts the cool air in the storage chamber 10 into the cooler 25. A member 42 forming the cool-air discharging path 27 and the ice-temperature duct 60 releases the cold by the cool air circulating in the path 21 and duct 60 into the storage chamber 10.

Description

【0001】
【発明の属する技術分野】
本発明は冷蔵庫に関し、特に、冷却器により生成された冷気を貯蔵室内に吐出するとともに該冷気による冷熱を貯蔵室内に放出する冷蔵庫に関する。
【0002】
【従来の技術】
従来の冷蔵庫は例えば特開平10−253218号公報に開示されている。同公報によると、冷蔵庫は上から冷蔵室、野菜室、冷凍室に区分けされ、冷凍室の背後に冷気を生成する冷却器が設けられている。冷却器からは、冷蔵室に向かう冷蔵室用冷気通路と、冷凍室に向かう冷凍室用冷気通路とが導出されている。
【0003】
冷却器の蒸発温度は例えば−20℃になっており、冷凍室用冷気通路を通る冷気が冷凍室に吐出される。そして、冷凍室内の空気と熱交換して冷気戻り通路を通って冷却器に戻る。これにより冷凍室内が例えば−10℃に冷却されるようになっている。
【0004】
冷蔵室用冷気通路を通る冷気は送風機により冷気流量が調整されており、所定の時期に冷気が冷蔵室に吐出される。そして、冷蔵室内の空気と熱交換した後、冷蔵室と連通した野菜室に流入し、野菜室内を冷却して冷気戻り通路を通って冷却器に戻る。これにより、冷蔵室及び野菜室内がそれぞれ例えば3℃、5℃に冷却されるようになっている。
【0005】
また、冷蔵室内の下部には氷温室が設けられている。氷温室内には冷蔵室用冷却通路を通る冷気が分岐して吐出される。氷温室は冷却器から近い位置に配されるため吐出されるまでの経路が短くなっている。このため、外部との熱交換によって奪われる冷熱量が少なく低温の冷気が吐出される。これにより、氷温室の室内温度が例えば−1℃に設定されている。
【0006】
また、冷蔵室及び野菜室を冷却するための冷蔵室用冷却器と、冷凍室を冷却するための冷凍室用冷却器とを別々に設けた冷蔵庫も知られている。この冷蔵庫は、冷蔵室及び野菜室の温度に応じて冷蔵室用冷却器の蒸発温度を上げることができ、省電力化を図ることができるようになっている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記の従来の冷蔵庫によると、冷蔵室用冷却通路を通る冷気が冷蔵室と氷温室とに分離されるため、冷蔵室に吐出される冷気量が減少する。このため、冷蔵室内を所定の室温に維持するために長時間送風機を駆動して冷凍サイクルを運転する必要があり冷却効率が悪い問題があった。同様に、冷蔵室用冷却器を設けた場合であっても長時間冷蔵室用冷却器の冷凍サイクルを運転する必要があり冷却効率が悪い問題があった。
【0008】
また、冷蔵室内が所定の室温になって冷気の循環を停止した際に、氷温室内の冷気と冷蔵室内の冷気との間で熱交換が行われ、氷温室を低温に維持することが困難となる問題もあった。特に冬季には冷却器の冷凍サイクルの運転時間が短くなるので、氷温室の温度維持が著しく困難となる。
【0009】
本発明は、室内温度の異なる複数の貯蔵室を同じ冷却器で冷却する冷蔵庫において冷却効率を向上させることができるとともに、低温の室内温度を容易に維持することのできる冷蔵庫を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、貯蔵物を収納する第1、第2貯蔵室と、第1、第2貯蔵室を冷却するための冷気を生成する冷却器と、前記冷却器で生成された冷気を前記第1、第2貯蔵室に送るための送風機を設け、該冷気を第1、第2貯蔵室にそれぞれ導く第1、第2冷気吐出通路を有し、前記冷却器を第1貯蔵室の上方の第1貯蔵室に面した位置に配置するとともに、第1貯蔵室内の下方に第2貯蔵室を配置し、第1貯蔵室の冷気を前記冷却器に戻す冷気戻り通路を設け、第1、第2冷気吐出通路、前記冷気戻り通路と第1貯蔵室との隔壁を形成し、第1、第2冷気吐出通路内、前記冷気戻り通路内を流通する冷気による冷熱を伝えて第1貯蔵室内に放出する部材を備え、前記第1貯蔵室には冷蔵室を設け、前記第1、第2冷気吐出通路の前記部材に面する側に断熱材を配し、前記部材は熱伝導率が大きい材料からなり、前記断熱材の後方に前記送風機が位置することを特徴としている。
【0011】
この構成によると、冷却器により生成された冷気は分岐して第1、第2冷気吐出通路を介してそれぞれ第1、第2貯蔵室内に吐出される。そして、第1、第2冷気吐出通路を通る冷気による冷熱が経路途中で部材に伝えられ、部材を介して第1貯蔵室内の冷気との熱交換が行われて第1貯蔵室内に冷熱が放出される。これにより、第1貯蔵室内が均一に冷却される。また第1、第2冷気吐出通路から第1、第2貯蔵室に吐出される冷気が冷気戻り通路を通って冷却器に戻る循環手段の停止時に、冷却器周辺の低温で比重が大きい冷気が第2冷気吐出通路を流下して第2貯蔵室を冷却する。
【0012】
た、第2冷気吐出通路を通る冷気による第1貯蔵室への冷熱の放出が断熱材により抑制される。これにより、低温の冷気が第2貯蔵室に吐出されるとともに、部材表面の結露が防止される。
【0013】
また前記部材は所定の箇所で分断して配されていることを特徴とする。また本発明は、上記構成の冷蔵庫において、第2貯蔵室は第1貯蔵室内に配される隔離室から成ることを特徴としている。また、更に、前記第1貯蔵室の下方に冷凍室を設け、前記第1、第2貯蔵室を冷却するための冷気を生成する冷却器と、前記冷凍室を冷却するための冷気を生成する冷却器とは異なる冷却器であることを特徴としている。
【0014】
また本発明は、上記構成の冷蔵庫において、前記部材は、第1貯蔵室及び第1、第2冷気吐出通路の壁面を形成する他の部分の材料よりも熱伝導率が大きい材料から成ることを特徴としている。
【0017】
また本発明は、上記構成の冷蔵庫において、第1貯蔵室の左右方向の一端部に製氷を行うための給水タンクを備え、他端部に第2冷気吐出通路を配置するとともに中央部に前記冷気戻り通路を配したことを特徴としている。この構成によると、第1貯蔵室内の下方の一端部に給水タンクが配されて貯水される。第2冷気吐出通路が給水タンクと離れた他端部に配されて第2貯蔵室に低温の冷気が導かれ、給水タンクと第2冷気吐出通路との間に配される冷気戻り通路を通って冷気が冷却器に戻される。
【0018】
また本発明は、上記構成の冷蔵庫において、前記冷気戻り通路の経路途中に第2貯蔵室に臨む開口部を設けたことを特徴としている。この構成によると、冷却器の冷気を循環する循環手段の停止時に、冷却器周辺の低温で比重の大きい冷気が冷気戻り通路を流下する。そして、開口部を介して第2貯蔵室に流入して第2貯蔵室を冷却する。
【0019】
また本発明は、上記構成の冷蔵庫において、第2冷気吐出通路の断面積または第2冷気吐出通路の吐出口の開口面積を可変できるようにしたことを特徴としている。この構成によると、第2貯蔵室に吐出される冷気量が可変され、第2貯蔵室内の室内温度の調整が可能となる。
【0021】
【発明の実施の形態】
以下に本発明の実施形態を図面を参照して説明する。図1、図2は第1実施形態の冷蔵庫を示す側面断面図及び正面図である。冷蔵庫1は外面を覆う外箱2aの内側に内箱2bが配され、外箱2aと内箱2bとの隙間には発泡ウレタン等の断熱材2cが充填されている。冷蔵庫1の内部は上から冷蔵室11、野菜室12、冷凍室13の順に区分けされている。
【0022】
野菜室12と冷凍室13とは断熱材から成る仕切枠17及び仕切板19によって仕切られており、冷凍室13は更に断熱材から成る仕切枠18により上部と下部に仕切られている。冷蔵室11と野菜室12とは断熱材から成る仕切枠16及び樹脂成形品から成る仕切板31、32によって仕切られている。
【0023】
冷蔵室11の下部には仕切板46で仕切られた隔離室である氷温室(第2貯蔵室)14が設けられている。冷蔵室11には食品等を載置する複数の棚45が設けられている。冷蔵室11の前面は回動式の断熱扉3により開閉可能になっている。野菜室12、冷凍室13の上部及び冷凍室13の下部は夫々スライド式の断熱扉4、5、6により前面が開閉可能になっており、収納容器54、55、56を引出せるようになっている。
【0024】
冷凍室13の後部には圧縮機20が配されており、圧縮機20は冷気通路23、29内に配される冷却器21、25に接続されて冷凍サイクルが構成されている。冷凍サイクルの回路図を図3に示すと、圧縮機20には凝縮器71が連結されており、矢印A1のように冷媒がキャピラリーチューブ72、73及び冷却器25を通って圧縮機20に戻る第1の冷凍サイクルが構成されている。また、矢印A2のように冷媒がキャピラリーチューブ72、74及び冷却器21を通って圧縮機20に戻る第2の冷凍サイクルが構成されている。77は凝縮器71を冷却する冷却ファンである。
【0025】
第1の冷凍サイクルと第2の冷凍サイクルとは並列に構成され、開閉弁78を開くと第1の冷凍サイクルと第2の冷凍サイクルとが同時に運転される。従って、冷却器21、25による冷却が行われ、送風機22、26の駆動により冷凍室13及び冷蔵室11に冷気が送出される。
【0026】
開閉弁78を閉じると、第2の冷凍サイクルが運転され、冷却器21による冷却が行われて送風機22の駆動により冷凍室13のみの冷却が行われる。冷蔵室11と冷凍室13とのそれぞれに専用の冷却器25、21を設けているので、冷却器25の冷却温度を高く設定して冷却器25、部材42及び冷蔵室11内の結露や氷結を抑制することができるようになっている。また、冷蔵室11及び野菜室12の室内温度が所定範囲内にある場合には、圧縮機20及び冷却ファン77を出力を下げて第2の冷凍サイクルを運転することにより、省エネルギー化を図ることができるようになっている。
【0027】
更に、冷却器21、25を並列に配しているので、冷媒の流通する配管接続を簡素化することができる。即ち、溶接箇所の多くを圧縮機20が配される機械室内に設けることができ生産性やメンテナンス性が向上する。尚、75、76は冷蔵室11及び冷凍室13内の温度を検知する温度センサであり、温度センサ75、76の検知によって圧縮機20が駆動されるようになっている。
【0028】
開閉弁78に替えて、図中、破線で示す三方弁79を設けてもよい。三方弁79の切替によって第1の冷凍サイクルと第2の冷凍サイクルとを同時に運転する場合と、第1、第2の冷凍サイクルの一方を運転する場合とに切り替えて冷蔵室11及び冷凍室13を冷却することができる。
【0029】
図1、図2において、冷却器21、25の下方には冷却器21、25の除霜を行う除霜ヒータ61、62が設けられている。63、64はドレン受け部材である。冷却器21は冷気通路23内に配されており、冷気通路23の壁面は内箱2bと樹脂成形品から成るエバカバー33とにより形成されている。送風機22は冷気通路23内の冷却器21の上方に配されている。冷気通路23は冷凍室13の背面板33aに設けられた吐出口13a、13c及び戻り口13bによって冷凍室13と連通している。
【0030】
冷却器25は冷気通路29内に配され、送風機26は冷却器25の上方に配されている。冷気通路29は冷却器25により生成された冷気を冷蔵室11に導く冷気吐出通路27(第1冷気吐出通路)と、冷蔵室11を通って野菜室12から冷気を冷却器25に戻す冷気戻り通路28とから成っている。
【0031】
冷気戻り通路28の壁面は冷蔵室11及び氷温室14の背壁を形成する部材42と内箱2bにより形成されている。冷気吐出通路27は隔壁27aにより前後に分割され、部材42と隔壁27aとから成る前部27dと、隔壁27aと内箱2bとから成る後部27eとを有している。隔壁27aにより冷却器25と圧力室27bとが隔離され、隔壁27aに送風機26が取り付けられている。部材42は図4に示すようにアルミニウムやステンレス等の金属板を板金加工して形成さている。
【0032】
冷蔵室11の天井部分には冷気吐出通路27と連通する天井冷気吐出通路57が設けられている。天井冷気吐出通路57の壁面は樹脂成形品から成る上面板43と内箱2bとにより形成されている。部材42及び上面板43には吐出口42a、43aが設けられている。冷蔵室11の天井中央部には透明な照明カバー53で覆われた照明灯51が設けられ、冷蔵室11内を照明するようになっている。
【0033】
冷気戻り通路28の左方には、製氷器67に給水するために貯水する給水タンク66が配されており、右方には送風機26の吐出側から分岐して氷温室14の背面に冷気を導く氷温ダクト60が設けられている。また、野菜室12の背後には、圧縮機20、送風機23、26等を駆動するための電気回路58が断熱材2cを介して設置されている。
【0034】
上記構成の冷蔵庫1において、圧縮機20の駆動により第2の冷凍サイクルが運転されると、冷却器21による冷却が行われ、送風機22が駆動される。これにより、冷凍室13内の空気は戻り口13bから冷気通路23に吸引される。該空気は冷却器21と熱交換して冷却され、吐出口13a、13cから冷凍室13に吐出される。これにより、冷凍室13内が例えば−20℃に冷却される。
【0035】
第1の冷凍サイクルの運転により送風機26が駆動されると、野菜室12内の空気は戻り口12bから冷気戻り通路28に吸引される。該空気は冷却器25と熱交換して冷却され、冷気吐出通路27内を流通して吐出口42a、43aから冷蔵室11内に吐出される。
【0036】
冷蔵室11内の冷気は棚45の間や棚45の前面を通り連通路12aを介して野菜室12内の前方に吐出される。そして、収納容器54の前面から下方を通って野菜室12内を冷却し、戻り口12bから冷気戻り通路28に導かれて冷気が循環する。吐出口42a、43aから冷蔵室11に吐出された冷気は、野菜室12に流入するまでの間に食品等に冷熱を奪われる。これにより、冷蔵室11内は例えば3℃に冷却され、野菜室12内は例えば5℃に冷却される。
【0037】
また、送風機26から送出される冷気の一部は直ちに分岐して氷温ダクト60を介して吐出口60aから氷温室14に適量吐出される。これにより、氷温室14内の温度を例えば−1℃に維持できるようになっている。氷温室14内に貯蔵される貯蔵物に応じて氷温室14内に吐出される冷気量を可変して室温を調節してもよい。
【0038】
例えば、冷気量を少量にして室温を0℃付近にするとチルド室となり、冷気量を更に少なくして室温を5℃付近にすると野菜室にもなる。冷気量の可変は、図6に示すように、吐出口60aを覆う扉60bによる開閉により行うことができる。また、氷温ダクト60の断面積を可変して冷気量の調節を行うようにしてもよいが、吐出口60aの面積を可変する方が吐出される冷気量を使用者が容易に判断できるのでより望ましい。
【0039】
本実施形態の冷蔵庫は冷蔵室11及び野菜室12を一つの貯蔵室(第1貯蔵室)とみなすことができ、その概略構成は図7に示すようになる。冷却器25で生成された冷気の温度は例えば−20℃になっている。該冷気は送風機26により矢印A1の方向に冷気吐出通路27(第1冷気吐出通路)を通る。
【0040】
この時、部材42は金属から成るので、冷気の冷熱の一部が部材42と熱交換されて部材42の温度が例えば約−5℃になり、貯蔵室10内にB1のように冷熱が放出される。このため、冷気吐出通路27及び天井冷気吐出通路57を通って吐出口42a、43a(図1参照)から矢印A2の方向に吐出される冷気の温度は例えば約−10℃になる。
【0041】
また、氷温ダクト60(第2冷気吐出通路)を通って矢印A4の方向に吐出口60aから氷温室14(第2貯蔵室)に冷気が吐出される。この冷気による冷熱も氷温ダクト60を通る際に部材42を介して矢印B2のように貯蔵室10内に放出される。貯蔵室10内に吐出された冷気及び放出された冷熱は貯蔵室10内の空気と熱交換して、貯蔵室10(冷蔵室11)内が例えば約3℃に冷却される。
【0042】
そして、貯蔵室10内の冷気が戻り口12bから矢印A3の方向に冷気戻り通路28に流入する。この時、貯蔵室10内の冷気との熱交換が完全には行われないため、冷気戻り通路28に流入する冷気の温度は例えば約−1℃になっている。
【0043】
部材42は冷気戻り通路28の前面まで延びて設けられているので、冷気戻り通路28に流入する冷気による冷熱が貯蔵室10内に放出される。従って、より効率良く貯蔵室10内を冷却するとともに、冷却器25の蒸発温度を上昇させることができる。これにより、冷却器25の動作係数が増加し、圧縮機20(図1参照)の仕事量に対して吸収熱量が大きくなるため、省エネルギー化を図ることができる。尚、各室の温度は冷却器25の蒸発温度、冷却器25の冷却能力、送風機26の送風量及び各室の容積等により定められる。
【0044】
前述したように、氷温ダクト60を通る冷気による冷熱の一部は部材42と熱交換されて貯蔵室10内に放出される。従って、冷却器25から冷気吐出通路27と氷温ダクト60とに分岐して冷蔵室11内に吐出される冷気量が減少しても、冷気吐出通路27だけでなく氷温ダクト60を通る冷気の冷熱によっても冷蔵室11内を冷却することができる。その結果、冷却効率を向上させることができる。しかも、部材42の全面から冷熱を放出するため、室内の均一な冷却が可能となる。
【0045】
尚、本実施形態に限られず、金属から成る部材42に替えて冷熱を伝えて放出する部材を設けることにより上記と同様の効果を得ることができる。例えば、部材42は冷蔵室11や冷気通路29の内壁を構成する樹脂成形品から成る内箱2bよりも熱伝導性の高い材料であればよく、セラミック材料や金属フィラーを含浸した樹脂材料等を使用してもよい。また、部材42の厚みが厚い場合は蓄冷能力が上がり、強度も増加する。厚みが薄い場合は冷熱の放出効率が向上し、軽量化にも有利である。そのため、目的に応じて薄板材や厚板材を適時適所に選択して設ければよい。
【0046】
部材42の表面には凹凸形状をプレス加工等により形成してもよい。このようにすると、部材42の表面積を増加させることができ、畜冷する量及び冷熱放出量が増加してより均一な冷却を行うことができる。凹凸形状は線状に連続した形状にすることにより部材42の強度を向上させることができる。
【0047】
また、部材42を図5に示すようなゼリー状や液状の保冷材42cを金属等の包装材42f、42gにより封入した蓄冷部材にしてもよい。このようにすると、部材42は冷気通路29内を流通する冷気の冷熱でより蓄冷され、冷蔵室11内の温度分布に応じて冷熱として放出する。従って、冷蔵室11が均一に冷却されるようになる。
【0048】
更に、蓄冷部材により圧縮機20の停止中や冷気通路29内の冷気温度の変動に対して吸熱や放熱を行い、冷気通路29内の冷気温度を一定に維持することができる。そして、冷蔵室11内の温度を安定して均一に一定の温度に保つことができる。
【0049】
図7において、冷却器25が冷蔵室11の上方に配されるため、冷却器25で生成された冷気が冷蔵室11内に吐出されるまでの経路が短縮される。従って、冷蔵庫1の外部との熱交換による冷熱の放出が低減され、冷却効率が向上する。
【0050】
更に、氷温室14が冷却器25の下方に配されているため、冷蔵室11及び野菜室12(図1参照)内の温度が所定の温度になり送風機26及び第1の冷凍サイクルの運転が停止されると、冷却器25の周辺の低温の冷気は比重が重いため氷温ダクト60a内を流下する。そして、吐出口60aを介して低温の冷気が氷温室14内に流入する。従って、第1の冷凍サイクルの運転が停止中であっても氷温室14の温度上昇を抑制し、容易に氷温室14を低温に維持できる。
【0051】
図8は前述の図7と異なる断面を示す概略図である。貯蔵室10の左右方向の略中央に設けられる冷気戻り通路28には、氷温室14に面して開口部28aが設けられている。このため上記と同様に、送風機26及び第1の冷凍サイクルの運転が停止されると、冷却器25の周辺の低温の冷気は比重が重いため冷気戻り通路28内を流下する。そして、開口部28aを介して低温の冷気が矢印A5に示すように氷温室14内に流入する。従って、更に容易に氷温室14を低温に維持できる。
【0052】
また、冷気戻り通路28の貯蔵室10側の表面を部材42により形成しているので、冷気戻り通路28を矢印A6のように流下した冷気による冷熱が部材42を介して貯蔵室10内に放出される(B3)。これにより、貯蔵室10内の温度上昇を抑制することができる。
【0053】
前述の図2において、上記したように給水タンク66が冷蔵室11の左端に配置され、氷温ダクト60が冷蔵室11の右端に配置されている。従って、氷温ダクト60と給水タンク66とが離れた位置に配置され氷温ダクト60を通る低温の冷気による給水タンク66内の貯水の凍結を防止することができる。この時、氷温ダクト60と給水タンク66との間には昇温された冷気が通る冷気戻り通路28が配されているため、給水タンク66内の貯水を凍結させることはない。
【0054】
また、氷温ダクト60と給水タンク66との間に冷気戻り通路28を設けて、氷温ダクト60と冷気戻り通路28が隣接するため、氷温ダクト60の前面に配される部材42と冷気戻り通路28の前面に配される部材42とを共通にすることができ部品点数を削減することができる。
【0055】
次に、図9は第2実施形態の冷蔵庫を示す概略図である。前述の図7の第1実施形態と同一の部分については同一の符号を付している、第1実施形態と異なる点は部材42の冷気通路29及び氷温ダクト60側の表面に断熱材68を設けている点である。その他の構成は第1実施形態と同様である。
【0056】
本実施形態によると、冷気吐出通路27及び氷温ダクト60を通る冷気の温度と冷蔵室11内の温度との差が大きい場合に、部材42の表面に生じる結露を断熱材68により防止することができる。また、氷温ダクト60から貯蔵室10内に放出される冷熱量は減少するが、冷気の昇温を抑制して氷温室14を容易に低温に維持することができる。断熱材68を冷気吐出通路27及び氷温ダクト60のいずれか一方に設けてもよい。
【0057】
尚、本発明において、部材42を冷気吐出通路側と氷温ダクト側とに一体に形成しているものに関しては、必要な部分にのみ部材42を分断して配してもよい。このようにしても、部材42が配された部分では上記と同様の効果を得ることができる。
【0058】
また、冷却器21、25として蒸発器を用いているが、ペルチェ方式やその他の冷却方式による冷却器を用いても同様の効果を得ることができる。また、冷却器21、25は直列方式の冷凍サイクルを用いても同様の効果を得ることができ、1つの冷却器により冷凍室と冷蔵室との両方を冷却する場合であっても同様の効果を得ることができる。
【0059】
【発明の効果】
本発明によると、冷却器で生成された冷気が第1、第2冷気吐出通路に分岐して第1貯蔵室内に吐出される冷気量が減少しても、第1冷気吐出通路を通る冷気の冷熱を部材により第1貯蔵室内に放出して第1貯蔵室を冷却することができるので、冷却効率を向上させることができるとともに、部材を伝わって部材の全面から冷熱を放出するため、室内の均一な冷却が可能となる。更に、第2冷気吐出通路を通る冷気の冷熱をも部材により第1貯蔵室内に放出して第1貯蔵室を冷却することができるので、より冷却効率を向上させることができる。
【0060】
また本発明によると、部材を第1貯蔵室及び第1、第2冷気吐出通路の壁面を形成する他の部分の材料よりも熱伝導率が大きい材料により形成することによって、簡単に第1貯蔵室内に冷熱を放出することができる。
【0061】
また本発明によると、冷却器が第1貯蔵室の上方に配されるため、冷却器で生成された冷気が第1貯蔵室内に吐出されるまでの経路が短縮される。従って、外部との熱交換による冷熱の放出が低減され、冷却効率が向上する。更に、第2貯蔵室が冷却器の下方に配されているので、冷気の循環手段が停止されても冷却器の周辺の低温の冷気は比重が重いため第2冷気吐出通路内を流下して第2貯蔵室内に流入する。従って、第2貯蔵室の温度上昇を抑制し、容易に低温を維持できる。
【0062】
また本発明によると、給水タンクが第1貯蔵室の一端に配置され、第2冷気吐出通路が第1貯蔵室の他端に配置されているので、第2冷気吐出通路を通る低温の冷気による給水タンク内の貯水の凍結を防止することができる。この時、第2冷気吐出通路と給水タンクとの間には昇温された冷気が通る冷気戻り通路が配されているため、給水タンク内の貯水を凍結させることはない。
【0063】
また、第2冷気吐出通路と給水タンクとの間に冷気戻り通路を設けているため、第2冷気吐出通路との前面に配される部材と、冷気戻り通路の前面に配される部材とを共通にすることができ部品点数を削減することができる。
【0064】
また本発明によると、冷気戻り通路に第2貯蔵室に面して開口部が設けられているので、冷気の循環手段が停止されても冷却器の周辺の低温の冷気は比重が重いため冷気戻り通路内を流下して第2貯蔵室内に流入する。従って、第2貯蔵室の温度上昇を抑制し、更に容易に低温を維持できる。
【0065】
また本発明によると、第2冷気吐出通路の断面積または吐出口の開口面積を可変できるようにしているので、第2貯蔵室内に吐出される冷気量を容易に可変して、第2貯蔵室内に貯蔵される貯蔵物に応じて室温を調節することができる。
【0066】
また本発明によると、第2冷気吐出通路の前記部材に面する側に断熱材を配しているので、第2冷気吐出通路を通る冷気の温度と第1貯蔵室内の温度との差が大きい場合に、部材の表面に生じる結露を防止することができる。また、第2冷気吐出通路から第1貯蔵室内に放出される冷熱量は減少するが、冷気の昇温を抑制して第2貯蔵室を容易に低温に維持することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態の冷蔵庫を示す側面断面図である。
【図2】 本発明の第1実施形態の冷蔵庫を示す正面図である。
【図3】 本発明の第1実施形態の冷蔵庫の冷却サイクルを示す回路図である。
【図4】 本発明の第1実施形態の冷蔵庫の部材を示す斜視図である。
【図5】 本発明の第1実施形態の冷蔵庫の部材の他の構成を示す斜視図である。
【図6】 本発明の第1実施形態の冷蔵庫の氷温ダクトの吐出口の動作を説明する概略正面図である。
【図7】 本発明の第1実施形態の冷蔵庫の一側面断面を示す概略図である。
【図8】 本発明の第1実施形態の冷蔵庫の他の側面断面を示す概略図である。
【図9】 本発明の第2実施形態の冷蔵庫を示す概略図である。
【符号の説明】
1 冷蔵庫
2a 外箱
2b 内箱
3、4、5、6 断熱扉
11 冷蔵室
12 野菜室
13 冷凍室
14 氷温室
20 圧縮機
21、25 冷却器
22、26 送風機
23、29 冷気通路
27 冷気吐出通路
28 冷気戻り通路
42 部材
51 照明灯
54、55、56 収納容器
57 天井冷気吐出通路
58 電子回路
60 氷温ダクト
61、62 除霜ヒータ
68 断熱材
71 凝縮器
72、73、74 キャピラリーチューブ
75、76 温度センサ
77 冷却用ファン
78 開閉弁
79 三方弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator, and more particularly, to a refrigerator that discharges cold air generated by a cooler into a storage chamber and releases cold heat from the cold air into the storage chamber.
[0002]
[Prior art]
A conventional refrigerator is disclosed in, for example, Japanese Patent Laid-Open No. 10-253218. According to the publication, the refrigerator is divided into a refrigerator room, a vegetable room, and a freezer room from above, and a cooler that generates cold air is provided behind the freezer room. From the cooler, a cold air passage for the refrigerator compartment leading to the refrigerator compartment and a cold air passage for the freezer compartment leading to the freezer compartment are led out.
[0003]
The evaporating temperature of the cooler is, for example, −20 ° C., and cold air passing through the freezer compartment cold air passage is discharged into the freezer compartment. Then, it exchanges heat with the air in the freezer compartment and returns to the cooler through the cool air return passage. As a result, the inside of the freezer compartment is cooled to, for example, −10 ° C.
[0004]
The cool air flow rate of the cool air passing through the cool air passage for the refrigerating room is adjusted by a blower, and the cool air is discharged into the refrigerating room at a predetermined time. And after exchanging heat with the air in the refrigerator compartment, it flows into the vegetable compartment communicated with the refrigerator compartment, cools the vegetable compartment, returns to the cooler through the cold air return passage. Thereby, the refrigerator compartment and the vegetable compartment are each cooled to 3 degreeC and 5 degreeC, for example.
[0005]
In addition, an ice greenhouse is provided in the lower part of the refrigerator compartment. Cold air passing through the cooling passage for the refrigerator compartment is branched and discharged into the ice greenhouse. Because the ice greenhouse is located near the cooler, the path to discharge is shortened. For this reason, the amount of cold heat taken away by heat exchange with the outside is small, and low-temperature cold air is discharged. Thereby, the room temperature of an ice greenhouse is set, for example to -1 degreeC.
[0006]
There is also known a refrigerator in which a refrigerator for a refrigerator compartment for cooling the refrigerator compartment and the vegetable compartment and a refrigerator for the refrigerator compartment for cooling the freezer compartment are separately provided. This refrigerator can raise the evaporation temperature of the refrigerator for refrigerators according to the temperature of a refrigerator compartment and a vegetable compartment, and can achieve power saving.
[0007]
[Problems to be solved by the invention]
However, according to the above-described conventional refrigerator, the cold air passing through the refrigerating room cooling passage is separated into the refrigerating room and the ice greenhouse, so that the amount of cold air discharged to the refrigerating room is reduced. For this reason, in order to maintain the inside of a refrigerator compartment at predetermined room temperature, it was necessary to drive a fan for a long time and to operate a refrigerating cycle, and there was a problem that cooling efficiency was bad. Similarly, even when a refrigerator for the refrigerator compartment is provided, there is a problem that the cooling efficiency is poor because the refrigeration cycle of the refrigerator for the refrigerator compartment needs to be operated for a long time.
[0008]
In addition, when the inside of the refrigerating room reaches the predetermined room temperature and the circulation of the cold air is stopped, heat exchange is performed between the cold air in the ice greenhouse and the cold air in the cold room, making it difficult to keep the ice greenhouse at a low temperature. There was also a problem. Especially in winter, since the operation time of the refrigeration cycle of the cooler is shortened, it is extremely difficult to maintain the temperature of the ice greenhouse.
[0009]
An object of the present invention is to provide a refrigerator that can improve cooling efficiency in a refrigerator that cools a plurality of storage rooms having different indoor temperatures with the same cooler and can easily maintain a low indoor temperature. And
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides first and second storage chambers for storing stored items, a cooler for generating cool air for cooling the first and second storage chambers, and the cooler. Provided with a blower for sending the cooled air to the first and second storage chambers, and having first and second cold air discharge passages for guiding the cold air to the first and second storage chambers, respectively. A cold air return passage is disposed at a position facing the first storage chamber above the first storage chamber, a second storage chamber is disposed below the first storage chamber, and the cold air in the first storage chamber is returned to the cooler. Providing a partition between the first and second cold air discharge passages, the cold air return passage and the first storage chamber, and transferring cold heat from the cold air flowing through the first and second cold air discharge passages and the cold air return passage. the first comprises a section member to release the storage compartment Te, a refrigerating chamber provided in the first storage chamber, said first, second cool air discharge failure Disposing a heat insulating material on the side facing the member of the passage, said member is made of material having a large thermal conductivity, the blower behind the insulation material is being located.
[0011]
According to this configuration, the cold air generated by the cooler is branched and discharged into the first and second storage chambers via the first and second cold air discharge passages, respectively. Then, the cold heat by the cold air passing through the first and second cold air discharge passages is transmitted to the member in the middle of the route, and heat exchange with the cold air in the first storage chamber is performed via the member, and the cold heat is released into the first storage chamber. Is done. Thereby, the first storage chamber is uniformly cooled. In addition, when the cooling means for returning the cool air discharged from the first and second cool air discharge passages to the first and second storage chambers through the cool air return passage and returning to the cooler is stopped, cold air having a large specific gravity is generated at a low temperature around the cooler. The second storage chamber is cooled by flowing down the second cold air discharge passage.
[0012]
Also, cold release into the first storage chamber by cool air passing through the second cold air discharge passage is suppressed by the heat insulating material. As a result, low-temperature cold air is discharged into the second storage chamber, and condensation on the member surface is prevented.
[0013]
In addition, the member is divided at a predetermined location. According to the present invention, in the refrigerator configured as described above, the second storage chamber includes an isolation chamber arranged in the first storage chamber. Furthermore, a freezing room is provided below the first storage room, a cooler for generating cold air for cooling the first and second storage rooms, and cold air for cooling the freezing room are generated. The cooler is different from the cooler.
[0014]
In the refrigerator configured as described above, the member may be made of a material having a higher thermal conductivity than materials of other portions forming the wall surfaces of the first storage chamber and the first and second cold air discharge passages. It is a feature.
[0017]
In the refrigerator having the above-described configuration, the refrigerator includes a water supply tank for making ice at one end portion in the left-right direction of the first storage chamber, a second cold air discharge passage is disposed at the other end portion, and the cold air is disposed at a central portion. It is characterized by a return passage. According to this configuration, the water supply tank is arranged at the lower end of the first storage chamber to store water. The second cold air discharge passage is disposed at the other end away from the water supply tank so that the low-temperature cold air is guided to the second storage chamber, and passes through the cold air return passage disposed between the water supply tank and the second cold air discharge passage. The cool air is returned to the cooler.
[0018]
In the refrigerator having the above-described configuration, the present invention is characterized in that an opening facing the second storage chamber is provided in the course of the cold air return passage. According to this configuration, when the circulating means for circulating the cool air of the cooler is stopped, the cool air having a high specific gravity at a low temperature around the cooler flows down the cool air return passage. And it flows in into a 2nd storage room via an opening part, and cools a 2nd storage room.
[0019]
Further, the present invention is characterized in that, in the refrigerator configured as described above, the cross-sectional area of the second cold air discharge passage or the opening area of the discharge port of the second cold air discharge passage can be varied. According to this configuration, the amount of cool air discharged into the second storage chamber is varied, and the indoor temperature in the second storage chamber can be adjusted.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a side sectional view and a front view showing the refrigerator according to the first embodiment. In the refrigerator 1, an inner box 2b is arranged inside an outer box 2a that covers the outer surface, and a gap between the outer box 2a and the inner box 2b is filled with a heat insulating material 2c such as urethane foam. The inside of the refrigerator 1 is divided into the refrigerator compartment 11, the vegetable compartment 12, and the freezer compartment 13 in order from the top.
[0022]
The vegetable compartment 12 and the freezer compartment 13 are partitioned by a partition frame 17 and a partition plate 19 made of a heat insulating material, and the freezer compartment 13 is further partitioned into an upper part and a lower part by a partition frame 18 made of a heat insulating material. The refrigerator compartment 11 and the vegetable compartment 12 are partitioned by a partition frame 16 made of a heat insulating material and partition plates 31 and 32 made of a resin molded product.
[0023]
An ice greenhouse (second storage room) 14, which is an isolation room partitioned by a partition plate 46, is provided at the lower part of the refrigerator compartment 11. The refrigerator compartment 11 is provided with a plurality of shelves 45 on which foods and the like are placed. The front surface of the refrigerator compartment 11 can be opened and closed by a rotating heat insulating door 3. The front of the vegetable compartment 12, the upper part of the freezer compartment 13 and the lower part of the freezer compartment 13 can be opened and closed by sliding heat insulating doors 4, 5, 6 so that the storage containers 54, 55, 56 can be pulled out. ing.
[0024]
A compressor 20 is disposed at the rear of the freezer compartment 13, and the compressor 20 is connected to coolers 21 and 25 disposed in the cold air passages 23 and 29 to constitute a refrigeration cycle. When the circuit diagram of the refrigeration cycle is shown in FIG. 3, a condenser 71 is connected to the compressor 20, and the refrigerant returns to the compressor 20 through the capillary tubes 72 and 73 and the cooler 25 as indicated by an arrow A1. A first refrigeration cycle is configured. Further, a second refrigeration cycle is configured in which the refrigerant returns to the compressor 20 through the capillary tubes 72 and 74 and the cooler 21 as indicated by an arrow A2. A cooling fan 77 cools the condenser 71.
[0025]
The first refrigeration cycle and the second refrigeration cycle are configured in parallel, and when the on-off valve 78 is opened, the first refrigeration cycle and the second refrigeration cycle are operated simultaneously. Therefore, cooling is performed by the coolers 21 and 25, and cold air is sent to the freezer compartment 13 and the refrigerator compartment 11 by driving the blowers 22 and 26.
[0026]
When the on-off valve 78 is closed, the second refrigeration cycle is operated, cooling by the cooler 21 is performed, and only the freezer compartment 13 is cooled by driving the blower 22. Since the dedicated coolers 25 and 21 are provided in the refrigerator compartment 11 and the freezer compartment 13, respectively, the cooling temperature of the cooler 25 is set high, and the dew condensation and icing in the cooler 25, the member 42 and the refrigerator compartment 11 are set. Can be suppressed. Moreover, when the room temperature of the refrigerator compartment 11 and the vegetable compartment 12 is in a predetermined range, energy saving is achieved by operating the second refrigeration cycle by lowering the output of the compressor 20 and the cooling fan 77. Can be done.
[0027]
Furthermore, since the coolers 21 and 25 are arranged in parallel, piping connection through which the refrigerant flows can be simplified. That is, many of the welding locations can be provided in the machine room in which the compressor 20 is arranged, so that productivity and maintainability are improved. Reference numerals 75 and 76 denote temperature sensors for detecting the temperatures in the refrigerator compartment 11 and the freezer compartment 13, and the compressor 20 is driven by the detection of the temperature sensors 75 and 76.
[0028]
Instead of the on-off valve 78, a three-way valve 79 indicated by a broken line in the figure may be provided. The refrigeration chamber 11 and the freezer compartment 13 are switched between a case where the first refrigeration cycle and the second refrigeration cycle are operated simultaneously by switching the three-way valve 79 and a case where one of the first and second refrigeration cycles is operated. Can be cooled.
[0029]
1 and 2, defrost heaters 61 and 62 for defrosting the coolers 21 and 25 are provided below the coolers 21 and 25. 63 and 64 are drain receiving members. The cooler 21 is disposed in the cool air passage 23, and the wall surface of the cool air passage 23 is formed by the inner box 2b and an evaporative cover 33 made of a resin molded product. The blower 22 is disposed above the cooler 21 in the cool air passage 23. The cold air passage 23 communicates with the freezer compartment 13 through discharge ports 13 a and 13 c and a return port 13 b provided in the back plate 33 a of the freezer compartment 13.
[0030]
The cooler 25 is disposed in the cool air passage 29, and the blower 26 is disposed above the cooler 25. The cold air passage 29 is a cold air discharge passage 27 (first cold air discharge passage) that guides the cold air generated by the cooler 25 to the refrigerating chamber 11, and a cold air return that returns the cold air from the vegetable compartment 12 to the cooler 25 through the refrigerating chamber 11. It consists of a passage 28.
[0031]
The wall surface of the cold air return passage 28 is formed by a member 42 that forms the back wall of the refrigerator compartment 11 and the ice greenhouse 14 and the inner box 2b. The cool air discharge passage 27 is divided into front and rear by a partition wall 27a, and has a front portion 27d composed of the member 42 and the partition wall 27a, and a rear portion 27e composed of the partition wall 27a and the inner box 2b. The cooler 25 and the pressure chamber 27b are isolated by the partition wall 27a, and the blower 26 is attached to the partition wall 27a. As shown in FIG. 4, the member 42 is formed by processing a metal plate such as aluminum or stainless steel.
[0032]
A ceiling cold air discharge passage 57 communicating with the cold air discharge passage 27 is provided in the ceiling portion of the refrigerator compartment 11. The wall surface of the ceiling cool air discharge passage 57 is formed by an upper surface plate 43 made of a resin molded product and the inner box 2b. The member 42 and the upper surface plate 43 are provided with discharge ports 42a and 43a. An illuminating lamp 51 covered with a transparent illumination cover 53 is provided in the center of the ceiling of the refrigerator compartment 11 so as to illuminate the interior of the refrigerator compartment 11.
[0033]
A water supply tank 66 for storing water for supplying water to the ice maker 67 is arranged on the left side of the cold air return passage 28, and on the right side is branched from the discharge side of the blower 26 to cool the back of the ice greenhouse 14. A leading ice temperature duct 60 is provided. Further, behind the vegetable compartment 12, an electric circuit 58 for driving the compressor 20, the blowers 23, 26 and the like is installed via a heat insulating material 2c.
[0034]
In the refrigerator 1 having the above-described configuration, when the second refrigeration cycle is operated by driving the compressor 20, cooling by the cooler 21 is performed, and the blower 22 is driven. Thereby, the air in the freezer compartment 13 is sucked into the cool air passage 23 from the return port 13b. The air is cooled by exchanging heat with the cooler 21, and discharged from the discharge ports 13 a and 13 c to the freezer compartment 13. Thereby, the inside of the freezer compartment 13 is cooled, for example to -20 degreeC.
[0035]
When the blower 26 is driven by the operation of the first refrigeration cycle, the air in the vegetable compartment 12 is sucked into the cold air return passage 28 from the return port 12b. The air is cooled by exchanging heat with the cooler 25, flows through the cold air discharge passage 27, and is discharged into the refrigerator compartment 11 from the discharge ports 42 a and 43 a.
[0036]
The cold air in the refrigerator compartment 11 passes between the shelves 45 and through the front surface of the shelves 45 and is discharged to the front of the vegetable compartment 12 through the communication passage 12a. And the inside of the vegetable compartment 12 is cooled through the lower part from the front surface of the storage container 54, and it is guide | induced to the cool air return channel | path 28 from the return port 12b, and cool air circulates. The cold air discharged from the discharge ports 42a and 43a into the refrigerator compartment 11 is deprived of cold by the food or the like until it flows into the vegetable compartment 12. Thereby, the inside of the refrigerator compartment 11 is cooled, for example to 3 degreeC, and the inside of the vegetable compartment 12 is cooled, for example to 5 degreeC.
[0037]
A part of the cold air sent from the blower 26 is immediately branched and discharged to the ice greenhouse 14 through the ice temperature duct 60 from the discharge port 60a. Thereby, the temperature in the ice greenhouse 14 can be maintained at, for example, -1 ° C. The room temperature may be adjusted by varying the amount of cold air discharged into the ice greenhouse 14 according to the stored items stored in the ice greenhouse 14.
[0038]
For example, if the amount of cold air is made small and the room temperature is set to about 0 ° C., it becomes a chilled room, and if the amount of cold air is further reduced and the room temperature is made about 5 ° C., it becomes a vegetable room. As shown in FIG. 6, the amount of cool air can be changed by opening and closing by a door 60b covering the discharge port 60a. The amount of cold air may be adjusted by changing the cross-sectional area of the ice temperature duct 60, but the user can easily determine the amount of cold air discharged by changing the area of the discharge port 60a. More desirable.
[0039]
The refrigerator of this embodiment can consider the refrigerator compartment 11 and the vegetable compartment 12 as one storage room (1st storage room), and the schematic structure becomes as shown in FIG. The temperature of the cold air generated by the cooler 25 is, for example, −20 ° C. The cold air passes through the cold air discharge passage 27 (first cold air discharge passage) in the direction of arrow A1 by the blower 26.
[0040]
At this time, since the member 42 is made of metal, a part of the cold air heat is exchanged with the member 42 so that the temperature of the member 42 becomes, for example, about −5 ° C., and the cold heat is released into the storage chamber 10 like B1. Is done. For this reason, the temperature of the cold air discharged from the discharge ports 42a and 43a (see FIG. 1) through the cold air discharge passage 27 and the ceiling cold air discharge passage 57 in the direction of the arrow A2 is about −10 ° C., for example.
[0041]
Further, cold air is discharged from the discharge port 60a to the ice greenhouse 14 (second storage chamber) in the direction of arrow A4 through the ice temperature duct 60 (second cold air discharge passage). This cold air is also discharged into the storage chamber 10 through the member 42 as shown by the arrow B2 when passing through the ice temperature duct 60. The cool air discharged into the storage chamber 10 and the discharged cold heat exchange heat with the air in the storage chamber 10, and the inside of the storage chamber 10 (refrigeration chamber 11) is cooled to about 3 ° C., for example.
[0042]
Then, the cool air in the storage chamber 10 flows into the cool air return passage 28 in the direction of the arrow A3 from the return port 12b. At this time, since heat exchange with the cold air in the storage chamber 10 is not completely performed, the temperature of the cold air flowing into the cold air return passage 28 is about −1 ° C., for example.
[0043]
Since the member 42 is provided so as to extend to the front surface of the cold air return passage 28, cold heat due to the cold air flowing into the cold air return passage 28 is released into the storage chamber 10. Therefore, the inside of the storage chamber 10 can be cooled more efficiently and the evaporation temperature of the cooler 25 can be raised. As a result, the operating coefficient of the cooler 25 increases, and the amount of heat absorbed increases with respect to the work amount of the compressor 20 (see FIG. 1), so that energy saving can be achieved. The temperature of each chamber is determined by the evaporating temperature of the cooler 25, the cooling capacity of the cooler 25, the amount of air blown by the blower 26, the volume of each chamber, and the like.
[0044]
As described above, a part of the cold heat caused by the cold air passing through the ice temperature duct 60 is exchanged with the member 42 and discharged into the storage chamber 10. Therefore, even if the amount of cold air that branches from the cooler 25 to the cold air discharge passage 27 and the ice temperature duct 60 and is discharged into the refrigerator compartment 11 decreases, the cold air that passes through the ice temperature duct 60 as well as the cold air discharge passage 27 is reduced. The inside of the refrigerator compartment 11 can also be cooled by the cold heat. As a result, the cooling efficiency can be improved. Moreover, since cold heat is released from the entire surface of the member 42, the room can be uniformly cooled.
[0045]
In addition, it is not restricted to this embodiment, It can replace with the member 42 which consists of metals, and can obtain the effect similar to the above by providing the member which transmits cold heat | fever and discharge | releases. For example, the member 42 may be a material having higher thermal conductivity than the inner box 2b made of a resin molded product constituting the inner wall of the refrigerator compartment 11 or the cold air passage 29, such as a resin material impregnated with a ceramic material or a metal filler. May be used. Moreover, when the thickness of the member 42 is thick, the cold storage capacity increases and the strength also increases. If the thickness is small, the efficiency of releasing cold heat is improved, which is advantageous for weight reduction. Therefore, a thin plate material or a thick plate material may be selected and provided at an appropriate place according to the purpose.
[0046]
An uneven shape may be formed on the surface of the member 42 by pressing or the like. If it does in this way, the surface area of the member 42 can be increased, the amount to cool and the amount of cold heat release will increase, and more uniform cooling can be performed. The strength of the member 42 can be improved by forming the uneven shape into a linearly continuous shape.
[0047]
Further, the member 42 may be a cold storage member in which a jelly-like or liquid cold insulating material 42c as shown in FIG. 5 is enclosed by packaging materials 42f and 42g such as metal. If it does in this way, the member 42 will be cold-stored more with the cold of the cold air which distribute | circulates the inside of the cold passage 29, and it discharge | releases as cold according to the temperature distribution in the refrigerator compartment 11. FIG. Therefore, the refrigerator compartment 11 is cooled uniformly.
[0048]
Further, the cool storage member can absorb heat and dissipate heat while the compressor 20 is stopped or the cold air temperature in the cold air passage 29 varies, so that the cold air temperature in the cold air passage 29 can be kept constant. And the temperature in the refrigerator compartment 11 can be stably maintained uniformly at a constant temperature.
[0049]
In FIG. 7, the cooler 25 is disposed above the refrigerating chamber 11, so that the path until the cool air generated by the cooler 25 is discharged into the refrigerating chamber 11 is shortened. Therefore, the discharge | release of the cold heat by the heat exchange with the exterior of the refrigerator 1 is reduced, and cooling efficiency improves.
[0050]
Furthermore, since the ice greenhouse 14 is arranged below the cooler 25, the temperature in the refrigerator compartment 11 and the vegetable compartment 12 (see FIG. 1) becomes a predetermined temperature, and the fan 26 and the first refrigeration cycle are operated. When stopped, the low temperature cold air around the cooler 25 has a high specific gravity and flows down in the ice temperature duct 60a. Then, low-temperature cold air flows into the ice greenhouse 14 through the discharge port 60a. Therefore, even if the operation of the first refrigeration cycle is stopped, the temperature increase of the ice greenhouse 14 can be suppressed and the ice greenhouse 14 can be easily maintained at a low temperature.
[0051]
FIG. 8 is a schematic view showing a cross section different from that of FIG. The cold air return passage 28 provided at the approximate center in the left-right direction of the storage chamber 10 is provided with an opening 28 a facing the ice greenhouse 14. For this reason, similarly to the above, when the operation of the blower 26 and the first refrigeration cycle is stopped, the low-temperature cold air around the cooler 25 flows down in the cold air return passage 28 because of its high specific gravity. Then, low-temperature cold air flows into the ice greenhouse 14 through the opening 28a as indicated by an arrow A5. Therefore, the ice greenhouse 14 can be maintained at a low temperature more easily.
[0052]
Further, since the surface of the cold air return passage 28 on the storage chamber 10 side is formed by the member 42, the cold heat caused by the cold air flowing down the cold air return passage 28 as shown by the arrow A6 is released into the storage chamber 10 through the member 42. (B3). Thereby, the temperature rise in the storage chamber 10 can be suppressed.
[0053]
As described above, in FIG. 2, the water supply tank 66 is disposed at the left end of the refrigerator compartment 11, and the ice temperature duct 60 is disposed at the right end of the refrigerator compartment 11. Accordingly, the ice temperature duct 60 and the water supply tank 66 are arranged at a distance from each other, and freezing of the water stored in the water supply tank 66 due to low-temperature cold air passing through the ice temperature duct 60 can be prevented. At this time, since the cold air return passage 28 through which the heated cold air passes is arranged between the ice temperature duct 60 and the water supply tank 66, the water stored in the water supply tank 66 is not frozen.
[0054]
Further, since the cold air return passage 28 is provided between the ice temperature duct 60 and the water supply tank 66 and the ice temperature duct 60 and the cold air return passage 28 are adjacent to each other, the member 42 disposed on the front surface of the ice temperature duct 60 and the cold air are arranged. The member 42 arranged in front of the return passage 28 can be made common, and the number of parts can be reduced.
[0055]
Next, FIG. 9 is a schematic view showing the refrigerator of the second embodiment. The same parts as those in the first embodiment of FIG. 7 described above are denoted by the same reference numerals. The difference from the first embodiment is that the heat insulating material 68 is provided on the surface of the member 42 on the cold air passage 29 and the ice temperature duct 60 side. This is the point. Other configurations are the same as those of the first embodiment.
[0056]
According to the present embodiment, when the difference between the temperature of the cold air passing through the cold air discharge passage 27 and the ice temperature duct 60 and the temperature in the refrigerator compartment 11 is large, the heat insulating material 68 prevents condensation that occurs on the surface of the member 42. Can do. Further, although the amount of cold heat released from the ice temperature duct 60 into the storage chamber 10 is reduced, the ice greenhouse 14 can be easily maintained at a low temperature by suppressing the temperature rise of the cold air. The heat insulating material 68 may be provided in any one of the cold air discharge passage 27 and the ice temperature duct 60.
[0057]
In the present invention, in the case where the member 42 is integrally formed on the cold air discharge passage side and the ice temperature duct side, the member 42 may be divided and disposed only at a necessary portion. Even if it does in this way, the effect similar to the above can be acquired in the part by which the member 42 was distribute | arranged.
[0058]
Moreover, although the evaporator is used as the coolers 21 and 25, the same effect can be acquired even if it uses the cooler by a Peltier system or another cooling system. In addition, the coolers 21 and 25 can obtain the same effect even when a series refrigeration cycle is used, and the same effect can be obtained even when both the freezer compartment and the refrigerator compartment are cooled by one cooler. Can be obtained.
[0059]
【The invention's effect】
According to the present invention, even if the cool air generated by the cooler branches into the first and second cool air discharge passages and the amount of cool air discharged into the first storage chamber is reduced, the cool air passing through the first cool air discharge passage is reduced. The cooling heat can be discharged into the first storage chamber by the member to cool the first storage chamber, so that the cooling efficiency can be improved and the cooling heat is released from the entire surface of the member through the member. Uniform cooling is possible. Furthermore, since the cold of the cold air passing through the second cold air discharge passage can be discharged into the first storage chamber by the member to cool the first storage chamber, the cooling efficiency can be further improved.
[0060]
Further, according to the present invention, the first storage can be easily performed by forming the member with a material having a higher thermal conductivity than the material of the first storage chamber and the other portions forming the wall surfaces of the first and second cold air discharge passages. Cold heat can be released into the room.
[0061]
According to the present invention, since the cooler is arranged above the first storage chamber, the path until the cool air generated by the cooler is discharged into the first storage chamber is shortened. Therefore, the release of cold heat due to heat exchange with the outside is reduced, and the cooling efficiency is improved. Further, since the second storage chamber is arranged below the cooler, even if the cool air circulation means is stopped, the low temperature cool air around the cooler has a high specific gravity, so it flows down in the second cool air discharge passage. It flows into the second storage chamber. Therefore, the temperature rise of the second storage chamber can be suppressed and the low temperature can be easily maintained.
[0062]
Further, according to the present invention, the water supply tank is disposed at one end of the first storage chamber, and the second cold air discharge passage is disposed at the other end of the first storage chamber, so that the low temperature cold air passing through the second cold air discharge passage is used. Freezing of the stored water in the water supply tank can be prevented. At this time, since the cold air return passage through which the raised cold air passes is arranged between the second cold air discharge passage and the water supply tank, the water stored in the water supply tank is not frozen.
[0063]
Further, since the cold air return passage is provided between the second cold air discharge passage and the water supply tank, a member disposed on the front surface of the second cold air discharge passage and a member disposed on the front surface of the cold air return passage are provided. It can be made common and the number of parts can be reduced.
[0064]
Further, according to the present invention, since the cold air return passage is provided with the opening facing the second storage chamber, the low temperature cold air around the cooler has a high specific gravity even if the cold air circulation means is stopped. It flows down in the return passage and flows into the second storage chamber. Therefore, the temperature rise of the second storage chamber can be suppressed and the low temperature can be easily maintained.
[0065]
Further, according to the present invention, since the cross-sectional area of the second cold air discharge passage or the opening area of the discharge port can be changed, the amount of cold air discharged into the second storage chamber can be easily changed to thereby change the second storage chamber. The room temperature can be adjusted according to the stored product.
[0066]
Further, according to the present invention, since the heat insulating material is arranged on the side of the second cold air discharge passage facing the member, the difference between the temperature of the cold air passing through the second cold air discharge passage and the temperature in the first storage chamber is large. In this case, it is possible to prevent dew condensation occurring on the surface of the member. In addition, although the amount of cold heat released from the second cold air discharge passage into the first storage chamber is reduced, the second storage chamber can be easily maintained at a low temperature by suppressing the temperature rise of the cold air.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a front view showing the refrigerator according to the first embodiment of the present invention.
FIG. 3 is a circuit diagram showing a cooling cycle of the refrigerator according to the first embodiment of the present invention.
FIG. 4 is a perspective view showing members of the refrigerator according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing another configuration of members of the refrigerator according to the first embodiment of the present invention.
FIG. 6 is a schematic front view illustrating the operation of the discharge port of the ice temperature duct of the refrigerator according to the first embodiment of the present invention.
FIG. 7 is a schematic view showing one side cross-section of the refrigerator according to the first embodiment of the present invention.
FIG. 8 is a schematic view showing another cross-sectional side view of the refrigerator according to the first embodiment of the present invention.
FIG. 9 is a schematic view showing a refrigerator according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator 2a Outer box 2b Inner box 3, 4, 5, 6 Heat insulation door 11 Refrigeration room 12 Vegetable room 13 Freezer room 14 Ice greenhouse 20 Compressor 21, 25 Cooler 22, 26 Blower 23, 29 Cold air passage 27 Cold air discharge passage 28 Cold air return passage 42 Member 51 Lighting lamps 54, 55, 56 Storage container 57 Ceiling cold air discharge passage 58 Electronic circuit 60 Ice temperature duct 61, 62 Defrost heater 68 Heat insulating material 71 Condensers 72, 73, 74 Capillary tubes 75, 76 Temperature sensor 77 Cooling fan 78 On-off valve 79 Three-way valve

Claims (8)

貯蔵物を収納する第1、第2貯蔵室と、
第1、第2貯蔵室を冷却するための冷気を生成する冷却器と、前記冷却器で生成された冷気を前記第1、第2貯蔵室に送るための送風機を設け、
該冷気を第1、第2貯蔵室にそれぞれ導く第1、第2冷気吐出通路を有し、
前記冷却器を第1貯蔵室の上方の第1貯蔵室に面した位置に配置するとともに、第1貯蔵室内の下方に第2貯蔵室を配置し、第1貯蔵室の冷気を前記冷却器に戻す冷気戻り通路を設け、
第1、第2冷気吐出通路、前記冷気戻り通路と第1貯蔵室との隔壁を形成し、第1、第2冷気吐出通路内、前記冷気戻り通路内を流通する冷気による冷熱を伝えて第1貯蔵室内に放出する部材を備え
前記第1貯蔵室には冷蔵室を設け、
前記第1、第2冷気吐出通路の前記部材に面する側に断熱材を配し、
前記部材は熱伝導率が大きい材料からなり、
前記断熱材の後方に前記送風機が位置すること
を特徴とする冷蔵庫。
First and second storage chambers for storing stored items;
A cooler for generating cold air for cooling the first and second storage chambers, and a blower for sending the cold air generated by the cooler to the first and second storage chambers;
First and second cold air discharge passages for guiding the cold air to the first and second storage chambers, respectively;
The cooler is disposed at a position facing the first storage chamber above the first storage chamber, a second storage chamber is disposed below the first storage chamber, and the cool air from the first storage chamber is supplied to the cooler. Provide a cool air return passage to return,
A partition wall is formed between the first and second cold air discharge passages, the cold air return passage and the first storage chamber, and the first and second cold air discharge passages and the cold air flowing through the cold air return passage are transmitted to transmit the cold heat. includes a section member to release the first storage chamber,
The first storage room is provided with a refrigeration room,
A heat insulating material is disposed on a side of the first and second cold air discharge passages facing the member;
The member is made of a material having a high thermal conductivity,
The refrigerator , wherein the blower is located behind the heat insulating material .
前記部材は所定の箇所で分断して配されていることを特徴とする請求項1に記載の冷蔵庫。The refrigerator according to claim 1, wherein the member is divided at a predetermined location. 第2貯蔵室は第1貯蔵室内に配される隔離室から成ることを特徴とする請求項1または請求項に記載の冷蔵庫。The refrigerator according to claim 1 or 2 , wherein the second storage room is composed of an isolation room arranged in the first storage room. 更に、前記第1貯蔵室の下方に冷凍室を設け、
前記第1、第2貯蔵室を冷却するための冷気を生成する冷却器と、前記冷凍室を冷却するための冷気を生成する冷却器とは異なる冷却器であることを特徴とする請求項1〜請求項のいずれかに記載の冷蔵庫。
Furthermore, a freezing room is provided below the first storage room,
The cooler for generating cold air for cooling the first and second storage chambers is different from the cooler for generating cold air for cooling the freezing chamber. -The refrigerator in any one of Claim 3 .
前記部材は、第1貯蔵室及び第1、第2冷気吐出通路の壁面を形成する他の部分の材料よりも熱伝導率が大きい材料から成ることを特徴とする請求項1〜請求項のいずれかに記載の冷蔵庫。The member of claim 1 to claim 4, characterized in that it consists of a material the thermal conductivity greater than the material of the other part forming the first storage chamber and the first wall surface of the second cold air discharge passage The refrigerator in any one. 第1貯蔵室の左右方向の一端部に製氷を行うための給水タンクを備え、他端部に第2冷気吐出通路を配置するとともに中央部に前記冷気戻り通路を配したことを特徴とする請求項1〜請求項のいずれかに記載の冷蔵庫。A water supply tank for making ice is provided at one end of the first storage chamber in the left-right direction, a second cold air discharge passage is disposed at the other end, and the cold air return passage is disposed at the center. The refrigerator in any one of Claims 1-5 . 前記冷気戻り通路の経路途中に第2貯蔵室に臨む開口部を設けたことを特徴とする請求項1〜請求項のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 6, wherein an opening facing the second storage chamber is provided in the course of the cold air return passage. 第2冷気吐出通路の断面積または第2冷気吐出通路の吐出口の開口面積を可変できるようにしたことを特徴とする請求項1〜請求項のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 7 , wherein the sectional area of the second cold air discharge passage or the opening area of the discharge port of the second cold air discharge passage can be varied.
JP2000285450A 2000-09-20 2000-09-20 refrigerator Expired - Lifetime JP3657184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285450A JP3657184B2 (en) 2000-09-20 2000-09-20 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285450A JP3657184B2 (en) 2000-09-20 2000-09-20 refrigerator

Publications (2)

Publication Number Publication Date
JP2002090028A JP2002090028A (en) 2002-03-27
JP3657184B2 true JP3657184B2 (en) 2005-06-08

Family

ID=18769516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285450A Expired - Lifetime JP3657184B2 (en) 2000-09-20 2000-09-20 refrigerator

Country Status (1)

Country Link
JP (1) JP3657184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955183B2 (en) 2017-01-03 2021-03-23 Samsung Electronics Co., Ltd. Refrigerator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030760A (en) * 2004-10-06 2006-04-11 삼성전자주식회사 Refrigerator
JP5053238B2 (en) * 2008-11-14 2012-10-17 シャープ株式会社 refrigerator
CN103688119B (en) 2011-07-12 2016-01-20 夏普株式会社 Cold storage box and temperature control system, air-conditioning system, hot-water supply system
KR101999263B1 (en) * 2014-07-16 2019-07-12 삼성전자주식회사 Refrigerator
EP3657106B1 (en) * 2014-01-07 2022-08-10 Samsung Electronics Co., Ltd. Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955183B2 (en) 2017-01-03 2021-03-23 Samsung Electronics Co., Ltd. Refrigerator

Also Published As

Publication number Publication date
JP2002090028A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
US8863537B2 (en) Single evaporator refrigeration system for multi-compartment refrigerator appliance with isolated air flows
JP3904866B2 (en) refrigerator
JP5254578B2 (en) refrigerator
JP4642791B2 (en) refrigerator
JP2002130910A (en) Refrigerator
JP3714830B2 (en) refrigerator
JP3657184B2 (en) refrigerator
JP4562763B2 (en) refrigerator
JP4033888B2 (en) refrigerator
JP3647343B2 (en) refrigerator
JP4896760B2 (en) refrigerator
JP4111942B2 (en) refrigerator
JP4959474B2 (en) refrigerator
JP3603942B2 (en) refrigerator
JP2002090025A (en) Refrigerator
JP5617003B2 (en) refrigerator
JP2005016903A (en) Refrigerator
JP5133634B2 (en) refrigerator
JP3644860B2 (en) refrigerator
JP2002048452A (en) Refrigerator
JP4079960B2 (en) refrigerator
JP5620538B2 (en) refrigerator
JP2005140359A (en) Refrigerator
JP3611021B2 (en) refrigerator
JP2002090060A (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8